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Abstract

Normal graphs are defined in terms of cross-intersecting set families:
a graph is normal if it admits a clique cover Q and a stable set cover
S s.t. every clique in Q intersects every stable set in S.

Normal graphs can be considered as closure of perfect graphs by
means of co-normal products (Körner [6]) and graph entropy (Cziszár
et al. [5]). Perfect graphs have been recently characterized as those
graphs without odd holes and odd antiholes as induced subgraphs
(Strong Perfect Graph Theorem, Chudnovsky et al. [3]). Körner and de
Simone [9] observed that C5, C7, and C7 are minimal not normal and
conjectured, as generalization of the Strong Perfect Graph Theorem,
that every C5, C7, C7-free graph is normal (Normal Graph Conjecture,
Körner and de Simone [9]).

We prove this conjecture for a first class of graphs that generalize
both odd holes and odd antiholes, the circulants, by characterizing all
the normal circulants.

1 Introduction

Normal graphs come up in a natural way in an information theoretic con-
text [7, 5]. A graph G is called normal if it has the property of so-called
“qualitative independence”: G admits a clique cover Q and a stable set cover
S s.t. every clique in Q intersects every stable set in S. (A set is a clique
(resp. stable set) if its nodes are mutually adjacent (resp. non-adjacent).)

The interest in normal graphs is caused by the fact that they form,
in many ways, a closure of the well-known class of perfect graphs. Berge
introduced the latter class in 1960, motivated from Shannon’s information-
theoretic problem of finding the zero-error capacity of a discrete memoryless
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channel [11]. Shannon’s problem has a graph-theoretic formulation, regard-
ing the asymptotic growth of the maximum cliques in the co-normal product
Gn of G = (V,E), where G2 has V × V as node set and

{(a1, b1), (a2, b2) : (a1, a2) ∈ E or (b1, b2) ∈ E}

as edge set. The Shannon capacity of G is

C(G) = lim
n→∞

1

n
log ω(Gn)

where ω(Gn) denotes the size of a maximum clique in Gn. Shannon observed
that ω(Gn) = (ω(G))n holds for graphs G with ω(G) = χ(G) which makes
the otherwise difficult problem of determining C(G) tractable (χ(G) denotes
the least number of stable sets covering V ). Shannon observed further that
the C5 is the smallest graph G with ω(G) < χ(G) and that computing C(C5)
is a difficult task, as for all chordless odd cycles C2k+1 with k ≥ 2, called
odd holes, see Figure 1.

C 
7

C 
75      C  = C5      

Figure 1: Small odd holes and odd antiholes

This led Berge [2] introduce perfect graphs as those graphs G, where
ω(G′) equals χ(G′) for each induced subgraph G′ ⊆ G. Berge observed
that, besides odd holes, also their complements, the odd antiholes C 2k+1

with k ≥ 2, admit the property ω < χ, see Figure 1. (The complement G

has the same node set as G but two nodes are adjacent in G iff they are non-
adjacent in G.) This motivated Berge’s Strong Perfect Graph Conjecture:

G is perfect ⇔ G is odd hole- and odd antihole-free.

In particular, Berge claimed that the class of perfect graphs is closed un-
der taking complements; this weaker conjecture has been proved in 1972 by
Lovász [10]. The Strong Perfect Graph Conjecture stimulated the study of
perfect graphs. It turned out that they have many fascinating properties and
interesting relationships to other fields of scientific enquiry, see e.g. [1]. In
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a sequence of remarkable results based on the work of many graph-theorists
Chudnovsky et al. [3] finally verified the conjecture; thus the Strong Perfect
Graph Conjecture turned into the Strong Perfect Graph Theorem.

Normal graphs are closed under taking complements by definition, thus
they share this property with perfect graphs. In this context it is natural
to ask whether perfect and normal graphs are also closed under taking co-
normal products. Körner and Longo [7] showed that all co-normal products
of G are perfect if and only if G is the union of disjoint cliques. However, all
co-normal products of perfect and normal graphs are normal [6]; hence the
class of normal graphs is the closure of perfect graphs w.r.t. taking co-normal

products.

Another information-theoretic link between perfect and normal graphs
has been established by means of graph entropy, see [12] for a survey. The
entropy of a graph G w.r.t. a probability distribution p on its node set is

H(G, p) = lim sup
k→∞

min{
1

k
log2 χ(Gk[U ]) : U ⊆ V (Gk),

∑

x∈U

pk(x) > 1 − ε}.

The most important property of the graph-entropy is its sub-additivity
w.r.t. graphs on the same node set, in particular for complementary graphs:

H(p) ≤ H(G, p) + H(G, p) ∀p

where H(p) stands for the entropy of the complete graph, i.e., for the entropy
of p itself. Körner raised the question for which graphs G the minimum H(p)
is attained, that means when equality holds rather than just sub-additivity.
Körner and Longo [7] and Körner and Marton [8] proved

H(p) = H(G, p) + H(G, p) for at least one p > 0 ⇔ G is normal

and Cziszár et al. [5] obtained

H(p) = H(G, p) + H(G, p) for all p ⇔ G is perfect

after a sequence of deep results on entropies of so-called convex corners.
Hence normal graphs form also a superclass of perfect graphs by means of
splitting graph entropies.

Since normal graphs are “weaker” perfect graphs in several ways, Körner
and de Simone [9] asked finally for a similarity of the two classes in terms of
forbidden subgraphs. Körner [6] showed that an odd hole C2k+1 is normal
iff k ≥ 4. In particular, C5 and C7 are not normal, and so neither C7 is.
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These three graphs are even minimally not normal since all of their proper
induced subgraphs are perfect and, hence, normal. This led Körner and de
Simone conjecture:

Conjecture 1 (Normal Graph Conjecture [9]) Graphs without any C5,

C7, or C7 as induced subgraph are normal.

The validity of this conjecture would imply that the only minimally
not normal graphs are precisely C5, C7, and C7 – as the only minimally
imperfect graphs are precisely all odd holes and odd antiholes due to the
Strong Perfect Graph Theorem.

Remark 2 In contrast to the Strong Perfect Graph Theorem, the validity
of the Normal Graph Conjecture would provide us a sufficient condition for
normality only, but no characterization: The non-existence of C5, C7, and
C7 in a graph is not necessary for its normality. For example, the graphs G1

and G2 in Figure 2 are both normal (with the bold edges as clique covers
and {{1, 3, 5}, {1, 4, 6}, {2, 4, 5, 7}} resp. {{0, 2, 4, 6}, {0, 3, 5, 7}, {1, 3, 6}} as
stable set covers) and so their complements are; but we have C5 ⊂ G1,
C7 ⊂ G2, and C7 ⊂ G2.

27

36
36

1

0

27

455 4

G1 G2

1

Figure 2: Normal graphs containing C5 and C7

Körner and de Simone [9] found a sufficient and necessary condition for
the normality of connected triangle-free graphs: the existence of nice edge
covers. (An edge cover F of a graph G is nice if it is minimal w.r.t. set
inclusion and if every odd cycle C of G has at least three nodes which
are incident to an even number of edges in E(C) ∩ F ; the bold edges in
Figure 2 form nice edge covers.) However, this result in [9] does not prove the
Normal Graph Conjecture for triangle-free graphs. In this paper we verify
the conjecture for a first graph class: the circulants which are a common
generalization of odd holes and odd antiholes.
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The paper is organized as follows: We introduce circulants in Section
2 and reformulate the Normal Graph Conjecture in an appropriate way in
order to know for which circulants normality has to be shown. The main
result is a characterization of all the normal circulants in Section 3. As
a consequence we obtain that the Normal Graph Conjecture is true for
circulant graphs. We conclude with some remarks and open problems.

2 The Normal Graph Conjecture for Circulants

We consider graphs with circular symmetry of their maximum cliques and
stable sets, introduced by [4] as generalization of odd holes and odd anti-
holes. A circulant Ck

n is a graph with nodes 1, . . . , n where ij is an edge if i

and j differ by at most k (mod n) and i 6= j.
We assume k ≥ 1 and n ≥ 2(k + 1) in the sequel in order to exclude the

degenerated cases when Ck
n is a stable set or a clique. C1

n is a hole and Ck−1
2k+1

an odd antihole for k ≥ 2. The circulants Ck
9 on nine nodes are depicted in

Figure 3. The size of a maximum clique of the circulant C k
n is k +1 and the

size of a maximum stable set, called stability number α, is b n
k+1c. Unless

stated otherwise, arithmetics are always performed modulo the number of
nodes of the circulant involved in the computation.

C9
1 C9

2 C9
3

Figure 3: The circulants Ck
9

In order to prove the Normal Graph Conjecture for circulants, a first
step is to figure out which circulants contain C5, C7, and C7 as induced
subgraphs at all. This can be done with the help of the following result.

Theorem 3 (Trotter [13]) Ck′

n′ is an induced subgraph of Ck
n if and only if

k+1
k′+1n′ ≤ n ≤ k

k′ n
′ holds.

Remark 4 Ck′

n′ ⊂ Ck
n implies in particular k′ < k and n′ < n by [13].
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Recalling C5 = C1
5 , C7 = C1

7 , and C7 = C2
7 , we immediately obtain

from Theorem 3, for each fixed value of k, those numbers n of nodes s.t. C k
n

contains one of the subgraphs in question:

Lemma 5

(i) C1
5 ⊆ Ck

n if and only if
5(k+1)

2 ≤ n ≤ 5k.

(ii) C1
7 ⊆ Ck

n if and only if
7(k+1)

2 ≤ n ≤ 7k.

(iii) C2
7 ⊆ Ck

n if and only if
7(k+1)

3 ≤ n ≤ 7k
2 .

To illustrate the assertion of Lemma 5 look at the chart depicted in
Figure 4. Every circle stands for a non-complete circulant C k

n with the
respective values of n and k. The dotted (resp. solid, resp. dashed) line
indicates the range of circulants containing a C7 (resp. C5, resp. C7) as
induced subgraph.

The overlap of the three ranges implies that, for each k ≥ 2, the circulant
Ck

n is (C5, C7, C7)-free whenever n <
7(k+1)

3 (lower bound for C2
7 ⊆ Ck

n) or
n > 7k (upper bound for C1

7 ⊆ Ck
n), see the grey-shaded range in Figure 4.

Since it is known from Körner [6] that all holes C 1
n are normal if n 6= 5, 7 we

obtain as reformulation of the Normal Graph Conjecture for circulants:

Conjecture 6 (Normal Graph Conjecture for Circulants)

All circulants Ck
n with k ≥ 2 are normal for n <

7(k+1)
3 or n > 7k.

Note that the circulants with n <
7(k+1)

3 have stability number 2 by

α(Ck
n) =

⌊

n

k + 1

⌋

<

⌊

7(k+1)
3

k + 1

⌋

=

⌊

7(k + 1)

3(k + 1)

⌋

= 2.

Hence we start in Subsection 3.1 with the case of circulants with α(C k
n) = 2

and generalize these ideas in Subsection 3.2 further for the general case.
This provides us a characterization of all normal circulants which shows
particularly that the non-normal circulants are not (C5, C7, C7)-free – and
finally verifies the Normal Graph Conjecture for circulants.

3 The normal circulants

For the sequel of this section, we consider circulants C k
n with k ≥ 2 only

(since the case of holes C1
n is trivial). In order to construct clique covers for

normal graphs, we obviously need cliques maximal w.r.t set inclusion only.
The following holds for maximal cliques of circulants:
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Figure 4: Circulants containing C5, C7, or C7

Lemma 7 A circulant Ck
n with k ≥ 2 has maximal cliques Q with |Q| ≤ k

only if n ≤ 3k.

Proof. Consider a maximal clique Q ⊆ Ck
n with |Q| ≤ k. Then Q can

neither be a single node nor a single edge, hence Q must contain a triangle
x, y, z. Furthermore, Q is not contained in any maximum clique of C k

n (by
the maximality of Q), hence Q is not contained in any interval of k + 1 =
ω(Ck

n) consecutive nodes of Ck
n in particular. The neighborhood N(i) of

every node i of Ck
n splits into two cliques N−(i) = {i − k, . . . , i − 1} and

N+(i) = {i+1, . . . , i+k} where all indices are taken modulo n. This implies
y = x + d ∈ N+(x) and z = x − d′ ∈ N−(x) where d + d′ + 1 > k + 1 holds,
see Figure 5.

Thus y, z ∈ Q implies z ∈ N+(y) and we conclude: y ≤ x + k, z ≤
y + k ≤ x + 2k, and x ≤ z + k ≤ x + 3k (where all indices are taken modulo
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Figure 5: The neighborhood of x

n again). Consequently, n ≤ 3k is a necessary condition for x, y, z to form a
triangle. This implies that maximal but non-maximum cliques can appear
in circulants Ck

n with n ≤ 3k only. 2

3.1 The case α(Ck

n
) = 2

In this subsection, we characterize which circulants with stability number 2
are normal.

Lemma 8 The circulants Ck
n with n ≤ 3k are normal.

Proof. We show normality in this case by explicitely constructing a clique
cover Q and a cross-intersecting stable set cover S.

Choose a family of three pairwise intersecting maximum cliques, e.g. Q =
{Q+(1), Q+(k +1), Q+(2k +1)} where Q+(i) = {i, . . . , i+k} and all indices
are taken modulo n, see Figure 6 (recall n ≥ 2(k + 1)). By construction, we
have

Q+(1) ∩ Q+(k + 1) = {k + 1},
Q+(k + 1) ∩ Q+(2k + 1) = {2k + 1},

Q+(2k + 1) ∩ Q+(1) = {1, . . . , 3k + 1 mod n}

(thus the intersection contains in the latter case at least node 1 by n ≤ 3k),
see Figure 6. In particular, Q is a clique cover of Ck

n.
We construct a cross-intersecting stable set cover S by choosing as stable

sets the nodes x belonging to one clique Q ∈ Q only together with the
minimal non-neighbor of x in the intersection of the other two cliques in
Q− Q. Thus, we construct stable sets

Sx :=







{x, 2k + 1} if x ∈ {3k + 2 mod n, . . . , k}
{x, y} if x ∈ {k + 2, . . . , 2k}
{x, k + 1} if x ∈ {2k + 2, . . . , n}

8



Q+
(2k+1)

Q+(1)

Q+(k+1)

1

2k+1
k+1

Figure 6: The clique cover of Ck
n with n ≤ 3k

with y ∈ {1, . . . , 3k + 1 mod n} minimal non-neighbor of x in Q+(2k + 1) ∩
Q+(1) (i.e., y = 1 if x ≤ n − k up to y = 3k + 1 mod n if x = 2k), see
Figure 6 again. By construction, every set Sx is stable and meets all three
cliques in Q. The union S of these sets Sx covers all nodes of Ck

n (this is
obvious for the nodes 3k+2 mod n, . . . , n and follows for 1, . . . , 3k+1 mod n

by choosing the minimal non-neighbor of x in Q+(2k + 1) ∩ Q+(1)). Hence
Q and S are the set families showing normality of Ck

n with n ≤ 3k. 2

Example 9 The set families Q and S for C4
11 constructed as above are

the following: S = {{3, 9}, {4, 9}, {6, 1}, {7, 1}, {8, 2}, {10, 5}, {11, 5}} and
Q = {Q+(1), Q+(5), Q+(9)} (see Figure 7).

3

5

1
2

67

8

9

10

11

4

Figure 7: The clique cover of C4
11

Due to 7(k+1)
3 ≤ 3k +1, Lemma 8 proofs already one part of the Normal

Graph Conjecture for circulants. The above construction, however, cannot
be extended to the remaining cases of circulants with stability number 2:

Lemma 10 For all k ≥ 2, the circulants Ck
3k+1 and Ck

3k+2 are not normal.

Proof. Assume in contrary Ck
n with n ∈ {3k + 1, 3k + 2} has a clique

cover Q and a cross-intersecting stable set cover S. Lemma 7 implies that
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all maximal cliques of Ck
n have maximum size k + 1 by n > 3k. Hence, Q

consists of cliques Q+(i) = {i, . . . , i + k} only.
In particular, there are two disjoint cliques Q and Q′ in Q: Otherwise,

every two cliques of Q would intersect. For |Q| = 2, we would obtain
n ≤ 2k + 1, a contradiction to k ≥ 2 and n > 3k. For |Q| ≥ 3, the cliques
intersect pairwise only if n ≤ 3k, a contradiction to n > 3k again.

The two disjoint cliques Q and Q′ cannot cover all nodes of Ck
n with k ≥ 2

by n ≥ 3k + 1 > 2(k + 1) = |Q ∪ Q′|. Hence, there is a node x 6∈ Q ∪ Q′.
Due to α(Ck

n) = 2, there is no stable set in S which contains x and meets
both cliques Q and Q′ (such a stable set had to contain three nodes). Thus,
Ck

n with n = 3k + 1, 3k + 2 and k ≥ 2 does not admit a clique cover and a
cross-intersecting stable set cover and is, therefore, not normal. 2

Remark 11 The complements C
k

n of the circulants with stability number
2 are triangle-free. Hence the complements are normal if and only if they
admit a nice edge cover due to Körner and de Simone [9]. Lemma 8 con-

structs, therefore, stable set covers corresponding to nice edge covers in C
k

≤3k

whereas Lemma 10 shows that C
k

3k+1 and C
k

3k+2 do not admit any nice edge
cover. The proofs of the two lemmas are, however, easier than verifying
directly whether nice edge covers exist in the complements.

3.2 The general case

We generalize the clique covers from the previous subsection to the case
n ≥ 3k +3. Note that in this case all maximal cliques of Ck

n have maximum
size k + 1 by Lemma 7. For n ≥ 3k + 1, there are no pairwise intersecting
cliques covering all nodes, but cyclic intersecting cliques with that property.

We call a clique cover Q = {Q1, . . . , Ql} of Ck
n cyclic if each clique Qi has

a non-empty intersection with precisely the cliques Qi−1 and Qi+1 (where
the indices are taken modulo l).

A circulant Ck
n has in general several cyclic clique covers Q = {Q1, . . . , Ql}

of the same size consisting of maximum cliques, see Figure 8, namely as
many as Ck

n has different holes C1
l as induced subgraphs: Denote by qi the

first node in Qi, then qi is adjacent to qi−1 and qi+1 but not to qj with
i + 1 < j < i − 1 mod l by definition; thus q1, . . . , ql induce an l-hole in
Ck

n. On the other hand, consider C1
l ⊆ Ck

n with nodes q1, . . . , ql and the
maximum cliques Q+(qi) = {qi, . . . , qi + k} of Ck

n starting in qi. A result of
Trotter [13] shows that Q+(qi) contains precisely two nodes of C1

l , namely
qi and qi+1; thus Q = {Q+(q1), . . . , Q

+(ql)} is a cyclic clique cover. Hence
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Figure 8: Different cyclic clique covers of size 5 in C 3
13

cyclic clique covers of size l and holes C1
l ⊆ Ck

n correspond to each other
and by Theorem 3 we have

C1
l ⊆ Ck

n iff
(k + 1)

2
l ≤ n ≤

k

1
l

implying the following:

Lemma 12 Ck
n with k ≥ 2 admits, for each t ≥ 2, a cyclic clique cover Q

of size 2t − 1 iff
(k + 1)

2
(2t − 1) ≤ n ≤

k

1
(2t − 1).

Let q(x,Q) stand for the number of cliques in Q containing node x. By
the definition of Q, we have q(x,Q) ∈ {1, 2} for all nodes x (since Q covers
all nodes but no three cliques intersect). We call x a 1-node (resp. 2-node)
w.r.t. Q if q(x,Q) = 1 (resp. q(x,Q) = 2) holds.

Note that, for a cyclic clique cover Q containing 2t−1 cliques of size k+1
each, the lower bound (k+1)

2 (2t − 1) ≤ n in Lemma 12 is attained if there

are 2-nodes only whereas the upper bound n ≤ k
1 (2t − 1) guarantees that

there is at least one 2-node in the intersection of two consecutive cliques.
The next step is to construct cross-intersecting stable sets and to show

that they cover all nodes. The idea goes as follows: Q contains 2t − 1
cliques. If a 1-node x belongs to Q ∈ Q, then Q − Q consists of 2t − 2
cliques or, in other words, of t − 1 pairs of intersecting cliques. We denote
by S(x,Q) a t-set containing x and one node from the intersection of the
t − 1 pairs of cliques, see Figure 9. Thus S(x,Q) intersects all cliques in Q
by construction; we have to show that there exist stable sets S(x,Q) whose
union covers all nodes of Ck

n.
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Lemma 13 Consider a cyclic clique cover Q of Ck
n of size 2t − 1 where

t(k + 1) ≤ n ≤ (2t − 1)k and k, t ≥ 2. For each 1-node x w.r.t. Q of C k
n

there is a stable set S(x,Q) of size t in Ck
n.

Proof. Ck
n admits by (2t−1)(k+1)

2 < t(k + 1) a cyclic clique cover Q =
{Q1, . . . , Q2t−1} due to Lemma 12. Furthermore, t(k + 1) ≤ n guarantees
that Ck

n contains stable sets of size t by t ≤ α(Ck
n) = b n

k+1c.

Consider a 1-node x of Ck
n and assume w.l.o.g. that x belongs to Q1 ∈ Q.

We construct a stable set S(x,Q) = {x, x1, . . . , xt−1} s.t. xi ∈ Q2i ∩ Q2i+1

for 1 ≤ i ≤ t − 1, see Figure 9.

Q

Q

3

2

Q 2i

x

1Q
Q

Q

2t−1

2t−2

2i+1 Q

xi

xt−1 1x

Figure 9: Constructing the stable set S(x,Q) for x ∈ Q1

Since x ∈ Q1 − Q2, there is a non-neighbor of x in Q2 ∩ Q3 (at least
the last node in Q2 is not adjacent to x but belongs to Q3). We choose
x1 = x + (k + 1) + d1 ∈ Q2 ∩ Q3 with d1 ∈ N ∪ {0} minimal.

In order to construct xi from xi−1 for 2 ≤ i ≤ t− 1, notice that we have
xi−1 ∈ Q2i−2 ∩Q2i−1, in particular xi−1 ∈ Q2i−1 −Q2i. As before, there is a
non-neighbor of xi−1 in Q2i ∩Q2i+1 and we choose xi = xi−1 +(k+1)+di ∈
Q2i ∩ Q2i+1 with di ∈ N ∪ {0} minimal.

Then S(x,Q) is a stable set if xt−1 and x are non-adjacent (all other
nodes are non-adjacent by construction).

If di = 0 for 1 ≤ i ≤ t − 1, then xt−1 = x + (t − 1)(k + 1). Hence, there
are at least k + 1 nodes between xt−1 and x (in increasing order modulo n)
due to n ≥ t(k + 1) and we are done. Otherwise, let j be the smallest index
s.t. dj > 0. Then xj is the first node in Q2j+1 since we choose dj minimal:
By xj−1 6∈ Q2j , we have xj−1 + (k + 1) ∈ Q2j. The only reason for choosing
dj > 0 was, therefore, xj−1 +(k + 1) + d′j 6∈ Q2j+1 for all 0 ≤ d′j < dj by the
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minimality of dj. Hence, xj is indeed the first node in Q2j+1. This implies
that its first non-neighbor is the node xj +(k+1) belonging to Q2j+2−Q2j+1

and xj+1 = xj + (k + 1) + dj+1 ∈ Q2j+2 ∩ Q2j+3 is, by the minimality of
dj+1, the first node of Q2j+3. The same argumentation shows that every

further xi with i > j + 1 is the first node in Q2i+1; in particular, xt−1 is
the first node of Q2t−1. Hence, x ∈ Q1 − Q2t−1 shows that xt−1 and x are
non-adjacent. Thus S(x,Q) = {x, x1, . . . , xt−1} is a stable set of size t and
intersects all cliques of Q by x ∈ Q1 and xi ∈ Q2i ∩ Q2i+1 for 1 ≤ i ≤ t − 1.
2

Remark 14 Lemma 13 implies that there is, for each 1-node x, at least one
stable set S(x,Q). In general, there may be several such sets: Consider,
e.g., the cyclic clique covers Q of C3

13 indicated in Figure 8. There are two

stable sets S(x,Q) for the bold 1-nodes x.

It is left to show that the union of all stable sets S(x,Q) covers the circulant.

Lemma 15 Consider a cyclic clique cover Q of Ck
n of size 2t − 1 where

t(k + 1) ≤ n ≤ (2t − 1)k and k, t ≥ 2. Then the union S of the stable sets

S(x,Q), where x is a 1-node of Ck
n w.r.t Q, covers all nodes of Ck

n.

Proof. Assume in contrary that there is a node y in Ck
n not covered by S.

Then there is no stable set S(x,Q) with y ∈ S(x,Q). In particular, y is a
2-node w.r.t. Q by Lemma 13. W.l.o.g. let y ∈ Q1 ∩ Q2t−1. We first show
yl = y + l(k + 1) ∈ Q2l+1 for 0 ≤ l ≤ t − 2. Clearly, we have y = y0 = y +
0(k+1) ∈ Q1 by assumption and prove that yi−1 = y+(i−1)(k+1) ∈ Q2i−1

implies yi = y + i(k + 1) ∈ Q2i+1 for 1 ≤ i ≤ t − 2.
If there is a 1-node x in Q2i\(Q2i−1 ∪ Q2i+1), then x is adjacent to

yi−1 = y + (i − 1)(k + 1), see Figure 10(a) (otherwise, there is a stable set
S(x,Q) containing x and y0, . . . , yi−1 in contradiction to our assumption)
and x < y + i(k + 1) yields yi = y + i(k + 1) ∈ Q2i+1.

If Q2i\(Q2i−1 ∪ Q2i+1) = ∅, then yi = y + i(k + 1) clearly belongs to
Q2i+1 (since we have yi−1 = y +(i− 1)(k +1) ∈ Q2i−1 and |Q2i−1| = k +1).

In particular, we have yt−2 = y+(t−2)(k+1) ∈ Q2t−3. Any 1-node x in
Q2t−2\(Q2t−3∪Q2t−1) is adjacent to yt−2 or to y, see Figure 10(b) (otherwise,
x together with y0, . . . , yt−2 would be a set S(x,Q) ∈ S in contradiction to
our assumption). We distinguish three cases:

If x is adjacent to y, then x > y − (k + 1) = y−1 follows and y−1 is
adjacent to yt−2: either y−1 belongs to Q2t−3 or is as 1-node adjacent to
yt−2; thus, y−1 = y − (k + 1) ≤ y + (t − 2)(k + 1) + k = yt−2 + k implies
y ≤ y + (t − 1)(k + 1) + k.

13
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Figure 10: Constructing the nodes yi ∈ Q2i+1

If x is adjacent to yt−2, we obtain x < yt−2 + (k + 1) = yt−1 and yt−1

either belongs to Q2t−1 or is a 1-node adjacent to y; here, yt−1 ≥ y− k and,
therefore, y + (t − 1)(k + 1) ≥ y − k holds.

The non-existence of a 1-node in Q2t−2 implies yt−1 ∈ Q2t−2 and, there-
fore, yt−1 ≥ y − k follows again.

All three cases imply n ≤ (t− 1)(k + 1) + k. By n ≥ t(k + 1), we obtain

t(k + 1) ≤ (t − 1)(k + 1) + k

yielding the final contradiction. Hence the union S of the stable sets S(x,Q),
where x is a 1-node of Ck

n w.r.t Q, covers all nodes of Ck
n. 2

Since each S(x,Q) meets all cliques in Q by construction, S is the re-
quired cross-intersecting stable set cover. Thus Lemma 12, Lemma 13, and
Lemma 15 together imply:

Theorem 16 A circulant Ck
n with k ≥ 2 admits for each t ≥ 2

• a cyclic clique cover Q of size 2t − 1 and

• a cross-intersecting stable set cover S of stable t-sets

if t(k + 1) ≤ n ≤ (2t − 1)k holds.

Remark 17 Theorem 16 includes the case t = 2 from Lemma 8: every
circulant Ck

n with n ≤ 3k has a cyclic clique cover of size 3 and a cross-
intersecting cover of stable 2-sets.
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Theorem 16 shows that circulants Ck
n are normal for certain numbers n of

nodes – depending on the values of k and t. We finally have to check whether,
for fixed k, there are gaps between the ranges t(k + 1) ≤ n ≤ (2t − 1)k and
(t + 1)(k + 1) ≤ n ≤ (2t + 1)k of normal circulants for different values of
t ≥ 2, see Figure 11. The dotted (resp. solid, resp. dashed) line indicates
the range for t = 2 (resp. t = 3, resp. t = 4). There is no gap between the
two ranges if

(t + 1)(k + 1) ≤ (2t − 1)k + 1
tk + t + k + 1 ≤ 2tk − k + 1

2k
k−1 ≤ t.

This is true for k = 2 if t ≥ 4 and for k ≥ 3 if t ≥ 3, hence we obtain:

Lemma 18 The ranges t(k + 1) ≤ n ≤ (2t − 1)k and (t + 1)(k + 1) ≤ n ≤
(2t + 1)k overlap for k = 2 if t ≥ 4 and for k ≥ 3 if t ≥ 3.

Thus Theorem 16 and Lemma 18 show the normality for all circulants
Ck

n with k ≥ 2 except the cases n = 3k+1, 3k+2 (gap between the ranges for
t = 2 and t = 3) and C2

11 (gap between the ranges for t = 3 and t = 4), see
Figure 11. We proved in Lemma 10 that Ck

3k+1 and Ck
3k+2 are not normal

for all k ≥ 2; in order to characterize completely which circulants are normal
and which are not, it is only left to check C2

11.

Lemma 19 The circulant C2
11 is not normal.

Proof. Assume in contrary C2
11 admits a clique cover Q and a cross-

intersecting stable set cover S. Lemma 7 implies that all maximal cliques
of C2

11 are of the form Q+(i) = {i, i + 1, i + 2}.
First, Q must not contain three disjoint cliques Q, Q′, Q′′: These three

cliques cannot cover all nodes of C2
11 by 11 > 9 = |Q ∪ Q′ ∪ Q′′|. Hence,

there is a node x 6∈ Q ∪ Q′ ∪ Q′′ but due to α(C2
11) = 3, there is no stable

set in S containing x and meeting all three cliques Q, Q′, Q′′.
Thus Q contains at most two disjoint cliques Q and Q′. They must not

be consecutive (see Figure 12(a)): If Q = {1, 2, 3} and Q′ = {4, 5, 6} we need
a clique Q′′ among {7, 8, 9}, {8, 9, 10}, {9, 10, 11} in order to cover node 9,
but Q, Q′, Q′′ would be disjoint in any case.

There is no possibility for avoiding two consecutive disjoint cliques: Sup-
pose Q = {1, 2, 3}. If Q′ = {5, 6, 7} (Figure 12(b)), then {8, 9, 10}, {9, 10, 11}
6∈ Q follows. But in order to cover the nodes 9 and 10, we need the two
consecutive cliques {7, 8, 9} and {10, 11, 1}. If Q′ = {6, 7, 8} (Figure 12(c)),
then {4, 5, 6}, {3, 4, 5} 6∈ Q follows. Thus we need the two consecutive cliques
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Figure 11: The ranges of normal circulants for t = 2, 3, 4

{2, 3, 4} and {5, 6, 7} in order to cover the nodes 4 and 5 which yields the
final contradiction. 2

As a consequence, we are able to characterize all the normal circulants:

Theorem 20 A circulant Ck
n is normal if and only if

• k = 1 and n 6= 5, 7,

• k = 2 and n 6= 7, 8, 11,

• k ≥ 3 and n 6= 3k + 1, 3k + 2.

16



Q Q Q

Q’
Q’ Q’

(a) (b) (c)

Figure 12: Two disjoint cliques Q and Q′ in C2
11

Since all the non-normal circulants are not (C5, C7, C7)-free (see the black
circles in Figure 11), Theorem 20 finally verifies the Normal Graph Conjec-
ture for circulants; since normality is closed under taking complements, we
obtain the same assertion for the complementary class:

Corollary 21 The Normal Graph Conjecture is true for circulants and

their complements.

4 Concluding Remarks

In this paper we verified the Normal Graph Conjecture for a first graph
class, the circulants, and for their complements. Next steps could be to
treat the conjecture for partitionable graphs (as a different generalization of
odd holes and odd antiholes) and for circular-arc graphs (as generalization
of circulants).

However, even proving the Normal Graph Conjecture in general would
not yield a characterization of normal graphs, see Remark 2, since induced
subgraphs of normal graphs are not necessarily normal. In order to get a
better analogy with perfect graphs, Körner and de Simone [9] introduced
a hereditary property by defining strongly normal graphs as those normal
graphs whose induced subgraphs are all normal. In terms of strongly normal
graphs the Normal Graph Conjecture is equivalent to the following:

Conjecture 22 (Strongly Normal Graph Conjecture [9]) A graph G

is strongly normal if and only if neither G nor its complement G contain

any C5 or C7 as induced subgraph.

The interest of this conjecture lies in the fact that it would immediately
lead to a polynomial time recognition algorithm for strongly normal graphs.
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