
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

AMBROS GLEIXNER , NILS-CHRISTIAN KEMPKE ,
THORSTEN KOCH , DANIEL REHFELDT AND SVENJA

USLU

First Experiments with
Structure-Aware Presolving for a

Parallel Interior-Point Method

ZIB Report 19-39 (July 2019)

https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0003-4492-9818
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-2877-074X

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

First Experiments with

Structure-Aware Presolving for a

Parallel Interior-Point Method

Ambros Gleixner , Nils-Christian Kempke , Thorsten Koch ,
Daniel Rehfeldt and Svenja Uslu

Zuse Institute Berlin, Department of Mathematical Optimization,

{gleixner,kempke,koch,rehfeldt}@zib.de

July 26, 2019

Abstract

In linear optimization, matrix structure can often be exploited al-
gorithmically. However, beneficial presolving reductions sometimes de-
stroy the special structure of a given problem. In this article, we dis-
cuss structure-aware implementations of presolving as part of a parallel
interior-point method to solve linear programs with block-diagonal struc-
ture, including both linking variables and linking constraints. While pre-
solving reductions are often mathematically simple, their implementation
in a high-performance computing environment is a complex endeavor. We
report results on impact, performance, and scalability of the resulting pre-
solving routines on real-world energy system models with up to 700 million
nonzero entries in the constraint matrix.

1 Introduction

Linear programs (LPs) from energy system modeling and from other applications
based on time-indexed decision variables often exhibit a distinct block-diagonal
structure. Our extension [3] of the parallel interior-point solver PIPS-IPM [8]
exploits this structure even when both linking variables and linking constraints
are present simultaneously. It was designed to run on high-performance comput-
ing (HPC) platforms to make use of their massive parallel capabilities. In this
article, we present a set of highly parallel presolving techniques that improve
PIPS-IPM’s performance while preserving the necessary structure of a given
LP. We give insight into the implementation and the design of said routines
and report results on their performance and scalability.

The mathematical structure of models handled by the current version of
the solver are block-diagonal LPs as specified in Fig. 1. The xi ∈ Rni are
vectors of decision variables and `i, ui ∈ (R∪{±∞})ni are vectors of lower and
upper bounds for i = 0, 1, . . . , N . The extended version of PIPS-IPM applies a
parallel interior-point method to the problem exploiting the given structure for
parallelizing expensive linear system solves. It distributes the problem among

1

https://orcid.org/0000-0003-0391-5903
https://orcid.org/0000-0003-4492-9818
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-2877-074X

min cT0 x0 + cT1 x1 + · · · + cTNxN

s.t. A0x0 = b0

d0 ≤ C0x0 ≤ f0

A1x0 + B1x1 = b1

d1 ≤ C1x0 + D1x1 ≤ f1

...
. . .

...

ANx0 + + BNxN = bN

dN ≤ CNx0 + + DNxN ≤ fN

F0x0 + F1x1 + · · · + FNxN = bN+1

dN+1 ≤ G0x0 + G1x1 + · · · + GNxN ≤ fN+1

`i ≤ xi ≤ ui ∀i = 0, . . . , N

Figure 1: LP with block-diagonal structure linked by variables and constraints.

several different processes and establishes communication between them via the
Message Passing Interface (MPI). Distributing the LP data among these MPI

processes as evenly as possible is an elementary feature of the solver. Each
process only knows part of the entire problem, making it possible to store and
process huge LPs that would otherwise be too large to be stored in main memory
on a single desktop machine.

The LP is distributed in the following way: For each index i = 1, . . . , N only
one designated process stores the matrices Ai, Bi, Ci, Di, Fi, Gi, the vectors ci,
bi, di, fi, and the variable bounds `i, ui. We call such a unit of distribution a
block of the problem. Furthermore, each process holds a copy of the block with
i = 0, containing the matrices A0, C0, F0, G0 and the corresponding vectors
for bounds. All in all, N MPI processes are used. Blocks may be grouped to
reduce N . The presolving techniques presented in this paper are tailored to this
special distribution and structure of the matrix.

2 Structure-Specific Parallel Presolving

Currently, we have extended PIPS-IPM by four different presolving methods.
Each incorporates one or more of the techniques described in [1, 2, 6]: singleton
row elimination, bound tightening, parallel and nearly parallel row detection,
and a few methods summarized under the term model cleanup. The latter
includes the detection of redundant rows as well as the elimination of negligibly
small entries from the constraint matrix.

The presolving methods are executed consecutively in the order listed above.
Model cleanup is additionally called at the beginning of the presolving. A
presolving routine can apply certain reductions to the LP: deletion of a row
or column, deletion of a system entry, modification of variable bounds and the
left- and right-hand side, and modification of objective function coefficients.
We distinguish between local and global reductions. While local reductions
happen exclusively on the data of a single block, global reductions affect more
than one block and involve communication between the processes. Since MPI

2

...

...

.

. . .

. . .

Ai·

A·k

a) Singleton row leading to local changes.

...

...

.

. . .

. . .

Ai·

A·k

b) Singleton row leading to global changes.

Figure 2: LP data distributed on different processes and an entry aik with
corresponding singleton row Ai· and column A·k.

communication can be expensive, we reduced the amount of data sent and the
frequency of communication to a minimum and introduced local data structures
to support the synchronization whenever possible.

In the following, singleton row elimination is used as an example to outline
necessary data structures and methods. Although singleton row elimination is
conceptually simple, its description still covers many difficulties arising during
the implementation of preprocessing in an HPC environment. A singleton row
refers to a row in the constraint matrix only containing one variable with nonzero
coefficient. Both for a singleton equality and a singleton inequality row, the
bounds of the respective variable can be tightened. This tightening makes the
corresponding singleton row redundant and thus removable from the problem.
In the case of an equality row, the corresponding variable is fixed and removed
from the system.

Checking whether a non-linking row is singleton is straightforward since
a single process holds all necessary information. The detection of singleton
linking rows requires communication between the processes. Instead of asking
all processes whether a given row is singleton, we introduced auxiliary data
structures. Let f = (f0, f1, . . . , fN) denote the coefficient vector of a linking
row. Every process i knows the number of nonzeros in block i, i.e., ||fi||0, and
in block 0, i.e., ||f0||0, at all times. At each synchronization point, every process
also stores the current number of nonzeros overall blocks, ||f ||0. Whenever
local changes in the number nonzeros of a linking row occur, the corresponding
process stores these changes in a buffer, instead of directly modifying ||fi||0 and
||f ||0. From that point on the global nonzero counters for all other processes
are outdated and provide only an upper bound. Whenever a new presolving
method that makes use of these counters is entered, the accumulated changes
of all processes get broadcast. The local counters ||fi||0 and ||f ||0 are updated
and stored changes are reset to zero.

After a singleton row is detected, there are two cases to consider, both
visualized in Fig. 2. A process might want to delete a singleton row that has
its singleton entry in a non-linking part of the LP (Fig. 2a). This can be done
immediately since none of the other processes is affected. By contrast, modifying

3

Table 1: Runtimes and nonzero reductions for parallel presolving and sequential
SoPlex presolving. The number of nonzeros in columns “nnzs” are given in
thousands.

input PIPS-IPM SoPlex

instance N nnzs t1 [s] tN [s] nnzs tS [s] nnzs

oms 1 120 2891k 1.13 0.02 2362k 1.51 2391k
oms 2 120 11432k 5.10 0.19 9015k 11.09 9075k
oms 3 120 1696k 1.01 2.88 1639k 0.64 1654k
oms 4 120 131264k 57.25 3.45 126242k 206.31 127945k
oms 5 120 216478k 157.12 85.41 158630k >24h –
oms 6 120 277923k 187.73 88.39 231796k >24h –
elmod 1 438 272602k 125.62 0.48 208444k >24h –
elmod 2 876 716753k 365.47 1.05 553144k >24h –
yssp 1 250 27927k 13.01 0.44 22830k 92.63 23758k
yssp 2 250 68856k 33.80 7.28 55883k 1034.77 59334k
yssp 3 250 32185k 14.10 0.36 28874k 95.08 29802k
yssp 4 250 85255k 39.71 7.25 76504k 1930.16 80148k

the linking part of the problem is more difficult since all other processes have
to be notified about the changes, e.g., when a process fixes a linking variable or
when it wants to delete a singleton linking row (Fig. 2b). Again, communication
is necessary and we implemented synchronization mechanisms for changes in
variable bounds similar to the one implemented for changes in the nonzeros.

3 Computational Results

We conducted two types of experiments. First, we looked at the general per-
formance and impact of our presolving routines compared with the ones offered
by a different LP solver. For the second type of experiment, we investigated the
scalability of our methods. The goal of the first experiment was to set the perfor-
mance of our preprocessing into a more general context and show the efficiency
of the structure-specific approach. To this end, we compared to the sequential,
source-open solver SoPlex [5] and turned off all presolving routines that were
not implemented in our preprocessing. With our scalability experiment, we
wanted to further analyze the implementation and speed-up of our presolving.
We thus ran several instances with different numbers of MPI processes.

The instances used for the computational results come from real-world en-
ergy system models found in the literature, see [7] (elmod instances) and [4] (oms
and yssp instances). All tests with our parallel presolving were conducted on
the JUWELS cluster at Jülich Supercomputing Centre (JSC). We used JUWELS’
standard compute nodes running two Intel Xeon Skylake 8168 processors each
with 24 cores 2.70 GHz and 96 GB memory. Since reading of the LP and pre-
solving it with SoPlex was too time-consuming on JUWELS, we had to run the
tests for SoPlex on a shared memory machine at Zuse institute Berlin with an
Intel(R) Xeon(R) CPU E7-8880 v4, 2.2GHz, and 2 TB of RAM.

The results of the performance experiment are shown in Table 1. We com-
pared the times spent in presolving by SoPlex tS , our routines running with one
MPI process t1 and running with the maximal possible number of MPI processes
tN . The nnzs columns report the number of nonzeros when read in (input) and
after preprocessing. The key observations are:

• Except on the two smallest instances with less than 3 million nonzeros, al-

4

Figure 3: Total presolving time for three instances of each type, relative to time
for sequential presolving with one MPI process.

ready the sequential version of structure-specific presolving outperformed
SoPlex significantly. The four largest instances with more than 200 mil-
lion nonzeros could not be processed by SoPlex within 24 hours.

• The overall reduction performed by both was very similar with an average
deviation of less than 2%. The nonzero reduction overall instances was
about 16% on average.

• Parallelization reduced presolving times on all instances except the small-
est instance oms 3. On oms 2, elmod {1,2}, and yssp {2,4} the speed-
ups were of one order of magnitude or more. However, on instances
oms {4,5,6} and yssp {2,4} the parallel speed-up was limited, a fact
that is further analyzed in the second experiment.

The results of our second experiment can be seen in Figure 3. We plot times
for parallel presolving, normalized by the time needed by one MPI process. Let
Sn = t1/tn denote the speed-up obtained with n MPI processes versus one MPI

process. Whereas for elmod 2 we observe an almost linear speed-up S146 ≈ 114,
on yssp 2 and oms 4 the best speed-ups S50 ≈ 36 and S60 ≈ 31, respectively, are
sublinear. For larger numbers of MPI processes, runtimes even start increasing
again.

The limited scalability on these instances is due to a comparatively large
amount of linking constraints. As explained in Sec. 2, performing global reduc-
tions within linking parts of the problem increases the synchronization effort.
As a result, this phenomenon usually leads to a “sweet spot” for the number of
MPI processes used, after which performance starts to deteriorate again. This
effect was also responsible for the low speed-up on oms {5,6} in Table 1. A
larger speed-up can be achieved when running with fewer processes.

5

To conclude, we implemented a set of highly parallel structure-preserving
presolving methods that proved to be as effective as sequential variants found
in an out-of-the-box LP solver and outperformed them in terms of speed on
truly large-scale problems. Beyond the improvements of the presolving phase,
we want to emphasize that the reductions helped to accelerate the subsequent
interior-point code significantly. On the instance elmod 1, the interior-point
time could be reduced by more than half, from about 780 to about 380 seconds.

Acknowledgements This work is funded by the Federal Ministry for Economic Affairs

and Energy within the BEAM-ME project (ID: 03ET4023A-F) and by the Federal Ministry of

Education and Research within the Research Campus MODAL (ID: 05M14ZAM). The authors

gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for

funding this project by providing computing time through the John von Neumann Institute

for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing Centre

(JSC).

References

[1] T. Achterberg et al. Presolve reductions in mixed integer programming.
ZIB-Report 16-44, Zuse Institute Berlin, 2016.

[2] E. D. Andersen and K. D. Andersen. Presolving in linear programming.
Mathematical Programming, 71(2):221–245, 1995.

[3] T. Breuer et al. Optimizing large-scale linear energy system problems
with block diagonal structure by using parallel interior-point methods. In
N. Kliewer, J. F. Ehmke, and R. Borndörfer, editors, Operations Research
Proceedings 2017, pages 641–647, 2018.

[4] K. Cao, J. Metzdorf, and S. Birbalta. Incorporating Power Transmission
Bottlenecks into Aggregated Energy System Models. Sustainability, 10(6):1–
32, 2018.

[5] A. Gleixner et al. The SCIP Optimization Suite 6.0. ZIB-Report 18-26, Zuse
Institute Berlin, 2018.

[6] J. Gondzio. Presolve analysis of linear programs prior to applying an interior
point method. INFORMS Journal on Computing, 9(1):73–91, 1997.

[7] F. Hinz. Voltage Stability and Reactive Power Provision in a Decentralizing
Energy System. PhD thesis, TU Dresden, 2017.

[8] C. G. Petra, O. Schenk, and M. Anitescu. Real-time stochastic optimization
of complex energy systems on high-performance computers. Computing in
Science Engineering, 16(5):32–42, 2014.

6

	Introduction
	Structure-Specific Parallel Presolving
	Computational Results

