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Abstract

Compressor stations are the heart of every high-pressure gas transport
network. Located at intersection areas of the network they are contained in
huge complex plants, where they are in combination with valves and regula-
tors responsible for routing and pushing the gas through the network. Due
to their complexity and lack of data compressor stations are usually dealt
with in the scienti�c literature in a highly simpli�ed and idealized manner.
As part of an ongoing project with one of Germany’s largest Transmission
System Operators to develop a decision support system for their dispatching
center, we investigated how to automatize control of compressor stations.
Each station has to be in a particular con�guration, leading in combina-
tion with the other nearby elements to a discrete set of up to 2000 possible
feasible operation modes in the intersection area. Since the desired per-
formance of the station changes over time, the con�guration of the station
has to adapt. Our goal is to minimize the necessary changes in the over-
all operation modes and related elements over time, while ful�lling a preset
performance envelope or demand scenario. This article describes the chosen
model and the implemented mixed integer programming based algorithms
to tackle this challenge. By presenting extensive computational results on
real world data we demonstrate the performance of our approach.

1 Introduction

Throughout the past years, the mathematics of gas transport has been an in-
tensively studied topic. While natural gas was, is, and will be one of the major
energy sources in Germany, making the e�cient and safe transport a �eld of high
economical and political relevance [9], the task is also challenging from a mathe-
matical point of view. One such challenge can be found in the compressors, which
push the gas through the network by increasing its pressure. Compressors are
typically set up as a compressor station, whereby multiple compressor units can
be placed in speci�c con�gurations and dynamically adjusted to meet the current
needs, allowing for di�erent compression ratios and ow rates. At intersections
of major transportation pipelines, arrangements of multiple compressor stations
as well as other elements like valves or pressure regulators can be found. Such an
arrangement makes it possible to choose di�erent connections of the intersecting
pipelines, and operate the system for various ow directions and pressure levels.
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To optimize control of these areas taking all the technical restrictions into ac-
count is already combinatorially challenging. The complexity of the problem is
further increased by the physics of gas ow. For pipes this physics is described by
the Euler Equations [26], a set of nonlinear hyperbolic partial di�erential equa-
tions (PDEs), which even in simpli�ed versions yield computationally challenging
constraints.

Historically, research focused �rst on the simulation of gas ow, i.e., dealing
with the partial di�erential equations given all the discrete decisions. This �eld
has been studied for many decades already, see for example [3] and the references
therein. Over recent years, the optimization of gas transport including also the
combinatorial aspects have gained more and more attention. In [29] a general
overview over optimization problems related to natural gas is given, which in-
cludes but is not restricted to the transport of gas. Most of the corresponding
literature mentioned so far considers the stationary gas transport problem, which
searches for one stable network state, making an algebraic description of the gas
ow possible. An overview of state-of-the-art approaches for the stationary case
can be found in [19] and [28], which consider large real-world instances and a
huge amount of detail regarding the di�erent network elements like compressors.

This article deals with the more challenging variant of the problem: The tran-
sient gas transportation problem. Here, the goal is to �nd a set of control decisions
on the elements over a future time horizon. For this problem, research is still in
early stages. One of the �rst publications on transient gas transport optimiza-
tion was [23], who presented a mixed integer programming (MIP) model for the
problem. In contrast to the structures described above, they only used a model
consisting of single compressor units, whose compression capabilities are limited
by a minimum and maximum power bound. This non-linear power bound as well
as the non-linear pipe equations are approximated by piecewise linear functions.
To solve the model for the objective of minimizing the compressor fuel costs,
they used a special branching scheme for the piecewise linear functions as well
as a simulated annealing heuristic described in [21]. A little later, [6] also pre-
sented a solution to the problem of minimizing the compressor fuel costs. They
modeled the problem according to [23], using the same model for compressors
and approximated the non-linear constraints by piecewise linear functions. How-
ever, they combined solving this MIP with solving a non-linear problem (NLP)
formulation of the problem in an alternating way. From the solution of that
non-linear problem they deduce a re�nement of the piecewise linear approxima-
tions and repeat this procedure until �nally arriving at a solution to the overall
mixed-integer non-linear problem (MINLP) within a chosen approximation error.
Other approaches tackle transient transport optimization problems, but neglect
the discrete nature of some of the elements and therefore purely optimize over
continuous variables, i.e., solve NLP problems. We mention as example the work
of [33] and [22], who decide on the compression ratios of compressors, while again
minimizing their fuel consumption. Very recently a few more studies on transient
gas network optimization have been published. In [13] a specialized branching
rule is used to solve a MINLP formulation of the problem with the objective to
minimize fuel consumption. For the compressors they introduced the theoreti-
cal concept of di�erent modes to switch between con�gurations, which each have
separate feasible region. However, in the end they restrict to exactly one mode
with nearly unrestricted compression capabilities for their experiments. Another
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approach combining di�erent specialized solving techniques is presented in [11],
where iteratively a MIP model and a NLP model are solved for each single time
step. These two models arise from the use of a special discretization of the Euler
equations. For compression, both models use single compressor units featuring a
linear feasible region. In contrast to the other mentioned publications, the ob-
jective function in [11] was not to minimize fuel cost, but to comply as well as
possible with a set of future pressure and ow values given at the boundary nodes.
Finally we mention [4], who considered maximizing the amount of temporarily
stored gas in the network while maintaining a feasible transient control of the
elements. They also introduce a new discretization of the Euler Equations, which
results in a formulation close to the algebraic form of the stationary model. They
then use this discretization to obtain globally optimal solutions. For the compres-
sors however, again only single units restricted by upper and lower bounds in the
compression ratio as well as the absolute pressure di�erence have been modeled.
This problem is solved by alternating between solving a MIP model, which is ob-
tained by replacing the non-linear constraints by piecewise linear functions, and
a NLP model, in which the discrete decisions from the MIP are already �xed.

All approaches of the above mentioned publications on transient gas network
optimization use a rather idealized model to deal with compressor stations. In
contrast to this, we present in this article a transient gas network optimization
problem featuring a compressor model with a so far unmatched amount of detail.
The model is based on the modeling presented in [19] for the stationary case and
takes the above described substructures into account. We focus on those network
areas containing the compressor stations as well as additional active elements and
call them network stations, an example station is presented in Figure 1. These
areas contain the majority of active elements in the network. Regarding the
number of contained elements they are comparable to, or even larger than the
networks considered in the above mentioned literature on transient optimization.
However, one di�erence to general gas network problems is the shortness of pipes
due to the proximity of the elements in a network station, see Table 1 in Section 5
for an overview of di�erent network stations. Because of their shortness, the pipes
ability to store gas is negligible owing to their small volumes. Furthermore, the
pressure loss induced by friction in the pipe is dependent on the its length and has
therefore reduced impact. This allows us to use a linear pipe model as introduced
in [16] without losing much accuracy and still producing realistic results.

For each network station we are given an initial state as well as future demands
in terms of both inow and pressure levels at the boundaries. The goal is then
to �nd a feasible control of all the network elements over time, which can be
interpreted as a recommendation for network operators on how to control the
network in the future. The overall objective is to meet the future demands as
best as possible while simultaneously minimizing the total number of control
changes. The latter is preferable since it reduces strain on the technical elements
and enables the gas network operators to understand and actually perform the
desired control recommendations.

The rest of the article is structured as follows: In Section 2 we will describe
the mathematical models for all used elements and formulate a corresponding
MIP model. The preprocessing needed to convert the given compressor data
into a linear description of the feasible operating range will be introduced in
Section 3. However, solving the resulting MIP is quite challenging due to the
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Figure 1: Example of the medium size network station E, see Table 1 for more details
to its properties. The colored triangles represent the entry and exit nodes of the
station. Furthermore we have denoted the single network elements by (pipe),
(valve), (regulator), and (compressor station).

complex compressor station model. We therefore propose a di�erent solution
approach in Section 4 based on solving slightly adjusted versions of the presented
MIP. Section 5 then presents our results on computing solutions to a large number
of real world networks situations. We �nish with the conclusion in Section 6.

2 Mathematical model

We model the gas network as a directed graphG = ( V; A) in which the arcs
A represent the di�erent network elements and nodesV represent the junctions
of the arcs. We split A into individual sets A = A pi [ A va [ A rs [ A rg [ A cs

for the network elements considered in this paper, i.e., pipes, valves, resistors,
regulators, and compressor stations respectively. Note that regulators are also
often named control valves in the literature, e.g. see [8] or [19]. In a similar
fashion we split the node setV = Vb [ V 0 into boundary nodes and inner nodes
respectively. Here, boundary nodesVb represent those having inow and pressure
level demand values for future time steps. We de�ne the set of considered time
steps asT0 := f 0; : : : ; kg where T := T0 n f 0g are the future time steps having
demand conditions at boundary nodes. Associated with each time stept is a
value � (t) representing the time di�erence in seconds fromt to the initial state
time step 0.

The most important quantities we will consider to describe the gas ow are
pressure and mass ow. We have pressure variablespv;t at each nodev 2 V and
time t 2 T0 as well as variablesqa;t for the ow from l to r on each non-pipe arc
(l; r ) = a 2 A n A pi and time t 2 T0. For a pipe (l; r ) = a 2 A pi , we have two
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ow variables ql;a;t representing the inow into the pipe at end node l and qr;a;t

representing the outow out of the pipe at end noder , similar to the model of [8]
on pipes or the one of [6] on all arcs. Our �nal ow quantity is the inow at a
boundary node dv;t entering the network for each v 2 V b and t 2 T0. Although
we are given ow demands for the future, we allow deviations from them, and
hence have to have a variable capturing the actual inow value.

We assume that there are bounds on all stated quantities for each point in
time t 2 T0, so upper and lower bounds �pv;t and

�
pv;t on the pressure at each

node v 2 V , upper and lower bounds �qv;t and
�
qv;t on the ow on each non-pipe

arc a 2 A n A pi respectively the inow and outow of each pipe a 2 A pi , as well
as upper and lower bounds�dv;t and

�
dv;t on the inow at each boundary node

v 2 V b . Note that while pressure is always positive, ow itself can be negative,
as it can represent ow in the opposite direction. For example, negative inow
at a boundary node represents ow out of the network at this node.

In the following we will describe each of the elements and at the same time
introduce corresponding variables and constraints to create a MIP formulation.
This MIP will not be solved directly, but is the basis for the three variants used
in our overall solution algorithm described in Section 4.

Note that a list of all used variables can be found in the appendix in Table A.1.

2.1 Compressor stations

Compressor stations are responsible for increasing the pressure in the network
and thereby the most important in controlling the ow of gas. They are also
the most complex elements, having their own substructure and a large amount
of operational restrictions. Our model of the compressor station is based on the
description in [10], where the elements are calledcompressor groupsinstead.

Structure of a compressor station A compressor station (l; r ) = a 2 A cs

has three di�erent modes: Bypass, closed and active mode. In bypass mode the
element is bypassed and therefore allows unrestricted gas ow without changing
the pressure level. For the closed mode, the element is closed and thereby blocks
the gas ow, which disconnects the network between the its end nodes. Finally,
in active mode the gas is compressed and pressure is increased along the direction
of the ow.

When compressing, the compressor station can use a set of associated com-
pressor units Ua . These are the actual pressure increasing elements, each with a
separate operating range. In the compressor station, these compressor units are
combined in series and/or parallel to allow proper reactions to di�erent compres-
sion requirements. The set of all allowed serial-parallel compressor unit combina-
tions is called the set of con�gurations Ca for a compressor stationa 2 A cs, from
which exactly one active con�guration has to be chosen if the compressor station
is in active mode. For each of these con�gurationsc 2 Ca , we create a polytope
in the space (pl ; pr ; q) describing the feasible operating range of the compressor
station using con�guration c. This polytope is described as the intersection of
a set of half spacesH c = f (w; x; y; z) 2 R4g encoding inequalities of the form
w � pl + x � pr + y � q + z � 0. The creation of the feasible operating range of the
con�gurations of the compressor stations is described in Section 3.
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Compressor station model To model the above described constraints we
use a disjunctive formulation. This is the most compact formulation in terms
of number of constraints and variables for which holds that its LP relaxation
is equal to the convex hull of its feasible points [1][2]. For this we introduce
binary \selection" variables mcf

c;a;t for each con�guration c 2 Ca of a compressor

station ( l; r ) = a 2 A cs, as well asmby
a;t and mcl

a;t for bypass and closed mode
respectively. In addition we introduce corresponding sets of pressure and ow
variables. The binary variables will force the pressure and ow variables of all
non-selected con�gurations or modes to be zero and only enforce the constraints
of the selected con�guration or mode. The introduced pressure and ow variables
are:

pby
a;t qby

a;t bypass mode variables

pl-cl
a;t pr-cl

a;t closed mode variables

pl-cf
c;a;t pr-cf

c;a;t qcf
c;a;t 8c 2 Ca con�guration variables

Note that we need only onep value for bypass mode, since herepl = pr holds. Also
there is no q variable for the closed mode, sinceq = 0 holds in this case anyway.
Furthermore, all introduced variables have bounds equal to the corresponding
original pressure and ow bounds �pl;t ,

�
pl;t , �pr;t ,

�
pr;t , �qa;t ,

�
qa;t of the compressor

station ( l; r ) = a 2 A cs, enlarged to zero if necessary. We indicate these bounds
by the variable symbol combined with an overscore respectively underscore.

We are now able to state the constraints for all (l; r ) = a 2 A cs and t 2 T :

1 =
X

c2Ca

mcf
c;a;t + mby

a;t + mcl
a;t (1)

pl;t = pby
a;t + pl-cl

a;t +
X

c2Ca

pl-cf
c;a;t (2)

pr;t = pby
a;t + pr-cl

a;t +
X

c2Ca

pr-cf
c;a;t (3)

qa;t = qby
a;t +

X

c2Ca

qcf
c;a;t (4)

�
pl-cf

c;a;t mcf
c;a;t � pl-cf

c;a;t � �pl-cf
c;a;t mcf

c;a;t 8c 2 Ca (5)

�
pr-cf

c;a;t mcf
c;a;t � pr-cf

c;a;t � �pr-cf
c;a;t mcf

c;a;t 8c 2 Ca (6)

�
qcf

c;a;t mcf
c;a;t � qcf

c;a;t � �qcf
c;a;t mcf

c;a;t 8c 2 Ca (7)

�
pby

a;t mby
a;t � pby

a;t � �pby
a;t mby

a;t (8)

�
qby

a;t mby
a;t � qby

a;t � �qby
a;t mby

a;t (9)

�
pl-cl

a;t mcl
a;t � pl-cl

a;t � �pl-cl
a;t mcl

a;t (10)

�
pr-cl

a;t mcl
a;t � pr-cl

a;t � �pr-cl
a;t mcl

a;t (11)

w � pl-cf
c;a;t + x � pr-cf

c;a;t + y � qcf
c;a;t + zmcf

c;a;t � 0 8(w; x; y; z) 2 H c 8c 2 Ca (12)

2.2 Pipes

Gas ow in pipelines is for operational purposes modeled as one-dimensional ow
through a straight cylindrical pipe. When assuming a constant gas temperature
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T, the ow can be described by the isothermalEuler Equations[26] consisting of
the Continuity Equation and the Momentum Equation. The Continuity Equation
describes the conservation of mass, i.e., guaranteeing that mass may neither be
created nor destroyed. On the other hand, the Momentum Equation reects the
equality between the force acting on the gas particles and their corresponding rate
of change of momentum. For a pipea = ( l; r ) we can state this pair of equations
as

@�
@t

+
@(�v )

@x
= 0 (13)

@(�v )
@t

+
@p
@x

+
@(�v 2)

@x
+

� a

2Da
jvjv� + gsa � = 0 : (14)

Here x denotes the position in the pipe by its distance from the source nodel,
t the current time, � the density of the gas, v its velocity, Da the diameter of
the pipe, g the gravitational acceleration, and � a the friction factor of the pipe,
which we assume to depend on pipe characteristics only, see Section 2.2.1. With
sa 2 [� 1; 1] we denote the slope of the pipe, i.e., the quotient of the elevation
increase between the pipes endpoints and the lengthL a of the pipe.

In order to complete the system of equations describing the state variablesp,
� , and v, we add the equation of state for real gasesto establish the connection
betweenp and � as

p = �R sTza : (15)

The two new quantities that arise are the compressibility factorza and the speci�c
gas constantRs. We assume both values to be constant parameters, which for the
compressibility factor is a common assumption in the gas transport literature, see
for example [26][4]. For the speci�c gas constant this follows from its dependence
on the molar mass, which in turn is determined by the gas mixture which we
assume to be constant.

In the following, we will drop the terms @t (�v ) and @x (�v 2) as they contribute
only little to the equation under normal operating conditions [8][26]. In addition,
we reformulate the pipe ow equations in terms of the quantities we are interested
in, i.e., pressurep and mass ow q, where q is de�ned using the cross sectional
area Aa = D 2

a
�
4 of the cylindric pipe a as

q = Aa �v: (16)

Then we can write (13) and (14) as

@p
@t

+
RsTza

Aa

@q
@x

= 0

@p
@x

+
� aRsTza

2DaA2
a

jqjq
p

+
gsa

RsTza
p = 0 :

Since the spatial pressure change now mainly depends on the friction term in-
cluding the friction factor � a this model variant is often referred to as thefriction
dominated model, see model (FD1) in [3] respectively model (ISO3) in [7].

For the discretization, we use the implicit box scheme introduced by [6], re-
spectively [20]. Here, the spacial domain is the lengthL a of pipe a = ( l; r ) and
the time domain is the set of time stepsT0, which we de�ned in the beginning of
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Section 2. Using the notation of ow into and out of a pipe, again de�ned in be-
ginning of Section 2, as well as the function� , we are able to write the discretized
model for two adjacent time points t0 and t1 as

pl;t 1 + pr;t 1 � pl;t 0 � pr;t 0 +
2RsTza(� (t1) � � (t0))

L aAa
(qr;a;t 1 � ql;a;t 1 ) = 0 (17)

pr;t 1 � pl;t 1 +
� aRsTzaL a

4DaA2
a

�
jql;a;t 1 jql;a;t 1

pl;t 1

+
jqr;a;t 1 jqr;a;t 1

pr;t 1

�

+
gsaL a

2RsTza
(pl;t 1 + pr;t 1 ) = 0 : (18)

As a �nal step, we will linearize the Momentum Equation (18) as proposed
in [16] by �xing the absolute velocity jvj to a prede�ned constant in the friction
term, where the absolute velocity is according to (15) and (16) de�ned asjvj =
j R s T za

A a

q
p j = R s T za

A a

j qj
p . We found that the relative error stated in [16] is less

relevant for the overall accuracy of the model, if the pipes are contained in network
stations. The reason for this is, that the elements of a network station are usually
clustered in a small geographic area. Therefore the contained pipes are relatively
short in comparison to the rest of the network, see also Table 1 with statistics over
di�erent network stations. Since the friction based pressure reduction depends
on the pipe length, the corresponding term and therefore the also stated relative
error have much less impact than usual. This linearization allows us to model
the pipe ow in a MIP context. The �nal equations for each pipe ( l; r ) = a 2 A pi

and all adjacent time points t0; t1 2 T0 are:

pl;t 1 + pr;t 1 � pl;t 0 � pr;t 0 +
2RsTza(� (t1) � � (t0))

L aAa
(qr;a;t 1 � ql;a;t 1 ) = 0 (19)

pr;t 1 � pl;t 1 +
� aL a

4DaAa
(jvl;a jql;a;t 1 + jvr;a jqr;a;t 1 )

+
gsaL a

2RsTza
(pl;t 1 + pr;t 1 ) = 0 (20)

The constant jvx;a j for one of the end nodesx 2 f l; r g of pipe a = ( l; r ) is
determined based on the ow and pressure values of the given initial state, i.e.,

jvx;a j =
RsTza

Aa

jqx;a; 0j
px; 0

:

2.2.1 Friction and compressibility factor

The Darcy{Weisbach friction factor � , describes the pressure drop on a pipea
caused by frictional forces and depends on the diameterDa and integral rough-
nesska of the pipe, as well as the current ow q and the dynamic viscosity � of the
gas. For turbulent gas ow the most accurate description is given by the implicit
Colebrook-White equation [5][10]. There exist a series of di�erent explicit approx-
imation formulas, typically depending on the Reynolds Numberwhich describes
the amount of turbulence of the ow. We use the formula of Nikuradse [24][10],
which assumes in�nite turbulence and makes the friction factor dependent only
on the constant diameter Da and integral roughnesska of the pipe:

� a =
�

2 log10

�
Da

ka

�
+ 1 :138

� � 2

:
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For the compressibility factor z we use the approximation formula developed
by Papay [27][31], which is valid up to 150 bar and thus �ts our considered pressure
range of 1 bar to 100 bar well. It is given as

z(p) = 1 � 3:52
p
pc e� 2:26 T

T c + 0 :247
�

p
pc

� 2

e� 1:878 T
T c :

Apart from the pressure p and gas temperatureT Papay's formula depends on
the gas mixture dependent pseudo-critical pressurepc and temperature T c, which
we assume to be given constants. The constant compressibility factorza per
pipe a = ( l; r ) is then determined as an average of the corresponding values
derived from the initial state pressure values of the pipes end nodes, i.e., by
za = ( z(pl; 0) + z(pr; 0))=2.

2.3 Resistors

Resistors are arti�cial elements created to model points of high friction in the
network, which can be caused by all sorts of special elements. Some examples of
these elements are measuring equipment and complex local piping, which both
are not captured by the other considered element types but need to be accounted
for. The pressure drop caused by a resistor arc (l; r ) = a 2 A rs for time t 2 T is
de�ned by the Darcy-Weisbach equation[10]:

pl;t � pr;t =
� aRsTza

2A2
a

�
jqa;t jqa;t

pin ;t

�

Here the friction factor of the resistor is called thedrag factor, and is represented
by � a , a parameter of the element. The compressibility factorza is determined
in the same way as described for pipes, see Section 2.2.1. The formula is ow
direction dependent, where pin ;t is either pl;t or pr;t depending on qa;t being
positive or negative (for qa;t = 0 it holds that pl;t = pr;t ).

As we did for pipes in Equation (20) we linearize the model by assuming a
constant velocity jvj = R s T za

A a

j qj
p , which also includes the ow direction dependent

pressure value. The equations for each arc (l; r ) = a 2 A rs and time t 2 T then
reads as

pl;t � pr;t =
� a jva j
2Aa

qa;t : (21)

The constant velocity value is again calculated based on the initial element state,
and is de�ned as an average of the two velocities using the pressure from the
corresponding resistors end nodes as

jvl j =
RsTza

Aa

jqa;0j
pl; 0

jvr j =
RsTza

Aa

jqa;0j
pr; 0

jva j :=
jvl j + jvr j

2
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2.4 Valves

Valves are active elements that dynamically connect or disconnect two nodes
by being open or closed respectively, and thereby change the network topology.
Closed valves work exactly as the closed mode of a compressor station, while
open valves imply the same behavior as the corresponding stations bypass mode.
The mode of a valve is captured by the binary variablemop

a;t . For a valve arc
(l; r ) = a 2 A va and time t 2 T we write

pl;t � pr;t � (1 � mop
a;t )(�pl;t �

�
pr;t ) (22)

pl;t � pr;t � (1 � mop
a;t )(

�
pl;t � �pr;t ) (23)

qa;t � (mop
a;t )�qa;t (24)

qa;t � (mop
a;t )

�
qa;t : (25)

2.5 Regulators

A regulator or control valve is a valve with variable opening degree, used to reduce
the pressure along the direction of the ow. Regulators can reduce the pressure
in active mode and also be bypassed or closed like a compressor station. For each
mode there is a binary variable, from which exactly one is equal to 1 at any time,
i.e., the regulator always has to have a unique mode

1 = mcl
a;t + mby

a;t + mac
a;t 8a 2 A rg 8t 2 T (26)

The implications of each of the modes can be modeled by the following constraints
for each arca 2 A rg and all times t 2 T

pl;t � pr;t � +(1 � mby
a;t )(�pl;t �

�
pr;t ) (27)

pl;t � pr;t � +(1 � mby
a;t � mac

a;t )(
�
pl;t � �pr;t ) (28)

qa � (1 � mcl
a;t )�qa;t (29)

qa � 0: (30)

Note that the ow is always positive, even in bypass mode. This occurs because
all regulators have a ap trap which prevents ow going against the topological
orientation.

2.6 Nodes

The nodes don't represent technical elements but rather establish the connections
between them. The pressure coupling is realized by using the pressures at a node
in the constraints of all its incident arcs. To connect the mass ow between arcs
we have ow conservation constraints in each node. This means that the sum of
incoming ows should match the sum of outgoing ows, resulting in the following
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constraints for all t 2 T :
X

( l;v )= a2A pi

qv;a;t �
X

(v;r )= a2A pi

qv;a;t

+
X

( l;v )= a2AnA pi

qa;t �
X

(v;r )= a2AnA pi

qa;t + dv;t = 0 8v 2 V b (31)

X

( l;v )= a2A pi

qv;a;t �
X

(v;r )= a2A pi

qv;a;t

+
X

( l;v )= a2AnA pi

qa;t �
X

(v;r )= a2AnA pi

qa;t = 0 8v 2 V 0 (32)

2.7 Network station

In addition to the constraints imposed by the single elements used in the net-
work, the network station itself has a set of associated constraints. The model
described below is an extension of the one described in [10] for similar struc-
tures. There, network stations are calledcompressor stationsand the elements
we call compressor stations are calledcompressor groups, as already mentioned
in Section 2.1.

Network station structure Most important are the operation modes O of
the network station from which exactly one has to be selected at each time point
and which determine the modes and con�gurations of all valves and compressor
stations. Note that not all possible mode combinations of the di�erent elements
have to be valid operation modes of the network station. In addition to the
operation mode a ow direction has to be chosen for the network station from
the set of possible ow directions F . The restrictions on each ow direction of
the station prescribe the ow patterns in terms of inow, outow or no-ow over
the boundary nodes of the station. The ow direction itself also has to �t to the
selected operation mode of the network station, where the set of feasible operation
mode and ow direction pairs is OF .

Operation modes model We introduce binary variables mom
o;t for each o 2 O

and t 2 T0. They represent whether the operation mode has been selected, or
respectively if the network station is in the given operation mode at this point in
time. Furthermore, we de�ne the function M (o; a), which maps operation modes
to the individual modes and con�gurations of valves and compressor stations:

M (o; a) := x where x is the mode or con�guration of arc a

in operation mode o 8o 2 O 8a 2 A va [ A cs

with x 2 f op; clg if a 2 A va

x 2 f by; clg [ C a if a 2 A cs

Note that we assume that all valves and compressor stations are determined by
the network station operation modes. In general however, there are valves which
are not controlled by the operation modes, and whose mode is already given as a
�xed decision over time and cannot be changed. We can handle these valves by
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pre-processing, and either contracting the associated valve in the open case, or
simply removing the valve in the closed case.

Using M (o; a) we can then state the operation mode related constraints for
all t 2 T :

X

o2O

mom
o;t = 1 (33)

mop
a;t =

X

o2O :M (o;a )=op

mom
o;t 8a 2 A va (34)

mby
a;t =

X

o2O :M (o;a )=by

mom
o;t 8a 2 A cs (35)

mcl
a;t =

X

o2O :M (o;a )=cl

mom
o;t 8a 2 A cs (36)

mcf
c;a;t =

X

o2O :M (o;a )= c

mom
o;t 8c 2 Ca 8a 2 A cs (37)

Note that either Equation (35), Equation (36) or one of the constraints of Equa-
tion (37) for one of the con�gurations c 2 Ca can be omitted, because it follows
from the remaining constraints combined with Equation (1).

Operation mode unavailability Certain operation modes are not available
at speci�c points in time. The basis for this is the non-availability of compressor
units over time, which is part of the model input data.

As explained in Section 2.1, a con�guration c 2 Ca of some compressor sta-
tion a 2 A cs represents the serial and/or parallel combination of a subset of the
compressor stations compressor units. Hence, the unavailability of a certain com-
pressor unit at time t results in the unavailability of all con�gurations which use
this unit. On the next level, each network station operation mode de�nes the
mode and (for the active mode) the con�guration of each compressor station in
the network station. Hence, all network station operation modes using a con�gu-
ration for a compressor station which is unavailable for timet will be unavailable
for t, too. To implement this in the model, we just �x the variables mom

o;t for the
corresponding operation modeo and time points t to zero, i.e., remove them from
the model.

The unavailability of a compressor unit may not be aligned with the set of
discrete time points T0, i.e., the unavailability period may start or stop in between
two adjacent time points. To be able to tell which of the two points is then e�ected
by this, we have to establish an interpretation for the operation mode of a network
station between two time steps. Therefore, we de�ne that if a network station
has the operation modeA at the discrete time point t, then we also assume the
station to have operation modeA in the following time interval up to the next
discrete time point t + 1. From this de�nition it follows that if a network station
operation mode is unavailable for somek 2 (t; t + 1) with t; t + 1 2 T0, then the
operation mode is unavailable for timet but potentially available for time t + 1.

Operation mode transition times If the operation mode of a network station
is changed from modeA to some other modeB , the transition takes a given
amount of time � (A; B ). A transition time is given for every possible combination
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of operation modes and is part of the input data. While in transition between
the two modes, the network station acts as follows: Assume the transition starts
at time t0, then for t 2

h
t0; t0 + � (A;B )

2

�
the station uses modeA while for t 2

h
t0 + � (A;B ))

2 ; t0 + � (A; B )
�

the station uses modeB . In other words, the station
stays in mode A until it reaches the middle of the transition period and then
changes to modeB . While being in transition, the whole transition period is
blocked for other changes, i.e., two transition periods cannot overlap. Since we
are only able to change network station operation modes at discrete time points,
we assume that for each transition the middle point is inT0. This is also in line
with our interpretation of network station operation modes in between discrete
time points.

In Figure 2 we see an example of an operation mode sequence with corre-
sponding transition times. The time point tX represents the �rst t 2 T0 in which
operation modeX is active, which according to the interpretation in the previous
paragraph is also the �rst discrete time point t in which X is active. In this
example, there would be a conict in the transition times � (C; D) from mode C
to mode D and � (D; E ) from mode D to mode E, since the two time periods
overlap. Note that this is true, although for each single transition period the
network station has the correct operation mode for each point in time, i.e. �rst
mode in the �rst half of the period and the second mode in the second half.

Time
tB tC tD tEA B C D E

A ! B

B ! C

C ! D

D ! E

Figure 2: Transition time example with 5 operation modes and 4 transitions, from which
two are in conict. The time point tX represent the �rst discrete time point in T0 in
which mode X is active.

We will not cover the transition time restrictions in the MIP model, but will
make sure our solutions respect them in a di�erent way, see Section 4.2. For this
we only need a way to check for a given sequence of operation modes if all the
transition times are valid, i.e., the corresponding periods do not overlap, which we
do as follows: For each network station operation mode in the sequence, we check
if the time in which the operation mode is active is at least as big as the sum of
adjacent transition time components, i.e., the sum of half the time of the transition
into that mode and half of the time of the transition out of that mode. In the given
example, we would have to check for modeC if � (tD ) � � (tC ) � � (B;C )

2 + � (C;D )
2

holds, where� (t) represents the time di�erence of a time stept from the initial
state time. If the above holds for all operation modes in the sequence, then
the transition periods can never overlap since they are centered around the time
points in which the mode change happens.

Note, that for the last mode in the sequence, we do not need to do any checks
at all. We do so as we cannot determine how long into the future the operation
mode will be active for. Hence, we assume it is active long enough to comply
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with the given transition time, allowing the possibility to apply operation mode
changes up to the very last time step. For the �rst mode, a similar assumption
would be too optimistic, since the desired operation mode change would have then
already been triggered before the start our time horizon. However, there is no
known transition into this �rst mode, so we need only check if half the transition
time into the next mode �ts into the �rst modes active period.

Flow directions model Similar to the way we handle operations modes, we
introduce binary variables mfd

f;t representing the selection of ow direction f 2 F
at time t 2 T0. To be able to state the connection between the chosen ow
direction and the actual boundary node inow pattern, we represent each ow
direction f as a tuple of the set of boundary nodes having inow into the station
f + and the set of boundary nodes having outow out of the station f � . Hence,
using the power setP, a ow direction f is de�ned as

(f + ; f � ) = f 2 F � P (Vb ) � P (Vb ) where f + \ f � = ;

Note that if v 62f + and v 62f � for ow direction ( f + ; f � ), then the inow of
node v is zero.

Using the inow variable dv;t for boundary node v and time t we can de�ne
the ow direction constraints for each t 2 T as:

X

f 2F

mfd
f;t = 1 (38)

mom
o;t �

X

(o;f )2OF

mfd
f;t 8o 2 O (39)

dv;t � (1 �
X

f =( f + ;f � )2F :v62f �

mfd
f;t )

�
dv;t 8v 2 V b (40)

dv;t � (1 �
X

f =( f + ;f � )2F :v62f +

mfd
f;t ) �dv;t 8v 2 V b (41)

Flow direction exit pressures Apart from the consequences that the ow
direction choice has on the corresponding boundary node inows, it may also
inuence the upper pressure bounds on some boundary nodes. Each nodev 2
Vb-ex � V b is given an upper pressure bound �pexit

v , which is only active if the node
is in the outow set of the currently active ow direction, i.e., serving as exit of
the network station. The corresponding constraint is the following for each time
t 2 T

pv;t � �pexit
v + (1 �

X

f =( f + ;f � )2F :v2 f �

mfd
f;t )(�pv;t � �pexit

v ) 8v 2 V b-ex (42)

Flow direction conditions As the �nal constraints concerning ow directions,
there exist in some network stations a special set of conditionsW, which concern
the amount of ow over sets of boundary nodes. These conditions must be met
for the ow direction which they are associated with to be active. Each condition
w = ( f; Vw1 ; Vw2 ) 2 W states that the ow over a set of boundary nodesVw1

has to be smaller than the ow over a second set of boundary nodesVw2 if f is
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selected. Note, that the ow over a set of boundary nodesVw for time t is de�ned
as

P
v2V w jdv;t j, which is potentially a non-linear expression due to the absolute

value. However, each boundary node setVw which is part of some w 2 W is
known to be either a subset off + or a subset of f � of the corresponding ow
direction f = ( f + ; f � ). For this reason, we always know the sign of the ow
over Vw in advance and hence using the following function de�nition for easier
notation

sgn :F � V b ! f� 1; 1g;
�
(f + ; f � ); v

�
!

(
1 if v 2 f +

� 1 if v 2 f �

we can write the constraints for eacht 2 T as
X

v2V w 1

sgn(f; v )dv;t �
X

v2V w 2

sgn(f; v )dv;t

� (1 � mfd
f;t )C1 8(f; Vw1 ; Vw2 ) 2 W : (43)

Here C1 denotes a big-M constant, which can be set as follows:

C1 =
X

v2V w 1 :v2 f +

max(0; �dv;t ) �
X

v2V w 1 :v2 f �

min(0;
�
dv;t )

�

0

@
X

v2V w 2 :v2 f +

max(0;
�
dv;t ) �

X

v2V w 2 :v2 f �

min(0; �dv;t )

1

A

2.8 Scenario and initial state

For the future we are given scenario values for the boundaries of the station in
terms of pressure and inow. While we are given one pressure value ^pv;t per
boundary node v 2 V b for each future time point t 2 T , the ow demands are
only given for sets of boundary nodes, which are called thefence groupsof the
network station forming the set FG. For each setg 2 FG, which can also consist
of only a single boundary node, and each future time pointt 2 T , the sum of
inows should be equal to the given demand valued̂g;t .

We do not require strict obedience of the given demand values ^pv;t and d̂g;t ,
but instead allow deviations from them, which will be punished in the objective
function. These deviations are captured in theslack variables� . For pressure we
have � p+

v;t and � p�
v;t which capture the positive and respectively negative di�erence

between the pressure values of boundary nodev at future time t and the given
demand p̂v;t . We then have the slack variables� d+

v;t and � d�
v;t associated with the

inow, which capture the positive and respectively negative contribution to the
di�erence between the inow demand d̂g;t of fence groupg 2 FG at each future
time step t and the sum of the corresponding inow variables of each boundary
node v in the fence groupg.

The described relations can be modeled for each future time stept 2 T as:

p̂v;t = pv;t � � p+
v;t + � p�

v;t 8v 2 V b (44)

d̂g;t =
X

v2 g

�
dv;t � � d+

v;t + � d�
v;t

�
8g 2 FG (45)
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Note that by using inow slacks, it is possible to choose a ow direction for
the station that does not �t the inow demand values d̂g;t in terms of the con-
straints (40)-(41).

The second set of prescribed values are those of the initial state. A complete
list of given values are as follows: The initial pressurespv;0 for each nodev 2 V ,
the in- and outow values ql;a; 0 and qr;a; 0 for each pipe (l; r ) = a 2 A pi , the ow
valuesqa;0 for each non-pipe arca 2 A n A pi , the operation mode of the network
station �xing mom

o;0 for eacho 2 O , the thereby determined values of the variables

mop
a;0, mby

a;0, mcl
a;0, mac

a;0 for each corresponding valve and compressor station arc
a 2 A va [ A cs, the values of mcf

c;a; 0 for each compressor stationa 2 A cs and

corresponding con�guration c 2 Ca , and �nally the modes mby
a;0, mcl

a;0, mac
a;0 of all

regulators a 2 A rg . All these variables are actually parameters of the model and
�xed to the corresponding value.

2.9 Objective

As already describe above, the objective function should punish deviation from
the given future scenario, while simultaneously favoring those solutions with a
stable control of the single elements. While the �rst part can easily be described
by using the slack variables introduced in Section 2.8, we still need to de�ne a
measure for the stability. To do so, we �rst quantify the discrete changes of the
control in binary variables, i.e., the change of the network station into a new
operation mode at time t in variable � om

t as well as the change into a new mode
of regulator a at time t in variable � rg

a;t . Furthermore, we capture the start of
compressor unit u at time t in the variable � us

u;t , since starting a compressor is a
very time and energy intensive action and should therefore be avoided if possible.
The mode changes of valves and compressor stations are not tracked separately,
as the start-up of compressor stations is already penalized and the change of
valves only happens for multiple elements at once in the context of operation
mode changes, see the Equation (34). This described variable behavior is realized
by the following constraints for each future time step t 2 T , where we denote
the set of con�gurations of the containing compressor stationa 2 A cs which use
compressor unitu 2 Ua by Cu;a .

� om
t � mom

o;t � mom
o;t � 1 8o 2 O (46)

� om
t � 2 � mom

o;t � mom
o;t � 1 8o 2 O (47)

� rg
a;t � mcl

a;t � mcl
a;t � 1 8a 2 A rg (48)

� rg
a;t � 2 � mcl

a;t � mcl
a;t � 1 8a 2 A rg (49)

� rg
a;t � mby

a;t � mby
a;t � 1 8a 2 A rg (50)

� rg
a;t � 2 � mby

a;t � mby
a;t � 1 8a 2 A rg (51)

� rg
a;t � mac

a;t � mac
a;t � 1 8a 2 A rg (52)

� rg
a;t � 2 � mac

a;t � mac
a;t � 1 8a 2 A rg (53)

� us
u;t �

X

c2Cu;a

mcf
c;a;t �

X

c2Cu;a

mcf
c;a;t � 1 8u 2 Ua8a 2 A cs (54)

In order to obtain a smooth operation for network situations without discrete
mode switching, we add variables tracking the change of the operation point of
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single elements, i.e., their corresponding changes in ow, incoming pressure and
outgoing pressure. We do this for all elements with an actual operation point, i.e.,
regulators and compressor stations in active mode, while ignoring times in which
the network station operation mode or regulator mode has just been changed.
The variables � rg-pl

a;t , � rg-pr
a;t , � rg-q

a;t representing changes of the incoming pressure,

outgoing pressure and ow of an active regulatora respectively � cs-pl
a;t , � cs-pr

a;t , � cs-q
a;t

representing the corresponding value changes of an active compressor stationa
can be established using the following constraints for each (l; r ) = a 2 A rg and
eacht 2 T

pl;t � pl;t � 1 � � rg-pl
a;t + ( mby

a;t + mcl
a;t + � rg

a;t )(�pl;t �
�
pl;t � 1) (55)

pl;t � 1 � pl;t � � rg-pl
a;t + ( mby

a;t + mcl
a;t + � rg

a;t )(�pl;t � 1 �
�
pl;t ) (56)

pr;t � pr;t � 1 � � rg-pr
a;t + ( mby

a;t + mcl
a;t + � rg

a;t )(�pr;t �
�
pr;t � 1) (57)

pr;t � 1 � pr;t � � rg-pr
a;t + ( mby

a;t + mcl
a;t + � rg

a;t )(�pr;t � 1 �
�
pr;t ) (58)

qa;t � qa;t � 1 � � rg-q
a;t + ( mby

a;t + mcl
a;t + � rg

a;t )(�qa;t �
�
qa;t � 1) (59)

qa;t � 1 � qa;t � � rg-q
a;t + ( mby

a;t + mcl
a;t + � rg

a;t )(�qa;t � 1 �
�
qa;t ) (60)

respectively for each (l; r ) = a 2 A cs and eacht 2 T

pl;t � pl;t � 1 � � cs-pl
a;t + ( mby

a;t + mcl
a;t + � om

t )(�pl;t �
�
pl;t � 1) (61)

pl;t � 1 � pl;t � � cs-pl
a;t + ( mby

a;t + mcl
a;t + � om

t )(�pl;t � 1 �
�
pl;t ) (62)

pr;t � pr;t � 1 � � cs-pr
a;t + ( mby

a;t + mcl
a;t + � om

t )(�pr;t �
�
pr;t � 1) (63)

pr;t � 1 � pr;t � � cs-pr
a;t + ( mby

a;t + mcl
a;t + � om

t )(�pr;t � 1 �
�
pr;t ) (64)

qa;t � qa;t � 1 � � cs-q
a;t + ( mby

a;t + mcl
a;t + � om

t )(�qa;t �
�
qa;t � 1) (65)

qa;t � 1 � qa;t � � cs-q
a;t + ( mby

a;t + mcl
a;t + � om

t )(�qa;t � 1 �
�
qa;t ): (66)

Note that we needed to de�ne the upper bound constraints for the discrete change
variables � om

t and � rg
a;t to allow them to be equal to one only if there really is a

discrete change. Otherwise it might have been possible to set the change variable
to 1 although there is no actual discrete change and thereby avoid high costs
imposed by the continuous change variables, which is not a desired behavior.

Finally, we are able to state our objective function, which minimizes the
weighted sum of the change variables and the slack variables de�ned in Section 2.8
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as

min objective :=
X

t 2T

�
�
� (t) � � (t � 1)

� X

v2V b

�
w� -p � (� p+

v;t + � p�
v;t ) + w� -d � (� d+

v;t + � d�
v;t )

�

+ wom � � om
t

+
X

a2A rg

wrg � � rg
a;t (67)

+
X

u2U a ;a2A cs

wus � � us
u;t

+
X

a2A rg

�
wrg-pl � � rg-pl

a;t + wrg-pr � � rg-pr
a;t + wrg-q � � rg-q

a;t

�

+
X

a2A cs

�
wcs-pl � � cs-pl

a;t + wcs-pr � � cs-pr
a;t + wcs-q � � cs-q

a;t

�
�

;

where the w� parameters denote the corresponding positive weights given to the
single quantities. Note that the weights for pressure and ow slack variables are
additionally multiplied by the length of the corresponding time interval. We do
this, since the slacks track deviation amounts over time and we therefore need
to take the time interval length into account for their objective function value
coe�cients.

2.10 Final model

Putting everything together, we can formulate our problem in the following tran-
sient gas ow model P :

min (67)

s.t. 8t 2 T (1) � (4); (8) � (11); (35) � (36); (61) � (66) 8a 2 A cs

(5) � (7); (37) 8a 2 A cs 8c 2 Ca

(12) 8a 2 A cs 8c 2 Ca 8(w; x; y; z) 2 H c

(19) � (20) 8a 2 A pi

(21) 8a 2 A rs

(22) � (25); (34) 8a 2 A va

P (26) � (30); (48) � (53); (55) � (60) 8a 2 A rg

(31); (40) � (41); (44) 8v 2 V b

(32) 8v 2 V 0

(33); (38)

(39); (46) � (47) 8o 2 O

(42) 8v 2 V b-ex

(43) 8w 2 W

(45) 8g 2 FG

(54) 8a 2 A cs u 2 Ua
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Note that we apply the constraints only starting from time step 1 explicitly ex-
cluding the initial time step 0. We do this since the initial pressure and ow
values as well as the initial modes described in Section 2.8 are not guaranteed to
�t our model, and simply serve as a starting point for the calculations.

3 Feasible operating range of compressor station
con�gurations

As already explained in Section 2.1 each compressor station arc (l; r ) = a 2 A cs

has an inherent substructure. It represents a set of compressor unitsUa , which are
the actual compressing elements and can be combined in a serial and/or parallel
fashion, to either allow for a higher compression ratio, a higher ow rate or a
mixture of both. The set of all feasible serial-parallel combinations is called the
set of con�gurations Ca of a compressor station. For each of these con�gurations,
we will describe in this section how to obtain their polytope description given as
intersection of the set of half spacesH c, which is used in the model as described
in Section 2.1. The polytope of a con�guration is created based on the polytopes
of the compressor units, which are created from combining the corresponding
feasible operation ranges with a maximum power restriction. Note that we drop
the time index in this section for the ease of notation.

3.1 Feasible operating range for a single compressor unit

A compressor unit is a combination of a single compressor machine (or just a com-
pressor), which increases the gas pressure in ow direction, and a corresponding
drive, providing the power needed to run the compressor. For each compressor
machine we are given a feasible operating range as polytope in the space (pr

pl
; Q),

where the volumetric ow rate Q is given as

Q = q=� l , with � l =
pl

RsTzl
:

Note, that since we explicitly consider density and pressure at the incoming node
l of the compressor, we use the compressibility factorzl := z(pl; 0) instead of za ,
here as well as in the rest of this Section.

Usually, the feasible operating range, sometimes also called \characteristic
diagram" or \performance curve", is given as area in the dimensions (Had ; Q)
restricted by a set of possibly concave quadratic curves, see e.g. [10][25]. The
quantity Had denotes thespeci�c change in adiabatic enthalpyand is de�ned as

Had = RsTzl
�

� � 1

" �
pr

pl

� � � 1
�

� 1

#

; (68)

using for the isentropic exponent � the constant value 1:296, as stated in [10].
The transformation of such a feasible operating range usingHad into our format
is easily doable, since there is a unique transformation fromHad to pr

pl
obtained

by simply rearranging (68). The diagram then just has to be linearized by ap-
proximation or relaxation to obtain the polytope description in the desired space.
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In addition to the feasible operating range polytope, each compressor machine
is given an upper bound on the absolute pressure increase�� p � pr � pl and an
upper bound on the maximum power to use �P based on the power of the com-
pressor drive. The power needed for compression depends on the above de�ned
Had as well as the mass ow and is given as

P =
qHad

� ad
=

q
� ad

RsTzl
�

� � 1

" �
pr

pl

� � � 1
�

� 1

#

: (69)

Here � ad denotes the adiabatic e�ciency of the compression, which in theory
depends on the actual point of operation in the feasible region but is here assumed
to be a given constant per compressor unit. An example of a feasible operating
range of a compressor unit is given in Figure 3a, where di�erent levels of the
maximum pressure di�erence bound and the maximum power bound are given
based on di�erent values for the incoming pressurepl .

(a) Original power bound (b) Linearized power bound

Figure 3: The feasible operating range of a compressor unit. The grey region shows the
operating range given as a polytope. For di�erent values of the incoming pressure pl the
blue lines represent the upper bound on the absolute pressure increase�� p and the red
lines illustrate the power bound �P . While the left picture shows the original non-linear
non-convex power bound, the right pictures shows the linearized version, see Section 3.2

.

Ignoring the power bound for a moment, we will now lift the feasible operating
range into the (pl ; pr ; q) space we are interested in. Therefore, we �rst transform
each of the facesa0 + a1Q + a2

pr
pl

� 0 of the original polytope into constraints
~a0pl + ~a1pr + ~a2q � 0 of the higher dimensional space using the equation of state
for real gases (15):

a0 + a1Q + a2
pr

pl
� 0

, a0 + a1
q

� L
+ a2

pr

pl
� 0

, a0 + a1
qRsTzl

pl
+ a2

pr

pl
� 0

, a0pl + a1RsTzl q + a2pr � 0

, ~a0pl + ~a1pr + ~a2q � 0:
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To bound the polyhedron described by the new constraints, we add the restriction
of the absolute pressure di�erence as well as two pressure bounds of the end nodes
of the compressor station arc (l; r ) = a 2 A cs containing this machine

pr � pl � �� p

pl �
�
pl

pr � �pr :

A picture of the three dimensional polytope resulting from the feasible operating
range of Figure 3 can be seen in Figure 4a.

(a) Without power bound (b) With power bound

Figure 4: The feasible operating range of a compressor unit in the space (pl ; pr ; q),
computed from the two dimensional operating range shown in Figure 3. While the left
picture shows the lifted polytope based on the original feasible operating range, the
maximum absolute pressure di�erence and the end nodes pressure bounds, the right
pictures also includes the linearized power bound, see Section 3.2

.

3.2 Power bound linearization

Until now, we have ignored the maximum power constraint in the three dimen-
sional feasible operation range polytope, that restricts the value of the avail-
able power P for compression. Figure 3a shows the constraintP � �P cuts into
the original two dimensional feasible operating range in a non-linear and non-
convex fashion. The same holds for the feasible operating range representation in
(pl ; pr ; q). In the following, we are going to derive a linear approximation to this
constraint that can then be added to the operating range polytope.

Therefore, we generate a set ofN random sample points from within the
three dimensional operating range polytope, which we represent by the vectors
p l ; p r ; q 2 RN . We used a rejection-free sampling method, which is based on
the sampling from a 3D tetrahedron, see [30]. The idea behind this method is to
sample uniformly from a through the tetrahedron generated parallelepiped and
then project the sample back to the tetrahedron. To extend this method from
tetrahedra to general polytopes, we �rst compute a triangulation of the polytope.
We compute the volumes of the tetrahedra and use their relative volume as a
probability function. This allows us to �rst randomly select a tetrahedron and
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then sample from it using the in [30] described method. Our approach has high
preprocessing costs of computing the triangulation tetrahedra and their volume
but then it is very cheap to generate samples. On the contrary for rejection based
sampling there is no lower bound for how many samples we need to generate for
a single sample point, since the polytope can be arbitrarily small in comparison
to the space we sample from (typically the enclosing axis-parallel cube). For the
operating range polytopes we observed a signi�cant speed-up while generating
50000 samples.

For each point, we then determine the corresponding compressor power using
Equation (69) and store these values again in a vectorP 2 RN . The goal is now
to obtain a linear approximation of the power function, i.e., an approximation of
the form

P � a0 + a1p l + a2p r + a3q:

We achieve this by applying an ordinary least-squares method in order to deter-
mine the coe�cients of the linear function as

min
a0 ;a 1 ;a 2 ;a 3

jj P � (a0 + a1p l + a2p r + a3q) jj2 :

Finally, we can formulate the new linearized power bound constraint based on
the obtained solution values (�a0; �a1; �a2; �a3) as

�a0 + �a1pl + �a2pr + �a3q � �P;

which is then added to the three dimensional polytope to create the �nal three
description of the feasible operating range of a compressor unit. An example
the �nal polytope is illustrated in Figure 4b, while the linearized power bound
projected to the original two dimensional operating range can be seen in Figure 3b.

3.3 Feasible operating range for a compressor station con-
�guration

As the �nal step, we will create the polytope description for each con�guration by
combining the polytopes of the used compressor units. The procedure was origi-
nally described in [18], while we exactly follow the steps of the variant described
in [32].

Each con�guration c is given as a serial sequences1; : : : ; sn c of parallel com-
pressor machine arrangements, where combining compressors in series allows for
higher output pressures by multi-step compression while parallel compression
increases the throughput in terms of ow. We call such a parallel machine ar-
rangement stageand denote byUs the set of compressor units combined in stage
s 2 f s1; : : : ; sn c g.

We will now start with the de�nition of the feasible operation range polytope
Ps of such a stages 2 f s1; : : : ; sn c g. For each compressor unitu 2 Us the
corresponding polytope is denoted byPu , and using this we can describePs as

Ps := f (pl ; pr ; q) j 8u 2 Us 9(pl;u ; pr;u ; qu ) 2 Pu

with pl = pl;u 0 8u0 2 Us;

pr = pr;u 0 8u0 2 Us;

q =
X

u 02U s

qu 0 g:
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In other words, a valid operation point of the stage is represented by each unit
operating at the same incoming and outgoing pressures, while the the mass ow
through the stage is the sum of mass ow through the individual units.

In a similar fashion, we can then de�ne the polytope Pc for the overall con-
�guration. Here, the mass ow through all the stages stays the same, while the
outgoing pressure of some stagesi in the sequence has to match the incoming
pressure of the subsequent stagesi +1 . Using this logic Pc can be de�ned as

Pc := f (pl ; pr ; q) j 8s 2 f s1; : : : ; sn c g 9(pl;s ; pr;s ; qs) 2 Ps

with pl = pl;s 1 ;

pr = pr;s n c
;

pr;s i = pl;s i +1 8i 2 f 1; : : : ; nc � 1g;

q = qs0 8s0 2 f s1; : : : ; sn c g g:

Finally, the set of half spacesH c used in Section 2.1 to de�ne the feasible operating
range of the con�guration c are simply the facets of the polytopePc representing
the feasible operating range.

Note, that due to the symmetric polytope creation the parallel compressor
units of a stage do not need a speci�c order. In contrast, the serial stage sequence
is indeed important since in general two sequences using the same stages but in
a di�erent order will have di�erent operating ranges.

4 Specialized network station algorithm

The MIP model P presented in Section 2.10 turns out to be quite challenging
according to our experiments even though we are only considering parts of a larger
gas network by restricting ourselves to network stations. We therefore created
a specialized algorithm to solve the problem for network stations. The baseline
insight of it is that the elements in network stations are all very close to each
other, making the corresponding pipes inside the station relatively short, see also
Table 1 in the computational Section 5. This means that their capability to store
gas, which is often referred to aslinepack, is insigni�cant in comparison to the long
pipelines in between the network stations. Thus there is no possibility to \prepare
for the future", i.e., use linepack to pre-transport gas to handle upcoming critical
demand situations inside the network station itself.

This led us to the idea of splitting the time coupled modelP into individual
stationary models to determine the best operation mode and ow direction for
each individual time step. We then use this information to �nd a solution in
terms of operation modes and ow directions over the whole time horizon. This
solution will respect the transition time conditions, which have not been modeled
in P explicitly, see the corresponding part of Section 2.7.

Since our goal is to �nd a feasible solution for the presented modelP of
Section 2.10, we will not only have to determine the network station operation
modes and ow directions, but also all other involved quantities. Hence, after
determining these values we still need to calculate a transient version ofP , which
for example also takes care of minimizing the di�erences in the operation points
of the single elements, see Section 2.9. We do so by prescribing the operation
modes and ow directions determined in the stationary calculations to make the
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model tractable. The whole algorithm is summarized in Algorithm 1, in which
the creation of the operation mode sequence is already split into the two steps
described in Section 4.2.

1 opModes; owDirs  initialSolutionCreation() // see Section 4.2.1
2 opModes; owDirs  improvementHeuristic(opModes; owDirs) // see

Section 4.2.2
3 return transientSmoothing(opModes, owDirs) // see Section 4.3

Algorithm 1: Specialized network station algorithm

Note, that our algorithm does not have the guarantee of �nding globally opti-
mal solutions, which would have been the case when directly solvingP enhanced
by a proper description of the operation mode transition time constraints. How-
ever, it has the potential to obtain good overall solutions forP , since we assume
the operation mode depending objective function weightswom for changing to
a new operation mode andwus for starting a new compressor unit to dominate
the other objective weights, see also the used objective function values in our
computational experiments stated in Section 5.1.

In this section we will �rst introduce in 4.1 the three di�erent variants of
the model P that we will use in our algorithm. Afterwards, we will present
the algorithm itself, that determines operation modes in 4.2 and �nish with the
so-called smoothing procedure in 4.3, in which we will �nd the feasible transient
solution to our problem.

4.1 Model variants

As mentioned above, we will not solve the complete transient modelP directly,
but use the following variants of it in our overall solution approach.

P s { Stationary model For the �rst variant we solve a stationary version
of the model to determine the best operation mode and ow direction for one
independent time step t. The necessary changes inP mainly a�ect the pipe
model. In the stationary case a pipe no longer has the possibility to store gas,
since the incoming and outgoing pipe ows are balanced, i.e.,ql;a;t = qr;a;t = qa;t

for all pipes (l; r ) = a 2 A pi . This is due to the Continuity Equation, in which
@t p = 0 holds as for all time dependent derivatives resulting in the mass ow
balance. Hence, the Continuity Equation is no longer part of the model and the
stationary Momentum Equation (20) for pipe ( l; r ) = a 2 A pi and the stationary
time step t we are considering can be stated as

pr;t � pl;t +
� aL a

4DaAa
(jvl;a j + jvr;a j) qa;t +

gsaL a

2RsTza
(pl;t + pr;t ) = 0 :

Note that we still calculate the �xed velocity based on the initial pressure and
ow values from time step 0, since we are looking for a feasible solution for the
original model P in the end.

For all other elements the constraints only consider exactly one time step
and we therefore simply apply them for the one time stept of the stationary
case. The only other part to adjust is the objective function, where we keep
the penalties � p+

v;t , � p�
v;t , � d+

v;t , and � d�
v;t for each boundary nodev 2 V b since
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they are de�ned based on each individual time stept. In addition, we will keep
tracking the change to a new network station operation mode in variable� om

t
as well as the start of new compressor units using� us

u;t for all u 2 Ua a 2 A cs.
This is done by calling the model with the parameterprevMode, whereprevMode
represents the operation mode of the previous time step. The other variables
tracking changes in regulator modes� rg

a;t as well as the current point of operation

of regulators and compressor stations as� rg-pl
a;t , � rg-pr

a;t , � rg-q
a;t , � cs-pl

a;t , � cs-pr
a;t , and � cs-q

a;t
for all a 2 A rg respectively a 2 A cs will be removed from the model, as well as
the constraints (48)-(53) respectively (55)-(66) de�ning their behavior. The �nal
stationary objective function for the time step t under consideration reads as

min
�
� (t) � � (t � 1)

�
�

X

v2V b

w� -p � (� p+
v;t + � p�

v;t ) + w� -d � (� d+
v;t + � d�

v;t )

+ wom � � om
t

+
X

u2U a ;a2A cs

wus � � us
u;t

P f { Transient with �xed operation modes and ow directions For
this variant, we are given a fixed operation modeot and ow direction f t for all
future time steps t 2 T . This is used in our algorithm to �nally determine all
transient quantities after the decision for an operation mode and a ow direction
for each time step has been made. By �xing the corresponding variablesmom

ot ;t

and mfd
f t ;t to 1 for all future time steps t 2 T , the majority of binary variables

can be replaced by constants, since the operation modes already decide valve and
compressor station modes, as well as the con�guration of all active compressor
stations. Only the binary variables mac

a;t , mby
a;t and mcl

a;t for the mode of a regulator
a 2 A rg are still to be decided.

In addition, a lot of implicating big-M constraints can already be resolved, i.e.,
we can remove the current formulation and just add the implied constraints, if the
corresponding condition is ful�lled. Examples for this are the constraints (22)-(25)
describing the valve behavior or the ow direction conditions (43). Furthermore,
we no longer need to use a disjunctive model, but can apply the corresponding
constraints (2)-(12) of the active mode and/or con�guration of time step t directly
to the variables pl;t , pr;t and qa;t for each compressor station (l; r ) = a 2 A cs.

P sf { Stationary with �xed operation mode As a last variant we basically
combine the two variants above and use the stationary version of the model
with already f ixed operation mode. Note, that in contrast to model P f the ow
direction of the network station is not already given, which results in more binary
variables and still to decide big-M constraints. However, this variant still results
in a very small and rather simple model and we can therefore solve it very often
to test the appropriateness of a given operation mode for a certain time step.

4.2 Determining operation modes

Our algorithm to determine the operation modes of the network station is split
into two steps: First, we create an initial solution by a greedy, forward oriented
procedure presented in 4.2.1. We then in a second step improve this solution by
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testing if certain operation modes can be replaced by similar ones to �nd a better
sequence of operation modes over time. This second step is described in 4.2.2.

Regarding the ow directions we will return for each time step t that ow
direction, which has been chosen in the optimal solution of the stationary model
which determined the returned operation mode fort. For simplicity of notation,
we will not further mention them in the rest of this section.

4.2.1 Initial solution creation

To �nd a �rst feasible sequence of operation modes over time, we follow a rather
simple idea. In order to keep the number of needed operation mode changes small,
we determine an operation mode for time stept by �rst testing the used operation
mode of the previous time stept � 1 using P sf. Only when this previously used
operation mode yields a costly solution in terms of the objective function value
will we use the general stationary modelP s to determine the best operation mode
for t. By this mechanic, we also reduce the amount of calls to theP s model,
which are in general much more expensive in terms of computing time then calls
to the P sf model. A detailed description is given as Algorithm 2.

There are a few things to note about Algorithm 2. First, the parameter
prevModegiven to the calls for solving the modelsP sf in line 5 and P s in line 13
is the operation mode of the previous time step, which we need to determine the
operation mode change and compressor unit start variables� om

t respectively � us
u;t

for some unit u 2 Ua a 2 A cs and t 2 T as explained in Section 4.1. In the call to
P s we furthermore give the parametervalidModes , which replaces the set of valid
network station operation modesO. We also call the functions modeAvailable
and transitionsWork in Algorithm 2. These refer to the operation mode un-
availability and the transition time restriction introduced in Section 2.7, where
modeAvailable checks for a given operation modeo and time t if o is available
at t and transitionsWork performs the checks described in Section 2.7 to test
if a given operation mode sequence is valid regarding the corresponding transi-
tion times. In addition, Algorithm 2 uses a function called notSoonInfeasible .
Here, we check if choosing a new operation mode for timet would result in an
infeasibility at one of the subsequent time steps caused by a combination of op-
eration mode unavailability and too long transition times. More speci�cally, we
check if the new operation mode for timet will become unavailable in one of the
future time steps. If this is the case, we then test if there is enough time left
to transition into another operation mode until then, also taking into account
the time needed by the transition from the old operation mode at time t � 1 to
this new operation mode at time t. This look into the near future turned out to
be necessary according to our computational experiments in order to avoid cases
where Algorithm 2 gets stuck in infeasible situations.

Two other lines in the algorithm may require further explanation. In line 6 we
decide if the previous operation mode is good enough for the current time step by
comparing its stationary objective function value against the cost of an operation
mode changewom . If the objective function value is indeed smaller we know that
the previous operation mode is the best option considering this individual time
step given the chosen operation modes for the past time steps, since each other
operation mode would at least have to pay the penalty ofwom for changing the
operation mode. As a last point to mention, Algorithm 2 may abort without a
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Data: Operation mode o0 of the network station in the initial state
Result: A list of operation modes for each time t2 T0

1 operationModes list()
2 operationModes.add(o0)
3 for t 2 T do
4 oldMode  operationModes:last()

// call P sf with fixed operation mode oldMode for time t
5 oldModeFeasible; oldModeCost

 P sf(oldMode; t ; prevMode = oldMode)
6 if oldModeFeasible

and modeAvailable(oldMode; t)
and oldModeCost < w om then
// operation mode of t-1 is also good for t

7 operationModes.add(oldMode)
8 else

// operation mode of t-1 is NOT good for t
// ) search best possible valid stationMode for t

9 validModes  list()
10 for o 2 O do
11 if modeAvailable(o; t)

and transitionsWork(concat(operationModes; list(o)))
and notSoonInfeasible(t ; newMode = o ; oldMode = oldMode)

then
12 validModes:add(o)

// find best from validModes by calling P s for time t
13 bestMode; bestModeFeasible; bestModeCost

 P s(t ; O = validModes; prevMode = oldMode)
14 if not bestModeFeasiblethen abort without solution

// bestMode is best choice for t
15 operationModes.add(bestMode)
16 return operationModes

Algorithm 2: Initial solution creation

feasible solution in line 14. This is no proof of infeasibility, since in theory cases
are possible, where we abort although a feasible solution exists. However, in all
of our test cases we have never aborted the algorithm at this point, also see our
computational results in Section 5.3. Furthermore, the combination of transition
times and unavailable operation modes can lead to very hard to �nd feasible
solutions, which makes the design of an algorithm performing reasonably fast on
average but guaranteeing to �nd all feasible solutions a challenge. Therefore, we
leave this problem open for future research.

4.2.2 An improvement heuristic

After we have found a feasible solution using Algorithm 2, we look for further
improvements of it. Due to its design, Algorithm 2 only considers individual time
steps to decide which operation mode to choose for each time step. However, we
can easily imagine a situation in which the operation modeo1 found by P s is best
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for time step t, but another operation modeo2 is slightly better for all subsequent
time steps and would have been the overall better choice at timet. We might
even be able to avoid operation mode changes, ifo1 would become unavailable in
the future, while o2 has only slightly worse objective function values, but stays
available.

Data: A sequenceS of valid operation modes over time
Result: A valid sequenceS� of operation modes with obj(S� ) � obj(S)

1 backwards T rue
2 while not having two iterations without improvements do
3 changeTimes list of times t with S[t � 1] 6= S[t]
4 if backwards then reverse(changeTimes)
5 for t 2 changeTimesdo
6 if S[t � 1] = S[t] then continue
7 if backwards then
8 phaseToReplace phase ending atS[t � 1]
9 else

10 phaseToReplace phase starting from S[t]
11 Sbest ; bestImprovement  list(), 0:0
12 for newMode2 convexCombination(S[t � 1]; S[t]) do
13 Snew  S:replace(phaseToReplace; newMode)
14 improvement  obj(S) � obj(Snew )
15 if allModesAvailable(Snew )

and transitionsWork(Snew )
and improvement > bestImprovement then

16 Sbest ; bestImprovement  Snew ; improvement
17 if bestImprovement > 0 then

// Found improvement in this interation!
18 S  Sbest

19 backwards not backwards
20 return S

Algorithm 3: Improvement heuristic

To deal with these situations, we created for a given feasible solution, repre-
sented by a sequence of operation modes over time, the improvement heuristic
stated as Algorithm 3. Here the idea is, to identify all sequences of identical
operation modes over time in the solution. We call these sequences stable phases
or just phasesof a feasible solution. Obviously, the switch from one phase to the
subsequent one happens if the operation mode changes to a new mode. For each
of these phases we then check if we can replace the operation mode of the whole
phase with a similar one being more bene�cial in terms of the objective function
value.

We obtain these similar network station operation modes from the call of the
function convexCombination , which is the key feature of Algorithm 3. To de�ne
it, we use the the function M (o; a) returning the mode or active con�guration
of a valve or compressor stationa in operation mode o, see Section 2.7. Fur-
thermore, we denote byU(x) the compressor units used in mode or con�guration
x 2 f by; clg [ C a for some compressor stationa 2 A cs, where U(by) = U(cl) = ; .
Then we �rst de�ne the function convexCombinationCS on a tuple (x; y) with
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x; y 2 f by; clg [ C a as

convexCombinationCS(x; y) := f x; yg[
n

c 2 Ca j 8u 2 U(x) \ U (y) : u 2 U(c)

^ 8 u 2 U(c) : u 2 U(x) [ U (y)
o

:

Note, that convexCombinationCS(x; y) � f by; clg [ C a holds. Then we are ready
to de�ne convexCombination on a tuple (o1; o2) of operation modes as

convexCombination (o1; o2) :=
n

o 2 O j
�
8a 2 A va : M (o; a) = M (o1; a) _ 8a 2 A va : M (o; a) = M (o2; a)

�

^ 8 a 2 A cs : M (o; a) 2convexCombinationCS
�
M (o1; a); M (o2; a)

� o
:

Note here, that while we allow a compressor stationa to have a con�guration
using a compressor unit set \in between" the used compressor unit set of the
con�gurations used in o1 and o2 for a, we only allow the exact valve mode combi-
nation used in o1 or the one used ino2. The reason for this is, that a valve mode
combination enables a very specify set of paths through each network station,
and it is very unlikely that a valve mode set obtained from combining the modes
used in the two given operation modes yields operation modes, which are able to
handle the same demand situation. Since, each of the modes obtained by calling
convexCombination is tested in Algorithm 3, we hereby restrict the result set to
the most promising candidates.

Apart from calling convexCombination , Algorithm 3 uses the two functions
transitionsWork , which works in the same way as described for Algorithm 2
above and allModesAvailable , which is similar to modeAvailable from Algo-
rithm 2, but instead of checking the availability of a given operation mode o for
time t checks the availability of a whole sequence of operation modes at the times
corresponding to the position in the sequence. Furthermore, we evaluated the
objective function value of a sequence of operation modes using the functionobj
by successively callingP sf for each operation mode and time corresponding to
its position in the sequence. If one of the models turns out to be infeasible, the
returned objective function value will be in�nity.

Finally, we note that we decided to start the algorithm in the backwards
oriented mode. The reason for this decision is that the initial solution is obtained
by Algorithm 2 which was operated in a forward direction. Furthermore, we
highlight that Algorithm 3 has the potential to reduce the total number of needed
operation mode changes, since the two original operation modes are always part
of the result of convexCombination . In addition, it is possible that an operation
mode change from the loop of line 5 has already been removed in the previous
iteration by replacing one of the involved operation modes with the other one,
which makes the check in line 6 necessary.

4.3 Transient solution smoothing

As a �nal step of our specialized network station algorithm, we solve the transient
model variant P f with �xed network station operation modes and ow directions.
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We obtain both for each time step from the stationary model solutions created
in the previous steps of the algorithm. When comparing pressure and ow values
at single points of network over time, we expect the transient solution states
to be more similar in general and in case of changing conditions to be more
smooth compared to the series of stationary solution states. This is due to the
missing penalty of operation point changes in the independent stationary models,
which may result in considerably di�erent solution states. This di�erence may
for example occur in the pressure level of nodes inside the station, even if the
demand situation as well as the determined operation mode and ow direction
are the same.

Data: A sequenceS of tuples of operation modes and ow directions over
time as well as a time horizon size h

Result: A set of transient solution states for all t 2 T0

1 if h � jT 0j then
// overall time horizon covered by smoothing time horizon

2 return P f (S; initialState = initialState)
3 solutionStates  list()
4 solutionStates:add(initialState)
5 currTime  0
6 while currTime + h � jT 0j do
7 Sh  S:slice(currTime ; currTime + h)
8 thisTimeStates  P f (Sh ; initialState = solutionStates:last())
9 if currTime + h = jT0j then

10 solutionStates:addAll(thisTimeStates)
11 else
12 solutionStates:add(thisTimeStates:�rst ())
13 currTime  currTime + 1
14 return solutionStates;

Algorithm 4: Transient smoothing

In our computational experiments we observed that even though most of the
binary decision variables ofP are �xed in P f , only a limited number of time
steps can be solved for large network stations. Therefore, we use arolling horizon
approach to solveP f , which is described in Algorithm 4. Here, we specify a small
�xed time horizon size h, which represents the number of time steps to solve in
model P f including the time step for the given initial state. We then solve a
series of modelsP f , while always �xing the earliest time step and shifting the
time horizon by 1 in each iteration. In the function call to solve P f in Algorithm 4,
we give the subsequence of operation modes and ow directions, corresponding
to and also encoding the current time horizon to solve. Furthermore, we specify
the state to use as the �xed initial state.

The main bene�t of this method is, that increasing the size jT0 := f 0; : : : ; kgj
of the overall time horizon only increases the number of equally sized and therefore
similarly complex MIP models to solve rather then increasing the complexity of
the model, which may lead to an exponential increase in runtime.
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5 Computational experiments

In order to verify the competitiveness of Algorithm 1 in terms of both solution
quality as well as execution time, we evaluated it to a large number of test in-
stances. These instances represent network stations in the network of our project
partner Open Grid Europe(OGE), for which we generated scenario values based
on historic real-world situations in the network.

Throughout this chapter, we will state all ow values as volumetric ow under
normal conditions in the unit 1000m3=h. To create these values from mass ow
values in kg/s we use the normal density� 0 given in kg/m 3, which is determined
by the gas mixture and assumed to be constant all over the network. The linear
transformation formula then reads as [1000m3=h] = 3600

1000� 0 [kg=s].

5.1 Instances

We consider 7 di�erent network stations from the network of OGE with di�erent
sizes and properties. An overview can be found in Table 1. For each of these
stations, we have a set of 159 instances. These have been created by solving
a macroscopic gas ow model on an aggregated complete network containing
simpli�ed versions all the network stations. A full description of the model can
be found in [17].

Name jVj jAj

P

a 2A pi
L a

jA pi j jCa j 8a 2 A cs jOj jFj jV b-ex j jWj

A 14 11 0.001 km 16 34 3 1 0
B 11 12 0.001 km 18 23 2 1 0
C 27 34 0.012 km 2 13 4 2 0
D 25 31 0.404 km 2, 6 92 6 2 0
E 48 67 0.308 km 3, 5 82 12 1 4
F 51 66 0.024 km 2, 3, 6, 12 2836 3 3 0

Gmin 118 148 0.079 km 1, 1, 2, 7, 20 1267 15 2 0
Gmax 120 150 0.079 km 1, 1, 2, 7, 20 1285 20 2 0

Table 1: Overview of di�erent properties of the 7 network stations A to G. For station
G the topology changed during the considered time period of 91 days. Hence, we
denoted by Gmin the minimal values of all the quantities for station G and by G max the
corresponding maximum values.

As initial states we used state values that actually occurred for the network of
our project partner. Analogously we are given measured pressure and ow values
for the next 12 hours after the initial state time at the boundary nodes of the
network containing all the 7 network stations. These instances are distributed
over a period of 91 days. For each day we have two instances, whose initial state
times have a di�erence of 12 hours. Inside this data period, we unfortunately
are missing instances for 8 days as well as having only one instance for another 7
days due to technical problems during the data creation at our project partner.
Therefore, our �nal instance set consists of 2� 91� 2 � 8 � 7 = 159 instances.

The solutions of the macroscopic gas ow model for each of these instances
yield pressure and inow values at the boundaries of each network station. These
values represent the scenario values for each instance of the test set of this paper.
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For the macroscopic gas ow model, the time horizon of 12 hours has been split
into 4 periods of 15 minutes followed by 11 periods of 60 minutes, resulting in 15
future time steps in total.

For our analysis, we created the following four di�erent partitions of the 12
hour time horizon, where the horizon is built from left to right per row.

12 time steps: 4� 15 min, 5 � 60 min, 3 � 120 min

24 time steps: 4� 15 min, 18� 30 min, 2 � 60 min

48 time steps: 48� 15 min

96 time steps: 96� 7:5 min

Our partitioning of the time horizon can have additional or missing time points
compared with the 15 time steps used in the macroscopic model. In order to
create scenarios values that �t the time horizon we interpolate using the original
values.

To conclude, we used the following set of weights for the objective function
for all instances:

w� -p =
1000:0
bar � h

wom = 1000:0 wrg-pl =
10:0
bar

wcs-pl =
10:0
bar

w� -d =
100:0

1000 m3 wus = 1200:0 wrg-pr =
10:0
bar

wcs-pr =
10:0
bar

wrg = 50:0 wrg-q =
1:0

1000m3

h

wcs-q =
1:0

1000m3

h

Note that the unit of w� -d is deduced by 1
1000 m 3

h �h
= 1

1000 m 3 .

5.2 Computational setup

We performed our computations on a cluster using 4 cores and 16 GB of RAM
of a machine being composed of twoIntel Xeon CPU E5-2670 v2 running at
2.50 GHz. As a solver for the underlying MIP problems we usedGurobi in version
8.1.0 [12], which we accessed via the Pyomo modeling language [14][15]. Since
the corresponding MIP models are numerically challenging we used the solver
with maximal NumericFocus parameter. In addition, we speci�ed in Table 2 the
optimality conditions and maximum run times for each solved model variant.

Variant Rel. Gap Abs. Gap Time limit
P s, P sf 1E-4 1E-2 10h
P f 5E-3 1E-2 60s

Table 2: Optimality conditions and maximum run times we use for the single model
variants. Note that the 10 hours serve as a representation for 1 , i.e., we have chosen
the time limit high enough to always solve the models to optimality.

Finally, we specify the rolling horizon parameter h to be 4, so we are always
solving the smoothing for 4 future time steps. We found in our experiments, that
this number represents a good trade-o� between e�cient model solving speed and
foresightedness of the obtained solution.
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5.3 Results

As described in Section 5.1 above, we tested Algorithm 1 on 159 start times�
7 network stations� 4 time horizons = 4452 instances. For all of these instances,
it found a feasible solution. In particular, we always found a feasible solution in
the initial solution creation in Algorithm 2 described in Section 4.2.1 although
this is not guaranteed by the algorithm itself.

Figure 5: Average run times for Algorithm 1 sorted by number of time steps and network
station.

In Figure 5 one can �nd an overview of the average run times of Algorithm 1
sorted by station and number of solved time steps. As one can see, the ranking of
the single stations regarding run time as well as the ratio between the single sta-
tions run times is stable over the di�erent time horizon partitions. Furthermore,
the run time per station corresponds roughly to the complexity deduced from the
station statistics in the sense that more nodes, arcs and operation modes make the
overall problem more complex to solve and therefore increase the run time. The
exception to this reasoning is station C, which has a rather high average run time
although its node and arc counts are comparable to station D and the number of
operation modes is even the smallest of all seven stations. We assume that this
is due to the stations topology, in which the regulators seem to be arranged in a
way which is hard to solve for the �nal smoothing step of the algorithm. Another
noticeable fact is the almost perfectly proportional average run time increase with
increasing number of time steps. As mentioned in Section 4.3 this property was
an explicit goal when designing the algorithm.

In addition to the average run times, we also depict the distribution of run
times sorted by station in Figure 6 for instances solved for 12 time steps. The
distribution of the other time steps are quite similar in appearance and can be
found in the Appendix as Figures A.1, A.2, and A.3 respectively.

For the fast solving stations A, B, and D, the run times of the instances
are all very similar in that the middle box is barely visible. Station C is again
outstanding by having a rather large spread of run times only matched by the
biggest and most complex station G. However, in general the di�erence between
the median and maximum run time are lower than an order of magnitude for all
of the stations. That means that for our instance set even the extreme cases are
still in reach and have a somewhat similar run time to the rest of the instances,
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Figure 6: Run times of instances with 12 time steps, sorted by station. One dot repre-
sents one instance, however dots may overlap when too many have similar run time. In
addition we draw a typical whiskerless box plot. Therefore the lines represent the 25th
percentile, the median and the 75th percentile.

making Algorithm 1 well suited for strict time limit situations, which we would
face in a production environment.

As the last run time related graphic, Figure 7 shows the average portion of
run time spent in the single subroutines of Algorithm 1 for 12 time steps as well
as for 96 time steps. It states that the transient smoothing dominates the run
time already for 12 time steps. With an increasing number of time steps, the
inuence even increases, while the improvement heuristics impact is decreasing.
This can also be veri�ed through the 24 and 48 time step instances displayed in
Figure A.4 in the Appendix. The observed shares �t to the structure of the single
subroutines from Section 4. While the initial solve as well as the smoothing have
to solve more instances of the challenging model variantsP s respectively P f

with each additional time step, the improvement heuristic iterates over pairs of
subsequent time steps with di�erent operation modes. Since the di�erently sized
time horizon partitions all cover the same 12 hours, the number of total operation
mode changes in the result of the initial solve is very unlikely to increase much
with increasing time granularity. This is also due to the initial solve algorithm
itself, which tries to use the same operation mode as long as possible before
changing to a di�erent one.

Apart from the run time we are also interested in the quality of the solution of
Algorithm 1. Therefore, we solved the complete modelP directly on the smaller
instances A to E to obtain a valid lower bound for them. Note that P itself is al-
ready only a relaxation of the problem solved by Algorithm 1, since the transition
time restrictions for operation modes mentioned in Section 2.7 are not included
in this model. The obtained lower bound can be used to give an upper bound
on the relative di�erence of the solution found by Algorithm 1 to the optimal
solution. We call this di�erence gap and de�ne it as obj(solution) � lowerBound

obj(solution) . Since
the lower bound cannot be negative, the gap is always smaller than or equal to
100%.

We solved modelP on stations A to E for 12 time steps using the same com-
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(a) 12 Timesteps (b) 96 Timesteps

Figure 7: Portion of run time spend in the single subroutines of Algorithm 1 displayed for
each of the single stations. Figure 7a represents the results for 12 time steps, Figure 7b
the results for 96 time steps.

putational setup as described above with a time limit of 10 hours. Furthermore,
we gave the solution obtained from Algorithm 1 as a starting solution. The solver
�nished all 159 instances of the stations A and B within the time limit. For the
stations C, D and E we hit the time limit for 47, 8 and 18 instances respectively,
resulting in potentially sub-optimal lower bounds in these cases. For the stations
F and G more than half of the instances did not �nish in time, which is why we
did not include these in our evaluation.

The results can be found in Figure 8, where we plotted the gap for all 5 network
stations on a logarithmic scale and then plotted the same data for stations C and E
on a linear scale to better depict their distributions. Note that the instances which
have a potentially suboptimal lower bound are marked with triangles instead of
dots. As one can observe, we have good results for all of the network stations
with more than half of the instances for each station having a solution with
at most 10% di�erence to the lower bound. For the best three stations A, B,
and D we can even state that at least 75% the of values have less than 1%
di�erence to the optimal solution. The picture is more diverse for the other two
stations, in which the 75% percentile is between 20% and 30% gap. However, for
those stations we have the highest value of instances for which P did not solve
the problem in time. Therefore, there is the potential for further improvement
of the gap by increasing the lower bound here. For all stations C, D and E
with instances having potentially suboptimal lower bounds, the corresponding
instances are among those having high gap values. The picture is extreme for
Station C, where all but 3 instances above the 75% percentile had suboptimal
lower bounds, making it very likely that one can further decrease the gap value
by increasing the run time limit of P directly.

Altogether, the results show that Algorithm 1 is able to �nd good solutions in
a short time and is therefore able to solve even large instances of the presented
gas transportation problem, which would be far out of reach when trying to solve
the original MIP model formulation P directly.
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Figure 8: Gap between the solution of Algorithm 1 and a lower bound obtained from
solving P directly. We considered the stations A to E and solved them using 12 time
steps. One dot represents one instance, however dots may overlap when too many have
similar run time. The instances with potentially suboptimal lower bounds due to hitting
the time limit are marked by triangles instead of dots. In addition we draw a typical
whiskerless box plot. Therefore the lines represent the 25th percentile, the median and
the 75th percentile. The left graphic uses logarithmic scale for the gap and the right one
displays the same data for stations C and E on linear scale. For all instances in which
the objective function value and the lower bound are smaller than 0.1 we de�ned the gap
to be zero. Furthermore we plotted all values below 10−3 as 10−3 for the logarithmic
scale.

6 Conclusion

We presented the transient gas network transportation problem on so-called net-
work stations, which represent the intersection points of major transportation
pipelines and contain the majority of active elements to control the network. For
this problem we introduced a mixed-integer programming model including a com-
plex model for compressor stations as well as additional variables and constraints
for the network station itself. For the pipes, we found that due to their short-
ness they have less overall impact in network stations, which enabled us to use
a linear description for them. Using state-of-the art solvers the MIP Model is
not tractable for large network stations. Therefore we developed a specialized
algorithm to solve the problem. Here we again use the fact that network stations
contain only short pipes and therefore negligible linepack, causing the decision
making to mostly depend on the current demand situation at the boundary of the
station. Therefore, we determined the operation modes and gas ow directions of
the network station based on multiple solves of a stationary version of the MIP.
By using this approach we are also able to satisfy transition time constraints for
the operation modes, which have been excluded from the original MIP formu-
lation. In order to obtain a feasible solution for the problem, we �nally solved
another variant of the MIP with �xed network station operation modes and ow
directions in a rolling horizon fashion.
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To verify the competitiveness of our algorithm regarding both run time and
solution quality, we did tests on 159 di�erent scenarios based on past ow sit-
uations in 7 real world network stations provided by our project partner. Our
algorithm is able to compute feasible solutions for all of the presented instances
very fast. Even for the biggest of the presented network stations consisting of
more than 100 nodes and arcs as well as over 1000 di�erent network station op-
eration modes, our algorithm terminates on average in under 20 minutes for each
of the stations. By running experiments using 4 di�erent types of granularity, we
found that the run time increases proportional to the number of time steps used,
indicating that our algorithm scales very well. In terms of quality of the solution,
we tested the results against a lower bound obtained from solving the original
MIP formulation for 12 time steps on all except the biggest 2 network stations.
For the worst of the 5 remaining stations, more than half of the instances have
a solution with at most 10% di�erence to the lower bound and for the best 3
stations, we �nd near optimal solution with less than 1% di�erence for more than
75% of the instances. Altogether we were able to show, that our algorithm can
reliably �nd good solutions to the problem in a short amount of time.

There are a lot of di�erent possibilities to continue this research. To increase
the model accuracy, the approximative linearization of the friction in pipes and
resistors as well as the maximum power bound of compressor units could be
replaced by their original non-linear versions. This would turn the model into a
MINLP and thereby increase its complexity. From a theoretical point of view,
extending Algorithm 2 such that it has the guarantee to always �nd existing
feasible solutions would greatly improve the overall robustness. Finally, real-
world gas network operation is a complicated business with a never-ending list of
special elements and extra constraints, which can still be added to our model. As
examples we name ramp-up and cool down times for compressor units as well as
target value based control of regulators and compressor stations.
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A Appendix

Variable Meaning Unit
pv;t 2 R�0 pressure at node v 2 V bar
qa;t 2 R ow over arc a 2 A n Api kg/s
qv;a;t 2 R ow into or out of pipe a 2 Api kg/s
dv;t 2 R inow into boundary node v 2 Vb kg/s
mcf
c;a;t 2 f0; 1g selection of con�guration c 2 Ca for a 2 Acs 1

mby
a;t 2 f0; 1g selection of bypass mode for a 2 Arg [ Acs 1

mcl
a;t 2 f0; 1g selection of closed mode for a 2 Arg [ Acs 1

mac
a;t 2 f0; 1g selection of active mode for a 2 Arg 1

mop
a;t 2 f0; 1g selection of open/closed mode for a 2 Ava 1

pby
a;t 2 R�0 pressure in bypass mode for a 2 Acs bar

qby
a;t 2 R ow in bypass mode for a 2 Acs kg/s
pl-cl
c;at 2 R�0 incoming pressure in closed mode for a 2 Acs bar
pr-cl
c;a t 2 R�0 outgoing pressure in closed mode for a 2 Acs bar
pl-cf
c;a;t 2 R�0 incoming pressure in con�guration c 2 Ca of a 2 Acs bar
pr-cf
c;a;t 2 R�0 outgoing pressure in con�guration c 2 Ca of a 2 Acs bar
qcf
c;a;t 2 R ow in con�guration c 2 Ca of a 2 Acs kg/s
mom
o;t 2 f0; 1g selection of mode o 2 O 1

mfd
f;t 2 f0; 1g selection of ow direction f 2 F 1

�p+
v;t 2 R�0 positive pressure slack for boundary node v 2 Vb bar

�p�v;t 2 R�0 negative pressure slack for boundary node v 2 Vb bar

�d+
v;t 2 R�0 positive ow slack for boundary node v 2 Vb kg/s

�d�v;t 2 R�0 negative ow slack for boundary node v 2 Vb kg/s
�om
t 2 f0; 1g operation mode change 1
�rg
a;t 2 f0; 1g mode change for regulator a 2 Arg 1
�us
u;t 2 f0; 1g start of compressor unit u 2 Ua for a 2 Acs 1

�rg-pl
a;t 2 R�0 change of incoming pressure of active a 2 Arg bar
�rg-pr
a;t 2 R�0 change of outgoing pressure of active a 2 Arg bar
�rg-q
a;t 2 R�0 change of ow over of active a 2 Arg kg/s

�cs-pl
a;t 2 R�0 change of incoming pressure of active a 2 Acs bar
�cs-pr
a;t 2 R�0 change of outgoing pressure of active a 2 Acs bar
�cs-q
a;t 2 R�0 change of ow over of active a 2 Acs kg/s

Table A.1: List of all used variables, specifying their domain, meaning and unit. All
variables are de�ned for t 2 T , not taking into account the given values for the initial
state, see Section 2.8. Note that 1 bar = 105 Pa.
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Figure A.1: Run times of instances with 24 time steps, sorted by station. One dot
represents one instance, however dots may overlap when too many have similar run
time. In addition we draw a typical whiskerless box plot. Therefore the lines represent
the 25th percentile, the median and the 75th percentile.

Figure A.2: Run times of instances with 48 time steps, sorted by station. One dot
represents one instance, however dots may overlap when too many have similar run
time. In addition we draw a typical whiskerless box plot. Therefore the lines represent
the 25th percentile, the median and the 75th percentile.
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