
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

YUJI SHINANO, DANIEL REHFELDT, TRISTAN GALLY

An Easy Way to Build Parallel
State-of-the-art Combinatorial Optimization
Problem Solvers: A Computational Study on

Solving Steiner Tree Problems and Mixed
Integer Semidefinite Programs by using

ug[SCIP-*,*]-libraries

The work for this article has been conducted within the Research Campus Modal funded by the German Federal Ministry of Education and Research (fund number
05M14ZAM).This work was also supported by the North-German Supercomputing Alliance (HLRN). Supported by BMWi project BEAM-ME (fund number 03ET4023DE).
Further funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 57157498 – SFB 805.

ZIB-Report 19-14 (March 2019)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

An Easy Way to Build Parallel State-of-the-art
Combinatorial Optimization Problem Solvers:
A Computational Study on Solving Steiner

Tree Problems and Mixed Integer Semidefinite
Programs by using ug[SCIP-*,*]-libraries

Yuji Shinano∗, Daniel Rehfeldt†, Tristan Gally‡

*Zuse Institute Berlin, †TU Berlin, ‡TU Darmstadt

Takustr. 7, 14195 Berlin, Germany

*shinano@zib.de, †rehfeldt@zib.de,

‡gally@mathematik.tu-darmstadt.de

March 20, 2019

Abstract

Branch-and-bound (B&B) is an algorithmic framework for solv-
ing NP-hard combinatorial optimization problems. Although several
well-designed software frameworks for parallel B&B have been devel-
oped over the last two decades, there is very few literature about
successfully solving previously intractable combinatorial optimization
problem instances to optimality by using such frameworks. The main
reason for this limited impact of parallel solvers is that the algorithmic
improvements for specific problem types are significantly greater than
performance gains obtained by parallelization in general. Therefore, in
order to solve hard problem instances for the first time, one needs to
accelerate state-of-the-art algorithm implementations. In this paper,
we present a computational study for solving Steiner tree problems and
mixed integer semidefinite programs in parallel. These state-of-the-art
algorithm implementations are based on SCIP and were parallelized
via the ug [SCIP-*,*]-libraries—by adding less than 200 lines of glue

1

code. Despite the ease of their parallelization, these solvers have the
potential to solve previously intractable instances. In this paper, we
demonstrate the convenience of such a parallelization and present re-
sults for previously unsolvable instances from the well-known PUC
benchmark set, widely regarded as the most difficult Steiner tree test
set in the literature.

1 Introduction

Branch-and-bound (B&B) is an algorithmic framework for solving NP-hard
combinatorial optimization problems. Several software frameworks for parallel
B&B have been described in the literature [1–9], but when it comes to solving
hard combinatorial optimization problem, one finds few success stories among
those publications [2, 9–12]. The main reason for this limited impact of
parallel solvers is that algorithmic improvements for specific problem types
are significantly greater than performance gains obtained by parallelization in
general. Therefore, in order to solve previously intractable problem instances,
one needs to focus on accelerating state-of-the-art algorithm implementations.

SCIP, introduced in section 2, is a solver framework that is developed
intensively by a group of researchers centered at Zuse Institute Berlin (ZIB),
TU Darmstadt, and FAU Erlangen-Nürnberg. UG, also introduced in section 2,
is a parallelization framework for existing B&B-based solvers on any kind of
parallel computing environments. A particular instantiated parallel solver is
referred to as ug [solver name, parallelization library name]. ug [SCIP,*], which
is referred to as either FiberSCIP (for * = Pthreads/C++11) or ParaSCIP (for
* = MPI), can be considered the parallel version of SCIP. The ug [SCIP-*,*]-
libraries have been developed to allow SCIP users to parallelize a customized
SCIP solver with minimal effort. This paper presents a computational study
of solving Steiner tree problems and mixed integer semidefinite programs in
parallel by using the ug [SCIP-*,*]-libraries.

The Steiner tree problem in graphs (SPG) is one of the fundamental NP-
hard optimization problems [13]. Given an undirected, connected graph G =
(V,E), costs c : E → Q≥0 and a set T ⊆ V of terminals, the problem is to find
a tree S ⊆ G of minimum cost that includes T . Practical applications of the
SPG include for example the design of fiber-optic networks [14]. Furthermore,
the relevance of the SPG in computer science and mathematics is highlighted
by the existence of hundreds of research articles on both theoretical and

2

practical aspects of the SPG.
The 2014 DIMACS Challenge, dedicated to Steiner tree problems, marked

a revival of research on the SPG and related problems: Both at and in the
wake of the challenge several new Steiner problem solvers were introduced and
many articles were published. One of these new solvers is SCIP-Jack, which
was by far the most versatile solver participating in the DIMACS Challenge,
being able to solve the SPG and 10 related problems (in the current version two
additional problem classes can be handled). Moreover, SCIP-Jack was able
to win two parallel and two sequential categories of the DIMACS Challenge.
Other solvers that successfully participated in the DIMACS Challenge are
described in [15] and [16]. SCIP-Jack is described in detail in the article [17],
but already in an updated version that vastly outperforms its predecessor
participating in the DIMACS Challenge. The current version of SCIP-Jack,
used in this article, again drastically improves on the state reported in [17].
These improvements were demonstrated at the Parameterized Algorithms and
Computational Experiments (PACE) Challenge 2018 [18], dedicated to the
SPG. The SPG allows for fixed-parameter tractable (FPT) algorithms in the
number of terminals, and in the treewidth, and such algorithms were the focus
of PACE 2018. Although SCIP-Jack does not include any FPT algorithms, it
finished 3rd place in Track A (exact solution of problems with few terminals),
1st place in Track B (exact solution of problems with bounded treewidth), and
2nd in Track C (heuristic solution of problems with different structures). The
high competitiveness with specialized FPT solvers was achieved despite the
fact that the non-commercial, but considerably slower, LP solver SoPlex [19]
was used by SCIP-Jack at PACE 2018 instead of the default, but commercial,
Cplex.

Mixed integer semidefinite programming (MISDP) is the problem of opti-
mizing a linear function under the constraint that some matrix C−

∑m
i=1 Ai yi,

depending affinely on the variables yi, should be positive semidefinite, with
some or all of the variables being integer. Many combinatorial problems can
be brought in this form by incorporating stronger semidefinite relaxations,
e. g., the stable set problem [20], the graph partitioning problem [21], the
linear ordering problem [22], the quadratic assignment problem [23], the
traveling salesperson problem [24], the bandwidth problem in graphs [25] or
the single row-facility problem [26]. Furthermore, semidefinite relaxations
also form the basis of some of the most successful solvers for the max-cut
problem like Biq Mac [27] and BiqCrunch [28]. Outside of combinatorial
optimization, there are also many other applications, e. g., in robust truss

3

topology design [29,30], optimal power flow [31,32], regression models avoiding
multicollinearity [33] and consensus-based communication systems [34,35].

SCIP-SDP [36] supports two different solution approaches for mixed integer
semidefinite programming, namely a nonlinear branch-and-bound approach
with a penalty formulation for ill-posed relaxations and an LP-based cutting-
plane approach using eigenvector cuts. A comparison with other MISDP
solvers on the conic benchmark library (CBLIB) [37] is given in [38], showing
that in particular the nonlinear branch-and-bound solver in SCIP-SDP currently
seems to outperform its competitors on this test set. For specific applications,
however, the LP-based approach can be preferable, which, as we will later
explain, can be exploited in the parallelization.

This paper is organized as follows. In section 2, we introduce the solver
framework SCIP, the parallelization framework UG and the ug [SCIP-*,*]-
libraries to show the general concept of building a parallel combinatorial
optimization solver by using the SCIP and ug [SCIP-*,*]-libraries. This is
followed by an introduction of the two customized SCIP solvers SCIP-Jack and
SCIP-SDP. Afterwards, we show some results for their parallel versions, before
providing concluding remarks.

2 SCIP based Software libraries for general

purpose parallel B&B

In this section, we introduce SCIP and the ug [SCIP-*,*]-libraries as general
purpose parallelization libraries for state-of-the-art problem-specific imple-
mentations. In order to show their generality, we first introduce SCIP, before
introducing UG and its capability to handle large-scale parallelism. Finally,
we show how to combine SCIP and UG to introduce the ug [SCIP-*,*]-libraries.

2.1 SCIP: Solving Constraint Integer Programs

SCIP implements the idea of Constraint Integer Programming (CIP). CIP is
formally defined as follows:

Definition 1 (constraint integer program). A constraint integer program is
a tuple (C, I, c) that encodes the task of solving

min{c>x : C(x), x ∈ Rn, xI ∈ Z|I|},

4

where c ∈ Rn is the objective function vector, C = {C1, . . . , Cm} specifies the
constraints Cj : Rn → {0, 1}, j ∈ [m], and I ⊆ [n] specifies the set of variables
that have to take integral values. Further, a CIP has to fulfill the condition

∀x̂I ∈ Z|I| ∃(A′, b′) ∈ Rk×C × Rk :

{x ∈ Rn : C(x), xI = x̂I} = {x ∈ RC : A′x ≤ b′},
(1)

where C := [n] \ I and k ∈ N.

Condition (1) states that the problem becomes a linear program if all
integer variables are fixed. Thus, if the discrete variables are bounded, a
CIP can be solved, in principle, by enumerating all values of the integral
variables and solving the corresponding LPs. Many combinatorial optimization
problems can be formulated as CIPs.

A CIP where all constraints are linear is a mixed-integer linear program
(MIP):

Definition 2 (mixed-integer linear program). A mixed-integer linear program
(MIP) is given by a tuple (A, b, c, I) with matrix A ∈ Rm×n, vectors b ∈ Rm

and c ∈ Rn, and a subset I ⊆ [n]. The task is to solve

min{c>x : Ax ≤ b, xI ∈ Z|I|}. (2)

Extending the definition of MIP towards nonlinear objective and constraint
functions leads to the class of mixed-integer nonlinear programs (MINLPs):

Definition 3 (mixed-integer nonlinear program). A mixed-integer nonlinear
program (MINLP) is given by a tuple (c, g, I) with vector c ∈ Rn, a function
g : Rn → Rm, and a subset I ⊆ [n]. The task is to solve

min{c>x : g(x) ≤ 0, xI ∈ Z|I|}.

Unlike MIP, MINLP is in general not a special case of CIP, since the
nonlinear constraint g(x) ≤ 0 may preclude a linear representation of the
MINLP after fixing the integer variables, i.e., (1) would be violated (unless
I = [n]). However, the main purpose of condition (1) is to ensure that the
problem that remains after fixing all integer variables in the CIP can be solved
efficiently. For practical applications, a spatial branch-and-bound algorithm
that can solve the remaining nonlinear program within a finite number of
steps up to a given precision is sufficient.

5

SCIP solves MIPs and MINLPs by a B&B algorithm that utilizes an LP
relaxation for bounding. For a MIP, the LP relaxation is readily given by
dropping the integrality restrictions from (2). For a MINLP, the LP relaxation
is constructed by computing for each function gj(x), j ∈ {1, . . . ,m}, linear
functions that underestimate gj(x) for all x within the current variable bounds,
see also [39] for details. The “convexification gap” between the underestimator
of gj(x) and gj(x) itself depends on the width of the domain of the variables
involved in gj(x). Thus, to close this gap, branching on any variable that is
involved in gj(x) may be applied.

The important features of SCIP for this paper are that SCIP

• is a branch-cut-and-price framework, and

• has a modular structure via plugins.

That is, SCIP is an extensible plugin-based software framework to develop
discrete optimization solvers. Even the MIP and MINLP solvers have been
developed using the plugin structure. The performance of SCIP has kept
improving over the last decade and the composed plugins made it a full-
scale state-of-the-art MIP and MINLP solver. The SCIP-Jack and SCIP-

SDP extensions presented in this paper have also been developed by adding
user plugins for the specific problems as SCIP user applications. A notable
advantage of this approach is that SCIP users can enjoy all benefits of state-of-
the-art MIP or MINLP solving techniques immediately in their customized
applications.

2.2 UG: Ubiquity Generator framework

UG is a generic framework to parallelize any existing state-of-the-art B&B-
based solver, subsequently referred to as the base solver. UG is composed of a
collection of base C++ classes, which define interfaces that can be customized
for any base solver and allow descriptions of subproblems and solutions to be
translated into a solver independent form. Additionally, there are base classes
that define interfaces for different message-passing protocols. Implementations
of a ramp-up, which is the process until all solvers become active, dynamic
load balancing, and check-pointing and restarting mechanisms are available
as a generic functionality (for more details see [40]).

The base solver is wrapped to UG’s ParaSolver and a specified number of
ParaSolvers are generated as threads or processes depending on the run-time

6

system. The LoadCoordinator thread or process coordinates the workload
among the ParaSolvers. The B&B tree is maintained in the base solvers,
while UG only extracts and manages a small number of subproblems from the
base solvers for load balancing.

According to the term defined in [41], UG employs a Supervisor-Worker
coordination mechanism with subtree-level parallelism (the unit of work is
a subtree). In UG, the LoadCoordinator corresponds to the Supervisor and
the ParaSolver corresponds to the Worker. Algorithm 1 and Algorithm 2
show a parallel algorithm with a simplified Supervisor-Worker coordination
mechanism, see also [42].

One of the most important characteristics of UG is that it makes “algo-
rithmic changes” to the base solver, such as layered presolving, and performs
highly adaptive algorithms, such as racing ramp-up [40], or distributed domain
propagation [43]. Here, “algorithmic changes” means that the base solver
and the instantiated parallel solver ug [base solver,*] perform algorithmically
differently. For example, SCIP and FiberSCIP solve a MIP instance quite
differently. Current state-of-the-art MIP solvers perform strong preprocessing
(presolving) on the original instance to be solved before they start solving the
instance. We refer to the adjusted instance after the preprocessing as the pre-
solved instance. In a solver instantiated by UG, in general, the preprocessing
is performed once in the LoadCoordinator and then all ParaSolvers solve
the presolved instance. Inside of each ParaSolver, a received subproblem
instance is presolved again. We refer to this presolving mechanism as layered
presolving.

A natural way to ramp-up is for all active ParaSolvers, i. e., all Para-
Solvers that have already received a subproblem, to send one of their
branched nodes to another ParaSolver via the LoadCoordinator. We refer
to this procedure as normal ramp-up. In racing ramp-up, after initialization
the LoadCoordinator sends the root node of the branch-and-bound tree to
all ParaSolvers simultaneously and each ParaSolver starts solving the root
node of the presolved instance immediately. In order to generate different
search trees, even though they work on the same problem, each ParaSolver

uses different parameter settings and permutations of variables and constraints.
As shown in [44], the latter can have a considerable impact on the performance
of a solver due to imperfect tie breaking. Due to these variations, one can
expect that the ParaSolvers will generate different search trees. After
a specified amount of time or after the number of open nodes in the most
promising ParaSolver has reached a specified limit, one ParaSolver is chosen

7

Algorithm 1 Supervisor
Input: Single base solver, set of N processors i ∈ S = {1, . . . , N} and an instance to be solved
Output: An optimal solution

Spawn N Workers with the base solver on processors 1 to N
collectMode ← false
x∗ ← NULL
I ← N \ {1}
A ← {1}
Q ← ∅
R ← {(1, 0)} // Subproblems currently being processed, 0 is the index of the root

// problem
Send the root problem to processor 1
while Q 6= ∅ and R 6= ∅ do

(i, tag) ← Wait for message // Returns processor identifier and message tag
if tag = solutionFound then

Receive solution x̂ from processor i
if x∗ = NULL or c>x̂ < c>x∗ then

x∗ ← x̂
end if

else if tag = subproblem then
Receive a subproblem indexed by k from processor i
Q← Q ∪ {k}

else if tag = terminated then
R← R \ {(i, j)} // j is the index of the terminated subproblem
A← A \ {i}, I ← I ∪ {i}

else if tag = status then
if collectMode = true then

if there are enough heavy subproblems in Q then
// heavy subproblem is a subproblem which is expected to generate
// a large subtree
Send message with tag = stopCollecting to processors in collecting mode.
collectMode ← false

end if
else

// collectMode = false
if there are not enough heavy subproblems in Q then

Select processors which have heavy subproblems
Send message with tag = startCollecting to the selected processors
collectMode ← true

end if
end if

end if
while I 6= ∅ and Q 6= ∅ do

choose processor i ∈ I, I ← I \ {i}, A← A ∪ {i}
choose subproblem j ∈ Q, Q← Q \ {j}, R← R ∪ {(i, j)}
Send subproblem j and x∗ to processor i

end while
end while
∀i ∈ S : Send message with tag = termination to processor i
Output x∗

8

Algorithm 2 Worker
Input: A base solver and an instance to be solved

collectMode ← false
terminate ← false
while terminate = false do

(i, tag) ← Wait for message from Supervisor // Returns Supervisor identifier 0
// and message tag

if tag = subproblem then
Receive subproblem and solution from Supervisor
Solve the subproblem, periodically communicating with supervisor as follows

- Send message with tag solutionFound anytime a new solution is discovered.

- Periodically send message with tag status to report current lower bound for this subproblem.

- When messages with tag startCollecting or stopCollecting are received, toggle collectMode.

- When collectMode = true, periodically send message with tag subproblem containing best
candidate subproblem.

Send a message with tag = terminated

else if tag = termination then
terminate ← true

end if
end while

as the “winner” of this racing stage. The winning criterion is a combination
of the lower bound and the number of open nodes of the ParaSolver. All
open nodes of the “winner” are then collected by the LoadCoordinator and
a termination message is sent to all other ParaSolvers. The search trees of
the other ParaSolvers are discarded and the solvers become idle. Only the
feasible solutions found during their solving process are kept. The collected
nodes are then redistributed to the now idle ParaSolvers. The current
UG version includes customized racing, which allows users to give a set of
problem-specific parameters for the racing stage.

In UG, checkpointing saves only primitive nodes, which are nodes that
have no ancestor nodes in the LoadCoordinator. This strategy requires
much less effort for the I/O system than saving all open nodes to a disk,
in particular in large-scale parallel computing environments, but potentially
creates a computational overhead after the restart. However, the effort to
regenerate the search tree is often outweighed by the benefits of re-applying
a global presolving procedure during the restart (see [45]).

The concept of UG is thus to abstract from a base solver and paralleliza-
tion library and to provide a framework that can be used, in principle, to
parallelize any powerful state-of-the-art base solver on any computational

9

environment. For a particular base solver, only the interface to UG in the
form of specializations of base classes needs to be implemented. Similarly, for
a particular parallelization library, a specialization of an abstract UG class is
necessary.

As we already mentioned, a particular instantiated parallel solver is
referred to as ug [base solver name, parallelization library name]. Here, the
specific parallelization library is used to realize the message-passing based
communications. The following solvers are parallelized by UG as the base
solvers:

• Single thread academic solver SCIP1

• Multi-threaded commercial solver FICO Xpress2

• Distributed memory parallel solver for two-stage stochastic programming
problems PIPS-SBB [42]

This means that UG can be used to parallelize multi-threaded and distributed
memory solvers. The following parallelization libraries can be used currently:

• Message Passing Interface libraries, referred to as “MPI”

• pthreads library, referred to in the instantiated solver as “Pthreads”

• C++11 threads, abbreviated in the instantiated solver as “C++11”

In the following we introduce the parallel solvers instantiated by UG. Para-
SCIP (= ug [SCIP, MPI]) [46] and FiberSCIP (= ug [SCIP, Pthreads/C++11]) [40]
are algorithmically identical, since they are parallelized by the same software
framework UG. The run-time behavior has been investigated in detail for the
MIPLIB2010 benchmark instances by using FiberSCIP. ParaSCIP successfully
solved 14 previously unsolved instances from MIPLIB2003 and MIPLIB2010
as of writing this document [45, 47]. The longest and the biggest scale
computation conducted to solve an open instance by ParaSCIP is presented
in [47, 48]. The rmine10 instance from MIPLIB2010 was solved for the
first time with 48 restarted runs from checkpoint files that were generated
by previous runs using between 6144 and 80,000 cores of the HLRN III
supercomputer at Zuse Institute Berlin and the TITAN supercomputer at

1http://scip.zib.de/
2https://www.fico.com/en/products/fico-xpress-optimization

10

http://scip.zib.de/
https://www.fico.com/en/products/fico-xpress-optimization

Oak Ridge National Laboratory. In total, it took about 75 days or 6,405
years of CPU core hours.

ParaXpress (= ug [Xpress, MPI]) and FiberXpress (= ug [Xpress, Pthreads/
C++11]) are instantiated versions of the shared memory parallel MIP solver
Xpress. Therefore, FiberXpress can be viewed as a multi-level threaded parallel
shared memory MIP solver. When there is more than one core, it is necessary
to decide how many cores are assigned to UG threads and how many to
the Xpress threads. The assignment also changes the solving behavior of the
algorithm. ParaXpress has the same assignment issue between UG processes and
FICO Xpress internal threads. The difference in assignments was investigated
in [49].

ug [PIPS-SBB,MPI]) [42] is an instantiated version of PIPS-SBB, which
can solve large-scale LPs on distributed memory computing environments.
Therefore, this parallel solver instantiation shows that UG is capable of
parallelizing parallel distributed memory base solvers.

2.3 ug[SCIP-*,*]-libraries: Parallelization libraries for
customized SCIP solvers

Since SCIP has a plugin-based software architecture, problem-specific cus-
tomized SCIP solvers like SCIP-Jack and SCIP-SDP presented in this paper can
be developed by adding user-plugins which are algorithm implementations
for the specific problem. Conceptually, the user-plugins can be installed into
FiberSCIP (= ug [SCIP, Pthreads/C++11]) and ParaSCIP (= ug [SCIP, MPI]),
too, though it was difficult to make it work as we expected. We added a
feature to ug [SCIP,*] so that they optionally can install also the user-plugins
and built the ug [SCIP-*,Pthreads/C++11]- and ug [SCIP-*, MPI]-libraries.
These libraries are referred as ug [SCIP-*,*]-libraries.

Users of ug [SCIP-*,*]-libraries need to write glue code to install their
user-plugins to FiberSCIP or ParaSCIP. However, the glue code is basically just a
list of user-plugin declarations for the specific problem. In order to parallelize
a customized SCIP solver, the user needs to add a file which contains the decla-
rations in an extended class of ScipUserPlugins. Actually, the latest release
of UG, which is included in the SCIP Optimization Suite 6.0.13, contains the
Steiner tree problem and mixed integer semidefinite programming applications
as ug scip applications/STP and ug scip applications/MISDP, respec-

3https://scip.zib.de/index.php#scipoptsuite

11

https://scip.zib.de/index.php#scipoptsuite

tively. Each of them contains only a single source file: stp plugins.cpp

within STP/src and misdp plugins.cpp within MISDP/src. The number of
lines counted by cloc (Count Lines of Code)4 is 173 for stp plugins.cpp and
106 for misdp plugins.cpp without blank and comment lines. All remaining
code is included in the sequential distributions which are available in the SCIP

and SCIP-SDP package. Therefore, the additional effort needed to parallelize
their sequential versions is less than 200 lines of code.

A big advantage of the ug [SCIP-*, *]-libraries is not only the minimal
effort to parallelize a customized SCIP solver, but also that performance
improvements of both SCIP and the customized solver are directly applicable
to the parallelized version as long as they are included in the interface in case
of new plugins. Only the rare cases of fundamental algorithmic changes, like
constraint branching, require adjustments directly within the ug [SCIP-*,*]-
libraries.

3 State-of-the-art solvers to be parallelized

In this section, we briefly describe the customized SCIP solvers SCIP-Jack and
SCIP-SDP, which are SCIP-based state-of-the-art algorithm implementations
for the Steiner tree problem and for mixed integer semidefinite programming,
respectively—their code is included in the SCIP Optimization Suite and the
SCIP-SDP package.

3.1 SCIP-Jack: A Steiner tree problem solver

SCIP-Jack includes a wide range of generic and problem-specific algorithmic
components, most of them falling into one of the following three categories.

First, reduction techniques are extremely important (both in presolving
and domain propagation). Apart from some instances either specifically
constructed or insightfully handpicked to defy reduction techniques, such
as the PUC [50] and I640 [51] test sets, preprocessing is usually able to
significantly reduce instances. Often more than 90 % of the edges of a given
problem can be deleted by reduction techniques.

Second, heuristics are essential to find good or even optimal solutions and
help find strong upper and lower bounds quickly. Having a strong primal

4https://github.com/AlDanial/cloc

12

https://github.com/AlDanial/cloc

bound available is a prerequisite for the reduced cost based domain propaga-
tion routines in SCIP-Jack. Furthermore, heuristics can be especially important
for hard instances, for which the dual bound often stays substantially below
the optimum for a long time. Most heuristics implemented in SCIP-Jack can
be used for several problem classes, but there are also problem-specific ones,
e.g., for the maximum-weight connected subgraph problem [52].

Finally, the core of SCIP-Jack is constituted by graph-transformations and a
branch-and-cut procedure used to compute lower bounds and prove optimality.
SCIP-Jack transforms all problem classes to the Steiner arborescence problem
(sometimes with additional constraints), which is defined as follows. Given a
directed graph D = (V,A), costs c : A→ Q+, a set T ⊆ V of terminals, and
a root r ∈ T , a directed tree S = (V (S), A(S)) ⊆ D is required that first, for
all t ∈ T contains exactly one directed path from r to t and second, minimizes∑

a∈A(S)

c(a).

Thereupon, one can use the following formulation:

Formulation 1. Flow Balance Directed Cut Formulation

min c>y (3)

y(δ+(W)) ≥ 1, ∀W ⊂ V : r ∈W, (V \W) ∩ T 6= ∅ (4)

y(δ−(v)) ≤ y(δ+(v)), ∀v ∈ V \ T (5)

y(δ−(v)) ≥ y(a), ∀a ∈ δ+(v),∀v ∈ V \ T (6)

y(a) ∈ {0, 1}, ∀a ∈ A, (7)

where the notation y(A′) :=
∑

a∈A′ y(a) for a set A′ ⊆ A is used. Only
constraints (4) and (7) are necessary for the validity of the IP formulation,
but (5) can improve the LP-relaxation [53] and (6) (while not changing
the optimal value of the LP-relaxation [54]) can often speed up the solving
process when a branch-and-cut approach is used. Both theoretically [53] and
practically [54] the LP-relaxation of Formulation 1 has been shown to be
superior to other (in particular undirected) MIP formulations.

After presolving, SCIP-Jack runs a dual-ascent heuristic [55] to select a set
of constraints from (4) to be included into the initial LP (and to find a feasible
solution [17]). Subsequently, the LP is solved and a separator routine based on
a maximum-flow algorithm is used to find violated constraints. The violated
constraints are added to the LP and the procedure is reiterated as long as the
dual-bound can be sufficiently improved. Otherwise branching is initiated.

13

During branch-and-cut, domain propagation and several (constructive and
local) primal heuristics are applied to speed up the solution process.

3.2 SCIP-SDP: A solver for mixed integer semidefinite
problem

SCIP-SDP [36] is a solver for mixed integer semidefinite programs of the form

sup b>y

s.t. C −
m∑
i=1

Ai yi � 0,

`i ≤ yi ≤ ui ∀ i ∈ [m] ,

yi ∈ Z ∀ i ∈ I

(8)

with a symmetric matrix C ∈ Sn, b ∈ Rm, Ai ∈ Sn, `i ∈ R ∪ {−∞},
ui ∈ R ∪ {+∞} for all i ∈ [m] and index set of integer variables I ⊆ [m].

For solving MISDPs, SCIP-SDP supports two different solution approaches.
On the one hand, the MISDPs can be solved similarly to general MINLPs in
SCIP by combining LP relaxations and polyhedral approximations of the
nonlinear constraints. For SDP constraints, this can be done through the
eigenvector cuts introduced by Sherali and Fraticelli [56]. Since C−

∑m
i=1Ai yi

is positive semidefinite if and only if

v>
(
C −

m∑
i=1

Ai yi

)
v ≥ 0 (9)

holds for all v ∈ Rn, Inequality (9) is a valid inequality for the convex hull of
the feasible set of (8) for any v ∈ Rn. To enforce the positive semidefiniteness,
one only needs to find a v ∈ Rn such that (9) is violated for a given solution
y∗ of the polyhedral approximation that is not feasible for the SDP constraint.
One possible choice for v is an eigenvector to the smallest eigenvalue of
Z∗ := C −

∑m
i=1Ai y

∗
i . Since y∗ is not feasible for the SDP constraint, the

smallest eigenvalue λmin(Z∗) is negative and we get that

v>
(
C −

m∑
i=1

Ai y
∗
i

)
v = λmin (Z∗) ‖v‖2

2 < 0,

14

thus Inequality (9) with this choice of v can be used to enforce positive
semidefiniteness.

The second solution approach implemented in SCIP-SDP is nonlinear
branch-and-bound. In this case in each node of the branch-and-bound tree a
continuous semidefinite program is solved by interfacing interior-point SDP
solvers like Mosek 5. One difficulty in this case is ensuring the necessary
assumptions to guarantee convergence of the interior-point solvers, namely the
existence of primal and dual strictly feasible solutions, usually referred to as
the Slater condition, which may be harmed by branching. Within SCIP-SDP,
a penalty approach is used to ensure in particular the dual Slater condition
in this case, as explained in [36].

Furthermore, SCIP-SDP includes additional branching rules, heuristics, pre-
solving and propagation techniques like dual fixing and randomized rounding,
for more details see [36] and [38].

In addition to allowing a parallelization of the branch-and-bound tree in
either the LP- or the SDP-based approach within SCIP-SDP, ug [SCIP-SDP,*]
exploits the racing ramp-up to create a hybrid solver utilizing both solution
approaches. More precisely, the solution process in ug [SCIP-SDP,*] starts
by creating a number of SCIP-SDP solver instances with half of them using
LP-based settings and the rest using SDP-settings, with other parameter
settings also being changed within the different LP- or SDP-based solvers.
In this way, racing ramp-up allows to dynamically choose between linear
and semidefinite relaxations for solving MISDPs, depending on whichever
approach works best for a particular instance.

4 Computational experiments

Computational experiments were conducted to show the effectiveness and
potential of our parallelization approach using SCIP and the ug [SCIP-*,*]-
libraries.

4.1 Results of ug [SCIP-Jack,*]

Before looking at the massive parallelization provided by ug [SCIP-Jack, MPI],
we present results of ug [SCIP-Jack, C++threads] on selected instances to
provide some insight into the behavior and difficulties of a (shared-memory)

5https://www.mosek.com/

15

https://www.mosek.com/

B&B parallelization of a state-of-the-art Steiner tree problem solver. The
experiments were performed on a machine with 88 cores equipped with
Intel(R) Xeon(R) E7-8880 v4 CPUs with 2.20GHz, and 2 TB RAM. Normal
ramp-up was used in ug and Cplex 12.7.1 was used as underlying lp solver
for SCIP-Jack. Table 1 provides results for five instances from the PUC test
set. root time gives the time that was spent at the root of the B&B tree,
max # solvers states the maximum number of ParaSolvers that were used
during the computation, and first max active time signifies the first point of
time when this maximum number of solvers was used.

The worst scaling behavior can be observed for the first instance cc3-
4p, the best for the last one hc7u. A look at the statistics explains this
behavior: Instance cc3-4p shows the relative highest root time (at which
no parallelization can be performed), and, more importantly, the maximum
number of active solvers during the computation is 13 (so one cannot expect
any speed-up when using more than 14 threads). On the other hand, the
instance hc7u spends relatively less time at the root node, can utilize all 64
threads, and has the (relatively) shortest ramp-up phase of all instances—with
just 42 seconds.

Table 1: Shared memory results for selected Steiner tree instances. All times
in seconds.

Threads cc3-4p cc3-5u cc5-3p hc7p hc7u

1 105 3,979 8,234 3,970 5,106
8 56 2,614 2,349 1,683 1,738

16 58 1,801 2,500 1,060 1,106
32 55 2,249 1,793 671 761
64 53 1,899 1,433 479 498

root time 6 10 109 8 16
max # solvers 13 52 64 64 64

first max active time 11 152 466 41 42

ug [SCIP-Jack, MPI] was the only solver that could run on a distributed
environment at the 11th DIMACS Challenge. Moreover, it solved three
open instances and updated 14 best known solutions to instances [57] of the
notoriously hard PUC test set from the SteinLib [58]. After that, no open
instance was solved by ug [SCIP-Jack, MPI] until new features were added
to the ug [SCIP-*,*]-libraries, even though SCIP-Jack had continuously been
improving. However, most of these improvements could not be exploited in

16

the parallel version due to missing support for constraint branching in the ug

[SCIP-*, *]-libraries and the lack of a user routine to communicate previous
branching decisions to each ParaSolver. After the support had been added
in version ug-0.8.6, ug [SCIP-Jack, MPI] caught up with the improvements
of SCIP-Jack: ug [SCIP-Jack, MPI] solved hp9p and updated the best known
solution of hc11p [59].

Recently, SCIP-Jack has again been improved: The most important en-
hancement is a (still rather limited) implementation of extended reduction
techniques [54]. These techniques try to prove that a subgraph G′ (usually
a single edge or vertex) is not part of at least one optimal Steiner tree by
considering a (sufficient) set of supergraphs of G′ and showing that all of them
are not contained in at least one optimal Steiner tree. The realization of these
techniques is highly intricate, but already the initial, and rather restricted,
implementation in SCIP-Jack allowed us to delete about 8% more edges in
general—which still falls far short of the results reported in [54]. It should
be noted that for the PUC instances the effect of presolving is usually very
limited. Nevertheless, the above-mention initial implementation of extended
reduction techniques has proven useful if combined with a massive B&B
search, as provided by UG. Since each branching either deletes a vertex or
adds a terminal, the underlying graph can take a very different shape deep
in the B&B tree, as compared to the original problem. On these modified
graphs the extended reduction method often can lead to considerable further
reductions of the problem (which can be translated into variable fixings in
the IP formulation). With this improved version of ug [SCIP-Jack, MPI] we
could solve the previously unsolved PUC instance bip52u to optimality and
moreover updated the best known solution to hc10p.

For solving open instances of the PUC test set we used two supercomputers.
One, based at ISM (Institute of Statistical Mathematics), is a HPE SGI
8600 with 384 compute nodes, with each node consisting of two Intel Xeon
Gold 6154 3.0GHz CPUs (18 cores×2) sharing 384GB of memory, and an
Infiniband (Enhanced Hypercube) interconnect. The other (HLRN III) is a
Cray XC40 with 1872 compute nodes, each node consisting of two 12-core
Intel Xeon IvyBridge/Haswell CPUs sharing 64 GiB of RAM, and with an
Aries interconnect.

Table 2 shows the supercomputer used, the computing time in seconds
(racing time is shown within parentheses), the idle time ratio for all Para-
Solvers, the number of transferred B&B nodes to the ParaSolvers, primal
and dual bounds, the gap, the number of B&B nodes generated, and the

17

number of open B&B nodes for each run. The initial values are shown in
the upper row and the final values are shown in the lower row for each run.
The run number 1.* means that they are a series of runs from the previous
checkpoint files.

The final dual bound in the previous run is sometimes slightly different
from that of the initial one in the following run. This means that the dual
bound in the previous run was updated after the final checkpoint. The
number of open B&B nodes decreases a lot at restart, since the checkpointing
mechanism only saves essential subtree roots. For example, run 1 ends with
271,781 open B&B nodes, but run 2 starts with only 18 open ones. This
means that only 18 B&B subtree roots existed at the end of run 1.1 and the
other subtree roots were descendants of one of these 18 B&B nodes.

The number of transferred B&B nodes can be considered as an indicator
of how frequently ParaSolvers became idle and also how frequently layered
presolving was applied. Naturally, at larger scale one would expect more
layered presolving.

Table 2: Statistics for solving bip52u on supercomputers

Run Computer Cores
Time
(sec.)

Idle
(%)

Trans.
Primal bound
(Upper bound)

Dual bound
(Lower bound)

Gap
(%)

Nodes Open nodes

1.1 ISM 72
604,790

(335)
< 0.1 2,021

233.0000 229.1728 1.67 0 0
233.0000 230.9019 0.91 79,002,896 271,781

1.2 ISM 72 604,798 < 0.1 2,311
233.0000 230.9018 0.91 0 18
233.0000 230.9137 0.90 80,790,403 225,548

1.3 HLRN III 12,288 431,992 < 0.3 3,451,630
233.0000 230.9137 0.90 0 11
233.0000 230.9575 0.88 5,712,626,116 465,910

1.4 HLRN III 12,288 561,590 < 1.5 9,518,991
233.0000 230.9575 0.88 0 24
233.0000 231.2956 0.74 7,173,350,123 47,488

1.5 HLRN III 12,288 43,180 < 4.7 2,236,869
233.0000 231.2956 0.74 0 5
233.0000 231.2956 0.74 54,2635,223 237,489

1.6 ISM 2,304 302,900 0.2 3,797,932
233.0000 231.2956 0.74 0 1,113
233.0000 233.0000 0.00 1,465,480,096 0

The best known solution to the hc10p instance could be updated (to an
objective value 59,733, as compared to 59,797 at the DIMACS Challenge).
Table 3 shows the statistics. The first additional run (1) on the ISM super-
computer generated five new incumbent solutions, with the best objective
value being 59,776. Afterwards we just reran from scratch with the best
solution from run 1 with racing ramp-up (run 2)—since the best solution can
be used for presolving, propagation, and heuristics. The second run with the
new solution again generated an improved solution. The job was killed to
restart with this updated solution. The third run with the new solution once

18

more generated an improved solution, after 76,405 seconds.

Table 3: Statistics for solving hc10p on supercomputers

Run Computer Cores
Time
(sec.)

Idle
(%)

Trans.
Primal bound
(Upper bound)

Dual bound
(Lower bound)

Gap
(%)

Nodes Open nodes

1 ISM 72
604,796

(926)
< 0.1 118

59,797.0000 59213.4370 0.99 0 0
59,776.0000 59,330.3673 0.75 19,811,438 1,030,317

2 ISM 72
5,857
(973)

< 5.2 91
59,776.0000 59,213.8774 0.94 0 0
59,772.0000 59,237.1542 0.90 160,594 11,365

3 ISM 72
604,805
(1021)

< 0.1 86,152
59,772.0000 59,213.4370 0.94 0 0
59,733.0000 59,331.5374 0.68 18,458,047 887,762

4.2 Results of ug [SCIP-SDP,*]

For measuring the speedup of the parallelization of SCIP-SDP via the ug [SCIP-
,]-libraries, we ran SCIP-SDP and ug [SCIP-SDP,C++11] with a different
number of threads on a shared memory environment of Intel Xeon E5-4650
CPUs running at 2.70 GHz with 512 GB of shared RAM. The tests used current
developer versions of SCIP-SDP 3.1.1, SCIP 6.0.0 and ug 0.8.6 together with
Mosek 8.1.0.54. Table 4, which first appeared in [38], shows an overview of
the solution times as a shifted geometric mean with shift s = 10 as well as the
number of solved instances for SCIP-SDP and ug [SCIP-SDP,C++11] with 1 to
32 threads over the complete CBLIB [37] and the different application-specific
test sets.

Table 4: Results for ug [SCIP-SDP,C++11] over all 194 CBLIB instances

solver TTD CLS Mk-P Total
solved time solved time solved time solved time

SCIP-SDP 55 84.01 62 142.19 67 54.44 184 86.59

ug [SCIP-SDP,C++11] 1 thr. 54 107.49 62 156.70 58 107.81 174 122.23

ug [SCIP-SDP,C++11] 2 thr. 56 64.93 64 23.31 56 92.25 176 53.79

ug [SCIP-SDP,C++11] 4 thr. 58 39.76 65 18.48 60 85.61 183 42.07

ug [SCIP-SDP,C++11] 8 thr. 58 32.07 65 14.51 60 72.35 183 34.57

ug [SCIP-SDP,C++11] 16 thr. 59 21.03 65 16.37 59 78.46 183 32.65

ug [SCIP-SDP,C++11] 32 thr. 59 21.27 65 18.38 56 92.14 180 36.11

The first observation is that we get a slowdown when running ug [SCIP-
SDP,C++11] single-threaded compared to SCIP-SDP between 10 % on the

19

cardinality-constrained least squares instances and 98 % over the minimum
k-partitioning test set, with an average of 41 % over the whole CBLIB. When
comparing ug [SCIP-SDP,C++11] with different thread numbers on the truss
topology test set, we get a relatively constant speedup of 20 to 40 % when
doubling the number of threads. The maximum speedup is already reached
for 16 threads, however, due to the size of these instances, which have been
designed as a test set for sequential solvers. Nevertheless, the parallelization
leads to a total speedup of 75 % for 16 threads compared to regular SCIP-SDP

on this test set and allows to solve four of the five instances that could not
be solved by regular SCIP-SDP on this machine.

On the cardinality-constrained least squares instances, the results are
significantly different. For these instances, we get a very significant speedup
of 85 % from one to two threads, i. e., when first including the LP-based cutting
plane approach within the racing settings, showing that these instances are
much more suited for an LP-based approach. When increasing the number of
threads further, the speedup is smaller with a relatively constant 20 %, and
the best performance already occurs on eight threads with a slowdown of
around 12 % when increasing the number of threads to 16 and 32. The main
reason for tailing off earlier is the much smaller number of branch-and-bound
nodes compared to the truss topology instances, which does not allow a large
number of SCIP-SDP ParaSolvers to be active at the same time.

The parallelization performs worst on the minimum k-partitioning in-
stances. Not only is the slowdown on one thread larger than for any other test
set, we also neither get a large speedup when adding the LP settings nor do
we get a significant speedup when increasing the number of threads beyond
that. The speedup is in the range of 7 to 15 % when doubling the number
of threads up to eight threads, but we already get slowdowns for 16 and 32
threads. This causes the minimum k-partitioning test set to be the only one
where ug [SCIP-SDP,C++11] never reaches the performance of SCIP-SDP. The
main reason for the bad performance on these combinatorial instances seems
to be that the additional local presolving performed by the UG framework
leads to different search paths being taking in the branch-and-bound tree,
which for some reason are worse and lead to longer solving times than in the
sequential case.

Over the whole CBLIB, we see a combination of the effect of adding LP
settings and the general speedup of the parallelization. Together this leads
to a speedup of 56 % for two threads, with further speedups of 22 % and
18 % when increasing to four and eight threads, respectively. The optimal

20

performance on this architecture and test set is obtained for 16 threads
with a total speedup of 73 % compared to running ug [SCIP-SDP,C++11]
single-threaded and 62 % compared to SCIP-SDP. Note, however, that the UG

parallelization is designed for larger instances, thus on different test sets one
should expect additional speedups for 32 and more threads.

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132
0

5

10

15

20

setting

#
ra

ci
n

g
w

in
n

er

truss topology cardinality-constrained least squares min k-partitioning

Figure 1: Racing ramp-up statistics for the different settings over CBLIB

Figure 1 shows for how many instances each of the different settings has
been declared the winner after racing, with the color indicating the test set
the instance belongs to. In this case, each odd number refers to an SDP-based
setting while all even numbers belong to LP-based settings, the exact changes
for each setting can be found in the settings subfolder or in [38]. Note that
the statistics only include instances that continued after the racing ramp-up
phase, while instances that were solved to optimality by one of the SCIP-SDP

instances during racing have been excluded. First of all, it can be observed
that most settings turn out to be optimal for at least some subset of the
instances. For truss topology design, many different settings are chosen with

21

the most successful one being the LP approach with easycip emphasis. In
total, LP-based settings are chosen for 52 % of all truss topology instances.
The results for the cardinality-constrained least squares instances are much
more lopsided. For these instances, only LP settings are chosen and in all
but three cases the easycip emphasis. Note, however, that many of these
instances are already solved during racing. The minimum k-partitioning
instances show a completely opposite behavior, with almost exclusively SDP-
based settings being chosen and no single setting being chosen significantly
more often than the others.

Unfortunately, we did not have enough supercomputer resources to con-
duct computational experiments for ug [SCIP-SDP,MPI]. However, the results
presented in this section, arguably, show its potential to tackle previously
unsolvable large-scale instances.

5 Concluding remarks

The two customized SCIP solvers SCIP-Jack and SCIP-SDP were parallelized
through the ug [SCIP-*,*]-libraries. Currently SCIP has over 800,000 lines of
C code, which includes many MIP solving algorithm implementations, and
SCIP-Jack and SCIP-SDP have been developed on top of that, benefiting from
the SCIP features. In general, it would be an extremely hard task to parallelize
such a huge code on a large scale distributed memory computing environment.
Through integration with the continuous development and testing of Fiber-

SCIP and ParaSCIP, the ug [SCIP-*,*]-libraries allow SCIP users to parallelize
their customized SCIP solvers to run on supercomputers with at least up to
80,000 cores [47] by adding less than 200 lines of glue code. Due to a lack of
supercomputer resources, we only provided restricted computational results,
but potentially, ug [SCIP-Jack, MPI] could solve more previously unsolvable
instances of the Steiner tree problem in graphs and related problems and also
ug [SCIP-SDP,MPI] should be able to run on a supercomputer immediately.

CIP covers almost all classes of combinatorial optimization problems.
Therefore, SCIP can be used as a solver for almost all of them. Users of SCIP

can get the benefits of the MIP solving technology within a customized SCIP

solver, which can be developed without any consideration for its parallelization.
As long as the user utilizes SCIP’s plug-in based software architecture, the
customized solver can be parallelized easily by using the ug [SCIP-*,*]-libraries.
In this way, the authors hope that the results presented in this article will

22

encourage additional scientists and practitioners who wish to solve a particular
combinatorial optimization problem on supercomputers, to implement their
algorithms in SCIP and immediately profit from the parallelization capabilities
provided by the ug [SCIP-*,*]-libraries.

Acknowledgment

The authors would like to thank Chuen Teck See for first experimenting
with a parallel version of SCIP-SDP, and Marc E. Pfetsch for many helpful
suggestions regarding the parallelization of SCIP-SDP.

References

[1] Y. Shinano, M. Higaki, and R. Hirabayashi, “A generalized utility for
parallel branch and bound algorithms,” in Proceedings of the Seventh
IEEE Symposium on Parallel and Distributed Processing, 1995, pp. 392–
401.

[2] A. Brüngger, A. Marzetta, K. Fukuda, and J. Nievergelt, “The parallel
search bench zram and its applications,” Annals of Operations Research,
vol. 90, no. 0, pp. 45–63, 1999.

[3] S. Tschöke and T. Polzer, “Portable Parallel Branch-and-Bound Library
PPBB-Lib,” University of Paderborn, User Manual Version 2.0, 1996.

[4] M. Bénichou, V.-D. Cung, S. Dowaji, B. L. Cun, T. Mautor, and C. Rou-
cairol, “Building a parallel branch and bound library,” in Solving Combi-
natorial Optimization Problems in Parallel, Lecture Notes in Computer
Science 1054. Berlin: Springer, 1996, pp. 201–231.

[5] A. Djerrah, B. L. Cun, V. D. Cung, and C. Roucairol, “Bob++: Frame-
work for solving optimization problems with branch-and-bound methods,”
in 2006 15th IEEE International Conference on High Performance Dis-
tributed Computing, 2006, pp. 369–370.

[6] J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth, “Master–worker:
An enabling framework for applications on the computational grid,”
Cluster Computing, vol. 4, no. 1, pp. 63–70, 2001.

23

[7] T. K. Ralphs, L. Ladányi, and M. J. Saltzman, “A library hierarchy
for implementing scalable parallel search algorithms,” The Journal of
Supercomputing, vol. 28, pp. 215–234, 2004.

[8] Y. Sun, G. Zheng, P. Jetley, and L. Kale, “Parssse: An adaptive parallel
state space search engine,” Parallel Processing Letters, vol. 21, no. 3, pp.
319–338, 2011.

[9] J. Eckstein, W. E. Hart, and C. A. Phillips, “Pebbl: an object-oriented
framework for scalable parallel branch and bound,” Mathematical Pro-
gramming Computation, vol. 7, no. 4, pp. 429–469, 2015.

[10] Y. Shinano, T. Fujie, Y. Ikebe, and R. Hirabayashi, “Solving the max-
imum clique problem using pubb,” in Proceedings of the First Merged
International Parallel Processing Symposium and Symposium on Parallel
and Distributed Processing, 1998, pp. 326–332.

[11] K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth, “Solving large
quadratic assignment problems on computational grids,” Mathematical
Programming, vol. 91, no. 3, pp. 563–588, 2002.

[12] M. R. Bussieck, M. C. Ferris, and A. Meeraus, “Grid-enabled optimization
with GAMS,” INFORMS Journal on Computing, vol. 21, no. 3, pp. 349–
362, 2009.

[13] R. Karp, “Reducibility among combinatorial problems,” in Complexity
of Computer Computations, R. Miller and J. Thatcher, Eds. Plenum
Press, 1972, pp. 85–103.

[14] M. Leitner, I. Ljubic, M. Luipersbeck, M. Prossegger, and M. Resch,
“New Real-world Instances for the Steiner Tree Problem in Graphs,” ISOR,
Uni Wien, Tech. Rep., 2014.

[15] M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch,
D. Salvagnin, and M. Sinnl, “Thinning out steiner trees: a node-based
model for uniform edge costs,” Mathematical Programming Computation,
vol. 9, no. 2, pp. 203–229, 2017.

[16] T. Pajor, E. Uchoa, and R. F. Werneck, “A robust and scalable algo-
rithm for the steiner problem in graphs,” Mathematical Programming
Computation, vol. 10, no. 1, pp. 69–118, 2018.

24

[17] G. Gamrath, T. Koch, S. Maher, D. Rehfeldt, and Y. Shinano, “SCIP-
Jack—a solver for STP and variants with parallelization extensions,”
Mathematical Programming Computation, vol. 9, no. 2, pp. 231 – 296,
2017.

[18] “PACE 2018: Parameterized algorithms and computational experiments
challenge.” https://pacechallenge.wordpress.com/pace-2018/.

[19] A. Gleixner et. al., “The SCIP Optimization Suite 6.0,” Zuse Institute
Berlin, ZIB-Report 18-26, 2018.

[20] L. Lovász and A. Schrijver, “Cones of matrices and set-functions and 0-1
optimization,” SIAM Journal on Optimization, vol. 1, no. 2, pp. 166–190,
1991.

[21] H. Wolkowicz and Q. Zhao, “Semidefinite programming relaxations for
the graph partitioning problem,” Discrete Applied Mathematics, vol.
76-77, pp. 461–479, 1999.

[22] P. Hungerländer and F. Rendl, “Semidefinite relaxations of ordering
problems,” Mathematical Programming, vol. 140, no. 1, pp. 77–97, 2013.

[23] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz, “Semidefinite
programming relaxations for the quadratic assignment problem,” Journal
of Combinatorial Optimization, vol. 2, no. 1, pp. 71–109, 1998.

[24] E. de Klerk, D. V. Pasechnik, and R. Sotirov, “On semidefinite program-
ming relaxations of the traveling salesman problem,” SIAM Journal on
Optimization, vol. 19, no. 4, pp. 1559–1573, 2008.

[25] C. Helmberg, F. Rendl, B. Mohar, and S. Poljak, “A spectral approach
to bandwidth and separator problems in graphs,” Linear and Multilinear
Algebra, vol. 39, no. 1–2, pp. 73–90, 1995.

[26] P. Hungerländer and F. Rendl, “A computational study and survey
of methods for the single-row facility layout problem,” Computational
Optimization and Applications, vol. 55, no. 1, pp. 1–20, 2013.

[27] F. Rendl, G. Rinaldi, and A. Wiegele, “Solving Max-Cut to optimality
by intersecting semidefinite and polyhedral relaxations,” Mathematical
Programming, vol. 121, no. 2, pp. 307–335, 2010.

25

[28] N. Krislock, J. Malick, and F. Roupin, “BiqCrunch: A semidefinite
branch-and-bound method for solving binary quadratic problems,” ACM
Transactions on Mathematical Software, vol. 43, no. 4, pp. 32:1–32:23,
2017.

[29] M. Kočvara, “Truss topology design with integer variables made easy,”
Optimization Online, Tech. Rep., 2010.

[30] S. Mars, “Mixed-integer semidefinite programming with an application
to truss topology design,” Ph.D. dissertation, FAU Erlangen-Nürnberg,
2013.

[31] T. Wollenberg, “Two-stage stochastic semidefinite programming: Theory,
algorithms, and application to AC power flow under uncertainty,” Ph.D.
dissertation, Universität Duisburg-Essen, 2016.

[32] B. Ghaddar and R. A. Jabr, “AC transmission network expansion plan-
ning: A semidefinite programming branch-and-cut approach,” arXiv,
Tech. Rep., 2017.

[33] R. Tamura, K. Kobayashi, Y. Takano, R. Miyashiro, K. Nakata, and
T. Matsui, “Best subset selection for eliminating multicollinearity,” Jour-
nal of the Operations Research Society of Japan, vol. 60, no. 3, pp.
321–336, 2017.

[34] R. Dai and M. Mesbahi, “Optimal topology design for dynamic networks,”
in 50th IEEE Conference on Decision and Control and European Control
Conference (CDC-ECC), 2011.

[35] M. Rafiee and A. M. Bayen, “Optimal network topology design in multi-
agent systems for efficient average consensus,” in 49th IEEE Conference
on Decision and Control, 2010.

[36] T. Gally, M. E. Pfetsch, and S. Ulbrich, “A framework for solving mixed-
integer semidefinite programs,” Optimization Methods and Software,
vol. 33, no. 3, pp. 594–632, 2018.

[37] H. A. Friberg, “CBLIB 2014: a benchmark library for conic mixed-integer
and continuous optimization,” Mathematical Programming Computation,
vol. 8, no. 2, pp. 191–214, 2016.

26

[38] T. Gally, “Computational mixed-integer semidefinite programming,”
Ph.D. dissertation, TU Darmstadt, 2019.

[39] S. Vigerske, “Decomposition of multistage stochastic programs and a
constraint integer programming approach to mixed-integer nonlinear
programming,” Ph.D. dissertation, Humboldt-Universität zu Berlin, 2013.

[40] Y. Shinano, S. Heinz, S. Vigerske, and M. Winkler, “FiberSCIP – a shared
memory parallelization of SCIP,” INFORMS Journal on Computing,
vol. 30, no. 1, pp. 11–30, 2018.

[41] T. Ralphs, Y. Shinano, T. Berthold, and T. Koch, “Parallel solvers for
mixed integer linear programming,” Zuse Institute Berlin, Takustr. 7,
14195 Berlin, Tech. Rep. 16-74, 2016.

[42] L.-M. Mungúıa, G. Oxberry, D. Rajan, and Y. Shinano, “Parallel PIPS-
SBB: multi-level parallelism for stochastic mixed-integer programs,” Com-
putational Optimization and Applications, 2019.

[43] R. L. Gottwald, S. J. Maher, and Y. Shinano, “Distributed domain prop-
agation,” in 16th International Symposium on Experimental Algorithms
(SEA 2017), vol. 75, 2017, pp. 6:1 – 6:11.

[44] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E.
Bixby, E. Danna, G. Gamrath, A. Gleixner, S. Heinz, A. Lodi, H. Mit-
telmann, T. Ralphs, D. Salvagnin, D. Steffy, and K. Wolter, “MIPLIB
2010,” Mathematical Programming Computation, vol. 3, pp. 103–163,
2011.

[45] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Win-
kler, “Solving hard MIPLIB2003 problems with ParaSCIP on super-
computers: An update,” in Parallel Distributed Processing Symposium
Workshops (IPDPSW), 2014 IEEE International, 2014, pp. 1552–1561.

[46] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch, “ParaS-
CIP – a parallel extension of SCIP,” in Competence in High Performance
Computing 2010, C. Bischof, H.-G. Hegering, W. E. Nagel, and G. Wit-
tum, Eds. Springer, 2012, pp. 135–148.

[47] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, T. Koch, and M. Win-
kler, “Solving open MIP instances with ParaSCIP on supercomputers

27

using up to 80,000 cores,” in 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). Los Alamitos, CA, USA:
IEEE Computer Society, 2016, pp. 770–779.

[48] Y. Shinano, “The ubiquity generator framework: 7 years of progress
in parallelizing branch-and-bound,” in Operations Research Proceedings
2017, N. Kliewer, J. F. Ehmke, and R. Borndörfer, Eds. Cham: Springer
International Publishing, 2018, pp. 143–149.

[49] Y. Shinano, T. Berthold, and S. Heinz, A First Implementation of
ParaXpress: Combining Internal and External Parallelization to Solve
MIPs on Supercomputers. Cham: Springer International Publishing,
2016, pp. 308–316.

[50] I. Rosseti, M. de Aragão, C. Ribeiro, E. Uchoa, and R. Werneck, “New
benchmark instances for the Steiner problem in graphs,” in Extended
Abstracts of the 4th Metaheuristics International Conference (MIC’2001),
Porto, 2001, pp. 557–561.

[51] C. Duin, “Steiner problems in graphs,” Ph.D. dissertation, University of
Amsterdam, 1993.

[52] D. Rehfeldt and T. Koch, “Combining NP-Hard Reduction Techniques
and Strong Heuristics in an Exact Algorithm for the Maximum-Weight
Connected Subgraph Problem,” SIAM Journal on Optimization, vol. 29,
no. 1, pp. 369–398, 2019.

[53] T. Polzin and S. V. Daneshmand, “A comparison of Steiner tree relax-
ations,” Discrete Applied Mathematics, vol. 112, no. 1, pp. 241 – 261,
2001, combinatorial Optimization Symposium, Selected Papers.

[54] T. Polzin, “Algorithms for the Steiner problem in networks,” Ph.D.
dissertation, Saarland University, 2004.

[55] R. Wong, “A dual ascent approach for Steiner tree problems on a directed
graph,” Mathematical Programming, vol. 28, p. 271287, 1984.

[56] H. D. Sherali and B. M. Fraticelli, “Enhancing RLT relaxations via a
new class of semidefinite cuts,” Journal of Global Optimization, vol. 22,
pp. 233–261, 2002.

28

[57] G. Gamrath, T. Koch, S. J. Maher, D. Rehfeldt, and Y. Shinano, “SCIP-
Jack – A solver for STP and variants with parallelization extensions,”
11th DIMACS Competition workshop paper, 2014.

[58] T. Koch, A. Martin, and S. Voß, “SteinLib: An updated library on
Steiner tree problems in graphs,” in Steiner Trees in Industries, D.-Z.
Du and X. Cheng, Eds. Kluwer, 2001, pp. 285–325.

[59] Y. Shinano, D. Rehfeldt, and T. Koch, “Building optimal Steiner trees
on supercomputers by using up to 43,000 cores,” Zuse Institute Berlin,
ZIB-Report 18-58, 2018.

29

	Introduction
	SCIP based Software libraries for general purpose parallel B&B
	SCIP: Solving Constraint Integer Programs
	UG: Ubiquity Generator framework
	ug[SCIP-*,*]-libraries: Parallelization libraries for customized SCIP solvers

	State-of-the-art solvers to be parallelized
	SCIP-Jack: A Steiner tree problem solver
	SCIP-SDP: A solver for mixed integer semidefinite problem

	Computational experiments
	Results of µg[SCIP-Jack,*]
	Results of µg[SCIP-SDP,*]

	Concluding remarks

