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ABSTRACT 
While attribute-value pairs are a popular method to name 
objects, information retrieval from those attribute-based 
namespaces is not an easy task. The user has to recall correct 
attribute names and values and master the syntax and semantics 
of query formulation. This paper describes hierarchical structures 
in attribute-based namespaces, shows how to extract them 
efficiently and evaluates the quality of these structures in an user 
experiment. It proposes an user interface for browsing attribute-
named object sets which makes this task resemble today’s file-
system browsers and compares the usability of this interface to 
normal form-based methods in an user study. 

TOPIC AREAS 
Information Retrieval, Knowledge Management, User Interfaces, 
Attribute-based Naming, Attribute-named Data 

1. INTRODUCTION 
Attribute-value pairs are a popular method for naming objects 
and representing meta-data. They are used in digital library 
catalogues, for describing properties of objects in component 
systems and of network services (“yellow pages”), for tagging 
images in image libraries, for metadata in file systems and for 
many other applications.  

In most cases, retrieval of information from attribute-named data 
sets is done via form-based methods. As seen for example with 
many library online catalogues, an on-screen form provides a 
template where the user can fill in attribute names and values he 
wants to restrict his query to. 

However, the retrieval of attribute-based data is not an easy task. 
It requires the user to be familiar with the syntax and semantic of 
query formulation. To be able to query the system, the user has to 
recall correct attribute names and values or choose them from a 
long list of alternatives and know how to formulate constraints 
and how to combine them using boolean expressions.  

If the user is not familiar with the attribute namespace, a form-
based query interface does not allow him to just browse the 
namespace to find the desired information. This is due to the lack 
of an inherent structure of the attribute space, which means that 
there is no natural way of browsing an attribute-named data set 
by following some given structure. Browsing attribute-named 
data with a form interface means iteratively formulating queries 
and modifying them while looking at their results. 

The query of attribute-based namespaces would be simplified if 
the query interface could propose relevant query extensions in 
each retrieval step, so that the user does not have to recall valid 
attribute names and values or pick them from a huge selection of 
mostly irrelevant attributes available in the system. If these query 
extension proposals additionally had certain relationships 
between each other and the current query (which we will 
describe later), they could be used for browsing the attribute-
named object space hierarchically. 

In this paper, we will show how to extract attribute-value pairs 
from a given object namespace which summarize parts of the 
object set. These attribute-value pairs may be used to aid the user 
in query formulation and object naming by reducing the choice of 
possible query extensions and naming possibilities. Additionally, 
they introduce a structure in the object set which allows the 
object set to be browsed hierarchically. We will evaluate these 
attribute-value pairs in an user experiment in order to find out 
whether they provide a reasonable abstraction from the 
namespace’s structures. Furthermore, we will present an user 
interface which uses this hierarchical structure to provide the 
user with an interaction that strongly resembles the file system 
browsers of today’s operating systems. An usability test in the 
context of file-system browsing shows that it is to be preferred to 
form-based interfaces. 

2. STRUCTURES IN ATTRIBUTE-BASED 
NAMESPACES 
2.1 Basic Definitions 
We will start with some basic definitions to introduce our 
notation.  

Def. An attribute A is a tuple (name, value). 

Def. An object is a named set of attributes. 

Def. A query predicate QP is a tuple (name, operator, 
value), where name is an attribute name, operator an 
operator appropriate for the value’s type, and value is 
an attribute value. 
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Def. The induced set of the query predicate QP, o(QP) is the 
set of objects which satisfy the constraint given by the 
query predicate. 

Def. A query is a set of query predicates. It may be empty. 

Def. The induced set of a query Q, o( Q ) is the intersection 
of the o( QP ) for all query predicates QP ∈ Q. o( ∅ ) 
is the object set itself.  

We assume a recursive retrieval process, ie. the induced subset 
of a query on the current object set is the underlying object set of 
the next query step. 

2.2 Structures in the attribute space 
If we visualize some sets induced by various predicates in a Venn 
diagram (Figure 1), we observe that they have distinct 
relationships to each other. These relationships can be used to 
select predicates that could be of more interest to the user for 
extending his current query.  

Figure 1. An example object set with four result sets 

For example, Figure 1 shows the four induced subsets of the 
query predicates QP1, QP2, QP3 and QP4. The subsets of QP1 and 
QP2 are fully contained inside QP3. QP3 and QP4 intersect, but 
are not fully contained in a subset of any other query predicate. If 
we would face this situation during a retrieval task and have to 
propose some query predicates to extend the user’s query, we can 
argue that QP1 and QP2 are not interesting in this retrieval step as 
their induced object sets are fully contained inside QP3. They 
become important as soon as the user would have extended his 
query by QP3.  

To illustrate, let the object set be the set of all files in a user’s 
home directory, QP4 be the query predicate “filetype=picture”, 
QP3 the predicate “filetype=music”, QP1 the predicate 
“genre=rock” and QP2 the predicate “genre=hip hop”. If the user 
looks for a file, we would present him with the filetype choice, 
and ask for the genre as soon he restricted his query to be about 
music files. 

We will now look at five important structures of query predicates 
which can be used to structure the attribute space.  

• If the induced set of a query predicate QPA is fully contained 
in the induced set of another predicate QPB, we call QPA a 
sub-predicate of QPB. In our example, the music genre 
predicates are sub-predicates of “filetype=music”. 

• If the induced set of a query predicate QPA is equal to the 
induced set of a query predicate QPB, we call QPA 
synonymous to QPB.  

• If the induced set of a query predicate QP is equal to the 
whole object set, we call QP a context predicate. All non-
context predicates are sub-predicates of the context 
predicates.  

• If the induced set of a query predicate QP is empty, we call 
QP an out-of-context predicate. 

• There are non-context predicates which are only sub-
predicates of context predicates. We call them top-level 
predicates (TLPs). Apart from the context predicates, the 
induced set of a top-level predicate is not contained in an 
induced set of any other query predicate of the chosen set. In 
our example, the predicates QP3 and QP4 containing the 
filetype are top-level predicates in the situation given. They 
are not sub-predicates of any other predicate. 

3. EXTRACTION OF HIERARCHICAL 
STRUCTURES 
In the last section, we defined the relationships of query 
predicates by relationships and sizes of their induced sets. The 
induced sets of the interesting predicates were either equal or 
subsets of others.  

A simple way to extract these relationships is to query by the 
respective predicates and then compare the resulting object sets 
element by element whether they are contained in one another or 
whether they are equal. This needs a query per predicate, a 
sorting step of O(n log n) if the result set is not already sorted 
and a linear comparison. 

We can detect those relationships more efficiently by doing 
queries on the induced set of a query predicate. Instead of 
querying the database directly, the process uses an intermediate 
representation of the data set’s contents to be independent from 
the physical organization of the data set and to be able to make 
use of the CPU’s ability to do fast operations on bitstrings. 

3.1 An example  
Let us compare the relationship between the predicates QP1 and 
QP2. We want to know whether their induced sets are fully 
contained in one another or whether they are equal.  

If we query the induced set of QP1 by QP2 and vice versa, we can 
decide whether one of the five structures is given by looking on 
the size of the resulting sets. 

If the size of both resulting sets is equal, QP1 is synonymous to 
QP2. 

Figure 2. The size of the result sets of adjacent queries 

Filetype=music  

Genre=rock 
Year<1920 

QP3 

 
   QP2 

      QP1       QP4 
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Assume that if we query the induced set of QP1 by QP2 , the size 
of the result set does not change relative to QP1. If we query then 
QP2 by QP1  and the result does change relative to QP2, then QP1 

is a sub-predicate of QP2.   

For example, if we query the set of “genre=rock” by 
“filetype=music” in the situation shown in Figure 2, the result 
set does not change relative to the query “genre=rock” as all files 
with the attribute “genre=rock” are music files. But if we query 
the set of “filetype=music” by “genre=rock”, the size of the result 
set changes as the “genre=rock” files are a subset of the 
“filetype=music” files.  

Context predicates can be detected easily as the size of their 
induced set is equal to the size of the current object set. Out-of 
context predicates are characterized by the fact the size of their 
induced set is null. 

3.2 Definitions 
We will now formally define our observations. First, we 
formalize the notion of the size of the result set of a query: 

Def. #( Q ) of a query Q is |o(Q)|, the number of objects in   
o( Q ). 

Then, we define the notion of querying two predicates and 
setting the result in relation to the result of the query of the first 
predicate: 

Def. p(QP1 | QP2) := #({ QP1, QP2 }) / #({ QP2 }). 

We assume a finite set P of chosen query predicates, the 
candidate predicates and the object set O. 

Def. QP1 is a sub-predicate of QP2, or QP1 < QP2, if     
p(QP1 | QP2) = 1 and p(QP2 | QP1) != 1. 

Def. QP1 and QP2 are synonymous if p(QP1 | QP2) = 1 and 
p(QP2 | QP1) = 1. 

Def. QP is a context predicate if #( QP ) = |O|. 

Def. QP is an out-of-context predicate if #( QP ) = 0. 

Def. QP is a top-level predicate (TLP) if there is no non-
context predicate QPi ∈ P with QPi > QP.  

The relation p( | ) has one property which allows us to save some 
processing steps later. Assume that we have two predicates QP1 
and QP2 whose induced sets do no intersect. This implies that 
both #( { QP1, QP2 } ) = 0 and #( { QP2, QP1 } ) = 0 as the 
query’s contents are linked with an boolean and which is 
commutative. If we now look at the definition of p( | ), we see 
that this fact implies that if  p(QP1 | QP2) = 0 then p(QP2 | QP1) = 
0 for any pair QP1, QP2. 

3.3 Extracting the top-level predicates 
Now we will show how to extract the top-level predicates (TLPs) 
in a systematic manner working on a fixed set P of candidate 
predicates. 

As we have to compare each pair of elements of P, we will work 
on a virtual matrix M whose columns c and rows r are labeled 
with the elements of P and whose entries are the values of     
p(QPr | QPc). As computing p( | ) is not a cheap operation, we 
will try to keep the number of computed entries of the matrix at a 
minimum. 

In a first step we compute #( QPi ) for each QPi ∈ P to find all 
context and out-of-context predicates. We do this so that the 
context predicates do not interfere with the detection of the TLPs 
as we have to analyze all sub-predicate relationships to find 
them. We will not include context predicates in any further 
operation. We remove out-of-context predicates too, as they are 
not a candidate for being a TLP or being synonymous. 

We select a column and process it until we have analyzed all 
query predicates. Each column is processed row-wise by 
computing p(QPr|QPc) and the corresponding entry p(QPc|QPr). 
Of course, all computations are cached, so that no p( | ) is 
computed twice.  

If we detect a sub-predicate relationship for a column, we do not 
proceed with the column as it is no longer a candidate for being a 
TLP, and we mark the column accordingly. 

If we detect two predicates to be synonymous, we note that 
property and merge the columns and rows virtually as all of their 
entries will be the same and should not be computed twice. 

If we are finished with this process, we know the predicates of P 
who are TLPs, those who are context and out-of-context 
predicates and those who are synonyms. 

The process in pseudocode can be seen in Figure 3. 

1. Define a set of candidate predicates 

2. Remove all context predicates from it 

3. Remove all non-context predicates from 
it 

4. FOR each candidate predicate c 

5.   IF( c is marked as subordinate ) 

6.     continue with next c  

7.   FOR each candidate predicate r 

8.     IF( c == r )  

9.       continue with next r 

10.     get p1 = p( QPr | QPc )  

11.     IF( p1 == 0 )  

12.       continue with next r 

13.     get p2 = p( QPc | QPr ) 

14.     IF( p1 == 1 and p2 == 1 ) 

15.       mark c and r as synonyms 

16.     IF( p2 != 1 and p1 == 1 ) 

17.       mark r as subordinate 

18.     IF( p2 == 1 and p1 != 1 ) 

19.       break inner loop, as c < r 

20.   IF we checked all r 

21.     mark c as TLP 

Figure 3. The TLP extraction process 
This process is quadratic in the number of predicates in P. 
Computing p( | ) is linear in the number of objects. 
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3.4 Computing p( | ) 
For a fast extraction of top-level predicates in wide area of 
applications, we will not work on our original data set to 
compute p( | ). 

As stated in the introduction, attribute-based data is used in 
many contexts. The choice of physical representation of attribute-
based data is probably as large as its applications; it ranges from 
simple record-based structures to RDBMS. 

To decouple the speed of our extraction process from the speed 
of the data storage to do queries, and to use the processor to do 
certain operations, we will work on bitstrings to compute p( | ). 

For each query predicate QP, we extract a predicate map, which 
is an uncompressed word-based bitmap index that contains a bit 
for every object in the system. If the induced set of QP includes 
the object, its associated bit in the predicate map is 1. 

This predicate map is a small cache of the contents of the data 
storage. If the data storage is changed, the bitstrings must be 
changed accordingly. The size of a predicate map is (number of 
objects) / 8 bytes. 

For computing p( | ), we need the intersection set of the query 
predicate’s object sets. With the usage of predicate maps, this is 
just the boolean AND of the associated bitstrings. 

3.5 Choosing candidate predicates 
Our algorithm assumes that we have a fixed set of query 
predicates which are candidates for being top-level predicates. 
We did not give any detail yet on how we choose these 
predicates.  

A first possibility is to build the predicates using all available 
attribute names, all available attribute values and all defined 
operators for the attribute value type. This set of predicates is 
huge, and as our algorithm is quadratic in the number of 
predicates we want to restrict this number to a feasible amount. 

A simple system could use all available attribute names whose 
value domain is limited to a small number of values. It builds 
predicates out of them by using the “=” operator and all available 
values. 

A more sophisticated system could look at the distribution of the 
values of each attribute and divide it into a small number of 
intervals which include the same number of values.  

3.6 Examples 
To show that the algorithms extract worthwhile results, we will 
first show their result sets on simple artificial examples As a first 
example, we look on a set of two objects, 

• object 1 with the attributes {A,X} and 

• object 2 with the attributes {A,Y}. 

The algorithm will identify A as a context-predicate, and X and 
Y as top-level predicates. Thus, the object set would be 
partitioned by the query predicates X and Y. 

In the next step, we add a third object which is named with 
attributes as follows: 

• object 3 {B,Z}. 

The algorithm would recognize B and Z as being synonyms and 
return A and B=Z as top-level predicates. X and Y are identified 
as being sub-predicates of A. Thus, the user would be presented 
with two choices to extend his query: A and B=Z.  

The addition of a fourth object named 

• object 4 {B,Q} 

results in the identification of A and B as top-level predicates. 
The user would be presented with these two attributes, each 
representing a subset of the current query result. Both can be 
used to extend the current query and to investigate one of the 
subsets further.  

Now we will have a look on the extraction algorithm from the 
user’s point of view. Current hierarchical file naming is unable 
to represent multi-hierarchical structures, which is a major 
burden to use it for naming real-world data. We assume an object 
set that uses the attributes ProjectA, ProjectB, Papers, 
Sourcecode in a number of files: 

• file subset 1 {ProjectA, Papers}, 

• file subset 2 {ProjectA, Sourcecode}, 

• file subset 3 {ProjectB, Papers}, 

• file subset 4 {ProjectB, Sourcecode}. 

If we query this object set for ProjectA, we are presented with 
the top-level predicates Papers and Sourcecode as choices to 
extend our query further. If we query the set for Papers, we get 
ProjectA and ProjectB as predicate choices. Each of the files is 
part of two hierarchies, the ProjectA hierarchy and the 
Papers/Sourcecode hierarchy. Depending on which entry point 
we chose, the algorithm allows to user to refine her search using 
the respective hierarchy. 

4. BROWSING AN ATTRIBUTE-BASED 
NAMESPACE 
A top-level predicate is a valid abstraction for all objects in its 
induced set, as all these object satisfy the constraint given by the 
TLP. Furthermore, candidate predicates that are sub-predicates 
of a TLP can be assumed as being included by the TLP. Thus, 
the TLP is a valid abstraction of its sub-predicates too.  

We will now complete the basic notion of top-level predicates 
with two definitions to get a complete view of an explored object 
set. 

4.1 Local objects 
If we look at Figure 1, we observe that there are objects in the 
object set which are not covered by any predicate. We call these 
objects local objects, any refinement of the query using one of 
the proposed predicates would exclude them.  

Detecting the local objects is done both easily and fast by 
subtracting the intersection of all predicates from the current 
object set. This can be done using boolean operations on the 
predicate maps. 

4.2 Important top-level predicates 
The number of top-level predicates is not inherently limited. In 
the case of each candidate predicate only intersecting with some 
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other candidates but not being completely included, the set of 
candidates is the set of TLPs itself. 

Thus, if we have a large number of TLPs, we would like to 
reduce it. Often, we can do so by removing a TLP whose induced 
set is contained in the remaining set of TLPs.  

We call a TLP whose induced set is not covered completely by 
other TLPs an important top-level predicate. 

We can use this definition to build algorithms which reduce the 
set of TLPs to a smaller number. A simple example of an 
algorithm would be to start with a new empty set of predicates 
and add the TLP which extends the coverage of the new set the 
most. We keep on doing this until the new set covers the same 
objects as the original set of TLPs, i.e. all important TLPs are 
included. This algorithm is shown in Figure 4 in pseudo-code. 

We can run this algorithm more than once to get groups of TLPs 
covering the same set each, but which have worse intersection 
properties. 

1. T:= set of TLPs 

2. C:= coverage of T 

3. G:= new empty set of predicates 

4. while o(G) ≠ C 
5.   move predicate x from T to G with 

6.     o(x) ∩ o(G) = min. and 

7.     o(x) \ o(G) = max. 

Figure 4. An example for a grouping algorithm 

4.3 User interface for browsing 
We have now structured our object set in a set of TLPs plus the 
remaining local objects. Furthermore, we grouped the TLPs in 
groups which provide a “good” coverage of the object set each. 

We can use this structure to construct a user interface which 
completely hides the syntax and semantic of query formulation. It 
provides an interface to hierarchically browsing the object set. In 
each browsing step, the user is presented with a set of predicates 
(the TLPs) plus a set of local objects. Note that the partitioning 
of the current object set into top-level predicates and local 
objects is  complete in the sense that every object in the current 
set is either a local object or included in one of the top-level 
predicates. Thus, all the objects are reachable through the query 
mechanism.  

The user can select a TLP to zoom further into the object set. 
This TLP is added to the current query. The user can also zoom 
out by selecting an “Up” button, which removes the last 
predicate of the current query and thus returns to the previous 
object set.  

The user does not have to be aware of him modifying a query by 
his actions. The clue he is given that he works on a attribute-
based system is the format of the choices. They resemble 
attributes, which have formats and use terms that are familiar to 
the user.  

This interaction can be made nearly indistinguishable from the 
accustomed interaction with a hierarchical file system. Figure 5 
shows a prototype interface where the interaction with the 
attribute-based namespace is embedded in the Microsoft 

Windows Explorer as a Namespace Extension. The data stems 
from an attribute-based file system which accumulates normal 
file metadata along with file-type specific metadata like 
document titles and authorship. The extracted predicates are 
grouped by their attribute names. 

5. EVALUATION 
To evaluate the quality of the extracted hierarchy and to test the 
usability of the proposed browsing interface, we conducted a 
controlled user experiment which applied the extraction 
procedure of Section 3 to an attribute-named file system.   

We compared the user’s interaction with three user interfaces. 
The first one is a basic form-based query interface (“Traditional-
UI”, Figure 6) which lets the user choose from all available 
attribute names and values. The second one is a form-based 
interface which proposes query extensions with the algorithms of 
Section 3 (“Enhanced-UI”, Figure 6). The third one is a file 
system browser like interface which mimics the interaction of 
current desktop file browsers (“Explorer-UI”, Figure 7) and 
makes use of the techniques described in Section 3 and 4. 

 
Figure 5. Hierarchical browsing of attribute-based data 

 

The Traditional-UI and the Enhanced-UI differ only in the 
attribute names and values the user can choose from. Thus, 
differences in the user’s performance can be accounted to the 
number and quality of the proposed attribute names and values. 

The Enhanced-UI and the Explorer-UI provide the same choices 
for extending a query, but do so with a different look and 
interaction. Here, differences in the user’s performance can be 
accounted to the differing presentation. 
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5.1 Interfaces 
The basic form-based query interface (“Traditional-UI”) allows 
the user to formulate queries dynamically. Each part of the query 
consists of the attribute name and a value to restrict the attribute 
to. With the respective button, the user can delete the whole 
query to start over or add an extension to the query. When 
selecting a value, the result set in the lower half of the window 
changes instantaneously. To simulate a large object set, only 
result sets of less than seven objects are displayed, otherwise a 
line saying “Too many files” is shown in order to force the user 
to refine the query. 

In each query step, the user can choose from all known attribute 
names with the left pull-down menu. When the user has chosen 
an attribute name, the right menu lets the user choose from all 
known values of this attribute. Only the lowermost query 
predicate line is editable. 

The enhanced form-based interface (“Enhanced-UI”) works like 
the basic one, but restricts a query step’s choice of attribute 
names and values to the top-level predicates of the current result 
set. When the user adds a new query restriction, or query line, 
the system extracts the top-level predicates of the current result 
set, divides them into attribute names and values and inserts 
them accordingly. The lower list shows the local files of the 
current query instead of its whole result set. 

The third interface embeds the query extension extraction in a 
desktop file-browser-like interface (“Explorer-UI”, Figure 7) as 
proposed in Section 4.3. The two buttons at the top allow the 
user to remove the last query predicate (“Up”) and  to clear the 
current query to start over (“New Query”). The “Query:”-line 
displays the current query. The list in the middle of the window 
shows the extracted top-level predicates of the current query’s 
result set. A click on one if its items extends the query 
accordingly. The lower list shows the local files of the current 
query. Note that the Explorer-UI displays exactly the same 
information and gives the user the same choices as the Enhanced-
UI, it only uses a different presentation. 

  
Figure 6. Form-based UI (“Traditional-UI”, “Enhanced-UI”) 
 

  
Figure 7. Hierarchical browser (“Explorer-UI”) 

 

5.2 Methodology 
The experiments were conducted with a laptop equipped with an 
optical mouse on which the interfaces were running. An 
instructor was attending who quickly demonstrated each interface 
with one retrieval task, but didn’t provide any further help or 
answers afterwards. 

The subjects were told as a background that they were an 
assistant to a professor who asked them to find certain 
documents on his computer for him. They were given tasks 
which contained keywords that were similar to or matched object 
metadata (see Figure 8).  

We prepared three task sets of eight tasks each. The tasks were 
structurally equivalent among the task sets but differed in the 
task’s keywords and exact phrasing. To exclude any influence of 
the tasks’ difficulty on the result, we kept the order of 
structurally equivalent tasks consistent between the tasks sets. 
For each interface, the users had to complete the tasks of one 
task set. This results in 24 tasks per subject on three interfaces. 
The mapping between task sets and interfaces was fully balanced 
which results in six different orders of interfaces. A task was 
counted as successfully solved when the subject clicked on the 
right document to open it. Unsuccessful tasks were those where 
the subject did not want to continue searching. 

“Prof. X worked on project together with IBM in 1999. Find 
the project report.” 

“Look for a presentation on information visualization, which 
Prof. X did for his company in 2000.” 

“Prof. X wants to create a research poster for which he needs 
the university’s logo.” 

“Prof. X has to give marks for the Java exercises. Find Peter’s 
Java program of the winter term 2001. 

Figure 8. Examples of  tasks 
After the experiments the subjects were given a questionnaire 
which asked them about their computer, internet and information 
retrieval experience. Then they were asked to order the user 
interfaces according to their personal preference, how much the 
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reduction of choices in the Enhanced-UI helped them when 
compared to the Traditional-UI, and how much the query 
extension proposals of the Enhanced-UI and the Explorer-UI met 
their expectations on how to continue with their query.  

We recruited 12 subjects for our experiments, all being students 
of a wide range of university programs. All had experience with 
using Microsoft Windows GUIs, had been using computers on 
the usual level for web browsing and word processing, and were 
familiar with form-based queries from libraries’ web interfaces.  

During the experiment, we logged the user interactions (mouse 
clicks, list choices and list selections) along with exact 
timestamps. 

5.3 Data set 
The file set consisted of 231 files named with 15 attribute names, 
which had between zero (“tag attributes”) and 14 values. These 
appeared in the choices of the Traditional-UI. For the empty 
result set, there were nine top-level predicates of four distinct 
attribute names (these were displayed initially in the upper pane 
of the Explorer-UI and in the attribute choice of the Enhanced-
UI). The size of the metadata set was chosen so that it is not too 
big for list selection, which is needed in the traditional interface 
and not too small for mining. Figure 8 shows a part of the 
extracted hierarchy. Each block of predicates shows the TLPs of 
the respective subset of object set, with the TLPs for the whole 
object set on the left. A link symbolizes the query extension with 
the respective predicate and leads to the TLPs of the result set of 
the query. For each result set, the complete list of TLPs is shown, 
but only a subset of the possible query extensions are followed.  

In all three systems, the query processing and mining times were 
negligibly short. 

5.4 Results 
From our log files, we extracted the ratio of successfully solved 
tasks (Table 1). The differences between the means are 
statistically significant (F(2, 22) = 4.661, p <  0.021). 

Table 1. Successful tasks (out of 8) 

Number of solved 
Tasks 

Mean Standard 
Deviation 

(SD) 

Standard 
Error 
(SE) 

Traditional 7.17 1.34 0.39 

Enhanced 8.00 0.00 0.00 

Explorer 8.00 0.00 0.00 

 

Table 2 shows the mean times for the task completion. These 
numbers include tasks that could not be solved, they were 
counted with 200 seconds, an artificial time limit which is among 
the highest times for successfully solved tasks. The differences 
between mean times are statistically significant (F(2,22) = 
17.385, p <  0.0005). 

Table 2. Retrieval Times 

Retrieval Time (sec.) Mean SD SE 

Traditional 58.88 50.40 5.14 

Enhanced 39.02 35.52 3.63 

Explorer 17.27 9.22 0.94 

 

The logging of interactions were used to calculate the number of 
query refinement steps, which includes the steps backwards 
(Table 3). The differences between the means are not statistically 
significant. 

Table 3. Number of Query Refinements 

Refinement Steps Mean SD SE 

Traditional 3.59 2.23 0.23 

Enhanced 3.88 2.11 0.22 

Explorer 3.52 1.17 0.12 
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Figure 8. A part of the extracted hierarchy of the experiment’s namespace 
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We continue with the results of the post-experiment 
questionnaire. The first question asked for the personal 
preferences (Table 4). 

Table 4. Personal Preference 

Explorer > Enhanced > Traditional 10 out of 12 

Explorer > Traditional > Enhanced 1 out of 12 

Enhanced > Explorer > Traditional 1 out of 12 

 

The next question asked how helpful the user considered the 
preselection of attributes for the form-based interface 
(Traditional vs. Enhanced-UI,  Table 5) on a scale of 1 (not 
helpful) to 6 (very helpful).   

Table 5. Helpfulness of preselection 

 Mean SD SE 

Form, Helpfulness 4.33 1.30 0.38 

 

The third and fourth question asked how well the proposed query 
extensions met the user’s expectation on how to continue with 
their further search for both the Enhanced-UI and the Explorer-
UI (Table 6) on scale from 1 (not representative for expectation) 
to 6 (very representative). The differences between the means are 
statistically significant (F(1, 11) = 2.67, p <  0.013).   

Table 6. Representativeness of proposed query extensions   

 Mean SD SE 

Enhanced-UI 4.67 0.78 0.22 

Explorer-UI 5.33 0.65 0.19 

 

5.5 Discussion 
The experiment was conducted to get answers to two research 
questions. Our first thesis is that the extracted query extension 
proposals are a good abstraction of the underlying object set and 
aid a user in refining a query. 

The results of the experiment show that the user is able to solve 
more tasks (Table 1), and needs less time per task (Table 2) and 
per refinement step (Table 2 and 3) when restricting the choices 
in the form-based interface to the top-level predicates of the 
current result set. The post-experiment questionnaire reveals that 
the users considered the restriction of possible query extensions 
helpful when compared to the presented set of query extensions 
in the Traditional-UI (Table 5). Furthermore, they considered the 
presented query extensions as representative for their further 
query (slightly dependent of their presentation, Table 6). 

The general problem here is the one of menu selection. For each 
query refinement, the user has to choose from a list of refinement 
alternatives. The time needed for this grows with the length of 
the list and can be optimized with the use of hierarchical menus 
[7]. Thus it seems that the relative lower number of choices 
between the Traditional-UI and the Enhanced-UI could be the 
cause for the better user performance, independent of the quality 

of the proposed quality. This, however, only takes the selection 
times of single refinement steps into account. When the quality 
of the proposed alternatives was bad, it would result in more 
refinement steps, more errors and a longer overall time, of which 
none is the case. Thus we can conclude by our measurements that 
top-level predicates are a good abstraction of the underlying 
object set. This thesis is supported by the user’s personal 
observations (Table 4, 5, 6). 

Our second thesis is that a file-browser like interface (Section 
4.3) is preferable over a form-based interface for retrieving 
objects from an attribute-based namespace. While the success 
rate is not improved further, the Explorer-UI enables the user to 
solve the tasks in less time per task (Table 2) and per extension 
step (Table 2 and 3). Furthermore, most users prefer the usage of 
the file-browser like Explorer-UI over the form-based Enhanced-
UI (Table 4) and even have the impression that the quality of 
query extension proposals is better (Table 6) while they are 
actually the same. 

The research of menu selection can also be applied to explain the 
differences between the Enhanced-UI and the Explorer-UI, which 
both present the same choices in a different way. While the 
Enhanced-UI introduces one artificial hierarchy layer (choice of 
attribute, then choice of value), the Explorer-UI displays these 
choices as a flat list. When applied to a short list, the 
introduction of an additional menu layer lengthens the time 
needed to make the overall selection. [7]. This is the case here, 
and explains the better performance of the file-browser like 
presentation in the experiment along with the facts that one 
additional mouse click is needed for opening the pull-down 
choice, and the two pull-down choices give less overview than 
one list with all alternatives. Combined with the users’ 
preference of the Explorer-UI, our thesis that an file-browser like 
presentation is favorable over a form-based interface for 
presenting top-level predicates and local files to the user is 
supported.  

6. RELATED WORK 
6.1 Query formulation 
Current user interfaces for querying attribute-based data sets are 
mostly variations of the standard model of forming constraints on 
attributes using boolean operators. While early systems like the 
Semantic File System [4] demanded the user to do this manually 
using a command line, newer systems use form-based methods or 
even interfaces for direct manipulation (Dynamic Queries [5], 
Filter-Flow [10], Presto [3]) to embed the syntax and semantics 
in a graphical interaction.  

Form-based methods especially benefit from limiting the number 
of choices of attribute names and values or from a limited 
number of proposed alternatives.  

Early systems let the user choose from all attribute names and 
possible values [4], newer systems restrict that choice to attribute 
names and values that are actually present in the queried object 
set [9] as those result in the only reasonable extensions to the 
query extensions. If textual entry of attribute names and values is 
possible, one can let the system try guessing the anticipated entry 
or use fuzzy search methods to find the real attribute name or 
value.   
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6.2 Hierarchical structures 
Not every search for information starts with a clear goal in mind. 
If the user has a rather vague idea of what he’s searching for or if 
he’s not yet familiar with the system or the dataset, it is 
beneficial to be able to browse a data set without having to 
explicitly formulate exact queries or having to be familiar with 
query formulation.  

6.2.1 Attribute-based data 
KnownSpace [1] analyzes user access patterns and clusters the 
objects to be able to map the object set in a multi-dimensional 
space. However, [1] gives no details on the used cluster method. 

6.2.2 Text corpora 
Much work has been conducted in the field of extracting 
hierarchical structures from text corpora. 

Sanderson and Croft [6, 8] present a method to extract 
subsumption hierarchies of terms. They use term relationships to 
find a hierarchy of concepts in a document set. After extraction of 
a set of terms, the system uses a heuristic to find hierarchical 
structures between them. The heuristic is based on the relative 
frequency of occurrence of the terms x and y in each other’s 
context: 

P(x|y) = 1 and P(y|x) < 1. 

However, the definition fails in the case when a few y do not co-
occur with the term x. Therefore they relaxed the condition to be: 

P(x|y) ≥ 0.8 and P(y|x) < P(x|y) 

The value 0.8 was chosen through informal analysis of term 
pairs. 

Note that our sub-predicate definition has the same structure as 
the one used by Sanderson and Croft [8] to characterize 
subsumptions between terms of documents in text corpora. 
Whereas they compare the co-occurrence of terms extracted 
directly from text corpora, we compare the relationships of 
metadata associated with objects. As the relationship of terms in 
natural language text corpora is not always clean, they relax their 
original definition to be able to recognize subsumption 
relationships that have a few violations in the text corpora (see 
related work section). We stay with the sharper definition as we 
work on metadata which is already an abstracted version of the 
object set. Note that this is no restriction of generality as our 
method works with a weaker sub-predicate definition as well. 

Scatter/Gather [2] is a method to hierarchically browse data sets. 
In each retrieval step, the current data set is clustered and the 
cluster’s contents are summarized. These summaries allow the 
user to restrict the current data set by choosing a cluster and then 
reiterate. Scatter/Gather has been applied to text corpora but 
there has been no published attempt yet to apply it to attribute-
based data. 

7. Conclusion 
We identified properties of query predicates which allowed us to 
structure the attribute namespace hierarchically. We presented a 
process to extract this structure from an object set, which 
resulted in a set of so-called top-level predicates (TLPs). 

Applied to a traditional form-based query interface, the top-level 
predicates allow the user to extend a query by choosing from a 
relatively small number of alternatives. 

We introduced the notions of important top-level predicates and 
local files, which, in conjunction with the hierarchical “zooming 
property” of top-level predicates, allow for browsing of attribute-
named object sets. This was applied to create an user interface 
which hides the syntax and semantics of query formulation and 
allows the user to browse an attribute-named data set 
hierarchically. 

A controlled user experiment confirmed the quality of the set of 
top-level predicates as a valid abstraction from the underlying 
object set and showed that the proposed browsing interface is 
preferable to form-based interfaces for querying an attribute-
named object set. 
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