

Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustraße 7
D-14195 Berlin-Dahlem
Germany

ARNAUD PÊCHER¹

Annegret Wagler

On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four

¹Laboratoire Bordelais de Recherche Informatique (LaBRI), 351 cours de la Libération, 33405 Talence, France, pecher@labri.fr

On Non-Rank Facets of Stable Set Polytopes of Webs with Clique Number Four

Arnaud Pêcher[†]

Annegret Wagler[‡]

November 4, 2003

Abstract

Graphs with circular symmetry, called webs, are relevant for describing the stable set polytopes of two larger graph classes, quasi-line graphs [8, 12] and claw-free graphs [7, 8]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [9]. However, even the problem of finding all facets of stable set polytopes of webs is open. So far, it is only known that stable set polytopes of webs with clique number ≤ 3 have rank facets only [5, 15] while there are examples with clique number > 4 having non-rank facets [10, 12, 11]. The aim of the present paper is to treat the remaining case with clique number = 4: we provide an infinite sequence of such webs whose stable set polytopes admit non-rank facets.

Key words: web, rank-perfect graph, stable set polytope, (non-)rank facet

1 Introduction

A natural generalization of odd holes and odd antiholes are graphs with circular symmetry of their maximum cliques and stable sets, called webs: a web W_n^k is a graph with nodes $1, \ldots, n$ where ij is an edge iff i and j differ by at most k (modulo n) and $i \neq j$. These graphs belong to the classes of quasi-line graphs and claw-free graphs and are, besides line graphs, relevant for describing the stable set polytopes of those larger graph classes [7, 8, 12]. All facets of the stable set polytope of line graphs are known from matching theory [6]. In contrary, we are still far from having a complete description for the stable set polytopes of webs and, therefore, of quasi-line and claw-free graphs, too.

[†]Laboratoire Bordelais de Recherche Informatique (LaBRI), 351 cours de la Libération, 33405 Talence, France, pecher@labri.fr; this work was supported by DONET/ZIB

[‡]Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany, wagler@zib.de; this work supported by the Deutsche Forschungsgemeinschaft (Gr 883/9–1)

In particular, as shown by Giles & Trotter [8], the stable set polytopes of clawfree graphs contain facets with a much more complex structure than those defining the matching polytope. Oriolo [12] discussed which of them can occur in quasiline graphs. In particular, these non-rank facets rely on certain combinations of joined webs.

Several further authors studied the stable set polytopes of webs. Obviously, webs with clique number 2 are either perfect or odd holes (their stable set polytopes are known due to [2, 13]). Dahl [5] studied webs with clique number 3 and showed that their stable set polytopes admit rank facets only. On the other hand, Kind [10] found (by means of the PORTA software¹) examples of webs with clique number > 4 whose stable set polytopes have *non*-rank facets. Oriolo [12] and Liebling et al. [11] presented further examples of such webs.

In [12], Oriolo asked whether the stable set polytopes of webs with clique number = 4 admit rank facets only. The aim of the present paper is to answer that question by providing an infinite sequence of webs with clique number = 4 whose stable set polytopes have *non*-rank facets.

2 Some Known Results on Stable Set Polytopes

The stable set polytope $\operatorname{STAB}(G)$ of G is defined as the convex hull of the incidence vectors of all stable sets of the graph G=(V,E) (a set $V'\subseteq V$ is a stable set if the nodes in V' are mutually non-adjacent). A linear inequality $a^Tx\leq b$ is said to be valid for $\operatorname{STAB}(G)$ if it holds for all $x\in\operatorname{STAB}(G)$. We call a stable set S of G a root of $a^Tx\leq b$ if its incidence vector χ^S satisfies $a^T\chi^S=b$. A valid inequality for $\operatorname{STAB}(G)$ is a facet if and only if it has |V| roots with affinely independent incidence vectors. (Note that the incidence vectors of the roots of $a^Tx\leq b$ have to be linearly independent if b>0.)

The aim is to find a system $Ax \leq b$ of valid inequalities s.t. $STAB(G) = \{x \in \mathbb{R}_+^{|G|} : Ax \leq b\}$ holds. Such a system is unknown for the most graphs and it is, therefore, of interest to study certain linear relaxations of STAB(G) and to investigate for which graphs G these relaxations coincide with STAB(G).

One relaxation of STAB(G) is the fractional stable set polytope QSTAB(G) given by all "trivial" facets, the nonnegativity constraints

$$x_i \ge 0 \tag{0}$$

for all nodes i of G and by the clique constraints

$$\sum_{i \in Q} x_i \le 1 \tag{1}$$

¹By PORTA it is possible to generate all facets of the convex hull of a given set of integer points, see http://www.zib.de

for all cliques $Q \subseteq G$ (a set $V' \subseteq V$ is a clique if the nodes in V' are mutually adjacent). Obviously, a clique and a stable set have at most one node in common. Therefore, QSTAB(G) contains all incidence vectors of stable sets of G and $STAB(G) \subseteq QSTAB(G)$ holds for all graphs G. The two polytopes coincide precisely for perfect graphs [2, 13].

A graph G is called *perfect* if, for each (node-induced) subgraph $G' \subseteq G$, the chromatic number $\chi(G')$ equals the clique number $\omega(G')$. That is, for all $G' \subseteq G$, as many stable sets cover all nodes of G' as a maximum clique of G' has nodes (maximum cliques resp. maximum stable sets contain a maximal number of nodes).

In particular, for all imperfect graphs G follows $STAB(G) \subset QSTAB(G)$ and, therefore, further constraints are needed to describe their stable set polytopes.

A natural way to generalize clique constraints is to investigate rank constraints

$$\sum_{i \in G'} x_i \le \alpha(G') \tag{2}$$

associated with *arbitrary* (node-)induced subgraphs $G' \subseteq G$ where $\alpha(G')$ denotes the stability number of G', i.e., the cardinality of a maximum stable set in G' (note that $\alpha(G') = 1$ holds iff G' is a clique). For convenience, we often write (2) in the form $x(G') \leq \alpha(G')$.

Let RSTAB(G) denote the *rank polytope* of G given by all nonnegativity constraints (0) and all rank constraints (2). A graph G is called *rank-perfect* [16] if STAB(G) coincides with RSTAB(G).

By construction, every perfect graph is rank-perfect. Further graphs which are rank-perfect by definition are *near-perfect* [14] (resp. *t-perfect* [2], *h-perfect* [9]) graphs, where rank constraints associated with cliques and the graph itself (resp. edges and odd cycles, cliques and odd cycles) are allowed.

A result of PADBERG [13] shows that minimally imperfect graphs are near-perfect. (A graph is called *minimally imperfect* if it is imperfect but all proper induced subgraphs are perfect. Berge [1] conjectured and Chudnovsky, Robertson, Seymour & Thomas [4] proved recently that chordless odd cycles C_{2k+1} with $k \ge 2$, termed *odd holes*, and their complements \overline{C}_{2k+1} , called *odd antiholes*, are the only minimally imperfect graphs. The complement \overline{G} has the same node set as G, but two nodes are adjacent iff they are non-adjacent in G.)

Moreover, line graphs are rank-perfect by [6], as their stable set polytopes admit as only non-trivial facets rank constraints associated with cliques and line graphs of 2-connected hypomatchable graphs. (The line graph L(H) of a graph H is obtained by taking the edges of H as nodes of L(H) and connecting two nodes in L(H) iff the corresponding edges of H are incident. A graph H is called hypomatchable if, for all nodes v of H, the subgraph H-v admits a matching meeting all nodes. Since matchings of H correspond to stable sets of L(H), the description of the matching polytope due to [6] implies a description of the stable set polytope for line graphs.)

A generalization of line graphs is the class of *quasi-line graphs* where the neighborhood of any node can be partitioned into two cliques. A superclass of quasi-line graphs consists of all *claw-free graphs* where the neighborhood of any node does not contain a stable set of size 3. A characterization of the rank polytope of claw-free graphs was given by Galluccio & Sassano [7]. They showed that all rank facets can be constructed by means of standard operations from rank constraints associated with cliques, partitionable webs $W^{\omega-1}_{\alpha\omega+1}$, or line graphs of 2-connected, (edge-)critical hypomatchable graphs. However, claw-free graphs are not rank-perfect and finding all facets of the stable set polytopes of claw-free graphs is a long-standing problem [9]. Giles & Trotter [8] found, e.g., non-rank facets which occur even in the stable set polytopes of quasi-line graphs. These non-rank facets rely on combinations of joined webs.

Recall that a web W_n^k is a graph with nodes $1,\dots,n$ where ij is an edge if i and j differ by at most k (i.e., if $|i-j| \leq k \bmod n$) and $i \neq j$. We assume $k \geq 1$ and $n \geq 2(k+1)$ in the sequel in order to exclude the degenerated cases when W_n^k is a stable set or a clique. W_n^1 is a hole and W_{2k+1}^{k-1} an odd antihole for $k \geq 2$. All webs W_9^k on nine nodes are depicted in Figure 1. Note that webs are also called circulant graphs C_n^k [3]. Furthermore, graphs W(n,k) with $n \geq 2$, $1 \leq k \leq \frac{1}{2}n$ and $W(n,k) = \overline{W}_n^{k-1}$ were introduced in [15].

Figure 1

So far, the following is known about stable set polytopes of webs. The webs W_n^1 are holes, hence they are perfect if n is even and minimally imperfect if n is odd (recall that we suppose $n \geq 2(k+1)$). Thus, all webs with clique number 2 are particularly near-perfect and, in addition, all webs with stability number 2 and W_{11}^2 by [14, 16] (note $\omega(W_n^k) = k+1$ and $\alpha(W_n^k) = \lfloor \frac{n}{k+1} \rfloor$). Dahl [5] showed that all webs W_n^2 with clique number 3 are rank-perfect. But there are several webs with clique number > 4 known to be *not* rank-perfect [10, 12, 11], e.g., W_{31}^4 , W_{25}^5 , W_{29}^6 , W_{33}^7 , W_{28}^8 , W_{31}^9 .

In order to answer the question whether the webs with clique number =4 are rank-perfect or not, we fi rst analyze the structure of the known non-rank facets of webs with higher clique number in Section 3 and then investigate in Section 4 a similar construction for the webs W_n^3 that gives rise to an infi nite sequence of webs with clique number =4 having non-rank facets: W_{3l}^3 is not rank-perfect for every $l \geq 11$ with $2 = l \mod 3$ (see Theorem 9).

3 Structure of Known Non-Rank Facets of Webs

A facet $a^Tx \leq b$ of the stable set polytope of a web W_n^k is *reduced* if at most $\omega(W_n^k) - 1 = k$ consecutive coefficients a_i are maximal $(a_i \text{ and } a_j \text{ are consecutive iff } j = i \pm 1 \pmod{n}$ and a_i is maximal iff $a_i = \max\{a_j : 1 \leq j \leq n\}$).

Reduced facets play an important role in stable set polytopes of webs. For instance, Dahl's description of the stable set polytope of webs with clique number 3 was done in two steps: fi rst, he proved that to get such a description, it is enough to characterize reduced facets (Lemma 4.2 [5]); second, he provided such a characterization (Theorem 4.3 [5]).

Furthermore, looking at the known non-rank facets of webs, we observe that the reduced ones admit a certain structure: they are clique family inequalities introduced in [12] and are associated with induced subwebs.

Let G=(V,E) be a graph, \mathcal{F} be a family of (at least three inclusion-wise) maximal cliques of G, $p \leq |\mathcal{F}|$ be an integer, and define two sets as follows:

$$I(\mathcal{F}, p) = \{ i \in V : |\{Q \in \mathcal{F} : i \in Q\}| \ge p \}$$

$$O(\mathcal{F}, p) = \{ i \in V : |\{Q \in \mathcal{F} : i \in Q\}| = p - 1 \}$$

Oriolo [12] showed that the clique family inequality

$$(p-r)\sum_{i\in I(\mathcal{F},p)} x_i + (p-r-1)\sum_{i\in O(\mathcal{F},p)} x_i \le (p-r)\lfloor \frac{|\mathcal{F}|}{p} \rfloor$$
 (3)

is valid for the stable set polytope of every graph G where $r = |\mathcal{F}| \mod p$ and r > 0.

We are interested in the clique family inequalities associated with proper subwebs $W_{n'}^{k'}$ of W_n^k where $\mathcal{F} = \{Q_i : i \in W_{n'}^{k'}\}$ is chosen as clique family, p = k' + 1, and $Q_i = \{i, \ldots, i + k\}$ denotes the maximum clique of W_n^k starting in node i. In order to explore the special structure of such inequalities, we need the following result due to Trotter [15].

Lemma 1 [15] $W_{n'}^{k'}$ is an induced subweb of W_n^k if and only if

- (i) $n(k'+1) \ge n'(k+1)$ and $nk' \le n'k$ holds,
- (ii) there is a subset $V' = \{i_1, \ldots, i_{n'}\} \subseteq V(W_n^k)$ s.t. $|V' \cap Q_{i_j}| = k' + 1$ for every $1 \le j \le n'$.

We now prove the following.

Lemma 2 Let $W_{n'}^{k'} \subset W_n^k$ be a proper induced subweb. The clique family inequality of $STAB(W_n^k)$ associated with $W_{n'}^{k'}$ is

$$(k'+1-r)\sum_{i\in I(\mathcal{F},p)} x_i + (k'-r)\sum_{i\in O(\mathcal{F},p)} x_i \le (k'+1-r)\,\alpha(W_{n'}^{k'}) \tag{4}$$

where $r = n' \mod (k' + 1)$, r > 0 and $W_{n'}^{k'} \subseteq I(\mathcal{F}, p)$ holds.

Proof. Let $W_{n'}^{k'}$ be a proper subweb of W_n^k and recall that the clique family inequality associated with $W_{n'}^{k'}$ is given by (\mathcal{F},p) with $\mathcal{F}=\{Q_i:i\in W_{n'}^{k'}\}$ and p=k'+1. Obviously $|\mathcal{F}|=|W_{n'}^{k'}|=n'$ follows. Let $V'=\{i_1,\ldots,i_{n'}\}$ be the node set of $W_{n'}^{k'}$ in W_n^k . Lemma 1(ii) implies that $Q_{i_j}=\{i_j,\ldots,i_j+k\}$ contains the nodes $i_j,\ldots,i_{j+k'}$ from V'. Obviously, the node $i_{j+k'}$ belongs exactly to the (k'+1) cliques $Q_{i_j},\ldots,Q_{i_{j+k'}}$ from \mathcal{F} . Since all indices are taken modulo n, every node in $W_{n'}^{k'}$ is covered precisely (k'+1) times by \mathcal{F} and p=k'+1 yields, therefore, $W_{n'}^{k'}\subseteq I(\mathcal{F},p)$. Furthermore, $|\mathcal{F}|=n'$ and $p=\omega(W_{n'}^{k'})$ implies $\lfloor\frac{|\mathcal{F}|}{p}\rfloor=\alpha(W_{n'}^{k'})$. Hence the clique family inequality given by (\mathcal{F},p) is (4) which fi nishes the proof. \square

Let's illustrate that with the help of the smallest not rank-perfect web W^5_{25} . Its non-rank facets are clique family inequalities associated with induced subwebs $W^2_{10} \subseteq W^5_{25}$ (note that the node sets 1, 2, 6, 7, 11, 12, 16, 17, 21, 22 and 1, 3, 6, 8, 11, 13, 16, 18, 21, 23 both induce a $W^2_{10} \subseteq W^5_{25}$, see the black nodes in Figure 2).

Figure 2: The induced subwebs $W_{10}^2 \subseteq W_{25}^5$

Choosing $\mathcal{F}=\{Q_i:i\in W_{10}^2\}$ yields $p=\omega(W_{10}^2)=3$ in both cases. All remaining nodes are covered $\frac{10}{25-10}(5-2)=2$ times, hence $O(\mathcal{F},p)=W_{25}^5-W_{10}^2$ follows. In particular, $O(\mathcal{F},p)$ induces the subweb W_{15}^3 of W_{25}^5 and the corresponding clique family inequality is

$$2x(W_{10}^2) + 1x(W_{15}^3) \le 2\alpha(W_{10}^2)$$

due to $r=|\mathcal{F}| \mod p=1$ and yields a non-rank facet of $\mathrm{STAB}(W_{25}^5)$. Notice that in the previous example, W_{25}^5 partitions into two induced subwebs W_{10}^2 and W_{15}^3 . All known reduced non-rank facets are of this kind, i.e., they are clique family inequalities associated with an induced subweb such that the remaining part also induces a subweb.

In order to answer the question whether the webs W_n^3 are rank-perfect or not, we look, therefore, for possible partitions of W_n^3 into two disjoint subwebs and investigate the associated clique family inequalities (4). Lemma 1(i) shows that

$$\begin{aligned} W_{n'}^2 &\subseteq W_n^3 & \text{ with } & \frac{2}{3}n \leq n' \leq \frac{3}{4}n \\ W_{n''}^1 &\subseteq W_n^3 & \text{ with } & \frac{1}{3}n \leq n'' \leq \frac{2}{4}n \end{aligned}$$

are the only possible subwebs since $W_{n'}^{k'} \subset W_n^k$ implies k' < k by [15] again. Hence, there are only two possibilities to partition W_n^3 into two disjoint subwebs:

$$\begin{split} 2|n \text{ and } W_n^3 &= W_{\frac{1}{2}n}^1 \cup W_{\frac{1}{2}n}^1 \\ 3|n \text{ and } W_n^3 &= W_{\frac{1}{3}n}^1 \cup W_{\frac{2}{3}n}^2 \end{split}$$

First, consider the clique family inequalities associated with $W^{1}_{\frac{n}{2}}\subset W^{3}_{n}$ resp. $W^{1}_{\frac{1}{3}n}\subset W^{3}_{n}$. Then $\mathcal{F}=\{Q_{i}:i\in W^{1}_{\frac{n}{2}}\}$ resp. $\mathcal{F}=\{Q_{i}:i\in W^{1}_{\frac{1}{3}n}\}$ yields p=2 by Lemma 2. Due to r>0, we obtain (p-r)=1 and (p-r-1)=0 in this case, hence the associated clique family inequalities (4) cannot be *non*-rank constraints.

Thus, turn to the clique family inequality associated with $W_{\frac{2}{3}n}^2 \subset W_n^3$. This means in particular, that n is divisible by 3, i.e., we have n=3l (for some $l\geq 3$ by $n\geq 2(k+1)$) and $W_{3l}^3=W_{2l}^2\cup W_{1l}^1$. Choosing $\mathcal{F}=\{Q_i:i\in W_{2l}^2\}$ implies p=3 and the associated clique family inequality (4) is a *non*-rank constraint provided r=1 and $O(\mathcal{F},p)\neq\emptyset$ holds.

In order to determine $O(\mathcal{F},p)$, we have to study the distribution of the nodes of W^2_{2l} in W^3_{3l} . For that we need the following notation. Let $V'\subseteq V(W^k_n)$, then a maximal set of consecutive nodes of W^k_n belonging to V' is called an *interval* of V'. Furthermore, an interval containing d nodes is called a d-interval (e.g., $\{i,i+1,i+2\}$ is a 3-interval of V' if $i,i+1,i+2 \in V'$ but i-1,i+3 not).

Lemma 3 If $W_{2l}^2 \subseteq W_{3l}^3$, then $V(W_{2l}^2)$ and $V(W_{3l}^3 - W_{2l}^2)$ consist of 2-intervals and 1-intervals only, respectively.

Proof. Let
$$V = V(W_{3l}^3)$$
 and $V' = V(W_{2l}^2)$.

Claim 1. V-V' must consist of 1-intervals only. Assume there is a node $i \in V'$ s.t. $i+1, i+2 \in V-V'$. Then the maximum clique $Q_i \subseteq W_{3l}^3$ starting in i cannot contain 3 but at most 2 nodes of V', a contradiction to Lemma 1(ii) (recall $Q_i = \{i, i+1, i+2, i+3\}$ and $i+1, i+2 \in V-V'$). \diamond

Claim 2. V' cannot contain a 1-interval. Suppose there is a node $i \in V'$ s.t. $i-1, i+1 \in V-V'$. Then we have $i-2 \in V'$ by Claim 1 and the maximum clique $Q_{i-2} \subseteq W_{3l}^3$ starting in i-2 does not contain 3 but only the 2 nodes i-2 and i of V', a contradiction to Lemma 1(ii) again. \diamondsuit

Claim 3. V' must consist of 2-intervals only. Claim 1 shows that the number of intervals in V-V' equals l (since V-V' contains l nodes). Obviously, V-V' and V' have the same number of intervals. |V'|=2l and Claim 2 imply, therefore, that every of the l intervals of V' contains 2 nodes. \square

In particular, $W_{3l}^3 - W_{2l}^2$ contains every third node of W_{3l}^3 . This implies:

Lemma 4 Let $W_{2l}^2 \subset W_{3l}^3$. Then $W_{3l}^3 - W_{2l}^2$ is the hole W_{1l}^1 and the clique family inequality

$$(3-r)x(W_{2l}^2) + (2-r)x(W_{1l}^1) \le (3-r)\alpha(W_{2l}^2)$$
(5)

of STAB(W_{3l}^3) associated with W_{2l}^2 is a non-rank constraint if $r=2l \mod 3=1$.

Proof. Let $W^2_{2l} \subset W^3_{3l}$. Then Lemma 3 shows that $W^3_{3l} - W^2_{2l}$ is the hole W^1_{1l} . Choosing $\mathcal{F} = \{Q_i : i \in W^2_{2l}\}$ implies p = 3. Every node $i \in W^1_{1l}$ belongs to exactly the two cliques Q_{i-2} and Q_{i-1} in \mathcal{F} since $i-2, i-1 \in W^2_{2l}$ but $i-3 \in W^1_{1l}$ follows from Lemma 3. Thus, every node in W^1_{1l} is covered exactly twice by \mathcal{F} and $W^1_{1l} \subseteq O(\mathcal{F},p)$ follows. $W^2_{2l} \subseteq I(\mathcal{F},p)$ by Lemma 2 and $W^2_{2l} \cup W^1_{1l} = W^3_{3l}$ fi nishes the proof. \square

We investigate in the next section in which cases the non-rank constraint (5) yields a facet of $STAB(W_n^3)$.

4 Non-Rank Facets of STAB (W_n^3)

Throughout this section, let n be divisible by 3 (i.e., n=3l for some $l\geq 3$ by $n\geq 2(k+1)$) and $2=l \bmod 3$ (i.e., $1=2l \bmod 3$). Consider a partition $W_{2l}^2\cup W_{1l}^1$ of W_{3l}^3 into disjoint subwebs. The clique family inequality (5) of STAB(W_{3l}^3) associated with W_{2l}^2 is the non-rank constraint

$$2x(W_{2l}^2) + 1x(W_{1l}^1) \le 2\alpha(W_{2l}^2) \tag{*}$$

due to Lemma 4. The aim of this section is to prove that (*) is a facet of STAB (W_{3l}^3) whenever $l \ge 11$.

For that, we have to present 3l roots of (*) whose incidence vectors are linearly independent. (Recall that a root of (*) is a stable set of W^3_{3l} satisfying (*) at equality.)

It follows from [15] that a web W_n^k produces the full rank facet $x(W_n^k) \le \alpha(W_n^k)$ iff (k+1)/n. Thus W_{2l}^2 is facet-producing if $2 = l \mod 3$ and the maximum stable sets of W_{2l}^2 yield already 2l roots of (*) with linearly independent incidence vectors.

Let $V = V(W_{3l}^3)$ and $V' = V(W_{2l}^2)$. We need a set S of further l roots of (*) which have a non-empty intersection with V - V', called *mixed roots*, and are independent, too, in order to prove that (*) is a facet of $STAB(W_{3l}^3)$.

First, we show that there is no such set S of l mixed roots in the two smallest cases with $l \geq 3$ and $2 = l \mod 3$ (i.e., if l = 5, 8 and n = 15, 24) but that there exists such a set S for every $l \geq 11$.

Proposition 5 The constraint (*) is not a facet of $STAB(W_{15}^3)$ or $STAB(W_{24}^3)$.

Proof. Let S be a mixed root of (*) then we have

$$2|S \cap V'| + 1|S \cap (V - V')| = 2\alpha(W_{2l}^2)$$

due to the coefficients of (*). This implies that we need 2x nodes in $S \cap (V - V')$ if $|S \cap V'| = \alpha(W_{2l}^2) - x$. In particular, $S \not\subseteq V'$ yields $|S| > \alpha(W_{2l}^2)$.

If l=5, then $\alpha(W_{10}^2)=\lfloor\frac{10}{3}\rfloor=3=\lfloor\frac{15}{4}\rfloor=\alpha(W_{15}^3)$ implies that (*) cannot have any root S with $S\not\subseteq W_{10}^2$.

In the case l=8, we have $|S|>\alpha(W_{16}^2)=5$ for every root $S\not\subseteq W_{16}^2$. This implies $|S|+|N^+(S)|=4|S|\geq 24=3l$ (where $N^+(S)$ denotes the union of $N^+(i)=\{i+1,i+2,i+3\}$ for all nodes $i\in S$). Thus, S has to contain every 4th node of V. But there are only 4 stable sets in W_{24}^3 of that type, namely

$$S_1 = \{1, 5, 9, 13, 17, 21\}$$

 $S_2 = \{2, 6, 10, 14, 18, 22\}$
 $S_3 = \{3, 7, 11, 15, 19, 23\}$
 $S_4 = \{4, 8, 12, 16, 20, 24\}$

instead of the needed l=8 mixed roots. Consequently, in the two cases l=5 resp. l=8 there are not enough roots and (*) is, therefore, neither a facet of $STAB(W_{15}^3)$ nor of $STAB(W_{24}^3)$. \square

We now show that there exists a set \mathcal{S} of l mixed roots of (*) whenever $l \geq 11$. Due to $2 = l \mod 3$, we set l = 2 + 3l' and obtain |V| = 3l = 6 + 9l'. Thus, V can be partitioned into 2 blocks D_1, D_2 with 3 nodes each and l' blocks $B_1, \ldots, B_{l'}$ with 9 nodes each s.t. every block ends with a node in V - V' (this is possible since every third node of V belongs to V - V' due to Lemma 3, say $i \in V'$ if $3 \not\mid i$ and $i \in V - V'$ if $3 \mid i$). Figure 3 shows a block D_i and a block B_j (where circles represent nodes in V' and squares represent nodes in V - V'). For the studied mixed roots of (*) we choose the black filled nodes in Figure 3:

$$\begin{array}{c|c} D_i & B_j \\ \circ \circ \blacksquare & | \circ \circ \Box \bullet \circ \Box \circ \bullet \Box \end{array}$$

Figure 3

Lemma 6 Any set S containing the 3rd node of the blocks D_1, D_2 and the 4th and 8th node of any block B_j is a root of (*) with $|S \cap V'| = 2l'$, $|S \cap (V - V')| = 2$ for every ordering $V = D_1, B_1, \ldots, B_m, D_2, B_{m+1}, \ldots, B_{l'}$ of the blocks s.t. D_1, D_2 are not neighbored.

Remark. Note that $D_1 = \{3i+1, 3i+2, 3i+3\}$ for some $0 \le i < l$. Moreover, D_1 and D_2 are not necessarily neighbored only if l' > 1 (i.e., there is no suitable ordering if l = 5).

Proof. Consider a set S constructed that way. Since every block ends with a node in V-V' by definition and every third node of V is in V-V' by Lemma 3, we have that the last node of D_i and the 3rd, 6th, and 9th node of B_j belong to V-V' while all other nodes are in V'. Thus, the two last nodes in D_1 and D_2 are the two studied nodes in $S \cap (V-V')$ and the 4th and 8th node in B_j for $1 \le j \le l'$ are the studied 2l' nodes in $S \cap V'$ (see Figure 3).

S is a stable set provided the two blocks D_1 and D_2 are not neighbored: Obviously, there is no edge between the 4th and 8th node of any block B_j . Thus, we only have to discuss what happens between two consecutive blocks. Since the first 3 nodes of every block B_j do not belong to S, there is no problem with having any block before B_j , i.e., $B_k B_j$ or $D_i B_j$. For the remaining case $B_j D_i$, notice that the last node of B_j and the first two nodes of D_i do not belong to S and there cannot be an edge between two nodes of S in that case, too.

This shows that S is a stable set satisfying $|S \cap V'| = 2l'$ and $|S \cap (V - V')| = 2$. Due to $\alpha(W_{2l}^2) = \lfloor \frac{2(2+3l')}{3} \rfloor = 2l' + 1$, the set S is finally a root of (*). \square

Lemma 6 implies that there are mixed roots S of (*) with |S| = 2 + 2l' if $l' \geq 2$. The next step is to show that there are l such roots if $l' \geq 3$ (resp. $l \geq 11$).

In the sequel, we denote by $S_{i,m}$ the stable set constructed as in Lemma 6 where i is the third node in D_1 and $V = D_1, B_1, \ldots, B_m, D_2, B_{m+1}, \ldots, B_{l'}$. If there are more than $\lfloor \frac{l'}{2} \rfloor$ blocks between D_1 and D_2 , there are less than $\lfloor \frac{l'}{2} \rfloor$ blocks between D_2 and D_1 . Hence it suffices to consider $m \leq \lfloor \frac{l'}{2} \rfloor$.

Clearly, $S_{i,m}$ contains a second node from V-V', namely, the third node i+9m+3 of block D_2 . If 2|l' and $m=\frac{l'}{2}$, then $(i+9m+3)+9m+3=i+9l'+6=i(\bmod n)$ and, therefore, $S_{i,m}=S_{i+9m+3,m}$ follows.

Remark. If l'=2, then the only ordering of the blocks avoiding that D_1 and D_2 are neighbored is D_1, B_1, D_2, B_2 . Hence, we find only $\frac{l}{2}$ mixed roots with 2+2l' nodes, namely, the stable sets S_1, S_2, S_3, S_4 of C_{24}^3 presented above.

We are supposed to construct distinct mixed roots $S_{i,m}$ of (*) with 2+2l' nodes, hence we choose orderings $V=D_1,B_1,\ldots,B_m,D_2,B_{m+1},\ldots,B_{l'}$ with $1\leq m<\frac{l'}{2}$ and obtain easily:

Lemma 7 If $l' \geq 3$, then the stable sets $S_{i,m}$ for each $i \in V - V'$ obtained from any ordering $V = D_1, B_1, \ldots, B_m, D_2, B_{m+1}, \ldots, B_{l'}$ with $1 \leq m < \frac{l'}{2}$ yield |V - V'| = l roots of (*) with 2 + 2l' nodes each.

Consequently, we can always choose a set of 3l roots of (*) if $l' \geq 3$ resp. $l \geq 11$. If $\mathcal S$ is a set of l distinct mixed roots, denote by $A_{\mathcal S}$ the square matrix containing the incidence vectors of the 2l maximum stable sets of W_{2l}^2 and the l mixed roots in $\mathcal S$. $A_{\mathcal S}$ can be arranged s.t. the first 2l and the last l columns correspond to the nodes in W_{2l}^2 and W_{1l}^1 , respectively, and the first 2l rows contain the incidence vectors of the maximum stable sets of W_{2l}^2 where the last rows contain the incidence vectors

of the l mixed roots in S. (Note that the nodes corresponding to the last l columns of A_S are $3, 6, \ldots, 3l$.) Then A_S has the block structure

$$A_{\mathcal{S}} = \left(\begin{array}{c|c} A_{11} & 0 \\ \hline A_{21} & A_{22} \end{array}\right)$$

where the $2l \times 2l$ -matrix A_{11} is invertible since W_{2l}^2 is facet-producing by [15] (in the considered case with $1 = 2l \mod 3$ resp. $2 = l \mod 3$).

It is left to find a set S of l distinct mixed roots s.t. A_{22} is an invertible $l \times l$ -matrix (then A_S is invertible due to its block structure).

Lemma 8 For every $l \ge 11$, there is a set S of l mixed roots of (*) containing 2 nodes from V - V' s.t. the $l \times l$ -submatrix A_{22} of A_S is invertible.

Proof. Every root $S_{i,m}$ of (*) corresponds to a row in $(A_{21}|A_{22})$ of $A_{\mathcal{S}}$ having precisely two 1-entries in the columns belonging to A_{22} (by $|S_{i,m} \cap (V-V')| = 2$ for all $i \in V-V'$). Lemma 7 ensures that no such roots coincide if $1 \leq m < \frac{l'}{2}$ for all $i \in V-V'$.

The idea of finding cases when A_{22} is invertible goes as follows: Let $S_{3j,1}$ for $1 \leq j \leq l-4$ be the first l-4 roots in $\mathcal S$ with $S_{3j,1} \cap (V-V') = \{3j,3(j+4)\}$. Choose as the remaining 4 roots in $\mathcal S$ the stable sets $S_{3j,2}$ for $l-10 \leq j \leq l-7$ with $S_{3j,2} \cap (V-V') = \{3j,3(j+7)\}$. Then take their incidence vectors $\chi^{S_{3j,1}}$ for $1 \leq j \leq l-4$ as the first l-4 rows and $\chi^{S_{3j,2}}$ for $l-10 \leq j \leq l-7$ as the last 4 rows of $(A_{21}|A_{22})$. By construction, A_{22} is the following $l \times l$ -matrix (1-entries are shown only):

	1		5		<i>l</i> –11	<i>l</i> –10	<i>l</i> –9	<i>l</i> –8	<i>l</i> –7	<i>l</i> –6	<i>l</i> –5	$l\!\!-\!\!4$	<i>l</i> –3	<i>l</i> –2	$l\!\!-\!\!1$	l
1	1		1													
÷		٠			٠.											
÷				٠			٠.									
$l\!\!-\!\!11$					1				1							
<i>l</i> –10						1				1						
<i>l</i> –9							1				1					
$l\!\!-\!\!8$								1				1				
<i>l</i> –7									1				1			
$l\!\!-\!\!6$										1				1		
$l\!\!-\!\!5$											1				1	
$l\!\!-\!\!4$												1				1
<i>l</i> –3						1							1			
$l\!\!-\!\!2$							1							1		
$l\!\!-\!\!1$								1							1	
l									1							1

 A_{22} has only 1-entries on the main diagonal (coming from the first nodes in V-V' of $S_{3j,1}$ for $1 \le j \le l-4$ and from the second nodes in V-V' of $S_{3j,2}$ for

 $l-10 \le j \le l-7$). The only non-zero entries of A_{22} below the main diagonal come from the first nodes in V-V' of $S_{3j,2}$ for $l-10 \le j \le l-7$. Hence, A_{22} has the form

 $A_{22} = \left(\begin{array}{c|c} A'_{22} & \\ \hline 0 & A''_{22} \end{array}\right)$

where both A_{22}' and A_{22}'' are invertible due to the following reasons:

 A'_{22} is an $(l-11)\times(l-11)$ -matrix having 1-entries on the main diagonal and 0-entries below the main diagonal by construction. Hence A'_{22} is clearly invertible.

 A_{22}'' is an 11×11 -matrix which has obviously the circular 1's property. In other words, A_{22}'' is equivalent to the matrix $A(\overline{C}_{11})$ containing the incidence vectors of the maximum stable sets of the odd antihole \overline{C}_{11} as rows. Since $A(\overline{C}_{11})$ is invertible due to Padberg [13], the matrix A_{22}'' is invertible, too. (Note that l=11 implies $A_{22}=A_{22}''$.)

This completes the proof that A_{22} is invertible for every $l \geq 11$ if we choose the set S of l roots of (*) as constructed above. \square

Remark. Note that there are cases where it is possible to choose the l mixed roots of one type $S_{3j,k}$ only. E.g., the l roots $S_{3j,1}$ for $1 \leq j \leq l$ yield an invertible $l \times l$ -matrix A_{22} whenever l is odd (then A_{22} has the circular 1's property and corresponds to the matrix containing the incidence vectors of the maximum stable sets of the odd antihole \overline{C}_l as rows). Moreover, if 2|l but $4\not\mid l$ resp. 4|l but $8\not\mid l$, the roots $S_{3j,1}$ for $1 \leq j \leq l$ yield a matrix A_{22} which can be partitioned into 2 resp. 4 invertible blocks with the circular 1's property. However, there are cases left where such a partition is not possible when using mixed roots of the same type only (e.g. the case n=96 and all further cases with 8|l). This let us use mixed roots of different types for the construction.

Finally, we have shown that, for every $l \geq 11$, there are 3l roots of (*) whose incidence vectors are linearly independent: The maximum stable sets of W^2_{2l} yield the first 2l independent roots (since W^2_{2l} is facet-producing in the considered case with $2 = l \mod 3$ by Trotter [15]). Lemma 8 shows that there are further l mixed roots which are independent, too. This implies:

Theorem 9 For any $W_{2l}^2 \subseteq W_{3l}^3$ where $2 = l \mod 3$ and $l \ge 11$, the clique family inequality

$$2x(W_{2l}^2) + 1x(W_{1l}^1) \le 2\alpha(W_{2l}^2)$$

associated with W^2_{2l} is a non-rank facet of STAB(W^3_{3l}).

This gives us an infinite sequence of not rank-perfect webs W_{3l}^3 with clique number 4, namely W_{33}^3 , W_{42}^3 , W_{51}^3 , W_{60}^3 , ... and answers the question whether the webs W_n^3 with clique number 4 are rank-perfect negatively.

References

- [1] C. Berge, Färbungen von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Zeitschr. d. Martin-Luther-Universität Halle-Wittenberg (1961) 114–115
- [2] V. Chv atal, On Certain Polytopes Associated with Graphs. J. Combin. Theory (B) 18 (1975) 138–154
- [3] V. Chv'atal, On the Strong Perfect Graph Conjecture. J. Combin. Theory (B) 20 (1976) 139–141
- [4] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, *The Strong Perfect Graph Theorem*, available at: http://www.math.gatech.edu/thomas/spgc.ps.gz
- [5] G. Dahl, Stable Set Polytopes for a Class of Circulant Graphs. SIAM J. Optim. 9 (1999) 493–503
- [6] J.R. Edmonds and W.R. Pulleyblank, Facets of 1-Matching Polyhedra. In: C. Berge and D.R. Chuadhuri (eds.) Hypergraph Seminar. Springer-Verlag, Heidelberg, (1974), 214–242
- [7] A. Galluccio and A. Sassano, *The Rank Facets of the Stable Set Polytope for Claw-Free Graphs*. J. Comb. Theory B 69 (1997) 1–38
- [8] R. Giles and L.E. Trotter, jr., On Stable Set Polyhedra for $K_{1,3}$ -free Graphs. J. Comb. Theory B 31 (1981) 313–326
- [9] M. Grötschel, L. Lov´asz, and A. Schrijver, *Geometric Algorithms and Combinatorial Optimization*. Springer-Verlag, (1988)
- [10] J. Kind, Mobilitätsmodelle für zellulare Mobilfunknetze: Produktformen und Blockierung. PhD thesis, RWTH Aachen (2000)
- [11] T. Liebling, G. Oriolo, B. Spille, and G. Stauffer, *On Non-Rank Facets of the Stable Set Polytope of Claw-Free Graphs and Circulant Graphs*, To appear in Mathematical Methods of Operations Research
- [12] G. Oriolo, *Clique Family Inequalities for the Stable Set Polytope for Quasi-Line Graphs*. To appear in: Special Issue of Distcrete Applied Math. on Stability Problems, V. Lozin and D. de Werra (eds.)
- [13] M.W. Padberg, Perfect Zero-One Matrices. Math. Programming 6 (1974) 180–196
- [14] F.B. Shepherd, Near-Perfect Matrices. Math. Programming 64 (1994) 295–323
- [15] L.E. Trotter, jr., A Class of Facet Producing Graphs for Vertex Packing Polyhedra. Discrete Math. 12 (1975) 373–388
- [16] A. Wagler, Relaxing Perfectness: Which Graphs are "Almost" Perfect? To appear in: The Sharpest Cut, Festschrift in honor of Manfred Padberg's 60th birthday, M. Grötschel, eds., MPS/SIAM series on Math. Programming