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Abstract

For Kendall’s shape space we determine analytically Jacobi fields and
parallel transport, and compute geodesic regression. Using the derived
expressions, we can fully leverage the geometry via Riemannian optimiza-
tion and reduce the computational expense by several orders of magnitude.
The methodology is demonstrated by performing a longitudinal statistical
analysis of epidemiological shape data.

As application example we have chosen 3D shapes of knee bones, re-
constructed from image data of the Osteoarthritis Initiative. Comparing
subject groups with incident and developing osteoarthritis versus nor-
mal controls, we find clear differences in the temporal development of
femur shapes. This paves the way for early prediction of incident knee
osteoarthritis, using geometry data only.

1 Introduction
In recent years, there has been an increased interest in statistical analysis of
geometric shapes. Especially in the field of morphometry such analyses are
performed - but mostly for static forms. A frequently encountered situation,
however, is that instead of a set of discrete shapes, series of shapes are given,
often together with co-varying parameters. A particular example are longitu-
dinal imaging studies, tracking biological shape changes over time within and
across individuals to gain insight into dynamical processes like aging or disease
progression. For better understanding of such temporal shape data, statistical
modeling and analysis of shapes is of critical importance.

The main challenge is that shape variability is inherently nonlinear and high-
dimensional, so that classical statistical approaches are not always appropriate.
One way to address this is linearization. The quality of the resulting statistical
model, however, then depends strongly on the validity of the linearity assump-
tion, i.e. that the observed data points lie to a good approximation in a flat
Euclidean subspace. Since the natural variability in populations often leads to
a large spread in shape space and the observed data may lie in highly-curved re-
gions (see [HH14]), linearity can often not be assumed in practical applications.
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In the context of longitudinal studies, an important task is to estimate con-
tinuous trajectories from from sparse and potentially noisy samples. For smooth
individual biological changes, subject-specific spatiotemporal regression models
are adequate. They provide also a way to describe the data at unobserved times
(i.e. shape changes between observation times and - within certain limits - also
at future times) and to compare trends across subjects in the presence of un-
balanced data (e.g. due to drop outs). An approach used is to approximate the
observed temporal shape data by geodesics in shape space and based on these,
estimate overall trends within groups. Geodesic models are attractive as they
feature a compact representation (similar to the slope and intercept term in
linear regression) and therefore allow for computationally efficient inference.

The intrinsic theory of least squares and geodesic regression has been intro-
duced by Fletcher in [Fle13]. Derivation of the corresponding Euler-Lagrange
equations for some important manifolds can be found in the work of Machado
and Leite [ML07]. For an overview of statistical analysis on Riemannian mani-
folds see the work of Huckemann and Hotz [HH14] and Pennec [Pen06].

An additional challenge in the analysis of shape trajectories is to distinguish
between morphological differences due to (i) temporal shape evolutions of a sin-
gle individual and (ii) the geometric variability in a population of an object
class under study. To obtain a statistically significant localization of structural
changes at the population level (group-wise statistics), the subject-specific tra-
jectories need to be transferred in a standard reference frame. Among the differ-
ent techniques proposed for normalizing longitudinal deformations [RCSO+04,
BZO10], constructions based on parallel transport provide the most natural
approach and have shown superior sensitivity and stability in the context of
diffeomorphic registration [LAP11]. Note also that for general trajectories, the
simple transport of each shape is not suitable because the distances between the
shapes are not preserved. But if the shapes belong to the same geodesic, this
problem does not arise. This is another advantage of geodesic regression.

As parallel transport in curved shape spaces is rarely given in closed form,
in general it has to be approximated numerically, e.g. employing Schild’s ladder.
For Kendall’s shape space, most computations, including parallel transport, can
be reduced to those for the pre-shape sphere, so that via horizontal projections
closed form expressions are possible. For shapes in 2D, Kendall’s shape space
is isomorphic to the projective space, which is a symmetric space, so that the
essential geometric quantities are well known (cf. [HHM10] and [Fle13]). But for
three and more dimensions, because of less restrictive structure, many questions
remain open.

The paper is organized as follows: In Section 2, we provide an overview of
Kendall’s shape space. For the determination of the canonical decomposition of
tangent vectors of the pre-shape space in horizontal and vertical components,
which is essential for the geometry and analysis of shapes and trajectories, we
provide a computationally efficient approach via the so-called Sylvester equa-
tion. Moreover, we use this decomposition to determine parallel transport and
Jacobi fields, which will be employed for geodesic regression. Parallel trans-
port is significant in statistical normalization, alignment of trajectories and also
computation of Jacobi fields.

The latter describes the variability of trajectories that will be modeled as
best fitting geodesics in Section 3. There, we present our algorithm for the
computation of geodesic regression. In Section 4 we apply this to longitudinal
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statistical analysis of femur data from an epidemiological study dealing with
osteoarthritis and discuss the numerical results.

2 Geodesic Analysis in Shape Space
A pre-shape is a k-ad of landmarks (i.e. particular points) in Rm after removing
translations and similarity transformations. A shape is a pre-shape with rota-
tions removed. For a comprehensive introduction to Kendall’s shape space and
details on the subjects of this section, we refer to [KBCL99].

2.1 Shape Space
In the following we present some preliminaries on Kendall’s shape space, provide
a computationaly efficient method to determine horizontal and vertical compo-
nents of tangent vectors of the pre-shape space, and also prove the corresponding
SOm-equivariance.

Let M(m, k) denote the space of real m × k matrices. In order to remove
translations, we replace x ∈ M(m, k) by x − x̄ where x̄ denotes the Euclidean
mean of x1, · · · , xk. The result Rkm := {x ∈ M(m, k) :

∑k
i=1 xi = 0} identified

with M(m, k − 1) will be endowed with its canonical scalar product given by
〈x, y〉 = trace(xyt). Denoting the Frobenius norm by ‖.‖, we call the sphere
Skm := {x ∈ Rkm : ‖x‖ = 1} pre-shape space and endow it with the spherical
Procrustes metric d(x, y) = arccos(〈x, y〉). Now, the left action of SOm on Skm,
(R, x) 7→ Rx defines an equivalence relation given by x ∼ y iff y = Rx for some
R ∈ SOm. Kendall’s shape space is defined as Σkm = Skm/ ∼. Provided that
k ≥ m+1, the dimension of Σkm is m(k−1)− 1

2m(m−1)−1. Now, denoting the
canonical projection of ∼ by π, the induced distance between any two shapes
π(x) and π(y) is given by

dΣ(x, y) = min
R∈SOm

d(x,Ry) = arccos

m∑
i=1

λi

where λ1 ≥ · · · ≥ |λm| denote the pseudo-singular values of yxt. Denoting
Dj := {x ∈ Skm : rank(x) ≤ j}, it turns out that Σkm,m := Σkm \ π(Dm−2)
inherits a differential structure, compatible with its quotient topology. Following
[KBCL99], we refer to π(Dm−2) as the singular part of Σkm. In particular, Σkm
is a strata of manifolds with varying dimensions and Σkm,m is open and dense
in Σkm. Away from the singular part, the quotient map π is a Riemannian
submersion. Moreover, for k ≥ 3 the shape spaces Σk1 and Σk2 are isometric
to sphere resp. projective space. For each x, y ∈ Skm there exists a rotation
R ∈ SOm such that Ryxt is symmetric and d(x,Ry) = dΣ(x, y). We say that R
well positions y to x and ỹ := Ry is well positioned to x. Note that R does not
need to be unique. Let U denote a neighbourhood in Skm with radius smaller
then π/4 (diameter of Σkm is π/2) such that

λm−1 + λm > 0 for all x, y ∈ U.

Obviously, U is invariant under the action of SOm. For x, y ∈ U the optimal
rotation R and hence ỹ are unique and the function

Skm 3 y 7→ ω(x, y) := ỹ
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is well-defined. Well-positionedness is symmetric, i.e. y = ω(x, y) implies x =

ω(y, x). If x and y are well positioned, we write x ω∼ y. For x ω∼ y the horizontal
geodesic from x to y is given by

Φ(t, x, y) := expx(t logx y) =
sin((1− t)ϕ)

sinϕ
x+

sin(tϕ)

sinϕ
y (1)

where ϕ = arccos(〈x, y〉), 0 ≤ t ≤ 1, exp and log denote the exponential and
logarithm in the pre-shape space. Hence Φ realizes the minimizing geodesic
from π(x) to π(y). We recall that the vertical space at x ∈ Skm is given by

V erx = {Ax : A+At = 0}

and the horizontal space by

Horx = {u ∈M(m, k − 1) : uxt = xut and trace(xut) = 0}.

Hence the restriction of dxπ to Horx is an isometry of Euclidean vector spaces
Horx and Tπ(x)Σ

k
m. We denote the vector space of m × m skew-symmetric

real matrices by Skewm. Thus V erx = Skewm · x. As appropriate for our
applications and for brevity, unless otherwise specified, we restrict our data to
the open and dense set of full rank pre-shapes S := {x ∈ Skm : rank(x) = m}.
As π is a Riemannian submersion, the geometry of the shape space is mainly
described by its horizontal lift in the pre-shape space.

Lemma 2.1. Let x ∈ S and verx denote the restriction of vertical projection to
TxSkm. Then the following hold.
a) verx(w) = Ax where A is the solution of the Sylvester equation

Axxt + xxtA = wxt − xwt.

b) Fix R ∈ SOm. Then verRx(Rw) = Rverx(w).

Proof. S is open in Skm. Hence TxS = TxSkm. Now, the claims follow from
a straightforward computation utilizing that A is unique (since xxt and −xxt
have no eigenvalues in common) and skew-symmetric (since right hand side
is skew-symmetric). For b) note that 〈Rw,Rx〉 = 〈w, x〉 = 0, i.e., w ∈ TxS
implies Rw ∈ TRxS. Now, verRx(R.w) = BRx where B is the solution of
BRxxt+xxtRtB = R(wxt−xwt)Rt. Hence B = RARt implying verRx(R.w) =
R.verx(w).

Henceforth superscripts v and h denote the vertical resp. horizontal compo-
nent, i.e., for any w ∈ TxSkm we have w = 〈w, x〉x+wh+wv where the decompo-
sition is orthogonal. Due to the explicit computation above, (R.w)v = R.wv and
(R.w)h = R.wh, i.e., horizontal and vertical projections are SOm-equivariant.
Denoting the covariant derivatives in the pre-shape and shape space by ∇ resp.
∇̃, for horizontal vector fields X and Y we have

(∇̃dπXdπY ) ◦ π = dπ(∇XY ).

In the following [., .] denotes the Lie bracket in M(m, k − 1), i.e., [U, V ] =
DV (U)−DU(V ) (D Euclidean). For the Euclidean derivative of a vector field
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W along a curve γ we use D
dt and also for simplicity of notation a dot, i.e.,

∇γ̇W = Ẇ − 〈Ẇ , γ〉γ if ‖γ‖ = 1, and D2W
dt2 = Ẅ , etc. We set1

Logxy := logx ω(x, y), Expxu := expx u
h, u ∈ TxSkm.

For the computation of the Fréchet mean (cf. [HHM10] and [Pen06]) p̄ of the
shapes p1, · · · , pN ∈ U , i.e.,

p̄ := argminG, G(x) =

N∑
i=1

d2
Σ(x, pi) (2)

we apply Newton’s method to Karcher’s equation
∑N
i=1 Logxpi = 0 as follows.

We search for the unique zero p̄ of the function f defined by

f(x) =

N∑
i=1

Logxpi, x ∈ U

and set
xk+1 = Expxk

(−(dxk
f)−1f(xk)).

A suitable initial value is the normalized Euclidean mean

x0 =
1

‖
∑N
i=1 pi‖

N∑
i=1

pi.

The total variance of p = (p1, · · · , pN ) reads

var(p) =
1

N
G(p̄) =

1

N

N∑
i=1

‖Logp̄pi‖2.

2.2 Parallel Transport
Next, we consider parallel transport in the shape space and its relation to parallel
transport in the pre-shape space2. We call a vector field W along a horizontal
curve γ horizontally parallel (for brevity h-parallel) iffW is horizontal and dπW
is parallel along π ◦ γ.

Proposition 2.1. Let γ be a horizontal curve in S, u a horizontal vector at
x := γ(0) and W a vector field along γ with W (0) = u. Then the following
holds.
a) The vector field W is h-parallel transport of dπu if and only if w satisfies

Ẇ = Aγ − 〈W, γ̇〉γ, Aγγt + γγtA = γ̇W t −Wγ̇t. (3)

b) Suppose that γ is a unit speed geodesic. Then the equations (3) reduce to

Ẇ = Aγ − 〈W, γ̇〉γ, Ȧγγt + γγtȦ+ 3(Aγ̇γt + γγ̇tA) = 0. (4)
1Note that the Riemannian exponential map of the shape space denoted by ẽxp satisfies

π(expx u) = ẽxpπ(x)(dxπ(u)) = ẽxpπ(x)(dxπ(u
h)).

2Essentially part a) of proposition 2.1 was recently also obtained by Kim, Dryden and Le
(cf. [KDL18]).
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c) Let WS denote the parallel transport WS of u along γ in the pre-shape space.
Then W = WS if and only if vut is symmetric. In this case, if γ is a geodesic,
then

W = U − 2
〈u, y〉
‖x+ y‖2

(x+ y)

where U is the Euclidean parallel extension of u along γ and y = expx(v).

Proof. a) W is parallel if and only if dπ(∇γ̇W ) = 0, i.e., infinitesimal variation
of W must be vertical. Hence ∇γ̇W = (∇γ̇W )v, which due to lemma 2.1 equals
Aγ with Aγγt + γγtA = (∇γ̇W )γt− γ(∇γ̇W )t = Ẇγt− γẆ t. Moreover, SOm-
equivariance of vertical projection implies the well-definedness, i.e., if dπW is
parallel, then dπ(Rw) is parallel for all R ∈ SOm. Now, W is horizontal if
and only if ḟ = 0 where f := ‖Wγt − γW t‖2 + 〈W,γ〉2, since f(0) = 0. If the
equations (3) hold, then Ẇγt − γẆ = (∇γ̇W )γt − γ(∇γ̇W )t = Aγγt + γγtA =

γ̇W t −Wγ̇t and 〈Ẇ , γ〉 + 〈W, γ̇〉 = 〈Aγ − 〈W, γ̇〉γ, γ〉 + 〈W, γ̇〉 = 〈Aγ, γ〉 = 0.
Hence f = 0, i.e., W remains horizontal. If W is horizontal, then f = 0 and we
arrive at Aγγt + γγtA = γ̇W t −Wγ̇t. Thus (3) follows.
b) Note that Wγt and γ̇γt are symmetric and γ̈ + γ = 0. Now, (3) implies

Ȧγγt + γγtȦ+ 2(Aγ̇γt + γγ̇tA) = γ̈W t −Wγ̈t + γ̇Ẇ t − Ẇ γ̇t

= γ̇(Aγ − 〈W, γ̇〉γ)t − (Aγ − 〈W, γ̇〉γ)γ̇t

= −(Aγγ̇t + γ̇γtA).

c) Obviously, W = WS if and only if A = 0, which is equivalent to uvt = vut.
For a unit speed geodesic

WS = U + 〈u, v〉(γ̇ − v)

and a straightforward computation yields

WS = U − 2
〈u, y〉
‖x+ y‖2

(x+ y).

Note that the differential equation for the parallel transport can also be
written as

(∇γ̇W )γtγγt + γγt(∇γ̇W )γt = (γ̇W t −Wγ̇t)γγt. (5)

Hence, a vector field along a curve in π(S) is parallel, if and only if it has a
horizontal lift satisfying the above equation.

2.3 Jacobi Fields
A smooth horizontal curve γ in Skm is a geodesic if and only if π ◦γ is a geodesic
in Σkm. Hence any geodesic variation of π ◦ γ in the latter space reads π ◦ H
with H a variation of γ through horizontal geodesic. Hence the variation field
d
ds (π ◦H(s, .))|s=0 = dπ( ddsH(s, .)|s=0) is a Jacobi field of the shape space. In
the following we derive the differential equation and present the solution for
horizontal variation fields. Recall that a vector field J along γ is called normal
iff 〈J, γ̇〉 = 0.
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Theorem 2.1. Let γ be a horizontal geodesic in S and J a horizontal vector
field on S along γ. Then the following holds.
a) dπ(J) is a Jacobi field if and only if

J +

(
D2J

dt2

)h
= 4

(
D

dt

(
DJ

dt

)v)h
. (6)

b) J is normal solution of (6) if and only if

J = αU + βW

with α+ α̈ = 0, 4β + β̈ = 0, U and W h-parallel, U̇ = 0 and Ẅ +W = 0
c) Suppose that γ is unit speed. Then any normal solution J of (6) can be
expressed as

J = cos1 U1 + cos2W1 + sin1 U2 +
1

2
sin2W2.

Here sinn(t) := sin(nt), cosn(t) := cos(nt), wn denotes the orthogonal projection
of ξn to Skewm · γ̇ and un its orthogonal complement, Wn and Un parallel
extensions of wn resp. un and ξ1 = J(0), ξ2 = J̇(0).
d) A Jacobi field JS of the pre-shape sphere satisfies (6) if and only if(

D

dt

(
DJS

dt

)v)h
= 0

Proof. a) Obviously, any solution of the equation (6) is horizontal and due to
SOm-equivariance of horizontal and vertical projection, invariant under SOm
action. Now, fix a horizontal vector field Y along γ and let X := γ̇. Denoting
the Riemannian curvature of the shape space by R̃, due to O’Neill’s formula (cf.
[GHL05])

〈R̃(dπJ, dπX)dπX, dπY 〉 = 〈J,X〉〈X,Y 〉 − 〈X,X〉〈J, Y 〉+
3

4
〈[J,X]v, [X,Y ]v〉

The normal component of a Jacobi field is also a Jacobi field. Hence we may
and do assume that 〈X, J〉 = 0. Moreover, we may and do assume that γ is unit
speed. Thus with 2(∇XY )v = [X,Y ]v we have

〈R̃(dπJ, dπX)dπX, dπY 〉 =
3

2
〈[J,X]v,∇XY 〉 − 〈J, Y 〉

=
3

2
X.〈[J,X]v, Y 〉 − 3

2
〈∇X [J,X]v, Y 〉 − 〈J, Y 〉

= 〈3
2
∇X [X,J ]v − J, Y 〉

= 〈3∇X(∇XJ)v − J, Y 〉.

Now, dπJ is a Jacobi field if and only if R̃(dπJ, dπX)dπX = ∇̃2
dπX(dπJ). Hence

R̃(dπJ, dπX)dπX = ∇̃dπX(dπ(∇XJ)) = dπ(∇X(∇XJ)h).

Hence 〈dπ(∇X(∇XJ)h), dπY 〉 = 〈3∇X(∇XJ)v − J, Y 〉, i.e.,

〈∇X(∇XJ)h, Y 〉 = 〈3∇X(∇XJ)v − J, Y 〉
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which is equivalent to

J + (∇X(∇XJ)h)h = 3(∇X(∇XJ)v)h

and with (∇XJ)h = ∇XJ − (∇XJ)v we arrive at (6).
b) We may and do assume that γ is unit speed. Inserting δZ with Z horizontal
and Ż vertical, in (6) yields

(δ + δ̈)Z = 3δZ̈h.

A straightforward computation shows that αU and βW solve the above equa-
tion. To prove the converse suppose that γ is unit speed, let Cv be the tangent
component of Z(0) in Skewm · v and u its orthogonal complement. By orthog-
onality u and Cv extend to parallel fields U and W = Cγ̇ along γ with U̇ = 0,
Ẅ +W = 0 and we arrive at the desired decomposition. c) follows immediately
from b). For d) note that D2JS

dt2 + JS = 0.

3 Geodesic Regression
In the following, we employ the results of the previous section to derive an
efficient and robust approach for finding the relation between an independent
scalar variable, i.e. time, and a dependent shape-valued random variable.

Regression analysis is a fundamental tool for the spatiotemporal modeling
of longitudinal observations. Given scalars t1 < t2 < · · · < tN and distinct
pre-shapes q1, · · · , qN , the goal of geodesic regression is to find a geodesic curve
in shape space that best fits the data in a least-squares sense. In particular, let
γ in Skm be a horizontal geodesic, we define the sum-of-squared error of the data
to the geodesic as

F (γ) :=

N∑
i=1

d2
Σ(qi, γ(ti)). (7)

While in [Fle13] and [ML07] geodesics are identified with their initial point
and velocity, hence consider F (x, v) with x = γ(0) and v = γ̇(0), we use the
identification of γ with its endpoints, i.e., we consider

F (x, y) =

N∑
i=1

d2
Σ(qi, γ(ti)) =

N∑
i=1

d2
Σ(qi,Φ(ti, x, y)), x

ω∼ y,

since computations of geodesics via Slerp (given by the function Φ defined in
equation (1)) are more efficient. Model estimation is then formulated as the
least-squares problem

(x∗, y∗) = arg min
(x,y)

F (x, y).

In the absence of an analytic solution, the regression problem has to be solved
numerically. To this end, we employ a Riemannian trust-regions solver [BMAS14]
with an Hessian approximation based on finite differences and initial guess
(q1, qN ). Having in mind that (cf. [Pen06] and [Jos17])

∇ρy(x) = −2Logxy, Hess(ρy)(x) = 2(DExpx(Logxy))−1DxExpx(Logxy)
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where ρy(x) := d2
Σ(x, y), both the gradient and Hessian of the cost function F

can be computed utilizing the Jacobi fields, since the derivatives of the expo-
nential map and therefore those of Φ are given by the Jacobi fields.

4 Application to Epidemiological Data
In this section, we analyze the morphological variability in longitudinal data
of distal femora in order to quantify shape changes that are associated with
femoral osteoarthritis.

We apply the derived scheme to the analysis of group differences in lon-
gitudinal femur shapes of subjects with incident and developing osteoarthritis
(OA) versus normal controls. The dataset is derived from the Osteoarthri-
tis Initiative (OAI), which is a longitudinal study of knee osteoarthritis main-
taining (among others) clinical evaluation data and radiological images from
4,796 men and women of age 45-79. The data are available for public access at
http://www.oai.ucsf.edu/.

From the OAI database, we determined three groups of shapes trajectories:
HH (healthy, i.e. no OA), HD (healthy to diseased, i.e. onset and progression to
severe OA), and DD (diseased, i.e. OA at baseline) according to the Kellgren–
Lawrence score [KL57] of grade 0 for all visits, an increase of at least 3 grades
over the course of the study, and grade 3 or 4 for all visits, respectively. We
extracted surfaces of the distal femora from the respective 3D weDESS MR
images (0.37×0.37 mm matrix, 0.7 mm slice thickness) using a state-of-the-art
automatic segmentation approach [ATEZ18]. For each group, we collected 22
trajectories (all available data for group DD minus a record that exhibited in-
consistencies, and the same number for groups HD and HH, randomly selected),
each of which comprises shapes of all acquired MR images, i.e. at baseline, the
12-, 24-, 36-, 48- and 72-month visits. In a supervised post-process, the quality
of segmentations as well as the correspondence of the resulting meshes (8,988
vertices) were ensured.

We apply the geodesic regression approach detailed in Section 3 to the
femoral shape trajectories described above and represented in Kendall’s shape
space. The resulting estimated geodesics along with the original trajectories are
visualized in Fig. 1. Due to the expressions derived for the parallel transport and
Jacobi fields, we can fully leverage the geometry using Riemannian optimization
procedures. In particular, we observed a superlinear convergence of the intrinsic
trust-region solver in most cases. Solving the high-dimensional (53,928 degrees
of freedom) regression problem on a laptop computer with Intel Core i7-7500U
(2 × 2.70GHz) CPU took about 0.3 seconds in average. In contrast, generic
nonlinear Matlab routines required about 25 seconds to determine a solution,
thus being two orders of magnitude slower.

Next we would like to answer the question of how well the observed data is
replicated by the estimated geodesic trends. A common approach to test this is
to compute the coefficient of determination, denoted as R2, that is the propor-
tion of the total variance in the data explained by the model. Following [Fle13],
a generalization to manifolds is defined as

R2 = 1− unexplained variance
total variance

= 1− minγ F (γ)

minxG(x)
,

9
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Figure 1: First two principal coefficients for femoral shape trajectories of sub-
jects with no (HH), progressing (HD), and severe (DD) osteoarthritis (left) and
their qualitatively estimated shape trajectories via geodesic regression (right).
The figure indicates that regression provides a plausible model. Significant dif-
ference in cross-group trends is observed. Note that on the left side, the data
points are the original shapes, while on the richt side these are their projections
to the respective regression geodesic.

with F (γ) and G(x) as defined in equations (7) and (2), respectively. As the
unexplained variance cannot exceed the total variance (since the Fréchet mean
lies in the search space of the regression problem) and both variances are non-
negative, R2 must lie in the interval [0, 1] – with larger values indicating a higher
proportion of the variance being explained by the model.

The coefficients of determination were computed for all estimated trends
amounting to average group-wise R2 values of 0.38, 0.54, and 0.51 for group
HH, DD, and HD, respectively. While for all groups the geodesic model is able
to describe a relatively large portion of the shape variability, there is a clear
difference between the control group HH and the groups DD and HD associated
to osteoarthritis. In particular, pairwise Mann–Whitney U tests confirm that
the differences are highly unlikely due to random chance (with p-values of 0.000,
and 0.005 for HH vs. DD, and HH vs. HD, respectively). These findings indi-
cate that the OA related shape changes are well captured by a single variable
(time), whereas the physiological effects in HH are rather related to multiple
explanatory variables.

Based on the coefficient of determination we also test for the significance of
the estimated trends employing permutation tests as suggested in [Fle13]. For
each of the trajectories we performed 1,000 permutations and considered the
results as statistically significant for p-values less that 0.01. In almost all cases
(63 out of 66) the trends were significant, such that we can expect them to be
highly unlikely due to random chance.

As shown in Fig. 2 we also observed clear differences in cross-group trends
of mean trajectories. This result in particular indicates that computing mean
of the geodesics for each group in the tangent bundle is very appropriate. In-
deed, the mentioned means of geodesics provide (as described in [MF12]) group
parameters (intercept and slope) and can be employed for analysis of disease
growth and prediction.

10



Figure 2: First two principal coefficients of aligned mean trajectories after align-
ment via parallel transport to the reference (mean of baseline shapes in HH).

Furthermore, we computed the lengths of trajectories and shape wise dis-
tances. As expected, diseased groups provided a higher variability. In particular,
In particular, computation of the trajectory lengths provided min., mean and
max. values 0.0438, 0.0665 and 0.0968 for HH, 0.0512, 0.0691 and 0.0992 for DD
and 0.0566, 0.0784 and 0.1091 for HD. Also, average distances of mean shapes
to shapes in the reference trajectory (mean of the healthy group) visualized in
Fig. 3 proved to be articulately higher for HD.

Figure 3: Average distance of the mean shapes to shapes in the reference tra-
jectory for all time points.

5 Concluding Remarks
This work presented characterizations and computationally efficient methods
for determination of parallel transport, Jacobi fields and geodesic regression of
data represented as shapes in Kendall’s space. Furthermore, an application to
longitudinal statistical analysis of epidemiological data (femur data for analysis
of knee osteoarthritis) has been shown.

An advantage of modeling trajectories by geodesics is the following: A main
task in the longitudinal analysis is to translate trajectories to start at a ref-
erence shape. The intermediate distances between the shapes of a geodesic
are preserved by parallel transport, while they are not for general trajectories.
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Moreover, data inconsistencies are minimized by considering the best-fitting
geodesics, and Jacobi fields can be employed to analyze the variability of the
geodesics, hence providing a canonical descriptor of trends and differences for
the trajectories. There are many potential avenues for future work: First, group-
wise means of the geodesics in each group can be computed with respect to a
natural metric in the tangent bundle (e.g. the Sasaki metric) to determine the
group parameters for a mixed-effects model as described in [MF12]. Second,
an extension of the method to higher-dimensional longitudinal parameters in-
stead of just time can be examined, to achieve even more differentiated results.
Third, a natural generalization is provided by spline regression. Finally, the
methodology can be employed for maximum likelihood estimation (cf. [Fle13])
and utilized for outlier detection.

On the application side, based on the results found, it can be said in summary
that the shape trajectories of the three groups have characteristic progressions.
It seems possible to make a correct assignment to one of the three groups based
on just two measurements. The aim of further analyses must be to substantiate
this statement, by answering the following question: With what reliability can
a prediction be made about the onset of knee osteoarthrities – depending on
the initial shape of the femur and the time interval between the first two image
acquisitions?
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