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This paper proposes a generalization of the ordinary de Casteljau algorithm to manifold-
valued data including an important special case which uses the exponential map of a
symmetric space or Riemannian manifold. We investigate some basic properties of the
corresponding Bézier curves and present applications to curve design on polyhedra and
implicit surfaces as well as motion of rigid body and positive definite matrices. Moreover,
we apply our approach to construct canal and developable surfaces.
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1. Introduction

In various applications like medical imaging, elasticity, array signal processing and dynamics, one has to deal with data
living in a manifold, Lie group or more generally symmetric space. In several works including Ur Rahman et al. (2005),
Wallner and Dyn (2005), Wallner and Pottmann (2006), Wallner et al. (2007), Grohs (2009, 2010), Nava-Yazdani (2008),
Xie and Yu (2008), Nava-Yazdani and Yu (2011), Itai and Sharon (2013) and Ebner (2013) subdivision schemes have been
generalized and applied to nonlinear settings. Besides subdivision schemes, the de Casteljau algorithm is of significant
importance in modeling and computer aided geometric design. There are several publications on Bézier curves in the sphere
including the early work (Shoemake, 1985). Moreover, Li et al. (2010) generalize the classical de Casteljau algorithm for
constructing spherical Bézier based on corner cutting. For further approaches and modifications concerning the de Casteljau
algorithm in certain nonlinear cases we refer to Park and Ravani (1995), Crouch et al. (1999) and Jakubiak et al. (2006).
In the present work, we introduce a framework generalizing previous results to manifold-valued data and study some of
main properties of the resulting Bézier curve. For many practical purposes geodesics are computationally too expensive
or time-consuming. We show how to use alternative approaches preserving main desired properties of the construction.
Moreover, we present applications to the geodesic Bézier approach for polyhedral surfaces, Euclidean group of motion and
diffusion tensors and also use the produced curves to construct canal and ruled surfaces. Throughout this work M denotes
a Ck manifold, smooth stands for Ck and we refer to p0, . . . , pn ∈ M as control points.

✩ This paper has been recommended for acceptance by Johannes Wallner.
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Definition 1. Suppose that for each x ∈ M there is a neighborhood Ux and a map

[0,1] × Ux � (t, y) �→ Φt(x, y) ∈ Ux

such that Φt is smooth in x and y. We call

L(x, y) := {
Φt(x, y): 0 � t � 1

}
the segment from x to y and the function Φ basic iff the following holds. x �= y implies that L(x, y) is a simple and regular
curve, i.e., t �→ Φt(x, y) is an injective immersion and

Φ0(x, y) = x, (1)

Φ1(x, y) = y, (2)

L(x, x) = {x}. (3)

In particular, if the map Φ is globally defined (Ux = M), then it is a smooth homotopy between the first and second
coordinate projection of M × M relative to the diagonal diag(M) := {(x, x): x ∈ M}.

Let g(x, y) := Φ̇0(x, y). We call Φ locally rigid if for each x ∈ M the identity D2 g(x, x) = Id holds. As the map x �→ Φ·(x, ·)
is in general only locally defined, in the following we assume that the control points are close enough, i.e., there is a
neighborhood U of {p0, . . . , pn} such that

x, y ∈ U ⇒ L(x, y) ⊂ U .

Next, we define the (Φ-) de Casteljau algorithm.

2. The algorithm

Definition 2.

p0
i (t) := pi, r = 1, . . . ,n, i = 0, . . . ,n − r,

pr
i (t) := Φt

(
pr−1

i (t), pr−1
i+1 (t)

)
, 0 � t � 1.

Let p(t) := pn
0(t). Let us call B(p0, . . . , pn) := p([0,1]) the Bézier curve with control points p0, . . . , pn . Obviously, this

curve is invariant under affine parameter transformations and satisfies p(0) = p0 and p(1) = pn .

Definition 3. We call

L(p0, . . . , pn) :=
n−1⋃
i=0

L(pi, pi+1)

the polygon of p0, . . . , pn .

In our framework many properties of the Bézier curve and its parametrization p from the linear case remain valid.
Smoothness of p is an immediate consequence of the fact that p is constructed as a finite composition of smooth operations
and L(x, y) is a smooth curve for all x, y ∈ U , provided M and Φ are smooth. Moreover, reversing the order of control points
does not affect their Bézier curve:

B(pn, . . . , p0) = B(p0, . . . , pn).

Suppose now 0 = t0 < t1 < · · · < tn = 1. Our algorithm can simply be modified to produce a solution to the interpolation
problem p(ti) = pi by setting

pr
i (t) = Φ t−ti

ti+r−ti

(
pr−1

i (t), pr−1
i+1 (t)

)
(Aitken’s algorithm).

Example 4. Suppose that M is a convex subset of the general linear group GLn . Then

Φt(x, y) = x
(
(1 − t)y + tx

)−1
y

defines a rational basic function on M . In many applications a natural symmetry condition to impose on a basic function is
the following

L(x, y) = L(y, x).
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In this example a rational basic function meeting the symmetry condition is given by

Φt(x, y) = 1

2

(
x
(
(1 − t)y + tx

)−1
y + y

(
(1 − t)y + tx

)−1
x
)
.

Example 5. Let x, y ∈R
2. Then the circle with the diameter ‖x − y‖ and center x+y

2 given by

Φt(x, y) = 1

2

(
(x + y) +

[
cos(πt) sin(πt)

− sin(πt) cos(πt)

]
(x − y)

)

defines a basic function on R
2.

In many applications, using a point wise linear structure associated to M and having a corresponding geometric or
physical interpretation in mind, we may construct a basic function Φ as follows.

Definition 6. Let TxM � g(x, y) := Φ̇0(x, y). We call Φ dynamical iff there is a map f : T M → M such that for each x there
exists a neighborhood U of x with

Φt(x, y) = f
(
x, tg(x, y)

)
for each 0 � t � 1, y ∈ U . (4)

Note that in this case

f (x,0) = x, f
(
x, g(x, y)

) = y,

f
(
x, (s + t)g(x, y)

) = f
(

f
(
x, tg(x, y)

)
, sg(x, y)

)
(local flow property).

A good example to have in mind is the following. Let M be Riemannian and f = exp the Riemannian exponential map. In
this case, if x, y ∈ U with a distance within the injectivity radius of f at x, then g(x, y) is the velocity and Φ(x, y) is the
geodesic from x to y. Moreover, if M is geodesically complete, then f is defined on whole T M and any two points can
be joined by a (not necessarily unique) geodesic. For instance, see example 1. Another class of important applications is
given, if M is a Lie group or more generally a symmetric space with f the exponential map. Note that if M is a Lie group
admitting a bi-invariant metric (e.g., if M is compact), then the Lie group exponential map coincides with the Riemannian
one.

If M is just the m-dimensional Euclidean space R
m , then T M = R

m × R
m , f (x, v) = x + v and g(x, y) = y − x. In this

case, Definition 2 gives the ordinary linear de Casteljau algorithm. Other examples are provided by g being the nearest
point projection in the ambient Euclidean space onto M as well as stereographic projection in case of a sphere. In this
examples T M = M × R

N and the maps f and g are independent of the base point x. Another example is given by g(x, y)

the orthogonal projection of y to TxM the tangent space at x. Compared to the geodesic construction, this approach has the
advantages that it is computationally less time-consuming ( f and g are simpler) and one needs only to deal with the resp.
linearization of the manifold M at the control points. Next, consider any chart around x ∈ U and replace f and g by their
local representation. Let us denote derivatives of f and g in the first resp. second argument by D1 f resp. D2 f and D1 g
resp. D2 g . Due to f (x, g(x, y)) = y we have

D1 f
(
x, g(x, y)

) + D2 f
(
x, g(x, y)

)
D1 g(x, y) = 0, (5)

D2 f
(
x, g(x, y)

)
D2 g(x, y) = Id. (6)

We say that f is locally rigid iff

D2 f (x,0) = Id for all x ∈ U . (7)

We remark that this property is independent of the chosen chart. Moreover, due to f (x,0) = x we have D1 f (x,0) = Id on U .
Note that (3) implies g(x, x) = 0. Hence, in view of (6) local rigidity of Φ is equivalent to (7).

Definition 7. Suppose that the basic function is given by the pair ( f , g) as defined above. We call

C(p0, . . . , pn) :=
n⋃

i=0

{
f

(
pi,

n∑
j=0

t j g(pi, p j)

)
:

n∑
j=0

t j = 1, t j ∈R�0, j = 0, . . . ,n

}

the convex hull of p0, . . . , pn .
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Note that the Bézier curve B(p0, . . . , pn) is entirely contained in the convex hull of p0, . . . , pn . Furthermore, if control
points lie on the segment between endpoints, then the corresponding Bézier curve coincides with that segment:

p1, . . . , pn−1 ∈ L(p0, pn) ⇒ B(p0, . . . , pn) = L(p0, . . . , pn).

The following theorem summarizes further properties of the de Casteljau’s algorithm.

Theorem 8. Consider control points P := (p0, . . . , pn) and Q := (q0, . . . ,qn) in U . Then the following holds.

a) Transformation invariance: Suppose a Lie group H acts on M by

H × M � (h, x) �→ hx ∈ M

leaving U invariant, i.e., HU ⊂ U . If the action is segment-equivariant, i.e., for every h ∈ G,

hL(x, y) = L(hx,hy) for all x, y ∈ U .

Then

hB(p0, . . . , pn) = B(hp0, . . . ,hpn) for all h ∈ H .

b) Local control: Consider (w.l.o.g.) M as embedded in a Euclidean space with any norm ‖.‖. Then

‖p − q‖∞ � C‖P − Q ‖∞
where C denotes a positive constant depending only on n, U and Φ .

c) Endpoint velocity: Suppose that Φ is given by ( f , g). Denote ṗ(t) := d
dt p(t) and �pi := g(pi, pi+1). If f meets the local rigid

condition (7), then:

ṗ(0) = n�p0,

ṗ(1) = n�pn−1.

Proof. For a) note that the segments L(hpi,hpi+1) and hL(pi, pi+1) have the same endpoints:

Φ0(hpi,hpi+1) = hpi = hΦ0(pi, pi+1),

Φ1(hpi,hpi+1) = hpi+1 = hΦ1(pi, pi+1).

To show b) note that by finiteness of n there is a positive constant K determined by U and Lipschitz constants of Φ on U
such that∥∥pr

i (t) − qr
i (t)

∥∥ = ∥∥Φt
(

pr−1
i (t), pr−1

i+1 (t)
) − Φt

(
qr−1

i (t),qr−1
i+1 (t)

)∥∥
� K

∥∥(
pr−1

i (t), pr−1
i+1 (t)

) − (
qr−1

i (t),qr−1
i+1 (t)

)∥∥.

Iteration yields∥∥p(t) − q(t)
∥∥ = ∥∥pn

0(t) − qn
0(t)

∥∥ � K n‖P − Q ‖∞ for all 0 � t � 1

which immediately results in the desired inequality. To prove c) define p′
i = pn−i for i = 0, . . . ,n and note that the Bézier

curve with control points p′
n, . . . , p′

0 coincides with the one corresponding to p0, . . . , pn . Hence the velocity vector of the
curve B(p′

n, . . . , p′
0) at p′

n is the same as the velocity vector of B(p0, . . . , pn) at p0. On the other hand p(1 − t) = p′(t)
implies ṗ(0) = −ṗ′(1). Therefore, the second equation in c) follows from the first one. Now, applying (5) and (6) the de
Casteljau algorithm yields

ṗr
i = (1 − t)D1 f

(
pr−1

i , tg
(

pr−1
i , pr−1

i+1

))
ṗr−1

i + t ṗr−1
i+1 + D2 f

(
pr−1

i , tg
(

pr−1
i , pr−1

i+1

))
g
(

pr−1
i , pr−1

i+1

)
.

Iterating this formula yields for i = 0 and r = n

ṗ(t) =
n−1∑
k=0

k∑
j=0

(
k

j

)
(1 − t) jtk− j D1 f (. , .) . . . D1 f (. , .)︸ ︷︷ ︸

j times

D2 f (. , .)g
(

pn−1−k
k− j , pn−1−k

k− j+1

)
where all second arguments of D1 f (. , .) and D2 f (. , .) evaluate to zero at t = 0. Setting t = 0 in this formula and using the
assumptions D2 f (pi,0) = Id and D1 f (pi,0) = Id we arrive at ṗ(0) = n�p0. �

Given a basic function Φ on a manifold M , in many applications there is a canonical way to construct another basic
function Φ ′ and the corresponding Bézier curves/patches etc. on a manifold M ′ . To proceed, we first present the following



726 E. Nava-Yazdani, K. Polthier / Computer Aided Geometric Design 30 (2013) 722–732
Definition 9. Suppose that Φ resp. Φ ′ are basic functions on manifolds M resp. M ′ . We call Φ and Φ ′ conjugate iff there is
a diffeomorphism H : M → M ′ such that for each 0 � t � 1 and x, y ∈ M

H
(
Φt(x, y)

) := Φ ′
t

(
H(x), H(y)

)
and write Φ 
H Φ ′ .

Obviously 
 defines an equivalence relation. Next we show how to construct new basic functions from a given one and
provide flexibility in design of new Bézier curves.

Theorem 10. Suppose that Φ resp. Φ ′ are basic functions on manifolds M resp. M ′ and Φ 
H Φ ′ . Then the following holds

a) If Φ is dynamical, then Φ ′ is also dynamical.
b) Let p(.) resp. p′(.) denote the parametrization of Bézier curves corresponding to p0, . . . , pn resp. H(p0), . . . , H(pn). Then

H(p(.)) = p′(.). Particularly H(B(p0, . . . , pn)) = B(H(p0), . . . , H(pn)).
c) Let Φ̃ be a basic functions on M. Then

Ψt(x, y) := Φ̃t
(
Φt(x, y),Φt(x, y)

)
is also a basic function on M.

Proof. a) Define the functions f ′ : T M ′ �→ M ′ and g′ : M ′ × M ′ �→ T M ′ by

f ′(x′, v ′) = H
(

f (x, v)
)
, g′(x′, y′) = dx H g(x, y)

where x′, y′ ∈ M ′ , v ′ ∈ Tx′ M ′ , x′ = H(x) and y′ = H(y′). We can write

Φ ′
t

(
x′, y′) = H

(
Φt(x, y)

) = H
(

f
(
x, tg(x, y)

)) = f ′(x′,dx H
(
tg(x, y)

))
= f ′(x′, tdx H

(
g(x, y)

)) = f ′(x′, tg′(x′, y′)).
b) and c) are straightforward. �

Next, we present two applications of the preceding theorem.

Example 11. Suppose that computing a Bézier curve in a manifold M ′ in terms of a basic function Φ ′ is more manageable
then in M and H : M → M ′ is a diffeomorphism. Then, we may use the basic function Φt(x, y) := H−1(Φ ′

t(H(x), H(y)))

on M . As example suppose that M is implicitly given by a submersion h : R3 → R as M = h(0) and H3 = h. Then choosing
Φ ′ as the ordinary affine linear function gives Φt(x, y) = H−1((1 − t)H(x) + H(y)) on M .

Besides geometric and design issues, computational aspects are of great importance in most applications. Particularly,
a polynomial or at least rational basic function is desirable. Note that the corresponding Bézier curve enjoys the same
property.

Example 12. Let π denote the stereographic projection from the north pole of M = Sm onto R
m . Then

Φt(x, y) := π−1((1 − t)π(x) + tπ(y)
)

defines a rational basic function on Sm .

From a geometric view point the following is a natural property for applications in design and geometric approximation.

Definition 13. We call a basic function Φ on M segmenting iff for each x, z ∈ M

y ∈ L(x, z) ⇒ L(x, y) ∪ L(y, z) = L(x, z). (8)

Note that the basic functions given in Examples 4 and 5 are not segmenting. Moreover, every dynamical function is
segmenting. Next, we characterize dynamical functions in terms of above geometric intuitive property.

Theorem 14. Suppose that Φ is a locally rigid basic segmenting function on M. Then Φ is dynamical.

Proof. Fix x ∈ M . Due to local rigidity there is a neighborhood U of x such that U � y �→ g(x, y) := Φ̇0(x, y) is injective. Let
f (x, .) := g(x, .)|−1

U and v ∈ g(x, U ). Then there exists z ∈ U with g(x, z) = v . Let y ∈ L(x, z), i.e., y = Φt(x, z) for some 0 �
t � 1. Since [0,1] � s �→ Φst(x, z) parametrizes L(x, y) and due to segmenting property L(x, y) ⊂ L(x, z), we have g(x, y) =
d
ds

∣∣
s=0Φst(x, z) = tΦ̇0(x, z) = tg(x, z). Hence Φt(x, z) = y = f (x, g(x, y)) = f (x, tg(x, z)). �
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Fig. 1. Geodesic Bézier curve on torus.

3. Bézier curves

Example 15. The choice f = exp where exp denotes the Riemannian exponential map on M leads to the geodesic de Castel-
jau’s algorithm. Fig. 1 illustrates the corresponding Bézier curve on a torus. This approach requires solving the geodesic
boundary value problem. Another choice is the computationally more suitable map g(x, y) given by the orthogonal projec-
tion of y to the tangent plane of the surface at x,

g(x, y) = y − x − 〈y − x,n〉n
and f (x, ·) the local inverse of g . Here 〈. , .〉 denotes the Euclidean scalar product and n stands for the normal at x. For few
examples geodesics are explicitly known. For instance consider the 2-sphere M = S2 with f the Riemannian exponential
map

f (x, v) = cos
(‖v‖)x + sin

(‖v‖) v

‖v‖ ,

g(x, y) = arccos
(〈x, y〉) y − 〈x, y〉x

‖y − 〈x, y〉x‖ , x, y not antipodal.

The resulting segment between x and y is just the geodesic

Φt(x, y) = sin((1 − t)ϕ)

sinϕ
x + sin(tϕ)

sinϕ
y

where cosϕ = 〈x, y〉. The orthogonal projection of y to the tangent plane of the sphere at x and its local inverse are given
by

g(x, y) = y − 〈x, y〉x,

f (x, v) = v +
√

1 − ‖v‖2 x,

resulting in the segment

Φ̃t(x, y) = (√
1 − t2 sin2 ϕ − t cosϕ

)
x + ty.

Note that in this example Φ̃(x, y) is just a reparametrization of Φ(x, y) as for the sphere both curves coincide with the arc
of the great circle joining x and y.

Next, we consider Lie groups. We denote the Lie group of special orthogonal matrices by SOn , i.e.,

SOn := {
x ∈R

n×n: xxt = id, det(x) = 1
}
,

where id denotes the identity matrix in the general linear group GLn . In general, if M is a Lie group, then the exponential
map is given by
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f (x, v) = x exp(v) = x
∞∑

k=0

1

k! vk

where x ∈ M and v is a vector in the Lie algebra Lie(M) of M . As our consideration is local, using Ado’s theorem (Spivak,
1970, Chapter 10), we may and do assume that M is a subgroup of the general linear group GLn . Now, if h ∈ GLn satisfies
‖I − h‖ < 1 (for any matrix norm ‖.‖), then log is well-defined and given by

log(h) =
∞∑

k=1

1

k
(I − h)k.

Considering M as a subgroup of GLn , we also may take the orthogonal projection. In the following example we compare
this two choices of f .

Example 16. Let x ∈ SE3 where SE3 denotes the special group of Euclidean motion. Then we have

x =
[

q b
0 1

]
,

with q being a rotation in R
3, i.e., q ∈ SO3 and b ∈ R

3 (translation). The standard scalar product for x, y ∈ R
n×n is given by

〈x, y〉 = tr
(
xyt)

and the induced norm is the Frobenius norm

‖x‖ =
(

n∑
j=1

n∑
i=1

xij

)1/2

.

The closest point projection fπ onto SE3 can be computed efficiently using singular value decomposition (see Golub and
Van Loan, 1996). Let q = usvt be a singular decomposition of q where qt stands for the transpose of q. It is well known that

arg min
z∈SO3

‖q − z‖ = uvt = (
qqt)−1/2

q

provided det(q) > 0. Hence we have

fπ (x) =
[

(qqt)−1/2q b
0 1

]
.

Let us denote the Bernstein polynomials of degree n by B0, . . . , Bn . For control points p0, . . . , pn ∈ SE3 we define the Bézier
curve in SE3 as the closest point projection of the corresponding Bézier curve

∑n
i=0 Bi(t)pi in the ambient Euclidean space

R
4×4 onto SE3

p(t) = fπ

(
n∑

i=0

Bi(t)pi

)
= fπ

([∑n
i=0 Bi(t)qi

∑n
i=0 Bi(t)bi

0 1

])
.

For well-definedness we have to show that for all 0 � t � 1 the condition det(
∑n

i=0 Bi(t)qi) > 0 holds. Since
∑n

j=0 B j(t) = 1
for all 0 � t � 1, we have∥∥∥∥∥

n∑
i=0

Bi(t)qi − q1

∥∥∥∥∥ =
∥∥∥∥∥

n∑
i=0

Bi(t)(qi − q1)

∥∥∥∥∥ �
n∑

i=0

Bi(t)max
i

‖qi − q1‖ = max
i

‖qi − q1‖.

In view of det(q1) = 1 and continuity of det it follows that for sufficiently dense control points the desired condition
det(

∑n
i=0 Bi(t)qi) > 0 is satisfied. Note that another advantage of this choice of f is independency of base point (g(x, y) = y,

f (x, v) = fπ (v) and Λ = R
4×4), resulting in a faster approach (see Fig. 2). A vector v in the Lie algebra se3 of SE3 has the

form

v =
[

h u
0 0

]
.

Here h ∈ so3 where so3 consisting of 3 by 3 skew-symmetric matrices stands for the Lie algebra of SO3 and u ∈ R
3. The

exponential map of SE3 reads now

Exp(x, v) = x

[
exp(h) Hu

0 1

]
,
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Fig. 2. Application of projection onto SE3 to refine poses of a rigid body.

H := 1 + 1−cos(‖h‖)
‖h‖2 h + ‖h‖−sin(‖h‖)

‖h3‖ h2. The logarithm in this case is given by

Log
(
x, x′) = x−1

[
log(q′) H−1b′

0 0

]
where

x′ =
[

q′ b′
0 1

]
.

Example 17. Another map useful in computations for SOn is given by the Cayley map

f (x, v) := x

(
I + 1

2
v

)(
I − 1

2
v

)−1

with x ∈ SO3, v ∈ so3.

Its point wise inverse is

g(x, y) = −2
(

I − x−1 y
)(

I + x−1 y
)−1

with x, y ∈ SO3.

The Cayley map provides a suitable linearization of the exponential map near identity. In contrast to the exponential map
it is rational. This fact is useful in numerical applications, since evaluating transcendental functions can be time-consuming.
Cayley map is a first order Padé approximation. In our example any higher order Padé approximation can be used to increase
accuracy.

Next, we consider the generalization of Lie groups to symmetric spaces. There are various applications of symmetric
spaces in many areas and their structure admits the notion of exponential map. Positive definite symmetric matrices provide
a prominent example of a symmetric space and arise in many applications like elasticity and medical imaging. Affine
subspaces of Euclidean space provide further examples. For convenient of the reader, we recall some basic facts and refer
to Wallner et al. (2011) and Nava-Yazdani and Yu (2011) for details. Suppose that M is a homogeneous space, i.e., M = G/K
where K is a Lie subgroup of a Lie group G . Then M is called a symmetric space iff there is an involutive automorphism
s ∈ Aut(G) \ {id}, s2 = id such that the fixpoint set of s denoted by Fix(s) is closed and contained in K , and K and Fix(s)
have the same identity component.

Example 18. Let us consider the space of positive definite symmetric n × n matrices Posn = GLn/On with its exponential
map

Exp(x, v) = x
1
2 exp

(
x

−1
2 vx

−1
2

)
x

1
2

and the logarithm which is globally defined

Log(x, y) = x
1
2 log

(
x

−1
2 yx

−1
2

)
x

1
2 .

Here x, y ∈ Posn and v ∈ Symn (symmetric n × n matrices). Posn is also a Riemannian symmetric space with the geodesic
distance given by

d(x, y) = ∥∥log
(
x

−1
2 yx

−1
2

)∥∥.
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Fig. 3. Diffusion tensors visualized as ellipsoids.

Fig. 4. exp: straightest geodesics. Fig. 5. log: shortest geodesics.

Fig. 6. Bézier curve on a polyhedron.

Moreover, the corresponding geodesic joining x and y is given by

Φt(x, y) = x1/2(x−1/2 y1/2x−1/2)t
x1/2.

Note that the corresponding Bézier curve in Posn coincides with the one inherited as a subset of GLn , since

x
1
2 exp

(
x

−1
2 vx

−1
2

)
x

1
2 = x exp

(
x−1 v

)
.

Fig. 3 shows an application of de Casteljau’s algorithm to four control points in Pos3.

Example 19. This example addresses construction of Bézier curves on polyhedral surfaces. In polyhedra, one can consider
shortest as well as straightest geodesics (see Figs. 4 and 5). The concept of straightest geodesics has been introduced by
Polthier and Schmies (1998). Straightest geodesics in polyhedral surfaces are characterized by the property that at inner
point of an edge outbound and inbound angles coincide and at a vertex left and right angles sum up to half of total
vertex-angle (see Fig. 6). In contrast to shortest, straightest geodesics uniquely solve the geodesic initial value problem (see
Polthier and Schmies, 1998). Moreover a straightest geodesic coincides with the shortest, provided the geodesic does not
pass through a spherical vertex. Hence, for an initial point x ∈ M and initial velocity v the Riemannian exponential map
exp(x, v) is the endpoint of the corresponding straightest geodesic. As for n vertices computation of the endpoint exp(x, v)

is done by a loop using at most all n vertices, the underlying time complexity is just O(n). The optimal algorithm for the
computation of log(x, y), i.e., the initial velocity of the shortest path joining x and y in M can be found in Chen and Han
(1996) resp. Schreiber and Sharir (2006) and has time complexity O(n2) resp. O(n log n) for convex polyhedra.
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Fig. 7. Canal surface. Fig. 8. Ruled surface.

Fig. 9. Bi-cubic Chebyshev net on the 2-sphere and corresponding k-surface.

4. Construction of surfaces

Many important surfaces can be constructed as a 1-parameter family of simple curves. The most important examples are
canal and ruled surfaces (1-parameter family of circles resp. straight lines). Envelope of a family of spheres whose centers
lie on a space curve is a canal surface. Particularly, if the sphere centers lie on a straight line, then the canal surface is a
surface of revolution. A surface S is ruled if through every point of S there is a straight line that lies on S . Hence it can
be parametrized as a one-parameter family of straight lines. For applications of canal and ruled surfaces in architecture we
refer to Pottmann et al. (2007).

Example 20. Consider a canal surface S generated by a regular curve m, i.e., S : x(s, t) = m(t) + r(t)(cos(s)N(t) + sin(s)B(t))
with N the normal and B the binormal of the curve m and 0 � t � 1, 0 � s < 2π . Denote the unit tangent map of the curve
m by n. We may write S as S = ⋃

0�t�1 St where St denotes the circle with center m(t) and radius r(t) in the plane through

the point m(t) with the normal n(t). Now, given control points (mi, ri,ni) ∈ R
3 × R+ × S2 we may apply our approach to

construct an approximation of the surface S (see Figs. 7 and 8).

Example 21. For control points p0, . . . , pn in a ruled surface given by S : x(s, t) = m(t) + sv(t) we may write pi = (mi, vi) ∈
R

3 × S2.
Our approach can also be applied to produce further classical surfaces. For instance, Pinkall (2008) gives a constructive

approach to design cylinders with constant negative curvature using their characterization via Gauß map. Therein the task
is reduced to refine a discrete Chebyshev net in the 2-sphere. The Chebyshev net is completely determined by initial points
Ni,i and Ni+1,i . Due to Theorem 3 applying Definition 2 parallelograms refine to parallelograms. Hence we may apply
Definition 2 with M = S2 and f and g from our first example to construct the net. Using the method described in Pinkall
(2008) the surface can then be reconstructed (see Fig. 9).

5. Conclusion

Considering computational and geometric aspects with focus on applications in CAGD and approximation tasks, we have
presented a generalization of de Casteljau’s algorithm to manifold-valued data. The canonical choice for Riemannian mani-
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folds as well as Lie groups and more generally symmetric spaces uses an accurate approximation of the exponential map.
The Cayley map and orthogonal projection on the tangent space provide further examples. Also, using certain Bézier curves
on the 2-sphere we can efficiently construct canal resp. ruled surfaces as 1-parameter family of circles resp. straight lines.
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