
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

DANIEL REHFELDT, THORSTEN KOCH

SCIP-Jack—a solver for STP and variants with
parallelization extensions: An update

ZIB Report 18-05 (January 2018)

Zuse Institute Berlin
Takustr. 7
D-14195 Berlin

Telefon: +49 30-84185-0
Telefax: +49 30-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

SCIP-Jack – A solver for STP and variants with

parallelization extensions: An update∗

Daniel Rehfeldt†‡· Thorsten Koch

Abstract

The Steiner tree problem in graphs is a classical problem that commonly arises in prac-
tical applications as one of many variants. Although the different Steiner tree problem vari-
ants are usually strongly related, solution approaches employed so far have been prevalently
problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-
purpose framework that can be used to solve the classical Steiner tree problem and 11 of its
variants. This versatility is achieved by transforming various problem variants into a general
form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack
includes various newly developed algorithmic components such as preprocessing routines
and heuristics. The result is a high-performance solver that can be employed in massively
parallel environments and is capable of solving previously unsolved instances. After the
introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall
performance of the solver has considerably improved. This article provides an overview on
the current state.

1 Introduction

The Steiner tree problem in graphs (STP) is a classical NP-hard problem [1] entailing a wealth
of research articles. Given an undirected, connected graph G = (V,E), costs c : E → Q≥0 and a
set T ⊆ V of terminals, the problem is to find a tree S ⊆ G of minimum cost that includes T .

While Steiner tree problems can be found in various applications, these problems are usually
one of the many variants of the STP, such as for instance the rectilinear Steiner tree problem [2] or
the prize-collecting Steiner tree problem [3]. The 2014 DIMACS Challenge, dedicated to Steiner
tree problems, marked a revival of research on the STP and related problems: Both at and in
the wake of the Challenge several new Steiner problem solvers were introduced and many articles
were published. One of these new solver is SCIP-Jack, which was by far the most versatile solver
participating in the DIMACS Challenge, being able to solve the STP and 10 of its variants (note
that in the current version one more variant can be handled). Moreover, SCIP-Jack was able to
win two categories of the Challenge.

SCIP-Jack is described in detail in the article [4], but already in an updated version that vastly
outperforms its predecessor participating in the DIMACS Challenge. However, the development
of SCIP-Jack did not stop with [4]. In the following we will report on recent improvements and
provide current results that again demonstrate a significant speed-up of SCIP-Jack.

∗The work done for this article was supported by the BMBF Research Campus Modal SynLab and by the
BEAM-ME project.
†Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {rehfeldt, koch}@zib.de
‡Technical University Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

1

Table 1: SCIP-Jack can solve the STP and 11 related problems

Abbreviation Problem Name

STP Steiner tree problem in g raphs

SAP Steiner arborescence problem

RSMT Rectilinear Steiner minimum tree problem

OARSMT Obstacle-avoiding rectilinear Steiner minimum tree problem

NWSTP Node-weighted Steiner tree problem

PCSTP Prize-collecting Steiner tree problem

RPCSTP Rooted prize-collecting Steiner tree problem

MWCSP Maximum-weight connected subgraph problem

RMWCSP Rooted maximum-weight connected subgraph problem

DCSTP Degree-constrained Steiner tree problem

GSTP G roup Steiner tree problem

HCDSTP Hop-constrained d irected Steiner tree problem

Internally, all problems are transformed into the Steiner arborescense problem (SAP), the
directed version of the STP [4]. In only two cases it is necessary to add specific constraints.
The transformations are a distinct feature of SCIP-Jack and allow for a generic solving approach
with a single branch-and-cut algorithm. Descriptions on some of the transformations can be
found in [5]. While in principle it would be possible to only employ solving routines for the
SAP (since each problem variant can be transformed to it), this approach falls far short of being
competitive as it fails to utilize special properties of particular problem types. Therefore, SCIP-
Jack includes a plethora of specialized heuristics and preprocessing routines. Table 2 indicates
for which problem variants specialized algorithms are used. Detail on the heuristics is given in [4]
and [5] (and in Section 2), while detail on the preprocessing can be found in [6].

2 Recent improvements

Apart from general improvements, particular progress has been made with the MWCSP and the
PCSTP. Therefore, these two variants will be discussed separately in Section 2.2.

2.1 General improvements

The general improvements of SCIP-Jack include a change in the default propagator, see [4], which
now additionally employs reduction techniques to fix variables (of the underlying IP formulation)
to zero. These variables correspond to arcs in the SAP—to which all Steiner tree variants
including the STP are transformed. Whenever ten percent of all arcs have been newly fixed
during the branch-and-cut procedure, the underlying, directed, SAP graph D is (re-) transformed
into a graph G for the respective Steiner tree problem variant. All edges (or arcs) in G that
correspond to arcs that have been fixed to 0 in D are removed. Thereupon, the default reduction
techniques of SCIP-Jack are used to further reduce G and the changes are retranslated into arc

2

Table 2: Transformations, heuristics, and preprocessing according to problem type

Problem
Special Virtual Virtual Special Special

Constraints Vertices Arcs Preprocessing Heuristics

STP – – X X X

SAP – – – X X

RSMT – X X – –

OARSMT – X X – –

NWSTP – – X – –

PCSTP – X X X X

RPCSTP – X X X X

MWCSP – X X X X

RMWCSP – X X – X

DCSTP X – X – X

GSTP – X X – –

HCDSTP X – – X X

fixings in D.
A further important development is the reimplementation of the separation algorithm of

SCIP-Jack, which is based on the warm-start preflow-push algorithm described in [7]. The new
separation algorithm is for many instances more than ten times faster than the old one. The cause
of this speed-up lies both with an improved, cache-optimized implementation and the use of new
heuristics. Notably, the underlying maximum-flow routine also vastly outperforms the algorithm
described in [8], which is commonly used as a benchmark for maximum-flow algorithms.

2.2 Improvements for MWCSP and PCSTP

Maximum-weight connected subgraph problem. Given an undirected graph G = (V,E) and node
weights p : V → Q, the objective is to find a connected subgraph S = (VS , ES) ⊆ G such that∑

v∈VS
pv is maximized.

Prize-collecting Steiner tree problem. Given an undirected graph G = (V,E), edge-weights
c : E → Q+, and node-weights p : V → Q≥0, a tree S = (VS , ES) ⊆ G is required that minimizes

C(S) :=
∑
e∈ES

ce +
∑

v∈V \VS

pv. (1)

The most important component for accelerating exact solving of both PCSTP and MWCSP
is graph reduction—which can for instance be employed in preprocessing. A simple reduction
routine for the MWCSP is for example to contract all adjacent vertices of positive weight. How-
ever, several reduction techniques are considerably more sophisticated—in [9], for instance, three
techniques for the MWCSP are described that involve NP -hard subproblems. By adding these
preprocessing techniques to SCIP-Jack, not only most MWCSP problems can be solved during
preprocessing, but also several instances could be solved for the first time to optimality [6, 9].

3

Another important component is constituted by heuristics. The current version of SCIP-Jack
includes for instance a straightforward greedy heuristic for the PCSTP that starts with a single
vertex tree S0 = v with v ∈ V and repeatedly connects the current tree Si to another vertex
w ∈ V with pw > 0 such that this extension leads to a tree Si+1 with C(Si+1) ≤ C(Si). This
procedure is implemented by a modification of Dijkstra’s algorithm. More refined heuristics in
SCIP-Jack for both PCSTP and MWCSP are described in [5, 9].

3 Computational results

The computational experiments described in the following were performed on a cluster of Intel
Xeon X5672 CPUs with 3.20 GHz and 48 GB RAM. SCIP 4.0.0 was used and CPLEX 12.61)
was employed as the underlying LP solver. Moreover, the overall run time for each instance was
limited by two hours. If an instance was not solved to optimality within the time limit, the gap

is reported, which is defined as |pb−db|
max{|pb|,|db|} for final primal bound (pb) and dual bound (db).

The average gap is obtained as an arithmetic mean. The averages of the number of nodes and
the solving time are computed by taking the shifted geometric mean with a shift of 10.0 and 1.0,
respectively. For reasons of space we only provide results for STP, PCSTP, and MWCSP.

The results in Table 3 show that the majority of STP instances can be solved within short
time. The new version of SCIP-Jack can solve several more instances to optimality than the
previous version described in [4]. Also, the run time has been more than halved for the majority
of instances.

Table 3: Computational results for Steiner tree problem in graphs
optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

X 3 3 1.0 0.1 – –
E 20 20 1.8 0.3 – –
I640 100 80 23.3 6.6 980.1 0.7
ALUE 15 13 1.3 22.9 1.0 1.9
vienna-i-advanced 85 83 1.8 70.2 1.8 0.0

As can be seen in Tables 4 and 5, with the combination of the new reduction techniques,
heuristics and transformations most of the PCSTP and MWCSP instances can be solved easily.
Only the PUCNU test set has unsolved instances left. Notably, the results not only demonstrate
a speed-up of more than 200% for many instances as compared to the previous version of SCIP-
Jack, but also mark a demarcation from other state-of-the-art PCSTP or MWCSP solvers. For
example for several problems from the SHINY test, SCIP-Jack outperforms the best run-times
reported in the literature [10] by three orders of magnitude and solves problems in less than 0.1
seconds that are intractable for other solvers.

4 Conclusions and outlook

The computational results of SCIP-Jack demonstrate that improved preprocessing and transfor-
mation techniques can have a dramatic effect on performance when solving Steiner tree variants.
In many cases it is possible to solve problems to optimality even before it is necessary to employ
the branch-and-cut kernel.

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

4

Table 4: Computational results for (rooted) prize-collecting Steiner tree problem ((R)PCSTP)

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

cologne1 14 14 1.0 0.0 – –
cologne2 15 15 1.0 0.1 – –
JMP 34 34 1.0 0.0 – –
CRR 80 80 1.0 0.2 – –
PUCNU 18 11 28.0 26.2 865.6 1.8

Table 5: Computational results for maximum-weight connected subgraph problem (MWCSP)

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

JMPALMK 72 72 1.0 0.0 – –
SHINY 39 39 1.0 0.0 – –
ACTMOD 8 8 1.0 0.1 – –

In the future we will continue on this path, adding more specific routines, while at the same
time improving those sections that apply to all problem variants. The aim is to both improve
the run-time of SCIP-Jack, in particular for the STP, and, equally important, tackle additional
previously unsolved instances.

5 Acknowledgements

The work for this article has been conducted within the Research Campus Modal funded by
the German Federal Ministry of Education and Research (fund number 05M14ZAM). It was
supported by the Federal Ministry for Economic Affairs and Energy within the BEAM-ME
project (ID: 03ET4023A-F). It has been further supported by a Google Faculty Research Award.

References

[1] Karp, R.: Reducibility among combinatorial problems. In Miller, R., Thatcher, J., eds.:
Complexity of Computer Computations. Plenum Press (1972) 85–103

[2] Warme, D., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems:
A computational study. In Du, D.Z., Smith, J., Rubinstein, J., eds.: Advances in Steiner
Trees. Kluwer (2000) 81–116

[3] Ljubić, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algo-
rithmic framework for the exact solution of the prize-collecting steiner tree problem. Math-
ematical Programming 105(2) (Feb 2006) 427–449

[4] Gamrath, G., Koch, T., Maher, S., Rehfeldt, D., Shinano, Y.: SCIP-Jack—a solver for STP
and variants with parallelization extensions. Mathematical Programming Computation 9(2)
(2017) 231 – 296

[5] Rehfeldt, D., Koch, T.: Transformations for the Prize-Collecting Steiner Tree Problem and
the Maximum-Weight Connected Subgraph Problem to SAP. Technical Report 16-36, ZIB,
Takustr.7, 14195 Berlin (2016)

5

[6] Rehfeldt, D., Koch, T., Maher, S.: Reduction Techniques for the Prize-Collecting Steiner
Tree Problem and the Maximum-Weight Connected Subgraph Problem. Technical Report
16-47, ZIB, Takustr.7, 14195 Berlin (2016)

[7] Hao, J., Orlin, J.B.: A faster algorithm for finding the minimum cut in a directed graph.
J. Algorithms 17(3) (1994) 424–446

[8] Cherkassky, B.V., Goldberg, A.V.: On implementing the push—relabel method for the
maximum flow problem. Algorithmica 19(4) (1997) 390–410

[9] Rehfeldt, D., Koch, T.: Combining NP-Hard Reduction Techniques and Strong Heuristics
in an Exact Algorithm for the Maximum-Weight Connected Subgraph Problem. Technical
Report 17-45, ZIB, Takustr.7, 14195 Berlin (2017)

[10] Loboda, A.A., Artyomov, M.N., Sergushichev, A.A. In: Solving Generalized Maximum-
Weight Connected Subgraph Problem for Network Enrichment Analysis. Springer Interna-
tional Publishing, Cham (2016) 210–221

6

	Introduction
	Recent improvements
	General improvements
	Improvements for MWCSP and PCSTP

	Computational results
	Conclusions and outlook
	Acknowledgements

