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Generalized preprocessing techniques for Steiner tree and

maximum-weight connected subgraph problems

Daniel Rehfeldt∗ · Thorsten Koch

Abstract

This article introduces new preprocessing techniques for the Steiner tree problem in
graphs and one of its most popular relatives, the maximum-weight connected subgraph
problem. Several of the techniques generalize previous results from the literature. The cor-
rectness of the new methods is shown, but also their NP-hardness is demonstrated. Despite
this pessimistic worst-case complexity, several relaxations are discussed that are expected
to allow for a strong practical efficiency of these techniques in strengthening both exact and
heuristic solving approaches.

1 Introduction

The Steiner tree problem in graphs (SPG) is one of the classical NP-hard problems [5]. However,
often propelled by practical applications, also many variants of the SPG have been extensively
discussed in the literature. One of the most popular of these is the maximum-weight connected
subgraph problem (MWCSP). For both problems sophisticated exact solvers exist [7, 10, 11]. An
essential component of all these approaches is preprocessing. This article introduces a series of
new preprocessing technique for SPG and MWCSP (also commonly called reduction techniques)
that often generalize previous results. These techniques will be fully integrated into the Steiner
class solver SCIP-Jack [3] in the near future.

1.1 Notation

For both SPG and MWCSP we denote the underlying graph by G := (V,E), with vertices V
and (undirected) edges E. For any subgraph S ⊆ G (e.g., a Steiner tree) we denote its vertices
by VS and its edges by ES (please note the difference to the notation E[W ] defined in (1) for
a set W ⊆ V of vertices). While for the SPG T denotes the set of terminals, for the MWCSP
we define T := {v ∈ V | p(v) > 0}; for both SPG and MWCSP we set s := |T |, n := |V | and
m := |E|. Furthermore, we use the notation V = {v1, ..., vn} and T = {t1, ..., ts}.

In this article paths are invariably assumed to be simple, i.e., without cycles. The subpath
of a path Q between two vertices vi, vj ∈ VQ will be denoted by Q(vi, vj). For any W ⊆ V we
define

E[W ] :=
{
{vi, vj} ∈ E | vi, vj ∈W

}
(1)

and

W :=
{
vi ∈ V | ∃{vi, vj} ∈ E, vj ∈W

}
∪W. (2)
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Additionally, we define δ(W ) :=
{
{vi, vj} ∈ E | vi ∈ W, vj ∈ V \W

}
. Similarly, for a subgraph

G′ ⊆ G and a set W ′ ⊆ VG′ of vertices we define δG′(W
′) :=

{
{vi, vj} ∈ EG′ | vi ∈ W ′, vj ∈

VG′ \W ′
}

.

2 Preprocessing for Steiner tree problems in graphs

Given an undirected, connected graph G = (V,E), costs (or weights) c : E → R>0 and a set
T ⊆ V of terminals, the Steiner tree problem in graphs (SPG) asks for a tree S = (VS , ES) ⊆ G
such that

1. T ⊆ VS holds,

2.
∑

e∈ES
c(e) is minimized.

A tree that satisfies condition 1 is called Steiner tree; a tree that additionally satisfies condition
2 is called minimum Steiner tree. The sum in 2 is called the weight of the Steiner tree S.

The SPG is a classical optimization problem, being the subject of hundreds of research
articles, and can also be found in real-world applications (although applications for variations of
the SPG are far more prevalent). The by far strongest preprocessing techniques for the SPG are
described in [8, 9], which also form the basis of the until today strongest exact SPG solver. This
section generalizes some of these techniques and suggests new ones. In the following it will be
assumed that an SPG denoted by PSPG = (V,E, T, c) is given.

2.1 Bound-based techniques

Bound-based reductions techniques are preprocessing methods that identify edges and vertices
for elimination by examining whether they induce an lower bound that exceeds a given upper
bound [8, 12]. In this section a bound-based reduction concept is introduced that generalizes the
Voronoi-regions concept from [8].

The base of the reduction technique is the following new concept: a terminal-regions
decomposition of PSPG—with underlying graph (V,E)—is a partition H =

{
Ht ⊆ V | T∩Ht =

{t}
}

of V such that for each t ∈ T the subgraph (Ht, E[Ht]) is connected. Each of the Ht will
be called a region of H. Define for all t ∈ T

rH(t) := min{d(t, v) | v /∈ Ht}. (3)

In [8] a special terminal-regions decomposition called Voronoi-regions decomposition is used.
The more general results presented here allow to improve on the Voronoi preprocessing meth-
ods introduced in [8]. However, it will also turn out that finding an optimal terminal-regions
decomposition is NP-hard. The following three propositions not only improve on the results
from [8] by using a more general decomposition, but also by making use of the following distance
function. Given vertices vi, vj ∈ V define d(vi, vj) as the length of a shortest path between vi
and vj without intermediary terminals. In [2] an O(m + n log n) algorithm was introduced to
compute for each non-terminal vi a constant number of d-nearest terminals vi,1, vi,2, ..., vi,k (if
existent) along with the corresponding paths. In the remainder of this section it will be assumed
that a terminal-regions decomposition H is given. Moreover, for ease of presentation it will be
assumed that the terminals of PSPG are ordered such that rH(t1) ≤ rH(t2) ≤ ... ≤ rH(ts). The
following three propositions can be proved similarly to the Voronoi reduction techniques from [8].
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Proposition 1. Let vi ∈ V \ T . If there is a minimum Steiner tree S such that vi ∈ VS, then

d(vi, vi,1) + d(vi, vi,2) +

s−2∑
q=1

rH(tq) (4)

is a lower bound on the weight of S.

Each vertex vi ∈ V \ T such that the affiliated lower bound stated in Proposition 1 exceeds
a known upper bound can be eliminated. Moreover, if a solution S corresponding to the upper
bound is given and vi is not contained in it, the latter can already be eliminated if the lower
bound stated in Proposition 1 is equal to the cost of S. A similar proposition holds for edges in
a minimum Steiner tree:

Proposition 2. Let {vi, vj} ∈ E. If there is minimum Steiner tree S such that {vi, vj} ∈ ES,
then L defined by

L := c({vi, vj}) + d(vi, vi,1) + d(vj , vj,1) +

s−2∑
q=1

rH(tq) (5)

if base(vi) 6= base(vj) and

L := c({vi, vj}) + min{d(vi, vi,1) + d(vj , vj,2), d(vi, vi,2) + d(vj , vj,1}

+

s−2∑
q=1

rH(tq) (6)

otherwise, is a lower bound on the weight of S.

The following proposition allows to pseudo-eliminate [2] vertices, i.e., to delete a vertex and
connect all its adjacent vertices by new edges.

Proposition 3. Let vi ∈ V \T . If there is a minimum Steiner tree S such that δS(vi) ≥ 3, then

d(vi, vi,1) + d(vi, vi,2) + d(vi, vi,3) +

s−3∑
q=1

rH(tq) (7)

is a lower bound on the weight of S.

To efficiently apply Proposition 1, one would like to maximize (4)—and for Proposition 2 and
Proposition 3 to minimize (5) and (7), respectively. Unfortunately, this problem turns out to
be NP-hard. The decision variant of the problem can be stated as follows. Let α ∈ N0 and let
G0 = (V0, E0) be an undirected, connected graph with edge cost c : E → N. Furthermore, set
T0 := {v ∈ V0 | p(v) > 0}, and assume that α < |T0|. For each terminal-regions decomposition
H0 of G0 define T ′0 ( T0 such that |T ′0| = α and rH0(t′) ≥ rH0(t) for all t′ ∈ T ′0 and t ∈ T0 \ T ′0.
Let:

CH0
:=

∑
t∈T0\T ′0

rH0
(t). (8)

We now define the α terminal-regions decomposition problem as follows: Given a k ∈ N, is
there a terminal-regions decomposition H0 such that CH0

≥ k? In the following proposition
it is shown that this problem is NP-complete, which forthwith establishes the NP-hardness of
finding a terminal-regions decomposition that minimizes (4), (5), (6), or (7)—which corresponds
to α = 2 and α = 3, respectively.
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Proposition 4. For each α ∈ N0 the α terminal-regions decomposition problem is NP-complete.

Proof. Given a terminal-regions decomposition H0 it can be tested in polynomial time whether
CH0

≥ k. This can be done for instance by running Dijkstra’s algorithm for each subgraph
(Hti , E[Hti ]), starting from ti. Consequently, the terminal-regions decomposition problem is in
NP.

Next, it will be shown that the (NP-complete [4]) independent set problem can be reduced
to the terminal-regions decomposition problem. To this end, let Gind = (Vind, Eind) be an
undirected, connected graph and k ∈ N. The problem is to determine whether an independent
set in Gind of cardinality at least k exists. To establish the reduction, construct a graph G0 from
Gind as follows. Initially, set G0 = (V0, E0) := Gind. Next, extend G0 by replacing each edge
el = {vi, vj} ∈ E0 with a vertex v′l and the two edges {vi, v′l} and {vj , v′l}. Define edge weights
c0(e) = 1 for all e ∈ E0 (which includes the newly added edges). If α > 0, choose an arbitrary

vi ∈ V0∩Vind and add for j = 1, ..., α vertices t
(j)
i to both V0 and T0. Finally, add for j = 1, ..., α

edges {vi, t(j)
i } with c0({vi, t(j)

i }) = 2 to E0.
First, one observes that the size |V0| + |E0| of the new graph G0 is a polynomial in the

size |Vind| + |Eind| of Gind. Next, rH0
(vi) = 2 holds for a vertex vi ∈ G0 ∩ Gind if and only

if Hvi contains all (newly inserted) adjacent vertices of vi in G0. Moreover, in any terminal-

regions decomposition H0 for (G0, c0), it holds that rH0(t
(j)
i ) = 2 for j = 1, ..., α. Hence, there

is an independent set in Gind of cardinality at least k if and only if there is a terminal-regions
decomposition H0 for (V0, E0, T0, c0) such that

CH0 ≥ |Vind|+ k

This proves the proposition.

A straightforward practical way for computing a terminal-regions decomposition H would be
to start Dijkstra’s algorithm with all terminals t ∈ T in the initial priority queue (with distance
0). However, the algorithm should be modified in such a way that it does not extend a region
Hti from a vertex vj if an upper bound UH

ti on rH(ti) is already known and d(vj , ti) ≥ UH
ti .

Subsequently one can use a local heuristic that checks for each edge between different terminal-
regions whether including the whole edge in one of the regions would improve the lower bound
CH . Figure 1 depicts an SPG, a corresponding Voronoi-regions decomposition as described in [8],
and an alternative terminal-regions decomposition. The second terminal-regions decomposition
yields a stronger lower bound than the Voronoi-regions decomposition and indeed allows to
eliminate a vertex if an upper bound that is sufficiently close to the optimal solution value is
known. Initial computational experiments for this article have shown that it is in most cases
easily possible to improve on the bound provided by the Voronoi-regions decomposition and allow
for significantly stronger graph reductions.

2.2 Alternative-based techniques

In the context of Steiner tree problems, alternative-based reduction methods attempt to prove
that a specified part of the problem graph is not contained in at least one optimal solution [2].
The usual procedure is to show that for each solution that contains this specified subgraph there
is another, alternative, solution of equal or better objective value that does not. While the
term subgraph usually means a single vertex or edge, this section describes a technique that
allows to eliminate proper subgraphs. It is based on the following bottleneck distance concept.
An elementary path is a path containing terminals only (but not necessarily) at its endpoints.
Any path Q can then be broken into one or more elementary paths. The length of a longest
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(a) SPG instance (b) Voronoi-regions decomposition

(c) terminal-regions decomposition

Figure 1: Illustration of a Steiner tree instance (a), a Voronoi-decomposition (b), and a second
terminal-regions decomposition (c). Terminals are drawn as squares. If an upperbound less
than 11 is known, the vertex drawn filled in (c) can be deleted by means of the terminal-regions
decomposition depicted in (c), but not by means of the Voronoi-regions decomposition.

elementary path in Q is called Steiner distance of Q. Accordingly, the bottleneck Steiner distance
(also referred to as special distance [6]) s(vi, vj) between two (distinct) vertices vi, vj ∈ V is the
minimum Steiner distance taken over all paths between vi and vj .

For a subset ∆ ⊆ V we denote by K∆ the complete, undirected graph on ∆. Furthermore,
define for each edge {vi, vj} of K∆ (i.e, vi, vj ∈ ∆) weights s∆({vi, vj}) := s(vi, vj)—with s
denoting the bottleneck Steiner distance in the orginal problem PSPG. Note that in this way
there is for each edge in K∆ a corresponding path in (V,E). For a subset ∆ ⊆W \W we define
the SPG PW

∆ = (VW
∆ , EW

∆ , TW
∆ , cW∆ ) by

VW
∆ := ∆ ∪W,
EW

∆ :=
{
{vi, vj} ∈ E | vi ∈W, vj ∈ ∆ ∪W

}
,

TW
∆ := ∆,

cW∆ := c|EW
∆
.

This construction sets the stage for:

Proposition 5. Let W ⊆ V \ T such that (W,E[W ]) is connected. If for each ∆ ⊆ W \W
with |∆| ≥ 2 it holds that the weight of a minimum spanning tree in (K∆, s∆) is smaller than
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the weight of a minimum Steiner tree for PW
∆ , then each optimal solution S to PSPG satisfies

VS ∩W = ∅.

Proof. Let S be a Steiner tree such that VS∩W 6= ∅. Let S′ be the subgraph obtained by deleting
W ∩ VS and all incident edges from S. Moreover, let ∆S ⊆ ∆ such that in each (inclusion-wise
maximal) connected component of S′ there is exactly one vertex of ∆S . If |∆S | = 1, then S′ is
already a Steiner tree and furthermore of smaller weight than S. Otherwise, let CSPG

∆S
be the

weight of a minimum Steiner tree in PW
∆S

and CMST
∆S

the weight of a minimum spanning tree
F∆S

in (K∆S
, s∆S

). By the assumptions of the proposition it holds that

0 < CMST
∆S

< CSPG
∆S

. (9)

By construction S′ consists of k ∈ N (inclusion-wise) maximal subtrees S(1), ..., S(k) such that
∆S ∩ VS(i) 6= ∅ for i = 1, ..., k. These subtrees can be joined to a connected subgraph by
paths in (V,E) corresponding to edges of F∆S

. Assume that the subtrees S(1), ..., S(k) are

ordered such that for each i ∈ {2, ..., k} there are vertices v
(i)
q ∈ VS(j) ∩ ∆S with j < i and

v
(i)
r ∈ VS(i) ∩ ∆S such that there is a (v

(i)
q , v

(i)
r )-path Q(i) in (V,E) corresponding to an edge

in F∆S
. Set Ŝ(1) := S(1) and proceed for i = 2, ..., k as follows. Let Q(i) be a (v

(i)
q , v

(i)
r )-path

as defined above. This path cannot contain any vertices of W because otherwise there would
be vertices va, vb ∈ (W \W ) ∩ VQ(i) such that their bottleneck Steiner distance (in PSPG) is

greater than or equal to the weight of a minimum Steiner tree for PW
{va,vb} (i.e., a shortest path),

which would contradict the assumptions of the proposition. Consequently, there is a subpath
Q(i)(vx, vy) of Q(i) such that VQ(i)(vx,vy) ∩ VS(i) = vx and VQ(i)(vx,vy) ∩ VŜ(i−1) = vy. This path
cannot contain any terminals apart from possibly vx or vy and is therefore of weight smaller than

or equal to s(vq, vr). Define Ŝ(i) := Ŝ(i−1) ∪S(i) ∪Q(i)(vx, vy). Ultimately, Ŝ := Ŝ(k) is a Steiner
tree with VŜ ∩W = ∅. Furthermore, it holds that∑

e∈EŜ

c(e) ≤
∑

e∈ES′

c(e) + CMST
∆S

≤
∑
e∈ES

c(e) + CMST
∆S

− CSPG
∆S

<
∑
e∈ES

c(e). (10)

In summary, Ŝ is a Steiner tree that does not contain any vertex of W and is of smaller weight
than S. Thus the proposition is proven.

One can formulate a corollary to this proposition that takes weaker assumptions, but also
requires to possibly add additional edges after eliminating W . This corollary generalizes the
non-terminal of degree k test that has been proved to be practically highly successful [2, 8]. As
a prerequisite, let W ⊆ V \ T , ∆ ⊆ V \W and define by KW

∆ the complete, undirected graph
on ∆. Further define for each edge {vi, vj} in KW

∆ the weight sW∆ ({vi, vj}) as the bottleneck
Steiner distance between vi and vj in the Steiner tree problem (V \W,E[V \W ], T, c)—note that
sW∆ ({vi, vj}) =∞ is possible.

Corollary 6. Let W ⊆ V \ T such that (W,E[W ]) is connected. If for each ∆ ⊆ W \ W
with |∆| ≥ 3 it holds that the weight of a minimum spanning tree in (KW

∆ , sW∆ ) is greater than
the weight of a minimum Steiner tree for PW

∆ , then each optimal solution S to PSPG satisfies
|ES ∩ δ(W )| ≤ 2.

If the conditions of Corollary 6 are satisfied for a set W , one can delete W and add for each
pair of distinct vertices vi, vj ∈ W \W an edge of weight equal to the length of a shortest path
between vi and vj in the network (W,E[W ]), c|E[W ]). In case of parallel edges all but a shortest
one are deleted.
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Since both Proposition 5 and Corollary 6 contain an NP -hard subproblem, they are not
practical for larger sets W . However, for the case of |W | = 2 or |W | = 3 a minimum Steiner
tree for PW

∆ can be found easily. Figure 2 shows a segment of a Steiner tree instance for which
a set of two vertices (and five incident edges) can be deleted by using Proposition 5, while other
common reduction techniques for the SPG do not allow for eliminations.

1

1

1

1

1

1

1 1

1

Figure 2: Segment of a Steiner tree instance (showing only non-terminals). The two central
(filled) vertices can be deleted by employing Proposition 5.

3 Preprocessing for maximum-weight connected subgraph
problems

Given an undirected graph G = (V,E) and vertex weights p : V → R, the maximum-weight con-
nected subgraph problem is to find a connected subgraph S ⊆ G such that its weight

∑
v∈VS

p(v)
is maximized. Throughout this section we consider a MWCSP PMW = (V,E, p) with the prop-
erty that at least one vertex is assigned a negative and one a positive weight (otherwise the
problem can be solved trivially).

The most comprehensive collections of reduction techniques for the MWCSP can be found
in [11] and [12]. While (arguably) interesting in their own right, reduction techniques also form
the backbone of the most sucessful solvers for the MWCSP [7, 11]. In the following, results
from [11] and [12] are generalized.

3.1 Dominating connected sets

The subsequently described preprocessing—by what we will call MWCS-dominating sets—builds
on the MWCSP having vertex- but no edge weights. The first proposition generalizes the concept
of MWCSP-domination introduced in [12].

Proposition 7. Let W ⊆ V \ T and U ⊆ V \ W be non-empty sets such that (U,E[U ]) is
connected and the following two properties hold

W \W ⊆ U, (11)∑
w∈W

p(w) ≤
∑

u∈U :p(u)<0

p(u). (12)
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Then there exists a maximum-weight connected subgraph S such that W * VS. The set U will be
referred to as all-weights MWCS-dominating to W .

Proof. Let S be a connected subgraph with W ⊆ VS . Note that by construction p(w) ≤ 0 for all
w ∈W . Define

∆S :=
{
v ∈ VS \W | ∃{v, w} ∈ ES , w ∈W

}
.

Next, remove W from S to obtain a new (possibly empty) subgraph S′ that contains at most |∆S |
many (inclusion-wise maximal) connected components. If S′ is connected, no further discussion
is necessary. Otherwise, note that each connected component of S′ contains a vertex vi ∈ ∆S .
Therefore, these components can be reconnected as follows. First, add U \ VS′ to S′ to obtain a
new subgraph S′′. Second, because of condition (11) and the fact that each maximal connected
component contains a vi ∈ ∆S there exists a set of edges ẼS′′ ⊆ E[VS′′ ] that reconnects S′′.
Adding ẼS′′ to S′′, one obtains a, finally connected, subgraph S′′′. Finally, the construction of
S′′′ implies: ∑

v∈VS′′′

p(v) ≥
∑
v∈VS

p(v)−
∑
w∈W

p(w) +
∑

u∈U :p(u)<0

p(u)
(12)

≥
∑
v∈VS

p(v).

This concludes the proof.

Unfortunately, finding to a given W ∈ V \ T an all-weights MWCS-dominating set U turns
out to be NP-hard, as shown for the special case |W | = 1 in [11]. Nevertheless, the practically
efficient heuristics described in [11] for eliminating vertices can be easily expanded by using
Proposition 7 to also eliminate edges.

As a variation of Proposition 7 one can formulate the following proposition that allows to
eliminate arbitrary subgraphs of (V \ T,E[V \ T ]), but also involves a more restricting test
condition.

Proposition 8. Let W ⊆ V \ T and U ⊆ V \ W be non-empty sets such that (U,E[U ]) is
connected and the following two properties hold

W \W ⊆ U (13)

max
w∈W

p(w) ≤
∑

u∈U :p(u)<0

p(u) (14)

Then there exists a maximum-weight connected subgraph S such that W ∩ VS = ∅. The set U
will be referred to as max-weight MWCS-dominating to W .

Proof. Let S be a connected subgraph with W ∩ VS 6= ∅. Further, define ∆S as in the proof
of Proposition 7. Remove W ∩ VS from S to obtain a new (possibly empty) subgraph S′ that
contains at most |∆S | many maximal connected components. Assume that there are at least two
connected components. Each of these components contains a vertex vi ∈ ∆S . These components
can therefore be reconnected as in the proof of Proposition 7 by adding U \VS′ to S′. Because of
condition (14) it holds for the resulting connected subgraph S′′′ that

∑
v∈VS′′′

p(v) ≥
∑

v∈VS
p(v)

and furthermore it holds by construction that W ∩ VS′′′ = ∅.

For the special case of |W | = 1 a vertex set U is max-weight MWCS-dominating to W if and
only if it is all-weights MWCS-dominating to W . Due to the above remarks, finding to a set
W ⊆ V \ T a max-weight MWCS-dominating connected set U ⊆ V \W is therefore NP-hard.
As above, however, the authors expect heuristic methods that only consider sets W of small
cardinality (e.g. smaller than 4) to be efficient in practice. Figure 3 shows a MWCSP instance
that can be reduced by Proposition 8.
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Figure 3: An MWCSP instance. Considering the vertices enclosed by the dotted ellipse as the
set U , one can verify with Proposition 8 that the three filled vertices can be deleted.

3.2 From connected sets to bottleneck distances

Instead of showing that a subgraph is dominated by a connected subgraph, as in the previous
section, one can use a perhaps more refined argument based on the concept of vertex weight
bottleneck distances. This distance function for the MWCSP was first introduced in [12]. Let
vi, vj ∈ V be two distinct vertices and Q(vi, vj) the set of all simple paths between vi and vj .
We define the interior cost of such a subpath as:

C−(Q(x, y)) :=
∑

v∈VQ(x,y)\{x,y}

pv. (15)

Furthermore, we define the vertex weight bottleneck length of Q as:

l̂(Q) := min
x,y∈VQ

C−(Q(x, y)). (16)

Finally, the vertex weight bottleneck distance between vi and vj is defined as

d̂(vi, vj) := max{l̂(Q) | Q ∈ Q(vi, vj)}. (17)

As shown in [11], computing the vertex weight bottleneck distance is NP-hard, but heuristic
relaxations can still lead to powerful reduction methods. One such method is the Non-Positive
Vertex of degree k (NPVk) test introduced in [12]. The following proposition considerably gener-
alizes the underlying test condition. Initially, for any U ⊆ V denote by KU the complete graph
on U . Furthermore, define for each edge {vj , vk} of KU weights d̂U ({vj , vk}) := d̂(vj , vk)—with

d̂ being the vertex weight bottleneck distance in the original problem PMW . Let W ⊆ V \ T .
For any subset ∆ ⊆W \W we define the MWCSP PW

∆ = (VW
∆ , EW

∆ , pW∆ ) by

VW
∆ := ∆ ∪W,
EW

∆ :=
{
{vi, vj} ∈ E | vi ∈W, vj ∈ ∆ ∪W

}
,

pW∆ (v) :=

{
0, if v ∈ ∆
p(v), if v ∈W \∆.

This construction sets the stage for:

Proposition 9. Let W ⊆ V \ T such that (W,E[W ]) is connected. If for each ∆ ⊆W \W with

|∆| ≥ 2 it holds that the weight of a maximum spanning tree on (K∆, d̂∆) is greater than the
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weight of a maximum-weight connected subgraph SW in PW
∆ that satisfies the additional condition

that ∆ ⊂ VSW
, then there is an optimal solution S to PMW that satisfies W ∩ VS = ∅.

Proof. Let S be a connected subgraph with W ∩ VS 6= ∅. Let S′ be the subgraph obtained
obtained from S by removing the vertices W ∩ VS and their incident edges and let S(1), ..., S(k)

be its (inclusion-wise maximal) connected components. If k = 1, then S′ is already a connected
subgraph and no further discussion is necessary. Otherwise, let ∆S ⊆ ∆ such that |S(i) ∩∆| = 1

for i = 1, ..., k. Further, let F∆S
be a maximum spanning tree on (K∆S

, d̂∆S
) and denote its

weight by CMST
∆S

. Let SW be a maximum-weight connected subgraph SW that satisfies the

additional condition ∆S ⊆ VSW
. Let CMWCS

W be the weight of SW . It holds that

CMWCS
W < CMST

∆S
≤ 0. (18)

Assume that the maximal connected subgraphs S(i) are ordered such that for each i ∈ {2, ..., k}
there are vertices v

(i)
q ∈ VS(j) ∩ ∆S with j < i and v

(i)
r ∈ VS(i+1) ∩ ∆S such that there is a

(v
(i)
q , v

(i)
r )-path Q(i) in (V,E) corresponding to an edge in K∆S

(i.e., l̂(Q(i)) = d̂(v
(i)
q , v

(i)
r )). Set

Ŝ(1) := S(1) and proceed for i = 2, ..., k as follows. First, observe that VQ(i) ∩W = ∅ due to

the assumptions of the proposition. Consequently, there is a subpath Q(i)(vx, vy) of Q(i) (with
vx, vy ∈ V ) such that VQ(i)(vx,vy) ∩ VS(i) = vx and VQ(i)(vx,vy) ∩ VŜ(i−1) = vy. This path is of

weight greater than or equal to d̂(v
(i)
q , v

(i)
r ). Define Ŝ(i) := Ŝ(i−1)∪S(i)∪Q(i)(vx, vy). Ultimately,

Ŝ := Ŝ(k) is a connected subgraph and it holds that

P (Ŝ) ≥ P (S′) + CMST
∆S

≥ P (S) + CMST
∆S

− CMWCS
W

(18)
> P (S). (19)

In summary, Ŝ is a maximum-weight connected subgraph with VŜ ∩W = ∅ and P (Ŝ) > P (S).
Thus the proposition is proven.

Besides the bottleneck distance, Proposition 9 includes another NP-hard component, the
computation of a connected subgraph in W of maximum weight that contains a predefined subset
of vertices. Therefore, practical tests should only be performed for sets W of small cardinality.

3.3 Combining dominating sets and bottleneck distances

While both the concept of MWCS-dominating sets and vertex weight bottleneck distances can
be used individually for designing preprocessing methods, their combination leads to yet another
result.

Proposition 10. Let W ⊆ V \ T and define

∆ := W \W.

If ∆ = ∅, then no optimal solution to PMW contains any vertex of W . Otherwise, let U ⊆ V \W
such that

∆1 := ∆ ∩ U

is non-empty and (U,E[U ]) is connected. Define

C1 :=
∑

u∈U :p(u)<0

p(u). (20)
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Further, let ∆2 := ∆ \∆1 and choose for each vk ∈ ∆2 an, arbitrary, v′k ∈ U . Define

C2 :=
∑

vk∈∆2

d̂(vk, v
′
k). (21)

If

C := C1 + C2 >
∑
w∈W

p(w), (22)

then each optimal solution S to PMW satisfies W * VS.

Proof. Let S be a connected subset with W ⊆ VS . In the following it will be demonstrated
how to construct a connected subgraph S′′′ that does not contain all vertices of W and satisfies
P (S′′′) ≥ P (S). Start with the subgraph S′ obtained from S by removing W and all incident
edges. It holds that

P (S′) = P (S)−
∑
w∈W

p(w). (23)

First, let ∆S
1 := ∆1 ∩ VS′ and initially set S′′ := S′. Then, add (U,E[U ]) to S′′. Moreover, add

for each vi ∈ ∆S
1 \ VS′′ an edge {vi, vj} for a vj ∈ U to S′′. Consequently, it holds for S′′ that

P (S′′) ≥ P (S′) + C1
(23)
= P (S)−

∑
w∈W

p(w) + C1. (24)

Second, let ∆S
2 := ∆2 ∩ VS . Initially, set S′′′ := S′′. Consider each vk ∈ ∆S

2 \ VS′′′ consecutively
and choose a (vk, v

′
k)-path Qk (with v′k as defined in the statement of this proposition) such

that l̂(Qk) = d̂(vk, v
′
k). Next, if vk and v′k are in different connected components of S′′′, there

are vertices vq ∈ VQk and v′q ∈ VQk in the connected components of vk and v′k, such that
VQ(vq,v′q) ∩ VS′′′ = {vq, v′q}. Add Q(vq, v

′
q) to S′′′. Because of condition (22) there is at least

on vertex of W that is not contained in any of these newly added paths. Moreover, because of
condition (21) the overall procedure reduces the weight of S′′ by at most |C2|. Hence, it holds
for the new (now connected) subgraph S′′′ that

P (S′′′) ≥ P (S′′) + C2

(24)

≥ P (S)−
∑
w∈W

p(w) + C1 + C2. (25)

Finally, W * VS′′′ holds and due to (22) it follows from (25) that

P (S′′′) > P (S). (26)

Hence the proposition is proven.

Corollary 11. Assume that the conditions of Proposition 10 hold, but instead of (22) assume

C1 + C2 > max
w∈W

p(w). (27)

Then each optimal solution S to PMW satisfies W ∩ VS = ∅.

Once again, for the special case of |W | = 1, corollary and proposition coincide. This special
case was already introduced in [11] and proved to be an effective preprocessing tool. Figure 4
shows an MWCSP for which a vertex can be deleted by means of this special case.
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Figure 4: An MWCSP instance. Considering the vertices enclosed by the dotted ellipse as the
set U , one can verify with Proposition 10 that the (bottom left) filled vertex can be deleted.

4 Conclusion and outlook

This paper has introduced various new preprocessing techniques for both the Steiner tree problem
in graphs and the maximum-weight connected subgraph problem. Although no computational
results (and not too many implementation details) have been provided here, initial computa-
tional experiments with the Steiner tree solver SCIP-Jack [3] already revealed a great potential
of these approaches for strengthening exact solving. We plan to fully integrate the new methods
into SCIP-Jack and expect significant improvements both in solving time and solvability, espe-
cially for MWCSP. A development version of SCIP-Jack that includes some of the reduction
techniques introduced in this article can already solve all MWCSP instances from the 11th DI-
MACS Challenge [1] (which took place in December 2014) in less than 0.1 seconds—at least three
orders of magnitude faster than any solver participating in the Challenge. Furthermore, the new
preprocessing techniques could also be useful for other—exact as well as heuristic—solvers for
Steiner tree problem in graphs or maximum-weight connected subgraph problem.
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