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Abstract

Visualization and Analysis of atomic compositions is essential to understand
the structure and functionality of molecules. There exist versatile areas of ap-
plications, from fundamental researches in biophysics and materials science to
drug development in pharmaceutics. For most applications, the hard-sphere
model is the most often used molecular model. Although the model is a quite
simple approximation of reality, it enables investigating important physical
properties in a purely geometrical manner. Furthermore, large data sets with
thousands up to millions of atoms can be visualized and analyzed. In ad-
dition to an adequate and ef�cient visualization of the data, the extraction of
important structures plays a major role. For the investigation of biomolecules,
such as proteins, especially the analysis of cavities and their dynamics is of
high interest. Substrates can bind in cavities, thereby inducing changes in
the function of the protein. Another example is the transport of substrates
through membrane proteins by the dynamics of the cavities. For both, the
visualization as well as the analysis of cavities, the following contributions
will be presented in this thesis:

1. The rendering of smooth molecular surfaces for the analysis of cavities
is accelerated and visually improved, which allows showing dynamic
proteins. On the other hand, techniques are proposed to interactively
render large static biological structures and inorganic materials up to
atomic resolution for the �rst time.

2. A Voronoi-based method is presented to extract molecular cavities. The
procedure comes with a high geometrical accuracy by a comparatively
fast computation time. Additionally, new methods are presented to vi-
sualize and highlight the cavities within the molecular structure. In a
further step, the techniques are extended for dynamic molecular data to
trace cavities over time and visualize topological changes.

3. To further improve the accuracy of the approaches mentioned above, a
new molecular surface model is presented that shows the accessibility
of a substrate. For the �rst time, the structure and dynamics of the sub-
strate as hard-sphere model is considered for the accessibility computa-
tion. In addition to the de�nition of the surface, an ef�cient algorithm
for its computation is proposed, which additionally allows extracting
cavities.

The presented algorithms are demonstrated on different molecular data
sets. The data sets are either the result of physical or biological experiments
or molecular dynamics simulations.





Zusammenfassung

Die Visualisierung und Analyse atomarer Strukturen ist essenziell für das
Verständnis des Aufbaus und der Funktionsweise von Molekülen. Es gibt
vielfältige Anwendungsgebiete, angefangen von Grundlagenforschungen in
der Biophysik und den Materialwissenschaften bis hin zur Medikamentenen-
twicklung in der Pharmazie. Das Modell harter Kugeln, auch Kalottenmodell
genannt, ist dabei das am häu�gsten verwendete Molekülmodell. Obwohl es
ein sehr vereinfachtes Modell ist, ermöglicht es die geometrische Betrachtung
wichtiger physikalischer Eigenschaften und erlaubt zudem, große Daten mit
Tausenden bis hin zu Millionen von Atomen darzustellen und zu analysieren.
Neben einer adequaten und performanten Visualisierung der Daten spielt vor
allem die Extraktion von Strukturen eine große Rolle. Bei der Untersuchung
von Biomolekülen, wie Proteinen, ist besonders die Analyse und Dynamik der
Kavitäten von großem Interesse. In den Kavitäten können Substrate binden,
die damit die Funktionsweise eines Proteins ändern, oder sie können durch
die Dynamik der Kavitäten durch Membranen transportiert werden. Sowohl
für die Visualisierung als auch für die Analyse der Kavitäten werden in dieser
Dissertation die folgenden Beiträge geleistet:

1. Zum einen wird die Darstellung glatter Ober�ächen, die sich für die
Analyse von Kavitäten eignen, beschleunigt und visuell verbessert, wo-
durch sie auf dynamische Proteine angewendet werden können. Zum
anderen werden Methoden vorgestellt, die erstmals erlauben große stati-
sche biologische Strukturen und anorganische Materialien bis auf atom-
are Au�ösung interaktiv darzustellen.

2. Für die Extraktion von Kavitäten wird ein Voronoi-basiertes Verfahren
mit einer hohen geometrischen Genaugkeit bei einer vergleichsweise ho-
hen Geschwindigkeit vorgestellt. Dazu werden neue Methoden präsen-
tiert, welche die Kavitäten innerhalb der molekularen Struktur darstellen
und hervorheben. Des Weiteren werden die Methoden für dynamische
Daten erweitert, um Kavitäten über die Zeit verfolgen und topologische
Veränderungen visualisieren zu können.

3. Um die Genauigkeit der oben genannten Verfahren weiter voranzutrei-
ben, wird eine neue Molekülober�äche vorgestellt, welche die erreich-
baren Regionen eines Substrates zeigt. Dabei wird erstmals die Struk-
tur und Dynamik des Substrates in Form des Kalottenmodells berück-
sichtigt. Neben der De�nition der Ober�äche wird ein ef�zienter Algo-
rithmus für dessen Berechnung präsentiert, der es zudem erlaubt Kav-
itäten zu extrahieren.

Die vorgestellten Algorithmen werde an verschiedenen molekularen Daten
demonstriert. Die Daten sind das Ergebnis physikalischer und biologischer
Experimente oder stammen aus molekularen Simulationen.
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1Introduction

1.1 The Molecular World

Studying the structure and function of materials requires their investigation
at different length and time scales. At the lower end of the length scale,
often the atomic or molecular level is studied. Atoms are the smallest stable
components of all ordinary matter. They are held together by strong forces,
called chemical bonds, thereby forming structures such as molecules. Based
on the large number of possible combinations, a huge variation of organic
and inorganic materials is built. Typically, atoms and molecules are arranged
in patterns. These patterns are responsible for the stability and functionality
of the materials.

Most organic materials consist of a hierarchical composition of atoms and
molecules. Starting from the atomic level, molecules are formed that can be
composed to macromolecules and sub-cellular units [16] (Figure 1.1). This
further proceeds to the levels of cellular structures, cells, tissues, organs,
systems, and organisms. Typically, the molecules of organic materials are
denoted by the term biomolecules. Biomolecules differ in size, shape, and
structure. Some are small such as lipid molecules and build components of
more complex structures like membranes. Larger molecules are often called
macromolecules. The atoms and molecules of most of these biomolecules
are arranged in chain-like structures, such as proteins. Due to their diverse
functionalities in all living organisms, proteins are of particular interest in
many research �elds including biophysics, biochemistry, and pharmaceutics.
Most proteins work like enzymes, which are activated by smaller molecules,
called substrates or ligands. The ligands interact with the proteins, thereby
inducing changes in the geometry, which modify its function. Typical ex-
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1 Introduction

(a)

(b)

(c)

Figure 1.1: From microtubules strands to single atoms. Each strand consists of proteins
arranged in a spiral structure(a). A protein is composed of chains of amino acids(b), which
are compounds of a small number of atoms(c).

amples for such interactions with high interest in pharmaceutics are binding
processes of antibiotics or painkillers. Membrane proteins are the target of
most of the modern medicinal drugs. These proteins are integrated in bio-
logical membranes or interact with them. Some of them work as receptors
to transfer signals about the internal and external environment. Others are
responsible for the transport of molecules and ions through the membrane.
Furthermore, proteins perform structural or mechanical tasks, such as micro-
tubules and actin �laments in the cytoskeleton or myosin in muscles. Other
important tasks include DNA replication, catalyzing metabolic reactions, and
metabolite transport.

Inorganic materials consist of all compounds that are not organic [240].
This is often roughly de�ned as all materials without carbon compounds, in
particular carbon-hydrogen compounds. However, there are many exceptions
that create much overlap between organic and inorganic materials. Typical
inorganic materials are metals, salts, minerals, many acids and gases. The
atoms and molecules of many solid inorganic materials are arranged in lattice
structures. The stability of these materials is tightly coupled with the type of
lattice and its regularity. Defects and dislocations have a major impact on the
stability and functioning of the materials. Studying these properties of the
lattices structures is a major task in materials science.

1.2 Understanding the Molecular World

Experiments and simulations are the two main techniques to get insights into
the huge world of molecular structures. While experiments are often used to

2



1.2 Understanding the Molecular World

acquire structural information, simulations are performed to study molecular
processes and interactions on an atomic level. Both �elds are supported by
visualization techniques that provide tools to analyze, validate, and modify
molecular structures.

Experimental Structure Determination

Because of the small size of atoms it is dif�cult to create a real picture of their
structure. Even on the molecular level, it is only partially possible to deter-
mine the arrangement of the atoms and this only for static snapshots. The
two main techniques to solve the structure of biomolecules such as proteins
are nuclear magnetic resonance spectroscopy (NMR) [244] and X-ray crystal-
lography [243]. X-ray crystallography in general achieves a higher resolution
and has no size limitation for macromolecules. However, the molecule needs
to be crystallized and the crystal must be well ordered to diffract measurable
at high angles. This process might in�uence the conformation of the molecule
or might damage the structure. For NMR, the molecule needs to be in a sol-
uble state and typically isotopically labeled. This state is usually closer to the
natural state of biomolecules. On the other hand, the approach provides a
lower resolution and is only applicable for molecules with less than 50 kDa.
An upcoming technique to acquire macromolecular structures in near-atomic
resolution is single particle cryo-electron microscopy [231], a special variant
of cryo-electron microscopy that is often used in structural biology. Although
its resolution is yet lower, it can reconstruct the chain-like structure based on a
large number of specimen in different orientations. In contrast to crystalliza-
tion, cryo-electron microscopy allows capturing different conformations and
conformational transitions

Furthermore, electron microscopy and tomography are often used in mate-
rial science to study the lattice structure of inorganic materials such as metals
and alloys. Another approach for inorganic materials is atom probe tomog-
raphy (APT) [105] which provides close to atomic resolution and allows re-
construction of millions of atoms. The drawbacks of APT are the lower limits
in the specimen size and the restrictions in the detection ef�ciency, where
approximately 40% of the atoms get lost. Furthermore, APT is a destructive
technique, which means the specimen will be destroyed during the process.
This destruction has additional effects on the structure that needs to be con-
trolled.

For all techniques, often the preparation stage is already challenging and
can partially destroy or change the structure of the specimen because of
changes in the environment.

Simulation

Due to the limitations in acquiring molecular structures, it is even more chal-
lenging to obtain information about the functionality of molecular processes,

3



1 Introduction

for example, how an ion channel works inside a membrane or how a sub-
strate interacts with a protein. In many cases the only way to get information
about molecular processes on the atomic level is to perform molecular dy-
namics simulations. To do so, the structure and interaction of atoms and
molecules need to be mathematically modeled. Many of such models have
been developed in the past with the purpose to re�ect most realistically their
physical properties measured by experiments [49, 20, 221, 118, 88, 212]. Note
that the result of a molecular dynamics simulation is restricted to the physical
correctness of the underlying model.

In most cases, complex molecular systems with hundreds and thousands
of atoms will be simulated using classical molecular models [67, 210]. In
such models, the molecular system is represented by particles whose motion
is de�ned by a force �eld containing Coulomb, van der Waals and bonding
forces. Two very often used tools to simulate molecules in a classical way are
NAMD [191] and Gromacs [196]. Although quantum mechanical models are
physically more accurate, due to the high computational costs, the application
of these models is only possible for very small molecular systems or small
parts of biomolecular systems. On the other hand, classical models seem to
be suf�cient to study most molecular interactions where the covalent bonds
between the atoms are �xed and the behavior of the molecular system does
not depend sensitively on �ne-tuned energy values. The spatial extension
of molecules based on the classical model is most often represented by the
hard-sphere model. In this model, each atom is represented as a `hard' sphere
which is assumed to be impenetrable except for bonded atoms. The radii of
the atoms are determined based on the van der Waals forces.

Visualization

As mentioned before, it is dif�cult to acquire a real image of atomic structures.
All results of experimental techniques are reconstructions based on non-visual
measurements. Hence, molecular visualization models are necessary to cre-
ate a speci�c abstraction of the reality. These abstractions highlight relevant
properties, thereby supporting the understanding of the structures. This is
important to communicate and discuss results and to illustrate processes. Vi-
sualizations are required in nearly all �elds of molecular analysis, starting
with validations and modi�cations over preparations of simulation setups to
detailed structure analyzes and full trajectory investigations. Even before the
�rst computer graphic visualizations, people developed physical models and
hand-drawn graphical depictions for atoms and molecules to understand and
analyze their structure and behavior [106, 98, 220]. These early tools strongly
in�uenced the 3-dimensional computer visualizations of molecules and form
a basis of today's classical visualization models. Depending on the size and
type of the molecular data, different visualization models are required to an-
alyze the structure. Most of these visual models are based on the correspond-
ing physical models. The focus of this thesis lies on visualization and analysis
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1.3 Contributions

of molecules based on the hard-sphere model. With this model it is possible to
represent molecules in a purely geometric manner including the de�nition of
molecular surfaces and accessibility.

Visualization techniques for biomolecular structures fall into two categories:
The �rst deals with explicit representation of the structure. To this category
belong classical representations like the ball-and-stick model, which shows
the atoms and bonds, or more abstract models such as the secondary struc-
ture representation, which highlights stable patterns of a protein. Surface
models that show the spatial extension of molecules are of particular interest.
These models create an imaginary hard boundary that separates the space
inside the molecule and the space that is accessible by other molecular struc-
tures. Users apply surface models to analyze the shape of molecules and to
detect and study cavities, for example, potential binding sites for drugs. The
second category comprises methods for computing, analyzing, and visualiz-
ing the complementary space of molecules, that is the space consisting of all
regions within the molecular structures that are not occupied by the atoms
of the molecule. Cavities are the main places for molecular interactions and
transport processes. Understanding interactions related to cavities is the key
to many open questions in biochemistry, molecular biology, and pharmaceu-
tics. This is because molecular interactions are the driving forces for many
biochemical processes taking place in all kinds of organisms, from the most
simple to highly developed ones.

With the increasing performance of modern hardware and algorithms, the
size and complexity of the data sets have increased, too. Furthermore, the
demands in studying dynamic structures from simulations in real-time have
raised. Acceleration and modernization of the most important classical molec-
ular surface visualizations is therefore one focus of this thesis. In addition, a
new geometric approach for the detection of cavities is proposed to overcome
limitations of previous methods. In combination with this detection, novel
techniques for the visualization and time-dependent analysis of cavities are
presented. Taking the geometrically oriented molecular analysis a step closer
to physical reality is another focus of this thesis. This �nally leads to a novel
molecular surface model called ligand excluded surface. In the following the
contributions of this thesis are described in more detail.

1.3 Contributions

The focus of this thesis lies on the development of methods for the visual-
ization and analysis of biological macromolecules, such as proteins, with up
to 100 000 atoms. Nevertheless, an excursion into the visualization of larger
molecular data sets is given that can consist of sub-cellular structures or inor-
ganic materials with millions or even billions of atoms. Most of the presented
techniques are not restricted to the speci�c structure of proteins: they can be
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applied to other molecular data sets or even to particle data sets from other
�elds.

Smooth Molecular Surfaces

As mentioned before, molecular simulations are performed to study the func-
tionality of molecules such as their binding af�nity. Binding processes are of
particular interest for the development and analysis of drugs. Visualization
of the results of such simulations is a key step for investigating the process
of interest but also to verify the simulation. For this purpose, surface models
based on the hard sphere model are well suited because of two main reasons.
First, they provide a good approximation of the spatial extension and shape
of the molecules. This allows analyzing the cavities in proteins where, for
example, the binding process takes place. And second, the visualization of
surfaces based on the hard sphere model can be done ef�ciently such that it
can be used for molecular dynamics investigations. Of particular interest are
smooth molecular surfaces, especially thesolvent excluded surfacethat provides
a very suitable visualization of the accessibility e.g. of solvents. However, the
visualization of this smooth surface model requires some computation time.
Thus, in the past it was not possible to use the surface in real-time for pro-
tein data. In Chapter 3, an accelerated and visually improved computation
of the solvent excluded surface is presented. The techniques are also utilized
for another surface model, called molecular skin surface. Apart from molec-
ular surface visualization, the latter surface has additional potential for the
rendering of molecular cavities.

Van der Waals Surface

While smooth surfaces are suitable to investigate the molecular accessibility
of single proteins, their computation is often too expensive for larger struc-
tures. The variability of materials emerges at the atomic level and continues at
higher length scales with many kinds of different structures. Particularly bi-
ological materials, but also bio-inspired materials, use hierarchical structures
to create multifunctional materials [129, 30]. Many investigations of such
materials start at the atomic level and proceed to mesoscopic scales, where
the transition, for example, to continuum models, can be made. The corre-
sponding measurements and simulations involve millions or even billions of
individual atoms [170]. Therefore the need arises for visualization techniques
that bridge atomic and mesoscopic length scales. In Chapter 4, a novel ap-
proach is presented to cover these length scales for the classical hard sphere
model of the atoms. This allows interactive visualization of inorganic mate-
rials from atom probe tomography with several hundred millions of atoms
or even cellular data such as actin �laments or microtubules with billions of
atoms.
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Molecular Cavities

Although it is possible to simulate molecular dynamics of single proteins or
proteins inside a membrane as well as interacting forces between well-placed
ligands and proteins, it is quite dif�cult to completely simulate interaction
processes, like the transport of an ion through a membrane protein or the
path of a ligand from outside the protein to its binding site. Biophysicists can
use simulations to answer the question whether a ligand binds to a protein
or not, but they can often not answer the question if the ligand can reach
the binding site. Thus the necessity arises for methods that allow the user to
quickly analyze the cavity structure inside a protein and to simultaneously
detect possible paths for a ligand. To achieve this in a reasonable time, the
computation of these molecular paths and cavities is often restricted to a ge-
ometrical analysis of the hard-sphere model. A survey of the most important
geometrical techniques is provided in Chapter 5 and a new approach to com-
pute and analyze the full geometric cavity structure in a molecule is presented
in Chapters 6 and 7. The technique provides a high geometrical accuracy with
respect to the underlying model while keeping the computational time low
enough, such that it is applicable to large proteins within a few seconds.

Cavity Dynamics

The internal cavities of proteins are dynamic structures and their dynamics
may be associated with conformational changes which are required for the
functioning of the protein. It is therefore of particular interest to understand
how conformational changes that accompany the reaction path of molecular
transporters depend on changes in the number, shape, and volume of inter-
nal cavities. In order to study the dynamics of protein cavities, appropriate
tools are required that allow rapid identi�cation of the cavities as well as as-
sessment of their time-dependent structures. There are numerous tools to
inspect and analyze molecular dynamics trajectories, including VMD [234],
PyMol [197], Amira [223], and MegaMol [165]. However, there are only a
few tools that allow the investigation of the dynamics of the cavities. A tool
has been developed that allows one to interactively trace and analyze cavities
over time with a higher geometrical accuracy. To study the cavity dynamics,
the analysis is supported by new visualizations techniques. The tool will be
presented in Chapter 8.

Ligand Excluded Surface

The most popular molecular surface is the solvent excluded surface, described
in Chapter 3. It provides information about the accessibility of a molecule
with respect to a sphere approximating a solvent molecule. During a pe-
riod of almost four decades, the SES has served many purposes, including
pure visualization, analysis of molecular interactions, and study of cavities in
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molecular structures. However, if one is interested in the surface of a molecule
that is accessible to a second molecule whose shape differs signi�cantly from a
sphere, a different concept is necessary. The fundamental problem that almost
no molecule, not even water, is well approximated by a spherical shape, has
so far not been addressed in the computation and visualization of molecular
surfaces.

To overcome this limitation, a new molecular surface is proposed in Chap-
ter 9, called ligand excluded surface(LES). It represents the surface of a receptor
that is accessible to a speci�c individual ligand, which is represented by its
spatial con�guration of atom spheres (rather then a single `approximating'
sphere). Thus receptor and ligand are geometrically represented in the same
manner. Apart from the de�nition of the ligand excluded surface, an ef�cient
algorithm for its discrete computation is proposed. Furthermore, this algo-
rithm can be easily extended to compute also cavities that are large enough to
host the ligand molecule. In addition to the geometry of the cavities, also in-
formation about how the ligand is positioned inside the cavities are obtained.
This might be of particular interest for the application of subsequent docking
simulations.
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1.5 Data Courtesy

To show the usefulness and improvements of new approaches and techniques
it is necessary to demonstrate them on practical data sets. For this reason,
all methods that will be proposed in this thesis are evaluated on different
data sets. Many of these data sets were retrieved from data bases such as the
protein data bank PDB [184] or the virus data base VIPERdb [233], both of
which provide a huge variation on molecular data sets. Furthermore, speci�c
data sets were provided by cooperation partners and colleagues of different
universities and institutes. Special thanks to all of them. In the following, a
list of all the speci�c data sets and their courtesy is given:

• To test the performance of smooth molecular surfaces in Chapter 3, sev-
eral dynamic molecular trajectories were provided by Markus Weber
and Bernd Kallies from Zuse Institute Berlin (ZIB), Germany. The tra-
jectories are mainly protein docking simulations.

• Jean-Marc Verbavatz, Garrett Greenan and Anthony Hyman from the
Max Planck Institute Dresden, Germany, Thomas Müller-Reichert and
Stefanie Redemann from Technical University Dresden, Germany, and
Eileen O'Toole from the University of Colorado, USA, provided some
microtubule tomograms. The microtubules were reconstructed by Britta
Weber from ZIB. The data sets are used to demonstrate the rendering of
large atomic data sets (Chapter 4).

• Alexander Rigort and Wolfgang Baumeister from the Max Planck Insti-
tute Munich, Germany, provided the tomograms containing actin �la-
ments and ribosomes that were reconstructed by David Günther from
ZIB. Analogously to the microtubule data sets, the data is used for the
rendering of large atomic data sets (Chapter 4).

• The atom probe tomography data sets of inorganic materials were given
by Hisham Aboulfadl and Frank Mücklich from Saarland University,
Germany. These data sets were additionally used to test the rendering
technique in Chapter 4.

• The dendritic core multi-shell nano-transporter was provided by Marcus
Weber and Amir Sedighi from ZIB. It was used for the cavity detection
and cavity analyses in Chapters 6 and 7.

• For the dynamic cavity analysis in Chapter 8, Ana-Nicoletta Bondar
from FU Berlin, Germany, provided several trajectories of bacteriorho-
dopsin.

• Greg Bowman from the Miller Institute, University of California, Berke-
ley, USA, provided a molecular dynamics trajectory to test the ligand
excluded surface for dynamic data sets. The data is presented in Chap-
ter 9.
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This chapter contains the basics that will be important for this thesis. It
starts with the description of some fundamental geometrical structures for
molecular visualization. Afterwards, a short introduction about the structure
of molecules is given, where the focus lies on biomolecules, especially pro-
teins. Subsequently, the most important 3-dimensional molecular visualiza-
tion models are described. Then, a formal de�nition about molecular paths
and cavities is presented. And �nally, grid data structures are proposed to
accelerate most visualization and analyzes algorithms.

2.1 Geometry

The three most important basic geometrical structures for this thesis are im-
plicit surfaces, Voronoi diagrams, and skin surfaces. Before these structures
are described, all necessary mathematical notations are given.

2.1.1 Notations

The real space is denoted byR and the n-dimensional real space by Rn. Con-
sider a point x 2 Rn. The ith component of this point is given by xi with i 2 N
and 1 � i � n. The vector pointing to x is denoted by ~x. If all components of
a point or vector are 0, it is also denoted by 0. For a set of m points xj 2 Rn

with j 2 N and 1 � j � m, the last index always describes the component of
the point, so xji is the ith component of the jth point. In the following, a list of
all notations for operations on points and vectors that are used in this thesis
is given. Let x, y 2 Rn be two points and let Z � Rn be a �nite set containing
m points z1, ...,zm.
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• hx, yi = å n
i= 1 xi � yi denotes the dot product.

• x2 = hx, xi .

• kxk =
p

x2 is the Euclidean norm.

• x � y =

0

@
x2y3 � x3y2
x3y1 � x1y3
x1y2 � x2y1

1

A is the cross product (only for n = 3).

• Aff (Z) = f å m
i= 1 l i � zi j zi 2 Z, å m

i= 1 l i = 1g is the af�ne hull.

• Conv (Z) = f å m
i= 1 l i � zi j zi 2 Z, å m

i= 1 l i = 1, l i � 0g is the convex hull.

• sgn : R ! R, with sgn (x) =

(
1, x � 0

� 1, x < 0

2.1.2 Implicit Surfaces

In 3-dimensional Euclidean geometry, a surface is a 2-dimensional subspace
of the 3-dimensional real space R3. The implicit surfaceis one possibility to
describe a surface in a single equation. It is often used in computer graphics
to visualize the surface of simple objects, whose triangulation is expensive,
like spheres or cylinders. Most of the molecular visualization models are
composed of simple implicit surfaces. For this reason, a short abstract of this
type of representation of a surface is given here.

Consider a function f : R3 ! R, which maps a point to a real value. The
corresponding implicit surface F is de�ned as the set of all points for which f
evaluates to 0, so formally

F = f � 1(0) =
n

p 2 R3 j f (p) = 0
o

.

The sign of f indicates on which side of a surface a point lies. For closed
surfaces, one can distinguish between inner and outer points for f (p) < 0
and f (p) > 0, respectively. The normal vector in a point on the surface is
given by the gradient of f ,

r f (p) =
�

df
dp1

,
df
dp2

,
df
dp3

� T

.

Note that with the current de�nition, it is not guaranteed that the surface
has not any singularity. Furthermore, there is not necessarily a normal in
each point of the surface. In order to achieve these requirements, f must be
continuous and differentiable with gradients unequal to 0 on the surface.

In this thesis, a speci�c subset of implicit surfaces is often used, called
algebraic surfaces. These surfaces are de�ned by polynomial functions. A
further important subset of algebraic surfaces are quadrics. For quadrics, the
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polynomials have exactly degree two. For example, a torus can be described
as an algebraic surface of degree 4, and a sphere is a typical quadric.

A similar de�nition of surfaces is given by isosurfaces. In contrast to an im-
plicit surface, an isosurface consists of all points p 2 R3 for which f (p) = c,
where c is a user-de�ned constant. Note that each isosurface can be trans-
formed into an implicit surface by creating a new function f̂ (p) = f (p) � c.
In this thesis, the usage of implicit surfaces is preferred. The interested reader
can �nd more information about implicit surfaces in the book by Bloomenthal
and Wyvill [19].

2.1.3 Voronoi Diagrams

In 1908, the Ukrainian and Russian mathematician Georgy Feodosevich Voro-
noi de�ned a decomposition of the n-dimensional real space based on a �nite
set of points, which was later called Voronoi diagram[236]. Voronoi diagrams
are a powerful tool in many �elds, like geometry or optimization. In this the-
sis, they are used for the computation of surfaces and the cavity analysis of
molecules. A short introduction of Voronoi diagrams is given in the following.

Let P be a �nite set of m input points pi 2 Rn with i 2 I = f 1, ...,mg.
For each input point, a region is determined that contains all points whose
distance to this input point is less or equal than to any other input point.
These regions are calledVoronoi regionsbased on a distance function d : Rn �
Rn ! R. A formal de�nition of the Voronoi region of the ith input point is
given by the set

Vi =
�

p 2 Rn j 8 j 2 I , j 6= i , d(pi , p) � d(pj , p)
	

.

For the classical Voronoi diagram, the distance function d is equal to the Eu-
clidean distance, so d(p, q) = kp � qk for p, q 2 Rn. Based on the de�nition
of the regions, the whole Voronoi diagram VorP is de�ned as the set of all
nonempty intersections of Voronoi regions, so

VorP =

(

VK j VK =
\

i2K

Vi 6= Æ, K � I

)

.

The dual structure of a classical Voronoi diagram is called Delaunay com-
plex. For the 2-dimensional case it is called Delaunay triangulation [51]. For
each k-dimensional Voronoi element, there exits exactly one corresponding
l-dimensional Delaunay element with k + l = n. Based on a given Voronoi
diagram, the Delaunay complex can be de�ned as

DelP = f DK j DK = Conv f pi j i 2 Kg , VK 2 VorPg .

For molecular analysis and visualization, the 3-dimensional Voronoi diagram
is of particular interest. Thus, the focus of the following descriptions lies on
this dimension, but 2-dimensional diagrams are often used for illustrations,
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region vertex edge triangle vertex edge

Figure 2.1: Illustration of a Voronoi diagram (left) for a set of 2-dimensional input points
(black) and the dual Delaunay triangulation (right). Each Voronoi region corresponds to
exactly one Delaunay vertex, which is equal to an input point. Furthermore, each Voronoi
vertex corresponds to exactly one Delaunay triangle and each Voronoi edge to exactly one
orthogonal Delaunay edge.

(Figure 2.1). The 3-dimensional Voronoi diagram consists of Voronoi regions,
faces, edges, and vertices that describe the 3-, 2-, 1-, and 0-dimensional inter-
sections of Voronoi regions. A 3-dimensional Voronoi diagram is denoted as
non-degenerate if each face is the intersection of exactly 2 regions, each edge
is the intersection of exactly 3 regions, and each vertex is the intersection of ex-
actly 4 regions. Note that most algorithms can compute only non-degenerate
Voronoi diagrams. In order to avoid degenerated cases, one can use simula-
tion of simplicity or a simple perturbation of the input points. Edelsbrunner
presented simulation of simplicity [58] as a concept to remove all degenerated
cases in geometrical algorithms, without changing the input data. Therefore
it is necessary to modify all basic geometrical operations in the algorithm,
which can be dif�cult in speci�c cases. However, the main problem of this
concept is, that it is based on an exact �oating point arithmetic or at least a
very high �oating point accuracy, which can decrease the performance of the
algorithm. Although this concept is geometrically correct, in practice a simple
perturbation of the input data is often preferred. In particular, this means a
random vector is added to each point. This vector must be small enough, so
that the resulting error is irrelevant for the corresponding application. Fur-
thermore, the algorithm must be still able to detect degenerations, abort the
current computation, and start again with a new perturbation. For many ap-
plications this is easier to implement and does not in�uence the ef�ciency
of the algorithms. From now on, only non-degenerate Voronoi diagrams are
considered.

After the �rst de�nition of the classical Voronoi diagram, a lot of variations
have been presented. A comprehensive overview of variations can be found
in the book of Aurenhammer et al. [8]. There are two possibilities to modify
a Voronoi diagram. The �rst is to change the distance function. For example,
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the 2-dimensional Voronoi diagram on the surface of a sphere requires a dis-
tance function that measures the arc length of the shortest curve between two
points on a sphere. The second possibility is to extend the input structure.
Instead of points, one can consider spheres or arbitrary other geometrical ob-
jects as input. The distance measurements usually become more complex for
these objects. Note that, in general, the more complex the input data the
more dif�cult is the computation of the Voronoi diagram. For molecular vi-
sualization, the Voronoi diagrams of weighted points and spheres are often
utilized.

2.1.4 Skin Surface

In 1999, Edelsbrunner presented a new approach to generate a smooth surface
for a �nite set of input spheres, called skin surface[54]. The skin surface is aC1

continuous surface that can be decomposed into patches of quadrics. Its shape
depends only on a single parameter s 2 (0, 1) � R, called shrink factor. In this
thesis, the skin surface is mainly used to visualize cavities inside molecules,
but also as molecular surface representation. Therefore, the description of the
surface de�nition and its construction by Edelsbrunner is summarized in the
following.

Sphere Algebra

First, all spheres are transformed into weighted points. Consider a weighted
point x 2 R3 � R with position px and weight wx. The distance of an arbitrary
point p 2 R3 to x is de�ned as dx(p) = ( p � px)2 � wx. For a sphere with
position px and radius

p
wx, the point p lies inside the sphere if dx(p) < 0.

Respectively, the point lies outside this sphere if dx(p) > 0. So each weighted
point with its distance function corresponds to a sphere. Note that the term
imaginary sphere is used for points with negative weights and that a sphere
is degenerated if wx = 0.

The weighted points will be embedded into a 4-dimensional vector space.
Therefore, Edelsbrunner de�ned the addition and scalar multiplication for
two weighted points x, y and a scalar s 2 R as:

px+ y = px + py

wx+ y = wx + wy + 2 �


px, py

�

ps�x = s � px

ws�x = s � wx + ( s2 � s) � p2
x

With these operations, the scaling of the weight of a point can be represented
by a linear interpolation of the point and an arti�cial helper point. Let again
x be a point with positive weight. The helper point x̃ is selected such that
px̃ = px and wx̃ = 0. The scaling xs of x by s 2 R can now be formulated as

xs = ( 1 � s) � x̃ + s � x.
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Figure 2.2: Left: two orthogonal weighted points (blue) which can be scaled with s and1 � s
such that they touch each other (yellow). Middle: two orthogonal1-�ats along the coordinate
axes with the focus in the origin. Right: the scaled �ats of the middle image, the intersection
of which is a quadric.

With a small auxiliary calculation one can see, that xs has still the same posi-
tion as x, but its weight is s � wx. In addition to the de�nition of the distance
between a weighted point and a point, the distance between two weighted
points x and y is de�ned as d(x, y) = ( px � py)2 � wx � wy. The two weighted
points are said to be orthogonal if d(x, y) = 0. Visually, this means, the corre-
sponding spheres intersect each other and the tangent planes of both spheres
through a point on the intersection circle are orthogonal. For two orthogonal
points x and y, there exists a scalar values 2 [0, 1], with s � wy = ( 1 � s) � wx,
such that the corresponding spheres xs and y1� s touch each other in a single
point (Figure 2.2).

Instead of single weighted points, now sets of weighted points are consid-
ered. Let X be the af�ne hull of k+ 1 af�ne independent points. Edelsbrunner
called such a setk-�at . For each k-�at, there exists an orthogonal (3 � k)-�at
Y. This means, each weighted point in X is orthogonal to each weighted
point in Y and vice versa. In addition, there exists a point x 2 X and a point
y 2 Y with px = py and by de�nition of orthogonality wx + wy = 0. The
3-dimensional point at this position is called focus. Obviously, one of the two
spheres is imaginary or both are degenerated. An example of two orthogonal
�ats and the corresponding focus is illustrated in Figure 2.2. As for single
spheres, a whole �at can also be scaled, which is denoted by Xs and scales
each sphere in the �at X by s. Furthermore, for two orthogonal �ats X and Y,
there exists again a scalars 2 (0, 1), such that the spheres of the scaled �ats
Xs and Y1� s touch each other and the intersection is a quadric (Figure 2.2). If
X is a k-�at that spans the space of the �rst k unit vectors, the quadric is given
by the implicit surface of the function

f : R3 ! R , with f (p) = �
1

1 � s

k

å
i= 1

p2
i +

1
s

3

å
i= k+ 1

p2
i � w0,
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where w0 is the weight of the point in the focus, which in this case lies at
0. Depending on k and w0, the implicit surface describes a sphere, a one- or
two-sheeted hyperboloid, or for degenerated �ats, a double cone or a point.

Surface Composition

The idea of the skin surface is to create for each input sphere a weighted point,
whose weight is scaled up depending on the selected shrink factor s. The
weighted points de�ne �ats in a local neighborhood, which results in quadric
surface patches by scaling them down again with s, as described above. The
remaining task is to de�ne the neighborhood and the patch boundaries such
that the patches �t together in a C1 continuous surface.

Consider a set of n spheres with positions pi 2 R3 and radii r i 2 R, with
i 2 I = f 1, ...,ng. Furthermore, let s 2 (0, 1) be the shrink factor. Then, the
corresponding weighted points xi 2 X � R3 � R, with i 2 I are de�ned by

pxi = pi and wxi =
r2
i
s

.

The neighborhood and the �ats are de�ned by the Voronoi diagram and De-
launay complex of the weighted points. Therefore the Voronoi regions are
given by the distance functions of the weighted points, so

Vi =
n

p 2 R3 j 8 j 2 I , j 6= i , dxi (p) � dxj (p)
o

.

The elements of the Delaunay complex de�ne the �ats for the quadric patches.
For example, a Delaunay edge de�nes a subset of the positions of a 1-�at,
which is given by the two af�ne independent weighted points at the end of
the edge. The orthogonal 2-�at is represented by the dual Voronoi element,
which is in this case a Voronoi face. The focus of two orthogonal �ats is
given by the intersection of the corresponding af�ne extended Delaunay and
Voronoi elements. So for the previous example, the focus is the intersection of
the line, which includes the Delaunay edge and the plane, which includes the
Voronoi face. The weight w0 at the focus can be computed by the weighted
points that created the �at. Thus, a quadric patch is uniquely de�ned by the
orientation of the Delaunay and Voronoi elements and the focus with weight
w0. For a Delaunay element DK, the corresponding implicit surface of the
quadric is denoted as FK.

The last remaining task is to compute the boundaries of the quadric patches.
Therefore, Edelsbrunner de�ned the mixed complexas a combination of the
Voronoi diagram and the Delaunay complex. Let VK 2 VorX be an element
of the Voronoi diagram and DK 2 DelX be the dual Delaunay element. The
combination of both, depending on the shrink factor s, is called mixed celland
given by

MK = s � Vk + ( 1 � s) � DK.
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Figure 2.3: The left illustration shows a set of weighted points (blue) together with its
corresponding weighted Voronoi diagram and the dual Delaunay triangulation (dotted lines).
On the right side the skin surface is shown together with the mixed complex.

The complete mixed complex Mix X is the set of all mixed cells. Note that for
s = 0, the mixed complex is equal to the Delaunay complex and for s = 1
it is equal to the Voronoi diagram. A quadric patch FK is bounded by the
corresponding mixed complex cell MK. This means, only the parts of the
quadric inside the mixed complex cell belong to the skin surface. Formally,
we can de�ne the skin surface FSS as

FSS =
[

MK2 Mix X

MK \ FK.

An illustration of a mixed complex and the skin surface is shown in Fig-
ure 2.3. The smaller the shrink factor the more morphs the skin surface to the
convex hull of the input spheres. In contrast, the larger the shrink factor the
more morphs the shape to the surface of the union of the input spheres. In
Figure 2.4, a skin surface is visualized with different shrink factors.

2.2 Molecules

In general, a molecule is a stable arrangement of atoms. An atom consists of
a hull and a nucleus. While the nucleus contains the electrically neutral neu-
trons and positively charged protons, the hull contains the negatively charged
electrons. Over 99.9 % of the atom's weight is stored in the nucleus. However,
most atomic interactions are triggered by the electrons. The arrangement
of the atoms in a molecule can describe different structures. For example,
biomolecules like proteins often build some kind of chain. The stability of
the arrangement is mainly achieved by chemical bonds between the atoms.
In case of biomolecules, the strongest bonds arecovalent bonds. Two atoms
are connected by a covalent bond if they share one or more electron pairs.
The sharing leads to an attraction by the negatively charged electrons which
overcomes the repulsion of the positively charged atom nuclei. This holds
the two atoms in a stable arrangement with minor �uctuations. In classical
molecular dynamics simulations, these �uctuations are modeled by harmonic
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s = 0.1 s = 0.3 s = 0.45 s = 0.55 s = 0.65

Figure 2.4: Skin surface of a set of15 random spheres for different shrink factors.

springs for bond stretching, bond angle bending, and bond twisting motions.
The two other strong chemical bonds are metallicand ionic bonds, which occur,
for example, between atoms or molecules in lattice structures, like crystals. In
addition to these strong bonds, there also exist weak bonds like van der Waals
interactionsor hydrogen bonds. Especially the latter ones play an important
role for the shape and function of proteins. However, weak bonds may be
constantly broken and created. A more detailed description of van der Waals
interactions and hydrogen bonds is given in the Sections 2.2.1 and 2.2.2, re-
spectively.

For the following descriptions, consider a molecule with n atoms. Each
atom can be described by its type, which is often represented by the atomic
number in the periodic table of elements and several other properties. The
most important properties for the visualization and geometrical analysis are
the atom positions pi 2 R3 and the atom radii r i 2 R with 1 � i � n. Note
that this description only represents a molecule at an arbitrary but �xed point
of time. However, molecules are dynamic structures, so the atom positions
are functions of time pi (t) : R �! R3, where t represents the time. With
the atom positions and the radii, each atom can be modeled as a hard sphere.
Throughout this thesis, the radii are constant over time as well as the number
of atoms in the molecules. The de�nition of the atom radii depends on the
purpose of the analysis and visualization, but most often, van der Waals radii
are used.

2.2.1 Van der Waals Radii

Johannes Diderik van der Waals was the �rst who recognized that atoms have
a �nite size. By modeling atoms and complete molecules as hard spheres with
attractive and repulsive interactive forces, he developed an equation of state
for real gases and liquids. Note that these forces describe the non-covalent
interactions between atoms and that they are much weaker than the forces
given by covalent bonds. Consider two non-bonded atoms. The van der
Waals interactions between these two atoms can be modeled by the Lennard-
Jones potential (Figure 2.5). For distances between 3 Å and 4 Å, the atoms
start to attract each other. The attraction increases with decreasing atom dis-
tance. At a certain distance, the outer electron regions of both atoms start to
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Figure 2.5: Illustration of the van der Waals forces between hydrogen and carbon. The forces
are modeled by the Lennard-Jones potential.

overlap each other, which results in a strong repulsive force [16]. The distance
where attractive and repulsive forces balance each other is de�ned as van der
Waals contact distance. This distance is often used to determine the van der
Waals radii of the atoms. Note that there is no single de�nition, but several
approaches to determine the radii from the contact distance. Often, the radii
are computed based on the properties of the elements such that the sum of
the radii is equal to the contact distance. Since the Lennard-Jones potential
depends on the pair of atoms, this leads, for example, to a different radius
for a hydrogen atom which interacts with an oxygen atom than a hydrogen
atom which interacts with a carbon atom. Often these different radii for the
same element are combined in a single radius. Overall, the concept of van der
Waals radii is an imaginary construct to model the physical size of an atom
as hard sphere. A short overview of the determination of atom radii is given
in the following.

Since the PhD thesis of van der Waals (1873), there has been a long history
on determining atom radii. Important landmarks are the work of Bragg [27],
presenting radii for major chemical elements (and even visualizing crystal
structures, composed of atoms depicted as spheres), and the book of Paul-
ing [181], giving a general account of different types of atom radii in bonded
(covalent, metallic, and ionic) and non-bonded states. Slater [218] presented
improved sets of empirical atom radii, such that the sum of the radii of two
atoms forming a bond in a crystal or molecule gives an approximate value
of the internuclear distance. Intermolecular van der Waals radii of the non-
metallic elements have been assembled into a list of recommended values for
volume calculations by Bondi [23]. Various methods have been devised – me-
chanical, crystallographical, electrical, optical and computational – to empir-
ically determine van der Waals radii. They give similar, but different values.
For physical reasons, van der Waals radii vary with the particular chemical
environment, see e.g. Bondi [23]. Rowland et al. [204] presented new results
considering the non-bonded contact distances in organic crystals. They rec-
ognized that the radii de�ned by Bondi are quite similar to their results and
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(a) (b) (c)

Figure 2.6: Illustration of the general structure of ana-amino acid (a) and the structure of
Phenylalanine (b) and Glutamine (c). The amine group is highlighted by the blue box, the
carboxylic group by the yellow box, and the side chain by the gray box. The three groups are
connected by thea-carbon Ca.

only differ for a few elements. An extensive overview of van der Waals radii
of elements was given by Batsanov [13]. In a more recent work, Batsanov [14]
extended this work by atom radii for metals, derived from empirical data and
an equation of state for solids.

2.2.2 Hydrogen Bonds

A hydrogen bondis an attractive interaction between two electronegative atoms
that share a hydrogen atom. The hydrogen atom is connected by a covalent
bond to one of these atoms, which is called hydrogen donorwhile the other one
is called hydrogen acceptor. Typical electronegative atoms are oxygen, nitrogen,
and �uorine. A hydrogen bond between, for example, nitrogen and oxygen
can be written as N � H � � � O, where N is the hydrogen donor and O the
acceptor. The strength depends mainly on three conditions: the pair of elec-
tronegative atoms, the distance between the atoms and the arrangement of the
atoms. A hydrogen bond is strongest for atoms in collinear position, which
means the 3 atoms lie on a line. In general, hydrogen bonds are stronger than
van der Waals interactions but much weaker than covalent bonds. Hydrogen
bonds are important for the stability and function of a molecule.

2.2.3 Protein Structure

In this thesis the focus mainly lies on the analysis of proteins, a speci�c group
of biomolecules. For this reason, a short description of the structure of pro-
teins is given here. Additional details can be found in the book by Stryer et
al. [16]. Proteins belong to the group of macromolecules, which can consist
of one or more molecules. These molecules are often calledmonomers. Typ-
ically, the number of atoms in a monomer ranges from a few hundred up
to several thousand atoms. The atoms in each monomer are arranged in a
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+ ) +

peptide bond

Figure 2.7: Construction of polypeptide chains in proteins. The connection between the
carboxylic group (yellow box) of one amino acid with the amine group (blue box) of another
amino acid results in a peptide bond and a free water molecule. The side chains are represented
by the gray boxes.

chain of a� amino acids. An amino acidis an organic compound that consists of
three main parts: an amine group � NH2, a carboxylic group � COOH, and
a side chain. The class ofa-amino acids is characterized by the arrangement
of the carboxylic group and the amine group. These groups are connected by
covalent bonds over the �rst carbon atom of the amino acid. For this reason,
this carbon atom is often denoted as a-carbon Ca. The general structure of
an a-amino acid and two speci�c examples are illustrated in Figure 2.6. Until
now, 23 different a-amino acids are known in proteins.

In order to build the chain of a monomer, the amino acids get linked by pep-
tide bonds. A peptide bond is a covalent bond, which connects the carboxylic
group of one amino acid with the amine group of another amino acid by loss
of a water molecule (Figure 2.7). This can be extended by connecting further
amino acids at both ends to form the chain of a monomer. Such a chain is
called polypeptide chainand the amino acids that are linked in this chain are
called residues. A polypeptide chain can be decomposed into the backboneand
the already mentioned side chains. The backbone consists of repeating groups
of atoms that are equal in each residue. It forms the skeleton of the protein.
In 1952, Ulrik de�ned 3 levels of structural descriptions for proteins [230].
Today, 4 levels will be distinguished.

Primary Structure

The primary structure of a protein describes the composition of the polypep-
tide chains. It is given as a set of sequences of residues. The �rst residue
of each sequence has a free amine group and is denoted asamine-terminalor
N-terminal. Respectively, the last residue has a free carboxylic group and is de-
noted as carboxylic-terminalor C-terminal. An excerpt of the primary structure
of the protein with pdb: 1OGZis

... � ALA � VAL � VAL � GLN � ARG � TYR � VAL � ...

Here ALA denotes Alanine, VAL Valin, GLN Glutamine, ARG Arginine, and
TYR Tyrosine.
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Figure 2.8: Illustration of ana-helix (left) and ab-sheet (right). Only a part of the backbone
is shown here and the side chains are hidden. The hydrogen bonds are depicted by the dashed
lines in orange. Theb-sheet consists of a single anti-parallel ladder.

Secondary Structure

The secondary structure describes regular patterns of hydrogen bonds be-
tween amine and carboxylic groups of the backbone. These patterns were
�rst de�ned by Pauling et al. [182, 183]. An extended de�nition and overview
was given by Kabsch and Sander [102], which is summarized here. The main
patterns of hydrogen bonds are a-helicesand b-sheets. Assume the residues
are enumerated over all polypeptide chains of a protein in the primary struc-
ture, starting with 1 for the �rst residue of the �rst chain till m for the last
residue of the last chain. Furthermore, let H be the set of all hydrogen bonds
between backbone atoms, where each hydrogen bond h 2 H is a tupel of
f 1, ...,mg � f 1, ...,mg. Additionally, the �rst element of the tupel always rep-
resents the residue with the oxygen atom, which is bonded to the nitrogen
atom of the residue, represented by the second element.

A k-turn at position i is a hydrogen bond ( i , i + k) 2 H, with k = 3, 4, 5.
Two consecutive k-turns build a minimal k-helix of length k. Formally, the
minimal k-helix between the residues i and i + k � 1 is de�ned by the two k-
turns at the positions i � 1 and i. Note that it is not necessary that there exist
further k-turns as for example at position i + 1. Two or more overlapping
minimal helices build a longer helix. Typically, 3-, 4-, and 5-helices are called
3,10-helices, a-helices, and p -helices respectively. An illustration of an a-helix
is given in Figure 2.8 (left). This type of helices occurs most frequently in
proteins.

Apart from these helices, bridges of hydrogen bonds are de�ned, as de-
scribed in the following. Let therefore, ( i � 1,i, i + 1) and ( j � 1, j, j + 1) be
two non-overlapping triples of residues. A bridge consists of exactly two hy-
drogen bonds and two types will be distinguished that are represented by a
tupel of residues:

1. A parallel bridge ( i , j) is de�ned by the two bonds ( i � 1, j), ( j, i + 1) 2 H
or ( j � 1,i), ( i , j + 1) 2 H.
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Figure 2.9: The 3-fold rotational symmetry of the polypeptide chains of the sodium ion
channel (pdb: 3HGC, left) and the 180 chains of the hull of the dengue virus (pdb: 1K4R,
right).

2. An anti-parallel bridge ( i , j) is de�ned by the two bonds ( i , j), ( j, i) 2 H
or ( i � 1, j + 1), ( j � 1,i + 1) 2 H.

A set of one or more consecutive bridges of the same type is often called
ladder. For the parallel case, the bridges ( i , j) and ( i + 1, j + 1) are consecutive
and for the anti-parallel case the bridges ( i , j) and ( i + 1, j � 1). A b-sheet
is a set of one or more ladders that share a subset of residues. Note that a
sheet can consist of both types of ladders, parallel and anti-parallel. Figure 2.8
(right) illustrates a b-sheet that consists of a single anti-parallel ladder.

Overall, the secondary structure of a protein is a formal description of all
patterns of hydrogen bonds. It is important to mention that the secondary
structure does not contain any 3-dimensional information about the atoms
or bonds. There exist several different suggestions for the formal description
of the secondary structure. For example, the a-helices can be described as
a set of tupels, that represent the start and end residues of the helices. In
contrast, the b-sheets can be stored as sets of ladders, where each ladder can
be described as a tuple of start and end bridge.

Apart from giving a de�nition, Kabsch and Sander developed a tool, called
DSSP [102], to compute the secondary structure based on the atom positions.
A similar program was presented by Frishman and Argos, which they called
STRIDE [69, 87]. In contrast to the DSSP algorithm, which only considers the
hydrogen bond energy, STRIDE also analyzes the dihedral angles along the
backbone. This is done using Ramachandran plots [198].

Tertiary Structure

This level describes the 3-dimensional structure of the protein. Most often it is
given by the atom positions in Cartesian coordinates. Another description of
the tertiary structure of a molecule is given by the covalent bond lengths, the
bond angles and the dihedral angles between the atoms. This representation
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is often named inner coordinates. While the transformation from Cartesian
to inner coordinates is straightforward the other way around requires some
considerations to provide numerical stability with good performance. One
of the most ef�cient algorithms for this purpose was described by Parsons et
al. [176].

Quaternary Structure

The quaternary structure describes the spatial arrangement of the polypeptide
chains of a protein. Most proteins are composed by more than one polypep-
tide chain whose arrangement can be often described by symmetry opera-
tions. For example, the sodium ion channel pdb: 3HGCconsists of 3 equally
structured chains in a 3-fold rotational symmetry, (Figure 2.9). Proteins that
consist of two or more chains are often called multimers. In case of two chains
the protein is denoted as dimer and in case of three chains astrimer. While
most proteins consist of up to 8 chains, the proteins of many virus capsids
consist of a multiple of 60 chains. An example of such a hull for the dengue
virus is shown in Figure 2.9.

2.3 Molecular Visualization Models

Many visual representations have been developed to illustrate the different
types of structures that were described in the previous section. Without
these visual models it is almost impossible to analyze the structure of large
molecules. In this section, the most commonly used models and their prac-
tical applications are described. Especially, molecular surfaces will be high-
lighted, the visualization of which is one focus of this thesis. An overview
about biomolecular visualization was presented in “ Visualization of Biomolecu-
lar Structures: State of the Art” [117] in 2015.

2.3.1 Ball-and-Stick

The ball-and-stick representation comprises the visualization of the primary,
tertiary and quaternary structure. The classical model represents each atom
as a small sphere and each covalent bond by a small cylinder connecting
the two corresponding atom spheres. Sometimes double or triple bonds are
visualized using two or three cylinders, respectively. Most often the color of
the atoms and cylinders represent the type of the atoms, but in general the
colors can represent an arbitrary atom or bond attribute. The ball-and-stick
model can be extended by visualizing also the hydrogen bonds as regularly
discontinued cylinders connecting the hydrogen atom of the donor with the
acceptor atom. With this extension, also the secondary structure is shown.
In modern visualizations, the sphere radii are often equal to the radii of the
cylinder, which results in a more compact representation, called licorice or
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Figure 2.10: Fentanyl, depicted by its ball-and-stick representation in the classical style
(left) and the modern style (right). The colors represent the atom types.

stick model. An example of the ball-and-stick model for fentanyl is shown in
Figure 2.10.

2.3.2 Secondary Structure

Although it is possible to visualize the secondary structure with the ball-and-
stick representation, the image would be too overloaded for large molecules
to get a quick overview of all a-helices and b-sheets. For this reason, partic-
ular visualizations have been developed showing abstract representations of
the secondary structure. They are also called "secondary structure", which
might confusing, because this term is already used for the formal descrip-
tion, which includes only the patterns of hydrogen bonds and not the 3-
dimensional structure. The main reason for this is, that the focus of the visual
secondary structure representation lies on the illustration of the formal sec-
ondary structure, although it includes also the other structures. In this thesis,
the visualization model of the secondary structure is the one that is more
often used, so if not explicitly mentioned the term "secondary structure" is
related to the visual representation.

The secondary structure model illustrates the spatial shape of the backbone
and emphasizes the patterns of the formal secondary structure. Note that
there is no clear de�nition of this visualization model. Hence, the representa-
tions of the patterns vary from program to program. However, most of them
are based on the illustrations by Richardson [202]. Here, two of the most
often used secondary structure representations are described in detail. The
main part of the representations consist of 3-dimensional curves. Each curve
is oriented along the carbon and nitrogen atoms of the backbone of a polypep-
tide chain. Commonly, one atom per residue is used as control point for an
interpolation which generates a smooth 3-dimensional curve. In order to ren-
der the curve, it is discretized and approximated by a piecewise linear curve.
Typically the linear pieces are visualized by cylinders with equal radii. Fur-
thermore the cylinders are cut in a way that two neighboring cylinders exactly
�t together. There are several possibilities to emphasize the secondary struc-
ture patterns along the backbone. A simple but effective way is, to deform the
circular cross section of the cylinders into an elliptic crossection for a-helices
and b-sheets. For this kind of visualization, the larger diameter of the ellipse
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Figure 2.11: Illustration of the secondary structure of the protein ketosteroid isomerase
(pdb: 1OGZ) by the ribbon representation (left) and the cartoon representation (right). The
a-helices are depicted in blue and theb-sheets in yellow.

is oriented into the direction of the hydrogen bond and the smaller remains
equal to the diameter of the cylinder. This type of visualization is sometimes
denoted as ribbon representation(Figure 2.11). Additionally, the direction of
the b-sheets can be visualized by placing arrow icons onto the elliptic surface.
The arrows allow one to quickly distinguish between parallel and anti-parallel
ladders in a b-sheet. An even more abstract representation type of the sec-
ondary structure is the cartoon representation. Here, the 3-dimensional curve is
discontinued for a-helices and b-sheets. The discontinuities are �lled by cylin-
ders for a-helices and 3-dimensional arrows with rectilinear cross section for
b-sheets. Similar to the ribbon visualization, the arrows are wider into the
direction of the hydrogen bonds. An example of the cartoon representation
is shown in Figure 2.11. In order to visualize the secondary structure interac-
tively for dynamic proteins of simulations, Krone et al. [119] presented a fast
GPU-based approach.

2.3.3 Molecular Surfaces

The main purpose of molecular surface models is to visualize the tertiary and
quaternary structure of a molecule. Of course these structures can be already
visualized with the ball-and-stick or secondary structure representation, how-
ever both representations are not suitable to visualize the spatial dimension of
a molecule. In contrast, molecular surfaces are particularly designed to model
the shape of a molecule by approximating the size of bonded and non-bonded
atoms. This is important in order to analyze regions around and inside the
molecule that can be possibly reached by other molecules. Thus molecular
surface representations are often used to investigate the results of protein-
substrate docking simulations. In the following, a description of the most
often used molecular surface models is given. Therefore, consider a static
molecule with n atoms, whose positions are pi 2 R3, with i 2 I = f 1, ...,ng.
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Figure 2.12: Illustration of the van der Waals surface in 2D (left) and the 3-dimensional
surface representation of copper(I)-bleomycin (pdb: 1UGT, right).

Van der Waals Surface

The van der Waals surface[72, 201] is probably the most often used molecular
surface representation. Besides, it is one of the simplest surface models and
it is the basis of most of the other molecular surface representations. As the
name reveals, each atom is modeled as a sphere with the corresponding van
der Waals radius r i 2 R, with i 2 I . The surface is then de�ned as the outer
surface of the union of all atom spheres. In detail, it consists of all points
that lie at least on the surface of one atom sphere but not inside of any atom
sphere (Figure 2.12). Formally, the van der Waals surface can be described as
implicit surface FvdW of the function

fvdW : R3 ! R , with fvdW(p) = min
i2 I

kp � pik � r i .

In 1971, Lee and Richards [139] presented a program to draw the van der
Waals surface of a molecule.

Solvent Accessible Surface (SAS)

Apart from the rendering of the van der Waals surface, Lee and Richards
de�ned one of its �rst extensions, which later became known as the solvent
accessible surface(SAS) [139]. The idea of this surface is to show all regions in
a molecule that can be accessed by a solvent molecule. In case of protein vi-
sualization, the most interesting solvent is water because proteins are usually
surrounded by water. The size and shape of the complete solvent molecule
is approximated by a single sphere, which is called probe. The radius of the
probe is denoted as rp. Commonly, a probe with a radius of 1.4 Å is used to
approximate a water molecule. The solvent accessible surface is equal to the
van der Waals surface except that each van der Waals radius is extended by
the radius of the probe. Formally the SAS can be described as implicit surface
FSAS of the function

fSAS : R3 ! R , with fSAS(p) = fvdW(p) � rp.
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Figure 2.13: Illustration of the solvent accessible surface together with the probe in 2D (left)
and the 3-dimensional surface representation of copper(I)-bleomycin (pdb: 1UGT, right).

Note that rp is a user de�ned parameter to approximate the solvent of interest.
Visually, the SAS describes the center of the probe, which rolls over the van
der Waals surface. During this process, the probe always touches the van der
Waals surface but never penetrates it. Hence, all points outside the surface
can be geometrically accessed by the center of the probe and thus probably
also by the solvent (Figure 2.13).

Solvent Excluded Surface (SES)

In 1977, Richards [201] de�ned the �rst smooth molecular surface based on
the idea of the SAS. But instead of taking the center of the probe which rolls
over the atoms, he suggested to use the track of the outer shell of the probe
(Figure 2.14). This combines the advantages of both surfaces, the better size
representation of the atoms of the van der Waals surface and the accessibil-
ity visualization of the SAS. He de�ned the points where the probe touches
the van der Waals surface as contact surfaceand the remaining parts of the
track of the probe as reentrant surface. Richard called this surface also SAS,
but nowadays the term solvent excluded surface(SES) is preferred, the name
of which was proposed by Greer and Bush [76] in 1978. To give a simple
formal description of the SES, let dSAS be the signed distance function of the
corresponding SAS, so

dSAS : R3 ! R , with dSAS(p) = sgn( fSAS(p)) � min
q2 FSAS

kp � qk .

Based on this distance function, the SES for a probe with radius rp can be
de�ned as the implicit surface FSES of the function

fSES : R3 ! R , fSES(p) = dSAS(p) + rp.

While this formal de�nition is very compact, in practice it is easier to visualize
the surface by decomposing it into its 3 types of patches. These types can be
identi�ed by 3 different cases while the probe rolls over the van der Waals
surface:
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Figure 2.14: Illustration of the solvent excluded surface in 2D (left) and the 3-dimensional
surface representation of copper(I)-bleomycin (pdb: 1UGT, right). The probe is depicted in
gray.

1. The probe touches the van der Waals surface in exactly one point. These
points are a subset of the van der Waals atom spheres and describe
spherical patches. They are called convex spherical patches, because the
outer parts of the spheres are visible for the user.

2. The probe touches the van der Waals surface in exactly two points. This
means the probe rolls between two atoms. The track of the probe de-
scribes the inner part of a torus, for this reason these patches are called
toroidal patches.

3. The probe touches the van der Waals surface in three or more points.
This means the probe is in a �x position. The track of the probe is in
this case an inner part of the surface of the probe sphere. It is bounded
by spherical arcs through the touching points. These patches are called
concave spherical patchesbecause the inner parts of the spheres are visible.

At the patch boundaries, where two ore more patches �t together, the sur-
face is C1 continuous, so that the SES is a smooth surface. However, the sur-
face can contain self-intersections. At these intersections the surface has sharp
edges and is only C0 continuous. Two different types of self-intersections oc-
cur when the atoms lie too far away from each other. The �rst type is the
self-intersection of toroidal patches. This type occurs when the probe rolls
between two atoms and intersects the imaginary line through the two atom
positions. This creates two sharp tips (Figure 2.15, left). The second type oc-
curs when two ore more concave spherical patches intersect each other. Two
different examples for this kind of intersection are shown in Figure 2.15 (mid-
dle, right). In contrast to the �rst type, it is more dif�cult to detect these
intersections.

Molecular Skin Surface (MSS)

The molecular skin surface(MSS) [54] is the application of the skin surface (Sec-
tion 2.1.4) to the van der Waals spheres of the atoms with the purpose to
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Figure 2.15: Illustration of singularities of the SES. A self-intersection of a toroidal patch
(left), an intersection of two concave spherical patches (middle), and an intersection of two
concave spherical patches between a self-intersecting toroidal patch (right).

approximate the SES. The main advantage of the MSS in contrast to the SES is
that the surface is completely C1 continuous. Furthermore, it can be decom-
posed into patches of quadrics, that can be easily visualized. On the other
hand, the surface has not a bio-physical background and it is not trivial and
sometimes even not possible to select a suitable shrink factor to approximate
the solvent probe sphere. An example of the MSS can be seen in Figure 2.16
(left).

Kernel-based Molecular Surfaces (KMS)

In 1982, Jim Blinn presented a new technique to visualize a �nite set of
weighted points as an organic looking surface, called metaballs[18]. The idea
is to create some kind of density function for the weighted points and to
render the implicit surface of this function. Therefore, the density function
is described as a sum of density kernels representing the weighted points.
Each kernel function maps an arbitrary point p 2 Rn to a density value in
R. Typically, the kernel function has its maximum at the point position and
monotonically decreases to 0 with increasing distance of p. The kernel-based
molecular surfaces(KMS) are a subset of metaballs. These surfaces have all in
common, that they use a density kernel to approximate the size of a single
atom. The main purpose of these surfaces is again to approximate the SES or
sometimes even an isosurface of the electron density. Formally, a KMS can be
described as the implicit surface of a density function fKMS, with

fKMS : R3 ! R , fKMS(p) =
n

å
i= 1

ki (p) � c,

where ki : R3 ! R is the kernel function and c is a constant to steer the size
of the shape of the surface. Typical kernel functions are:
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Figure 2.16: The molecular skin surface (left) and two kernel-based molecular surfaces (mid-
dle, right) of copper(I)-bleomycin (pdb: 1UGT). While for the middle surface a Gaussian kernel
was used, the right surface was created by the soft object function.

• the inverse squared function with a parameter ai 2 (0, 1]

ki (p) =
ai

(p � pi )2

• the Gaussian kernel, where d is the standard deviation, and ai is a scale
of the ith atom.

ki (p) = aie
�

(p� pi )
2

2d2

• the soft object function [245] with d = p � pi and the parameters ai , and
b.

ki (p) =

(
ai

�
1 � 4d6

9b6 � 17d4

9b4 � 22d2

9b2

�
, d � b

0, d > b

The parameters are often selected visually and depend on the purpose of
the user. While the �rst two kernel functions have to be evaluated for each
atom at each position, this is not necessary for the soft object function, which
becomes 0 at a certain distance. For this reason, the soft object function can be
computed much faster using 3-dimensional data structures. However, since
most kernel functions decrease fast with increasing distance, it is also possible
to select a cutoff value, at which the function becomes 0. Although the kernel
functions are not continuous anymore, the resulting surface is still visually
smooth. The most often used kernel function for KMS is the Gaussian func-
tion [18]. Depending on discretization of the density function, KMS can be
quickly computed and provide a smooth surface of the molecule. However,
similar but even more dif�cult than for the MSS is the setup of the parameters.
Grant and Pickup presented a good parameter choice for the Gaussian kernel
function to approximate the SES with a probe of water [74]. Two different
KMS are shown in Figure 2.16.
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Figure 2.17: Molecular surface cuts showing the structure of the potassium channel
pdb: 1K4C (left) and two molecular pockets of the enzyme pdb: 1PII (right).

2.4 Molecular Paths and Cavities

In addition to the classical molecular visualizations, it is as least as important
to investigate the complementary space of the atoms. This space consist of
all regions inside and around the molecule where no atomic structures of the
investigated molecule can be found. These regions are often called cavities.
They can be potentially accessed by ions or small other molecules, called
substrates or ligands, which can result in molecular interactions (Figure 2.17).
Such interactions are important in many molecular research topics. Although
there are many algorithms to compute molecular cavities, there does not exist
a clear formal de�nition for these structures. Often they are de�ned implicitly
by the developed algorithms. In this section, a formal de�nition of molecular
paths and cavities is proposed.

In general a molecular path is a path of a small molecule or ion in the
region of a larger molecule. This could be, for example, a path of a sub-
strate to its binding site or the path of an ion through a tunnel of a mem-
brane protein. Note that there is no restriction for the start state of the small
molecule. However, both molecules are dynamic structures, which makes the
paths time-dependent. Furthermore, a molecular cavity is de�ned as the con-
tinuous volumetric space that can be accessed by the small molecule. Thus,
each cavity is described by the space around possible molecular paths that are
connected. Additionally, cavities usually require the de�nition of a volumet-
ric boundary based on the large molecule that separates inside and outside.
Without this boundary, all channels and pockets would belong to the same
cavity, because they are connected by paths outside the large molecule (Fig-
ure 2.19). In contrast to the formal description of paths and cavities, it is quite
dif�cult to de�ne the boundary, because it depends on the application.
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2.4.1 Formal De�nition

Let X be the current state of a molecule. It includes all properties to describe
the molecule based on the underlying physical model. For example, for the
classical physical model, the state includes the atom positions and electrostatic
potentials as well as the bonding and non-bonding forces. If the molecule
changes over time to another state Y, for the following de�nitions, it will be
assumed that a continuous parametric function exists that connects these two
states.

Consider two molecules, a larger one, which could be a protein and a
smaller one, which could be a substrate, solvent, or ion. First, observe the
static state X̂ of the large molecule. Let SX̂ be the set of all states the smaller
molecule can adopt under the in�uence of the large molecule in state X̂. A
molecular pathis then de�ned as a parametric continuous curve c in the space
of SX̂ . So for a path between X1 2 SX̂ and X2 2 SX̂ , the curve c can be de�ned
as

c : [0, 1] � R ! SX̂ , with c(0) = X1, c(1) = X2.

Furthermore, let bX̂ be a tertiary boundary function that evaluates if a state of
the small molecule lies inside or outside of the region of the large molecule
or if it lies on the boundary. The restriction S̃X̂ � SX̂ is the set of all states
X 2 SX̂ for which bX̂ (X) evaluates the state as inside or on the boundary. In
the nondegenerate case,S̃X̂ consists of a network of paths with one or more
connected components.

Now consider the spatial region VX̂,X in R3 representing the volume of the
small molecule in state X under the in�uence of the large molecule in state
X̂. Note that a unique formal de�nition of VX̂,X is not available. Again it
depends on the underlying physical model. However, reasonable heuristics
to approximate VX̂,X exist. For a state X̂ of the large molecule, a molecular
cavity is de�ned as the union of all volume sets whose corresponding states
are connected by molecular paths in S̃X̂ . Note that two cavities can possibly
intersect each other, but there does not exists a molecular path between any
two states of two different cavities.

Consider now the case where the large molecule is dynamic, i.e., X̂ is a
function of time X̂(t). Let X1 2 SX̂(t1) and X2 2 SX̂(t2) be two valid states of
the small molecule for different times. A dynamic molecular pathbetween X1
and X2 is de�ned as a time-dependent continuous function c, with

c : [t1, t2] � R ! SX̂(t) , with c(t1) = X1, c(t2) = X2.

Furthermore, a dynamic molecular cavityis de�ned as the union of all VX̂(t),X
that are connected either by a dynamic molecular path or by a molecular path.
Thus, four possible topological events can be distinguished for the change of
a molecular cavity over time. It can appear and disappear, or it can merge
into another cavity or split into two or more cavities.
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Figure 2.18: Molecular cavities based on the geometric simpli�cation showing the structure
of the potassium channel pdb: 1K4C (left) and two molecular pockets of the enzyme pdb: 1PII
(right).

2.4.2 Simpli�cation

Since the computation of all molecular paths is similar to an in�nite number
of physical simulations for all possible states of the small molecule, it is not
practicable to directly apply this de�nition to the analysis of results of molec-
ular simulations. In order to create a practical solution, the state of a molecule
is often restrict to a space with pure geometrical properties. For the states of
the large molecule, usually the hard sphere model is applied, that is only the
atom positions and radii are used to create an imaginary hard boundary of
the molecule. In addition, like for the SES, the small molecule is often approx-
imated by a single probe sphere. Thus, for a state X̂ of the large molecule,
the set SX̂ includes all probe centers, where the probe does not intersect any
atom sphere of the large molecule. With this restriction, a molecular path is
a 3-dimensional continuous curve of probe centers; and a cavity is the union
of all points inside all probe spheres that are connected by continuous curves
in SX̂ . The surface of cavities for this simpli�cation is shown in Figure 2.18.
Furthermore, a dynamic molecular path is a 3-dimensional continuous curve
of the probe over time; and a dynamic cavity is the union of all cavities that
are connected by dynamic molecular paths. For most grid-based algorithms,
additionally, the shape of the molecules as well as their dynamics are dis-
cretized in R3. As boundary bX̂ for the large molecule, the convex hull of the
atom positions or atom spheres is often used. Other approaches use a dis-
tance threshold to the atom spheres or simply the axis-aligned bounding box
of the atom spheres. An ambient occlusion threshold as boundary indicator
seems to be quite promising and is also used in several approaches.
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Figure 2.19: Classi�cation of cavities in a molecule (blue). Additionally, a molecular path
through a tunnel, a path into a pocket, and a path inside a closed cavity are shown. The
yellow region indicates the selected boundary which separates, for example, the tunnel from
the pocket.

2.4.3 Classi�cation

In addition to the term cavity, many other denotations and classi�cations are
used in the literature, like voids, pockets, tunnels, and channels. While void
can be seen as a synonym for cavity, all other terms usually describe a spec-
i�cation of a class of cavities. To do so, one can distinguish between closed
and open cavities. All molecular paths inside closed cavities do not reach
the boundary, given by bX̂ . Open cavities are further separated into cavities
with a single entry or with multiple entries. An entry is a set of states of
the small molecule where all states are connected by paths that lie completely
in the boundary. Cavities with a single entry are often de�ned as pockets,
grooves, or clefts and cavities with multiple entries as channels, tunnels, or
pores. Figure 2.17 and 2.18 show an example of a channel and of two pock-
ets and Figure 2.19 illustrates the classi�cation, used in this thesis. However,
since the methods proposed in this thesis are not restricted to a certain class
of regions, usually only the term cavity is used to summarize all types of
regions.

2.5 Molecular Grid Data Structures

Most algorithms for molecular visualization and analysis as well as path and
cavity computation require neighborhood detections. This can be quite simple
operations where all atoms close to a given point or another given atom need
to be detected. But also more complex investigations are required, such as
the detection of the atom sphere, which �rst intersects a given ray. For many
algorithms, these neighborhood detections are crucial for the time complexity.
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A naive implementation would compute and check the distance of each atom
for a single neighborhood detection of a point. To reduce this amount of
time, 3-dimensional data structures can be used such as grids, k-d trees, or
octrees. For molecular data, often uniform rectangular grids are preferred.
These grids are quite suitable to store objects, the distribution of which is
almost uniform. Fortunately, the bonding forces but also the non-bonding
forces between atoms lead to �x bounds for minimal atom distances in most
real scenarios. This creates an almost uniform distribution of the atoms within
the boundary of the molecular data.

In general, a 3-dimensional grid data structure decomposes a subspace of
R3 into smaller regions, called cells. Usually, the cells do not overlap and their
union is equal to the whole subspace. For each cell, the grid holds a list of ob-
jects that correspond to the cell from a spatial point of view. If all objects close
to a certain point are requested, �rst all cells close to the point are detected
and then only the objects stored in these cells need to be considered. This
transfers the neighborhood detection problem to two other problems. First,
the construction of the grid, which means the decomposition of the space
and the assignment of the objects to the cells. And second, the detection of
close cells. Both problems can be quite complex for arbitrary grids. Fortu-
nately, speci�c types of grids such as regular grids can solve both problems.
The most often used type of regular grids are uniform rectangular grids. A
uniform rectangular grid G can be formally de�ned as 5-tupel ( I , d, C,O, y ),
where I = [bmin, bmax) � R3 is an interval that encloses the domain of inter-
est. This interval is uniformly partitioned into di pieces in each dimension
i = 1, ..., 3 with d 2 N 3. Thus, n equal-sized box-shaped cells are generated
with n = Õ di . Each cell corresponds to a list of unique object identi�ers
Cg 2 C with Cg � N and g 2 N 3, gi � di for i = 1, ..., 3. All objects are stored
in the set O. Furthermore, y : N ! O is a bijection which maps the object
identi�ers to the objects. With each uniform rectangular grid automatically a
mapping mG : I ! C is induced which maps a 3-dimensional point within
the interval to its corresponding cell, with

mG : p 7! Cj
p� bmin

bmax� bmin
�d

k

Since this mapping has a constant complexity, the detection of all cells close
to a point becomes also constant. Additionally, the assignment of the objects
to the cells is usually simple and mainly depends on the complexity of the
objects. Typically an object is assigned to a cell if the intersection of the cell
and the object is non-empty. The intersection test of an object with an axis
aligned box is quite simple for points and spheres [6, 130]. However, for
arbitrary objects it can be complex. In such cases often heuristics are used
that may assign an object to more cells than necessary but still lead to much
faster neighborhood detections. In this thesis, grids are mainly used to store
atom spheres or spheres that represent cavities. Since the variation of the
atom radii is not very large, it is in several cases reasonable to store only
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Figure 2.20: A 2-dimensional illustration of a �exible grid for dynamic molecular trajec-
tories. The maximal number of cells is twice the number of atoms, thus M= 10. The
dimensions of the grid are computed in a way that the cells approach squares. Therefore, the
left atom setting requires m= 9 and in case of the right setting m= 8 is used.

the center points of the spheres into the grid. The assignment of a point to
a cell is a single mapping operation using mG and each point is assigned
to exactly one cell. Thus the construction of the grid is very fast and the
memory requirements are lower than for spheres. On the other hand, it is
necessary to extend the search radius with the maximal sphere radius for
neighborhood detections. As mentioned before, in practice atoms cannot be
arbitrarily dense. Hence, the number of atoms within a �xed search radius
is bounded by a constant. Using a grid data structure the complexity of the
detection of these atoms becomes also constant. In the following, some details
about implementations of uniform rectangular grids as used in this thesis are
given.

2.5.1 Implementations

At the beginning of the construction of a grid, one has to de�ne the region of
interest as interval I and the number of partitions d. Both parameters together
de�ne the size of the cells, which have a major impact on the performance of
neighborhood detection operations. While too large cells can contain many
objects that lead to many potential neighbors, too small cells can create a lot
of overhead, because many empty or redundant cells need to be processed.
Often the minimal interval for I is given by the axis aligned bounding box
of the input spheres or their centers. For most applications, I and d are se-
lected based on a �xed cubical cell size, which is often in the range of a few
Angstrom. For dynamic data it can be better to create a �exible grid with at
most M 2 N cells, where M is �x over time and should be chosen proportion-
ally to the number of input spheres. Based on interval I , the partitions d are
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Figure 2.21: Illustration of a grid data structure for OpenGL. Left: the 3-dimensional grid
texture, which stores for each cell the position of the beginning of the list of object identi�ers
in the texture buffer object C. The object identi�ers represent position in the texture buffer
object O, which stores the spheres.

computed for each time step such that the overall number of cells is smaller
or equal than M and the cells become almost cubical, hence

di =

$

vi � 3

s
M

v1 � v2 � v3

%

with vi =
bmaxi � bmini

å 3
j= 1 bmaxj � bminj

for i = 1, ..., 3.

Since the atom density within a molecule is not arbitrarily high, the maxi-
mal number of references in each cell is restricted by a constant. The �xed
maximal number of grid cells M and the �xed number of references per cell
allow the algorithm to quickly adjust the grid to the dynamic changes of the
molecule without re-allocating memory (Figure 2.20). This can be of particu-
lar interest for algorithms running on the GPU.

On the CPU, grids are often implemented in an object oriented manner,
where the grid is a container class of cells and each cell itself is a container of
object identi�ers, usually represented by integer numbers. Both classes pro-
vide functionality to easily �ll, access and change the containers. On the GPU,
the grid structure needs to be organized either in texture data for OpenGL or
in simple arrays for OpenCL or CUDA. For OpenGL, it is quite suitable to
represent the grid as 3-dimensional integer texture. Thus, the mapping mg
is almost automatically given by the texelfetchfunctionality in shaders. Each
value corresponds to a cell and describes a position in a 1-dimensional integer
array which is realized by a texture buffer object. The buffer implements C
and y , which means it stores for all cells the lists of object identi�ers. The
integer value of the 3-dimensional grid texture points to the �rst object iden-
ti�er of the list. All further identi�ers are stored in the consecutive array
elements. The end of the list is marked by a negative identi�er. The object
identi�ers directly represent positions in a 1-dimensional �oating point tex-
ture buffer object with four components per element, that implements O. The
four components represent the position and radius of a single sphere. An
illustration of this storage is shown in Figure 2.21. The implementation for
OpenCL is quite similar. Both texture buffer objects are realized by classi-
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Figure 2.22: The top row shows the grid and the atoms (a) together with the entries of the
grid texture for two strategies (b) and (c). In (b) an atom is stored in a grid cell if it intersects
the cell. The corresponding atom data texture buffer object is shown below (left). The grid in
(c) stores an atom inside a cell if the center lies in the cell. The texture buffer object for this
strategy is shown below (right).

cal 1-dimensional arrays. And instead of a 3-dimensional texture, the grid is
stored in a linearized 1-dimensional integer array. This requires the typical
implementation of the bijection c : N 3 ! N from the cell coordinates to the
1-dimensional array and back to the cell coordinates

c(p) = p3 � d2 � d1 + p2 � d1 + p1 c� 1( i) =

2

6
6
6
4

( i % (d1 � d2)) % d1

( i % (d1 � d2)) / d1

i / (d1 � d2)

3

7
7
7
5

Depending on the requirements, for several implementations, especially for
these running on the GPU, it can be reasonable to avoid y and O and directly
store the objects into C. This reduces the number of array accesses, which
can increase the performance a lot on the GPU. On the �ip side, usually
the memory requirements are higher because objects that belong to multiple
cells are duplicated in C. However, if only the sphere centers are stored it
is particularly recommended to avoid y since each sphere belongs to exactly
one cell. Thus the memory requirements are even lower. A 2-dimensional
illustration of the storage of a grid without y for the full spheres and only for
the sphere centers is shown in Figure 2.22 for OpenGL. Note, that the end of
the list of spheres for a cell is here indicated by a negative sphere radius.
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Visualizing the dynamic behavior of molecules is particularly interesting
to gain insight into a molecular system. For more than two decades, sev-
eral types of molecular surfaces have been used to study interactions between
proteins and ligands (Section 2.3.3). The most widely used type of molec-
ular surface is the solvent excluded surface (SES). The molecular skin sur-
face (MSS) is not yet used that often, but has a lot of potential and might
become more important in the future. The interactive visualization of both
dynamic molecular surfaces requires a balanced combination of an ef�cient
computation of the surface description and its rendering. Additionally, the
data transfer between CPU and GPU needs to be considered. Until recently,
surfaces of both types had to be triangulated to visualize them. With mod-
ern GPUs, fast visualization has become possible using ray casting. In 2008
Chavent et al. [36] presented the �rst GPU-based ray casting for the interactive
rendering of the MSS. But the time required to construct the MSS prevented its
use for dynamic trajectories of proteins and other macromolecules. One year
later, Krone et al. [120] reported an interactive SES visualization of molecular
dynamics trajectories for a few thousand atoms.

In this chapter, it will be shown how to further accelerate the construc-
tion and rendering of the SES and MSS. These accelerations were described
in “ Accelerated Visualization of Dynamic Molecular Surfaces” [152] in 2010. The
contributions can be summarized as follows. First, the approximate Voronoi
diagram algorithm by Varshney et al. [232] is adopted for the computation
of the MSS. The original algorithm was designed to compute the analytical
description of the SES in linear time. By changing the distance function of the
Voronoi diagram and a corresponding de�nition of neighboring atoms, the
computation of the MSS will be accelerated by more than one order of mag-
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nitude compared to Chavent et al. [36]. Second, it is demonstrated that the
contour-buildup algorithm by Totrov [229] is ideally suited for computing the
SES due to its inherently parallel structure. For both parallel algorithms, good
scalability can be observed up to 8 cores. Thus, interactive frame rates will be
obtained for molecular dynamics trajectories of up to twenty thousand atoms
for the SES and up to a few thousand atoms for the MSS. Third, the render-
ing time for the SES is reduced by using tight-�tting bounding quadrangles
as rasterization primitives. These primitives also accelerate the rendering of
the MSS. With these improvements, the interactive visualization of the MSS
of dynamic trajectories of a few thousand atoms became possible for the �rst
time. Nevertheless, the SES remains a few times faster than the MSS such
that the SES can be applied for several thousand atoms which comprises the
majority of simulated proteins. For the following descriptions, consider a
molecule that consists of n atoms with positions pi 2 R3 and radii r i 2 R,
with i 2 I = f 1, ...,ng.

3.1 Surface Computation

The algorithms for computing molecular surfaces can be divided into two
categories. The �rst category comprises all methods that approximate the
surface by discretizing the space of R3 [185, 35, 228, 248]. The second cate-
gory contains all methods that compute a correct analytical representation of
the surface. While algorithms of the �rst category are usually easier to im-
plement, they can only achieve a �xed amount of detail. Furthermore, their
running time and memory requirements scale typically cubically with the res-
olution of the underlying grid for the discretization. Hence, this section deals
with algorithms of the second category.

In 1983, Connolly [45] presented the �rst algorithm for the computation of
an analytical description of the SES, which was improved by Perrot et al. [186].
Varshney et al. [232] proposed an even faster parallelized version based on the
computation of an approximate Voronoi diagram. Two years later a very ef�-
cient and elegant algorithm, called reduced surface algorithm, was presented
by Sanner et al. [209]. Shortly after, it was extended to partial updates for
dynamic data [208]. At the same time, Totrov and Abagyan proposed the
contour-buildup algorithm [229]. For the MSS, the algorithm for the surface
computation was implicitly given by its de�nition by Edelsbrunner [54].

In this section, two algorithms for the computation of molecular surfaces
are described. The �rst is the contour-buildup algorithm [229] for the SES
and the second is the approximate Voronoi diagram algorithm for weighted
points of the MSS. The latter algorithm was previously developed for the
computation of the SES [232]. By modifying the neighborhood de�nition of
atoms with respect to the de�nition of the skin surface, it can be used for the
computation of the MSS.
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Figure 3.1: Complete contour of the SAS (left) of deamino-oxytocin (pdb: 1XY2). Each
contour arc represents a toroidal patch (yellow), and each vertex, creates a concave spherical
patch (red), which is shown in the middle image. The gray spheres show two possible positions
of the probe. The contour of the SAS will be projected onto the van der Waals spheres to get
the patch boundaries (right).

3.1.1 SES: Contour-Buildup Algorithm

Recall that the SES is de�ned as the track of a probe sphere with radius rp
which rolls over the van der Waals spheres of the atoms of a molecule (Sec-
tion 2.3.3). The surface can be decomposed into 3 types of patches: convex
spherical, toroidal, and concave spherical. The �rst is de�ned by all points
where the probe touches exactly one van der Waals sphere, the second is de-
�ned as the track where the probe touches exactly two spheres, and the third
where the probe touches three and more spheres, respectively. Remember that
the SAS shows the center of the probe when it rolls over the van der Waals
atoms. The contour elements of the SAS directly correspond to the surface
patches of the SES. Each arc corresponds to exactly one toroidal patch, and
each vertex where three or more arcs meet corresponds to a concave spher-
ical patch. The convex spherical patches are given by all minimal cycles of
arcs (Figure 3.1). Note that all algorithms that compute the analytical descrip-
tion of the SES can only handle non-degenerate atom settings. This means
there must not exist a concave spherical patch where the probe touches more
than three atoms. This condition can be achieved by a small random per-
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turbation of the atom positions. Alternatively, one could use simulation of
simplicity [58].

The approximate Voronoi diagram algorithm [232] computes the contour
of the SAS by detecting the Voronoi faces through neighboring atoms. Note
that each contour arc of the SAS lies in such a face. Afterwards the contours
can be quickly computed by the intersections of the Voronoi faces and the
intersections with the extended van der Waals spheres. In contrast, the re-
duced surface algorithm computes some kind of dual structure of the SAS
contour [209]. It consists of vertices, edges, and triangles. Each vertex corre-
sponds to exactly one convex spherical patch, each edge to a toroidal patch
and each triangle to a concave spherical patch. The third algorithm was pre-
sented by Totrov and Abagyan [229]. In contrast to the approximate Voronoi
diagram algorithm, it directly computes the contour of the SAS. Furthermore,
it is trivial to parallelize, which is not the case for the reduced surface algo-
rithm. Based on these superior properties, the contour-buildup algorithm is
most suitable to compute the SES. The algorithm consists of three parts:

1. Computation of the contour of the SAS.

2. Determination of the implicit surface description of each surface patch.

3. Detection of all singularities.

Contour Computation of the SAS

This part of the algorithm is the most involved one. It is illustrated in Fig-
ure 3.2. For each of the extended van der Waals spheres(pi , r i + rp), the
contour describing the part of the boundary that contributes to the SAS has
to be computed. These contours consist of circular arcs and full circles (Fig-
ure 3.1). The arcs and circles describing the contour of theith atom are created
by intersecting all neighboring atom spheres, where the neighborhood Nrp( i)
is de�ned as

Nrp( i) =
�

j j jj pj � pi jj < r j + r i + 2rp, 8j, j 2 I , j 6= i
	

.

To quickly determine Nrp( i), a �exible 3-dimensional grid as described in
Section 2.5 can be used. In the �rst step, for each extended van der Waals
sphere (pi , r i + rp), all intersection circles ci j are computed with j 2 Nrp( i).
These circles are sorted according to their distance to pi . Then the circles
are pairwise analyzed starting with the closest pair. During the analysis of
a pair ci j and cik, three important settings are detected. Consider the half-
space Hi j given by the plane through ci j and all points on the side of pj . If
cik lies completely in Hi j , then cik does not contribute to the contour and it
can be removed. On the other hand if ci j lies completely in Hik, then ci j can
be removed. Furthermore, if both lie completely inside the half-space of the
other one, atom i does not contribute to the SAS contour and all circles can
be removed.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Stepwise creation of the contour of the yellow atom. (a) Start contour (circle)
created by the �rst neighboring atom. (b) The second circle splits the �rst circle, thereby
creating two arcs. (c) Both arcs are contracted by the third circle. (d) The fourth circle
deletes two arcs and contracts the remaining arc at both ends. (e, f, g) Analogously to (c).
(h) Complete contour of the yellow atom.

In the second step, the contour of each atom is constructed by an iterative
approach. In each step, one of the remaining circles is taken and the current
contour is updated. A circle can create a new contour circle or one or more
arcs. In the latter case, existing contour elements might disappear or will be
possibly cut. During a cut, the start or end point of the corresponding arc can
change or it can be completely split. For more details, the reader is referred
to the original publication by Totrov and Abagyan [229].

In protein-ligand docking simulations [31], the number of �exible atoms is
sometimes reduced to the amino acids in the active site of the molecule to
reduce the computational cost. In this case, only the contours of the �exible
atoms in the active site together with their neighborhoods need to be updated.

Implicit Surface Patch Descriptions

As mentioned before, the analytical description of the SAS contains all infor-
mation to compute the SES. The SAS contours simply need to be projected
onto the respective van der Waals spheres. These projections generate the SES
contours (Figure 3.1).

From each convex spherical patch of the SAS, a convex spherical patch of
the SES is generated. Such a patch can be geometrically described as the
surface of the corresponding van der Waals sphere that is bounded by planes
through the projected contour arcs (Figure 3.1).

Each contour arc of the SAS generates a toroidal patch. The small radius
of the torus is the probe radius rp and the big radius is the distance of the
contour to the line through the positions of the atoms which created the con-
tour arc. This line also represents the axis of the torus. A toroidal patch is
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bounded by at least two planes perpendicular to the torus axis where the
patch connects to convex spherical patches. These are the same planes that
bound the convex spherical patches. Additionally, in case of a real arc and
not a complete contour circle, the torus is bounded by two more planes in
the direction of the two neighboring concave spherical patches. These planes
include the start and end point, respectively, as well as the two positions of
the atoms that created the contour arc (Figure 3.1).

In the non-degenerate case, each concave spherical patch is a spherical tri-
angle given by a vertex in the SAS contour. The corresponding sphere of the
triangle is the probe with the center at the SAS contour vertex. The triangle
vertices are the intersection points of the probe surface with lines through the
probe center and the positions of the atoms which created the contour vertex.
The arcs of the spherical triangles lie in the same planes like the boundaries
of the neighboring toroidal patches (Figure 3.1).

Singularities

The generated SES description might contain self-intersections, which arise
in two cases. First, if the small circle of the torus is larger than its big circle,
the torus intersects itself. When this self-intersection is removed, two cusps
remain. This intersection can be easily identi�ed and removed. On the other
hand, the intersection of two concave spherical patches is more costly to iden-
tify. Here, all concave spherical patches that are close enough to each other
need to be tested for intersections. Similarly to the neighborhood search for
the contour computation, these patches can be found using a 3-dimensional
grid. In the original algorithm, the singularity contours were computed again
with the contour-buildup method. However, since the surface will be ray
cast and not triangulated, for each concave spherical patch, only the clip-
ping planes describing these self-intersections are required and stored for
each patch.

3.1.2 MSS: Approximate Voronoi Diagram

In this section, the idea of the approximate Voronoi diagram algorithm to
compute the SES [232] is transferred to the computation of the MSS. The
MSS was described in Section 2.1.4 and 2.3.3. Brie�y, it is aC1 continuous
surface that can be decomposed into patches of quadrics. Its shape depends
only on a single parameter called shrink factor s 2 (0, 1) � R. The surface
patches and their boundaries are implicitly given by the Voronoi diagram
of the weighted points (pi , wi ) with wi = r i

2/ s and the distance function
di (p) = kp � pik

2 � wi .
In case of the SES, Varshney et al. [232] found that it is not necessary to

compute the correct Voronoi diagram of the SAS. They observed that only
speci�c elements in the Voronoi diagram correspond to surface patches of
the SES and that the other elements can be ignored. For this reason they
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3.1 Surface Computation

Figure 3.3: MSS of deamino-oxytocin (pdb: 1XY2) colored by the surface patch types (left).
The convex spherical patches are depicted in blue, the hyperbolic patches of type I in yellow,
the hyperbolic patches of type II in red, and the concave spherical patches in green. The
corresponding mixed cells for the patches are illustrated in the middle and a combination with
the MSS is shown right.

de�ned feasible Voronoi regions that only consider the atoms in the local
neighborhood. A feasible Voronoi region Vi is a correct Voronoi region of
a subset of the input atoms given by the neighborhood Nrp( i). Due to this
restriction, the computation of the SES scales linearly with the number of
atoms.

A similar observation can be made for the MSS. Consider the correct Vo-
ronoi diagram and its corresponding mixed complex depending on s. Based
on the Voronoi and Delaunay elements, one can distinguish between four
different patch types and their bounding mixed cells (Figure 3.3):

1. Convex spherical patches. Each patch is given by the surface of the
van der Waals sphere of the corresponding atom. The mixed cell is the
scaled Voronoi region which is a convex polyhedron.

2. Hyperbolic patches of type I . These patches are given by the Voronoi
faces. Each patch is bounded by a prism, where the base area is equal
to the scaled Voronoi face.

3. Hyperbolic patches of type I I . This type comprises all patches de�ned
by Voronoi edges. Their corresponding mixed cells are also prisms but
with triangular base area. The triangles are given by the scaled dual
Delaunay faces.

4. Concave spherical patches. These patches are de�ned by the Voronoi
vertices and their corresponding mixed cells are tetrahedra. The tetra-
hedra are equal to the scaled dual Delaunay regions.

The convex spherical patches are connected by hyperbolic patches of type I
along the clipping planes of the polyhedra. The interesting observation is,
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Figure 3.4: Left: Illustration of the MSS with the corresponding mixed complex. The blue
cell shows an example of a mixed cell that intersects the atom spheres and creates a patch
between the two atoms. Hence, these atoms are neighbors. In contrast, the yellow cell does
not intersect the atom spheres. Thus, the cell is empty and does not create a connecting patch.
The corresponding atoms are not neighbors. Right: Illustration of the feasible regions based
on the neighborhood de�nition (left). Two pairs of feasible regions intersect each other (yellow
and blue).

that if the plane in which a face of the polyhedron lies does not intersect the
van der Waals sphere, there cannot exist a connecting hyperbolic patch for
the corresponding Voronoi face. Furthermore, the intersection of the corre-
sponding mixed complex cell with the implicit surface is empty. Hence it is
not necessary to compute these faces, and the Voronoi region can be restricted
to feasible regions based on the neighboring atoms (Figure 3.4).

To properly de�ne a feasible region for a weighted point of the MSS, the
de�nition of the neighborhood Ns( i) of an atom i with shrink factor s is re-
quired. Let Vf i ,jg be the Voronoi face between atoms i and j. Furthermore,
let Hi ,j be the corresponding plane, which is de�ned by all points p with
jj p � pi jj 2 � wi = jj p � qj jj 2 � wj . The orthogonal distance di (Hi ,j ) from pi to
Hi ,j is given by

di (Hi ,j ) =

�
�
�
�
�
(pj � pi )2 + wi � wj

2 �

 pj � pi




�
�
�
�
�

.

This distance is scaled by s to get the distance of the plane through the corre-
sponding face of the bounding polyhedron of the convex spherical patch. If
the distance is larger than r i , then there cannot exist a surface patch between
atom i and j. Hence the neighborhood Ns( i) is de�ned as

Ns( i) :=
�

j j s � di (Hi ,j ) < r i , 1 � j � n, j 6= i
	

.

A feasible region for the weighted point i is then given by

Fi :=
n

x 2 R3 j di (x) � dj (x) : 8j 2 Ns( i)
o

.

Fi is generally larger than Vi because fewer neighbors are considered for the
computation of Fi and thus fewer planes restrict the region. This can lead to
overlapping feasible regions, (Figure 3.4). Due to computing feasible regions
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(a) (b) (c) (d)

Figure 3.5: One step of the creation of a feasible Voronoi region by cutting the region (a)
with the separating plane of another atom (b). First, all elements of the cell are detected, that
will be removed (red) and that need to be modi�ed (blue)(c). Second, along the modi�ed edges
a new face is created to close the region (d).

instead of the correct Voronoi regions, the algorithm scales linearly with the
number of weighted points, because for physically correct molecules, the size
of the neighborhood of the weighted points is bounded by a constant. Each
feasible region can be computed independently. Hence, the algorithm can be
easily parallelized as was described by Varshney et al. [232]. In contrast to
their approach, here, the feasible regions are computed by cutting polyhe-
drons. Each region is initialized with a tetrahedron large enough to enclose
the whole molecule. Then the cell is iteratively cut and closed according to
the planes Hi ,j of all neighbored atoms Ns( i) (Figure 3.5). Finally, the algo-
rithm returns a closed feasible cell. All cell elements that are part of the initial
tetrahedron are subsequently ignored.

To obtain the analytical description of the MSS, for each of the 0- to 3-
dimensional feasible Voronoi elements, the implicit function is generated as
described in Section 2.1.4. Additionally, the computation of the corresponding
bounding feasible mixed cells is straightforward.

3.2 Rendering

Usually, surfaces are triangulated in order to visualize them in real-time com-
puter graphics. However, this can be time consuming depending on the com-
plexity of the surface and the quality of the resulting triangular mesh. Fur-
thermore, with triangulations, one can only achieve a �xed amount of detail,
based on memory constraints and the requested interactive rendering perfor-
mance. For many years, numerous publications have dealt with the triangu-
lation of molecular surfaces. In 1985, Connolly presented the �rst method for
the SES [46]. Most approaches �rst triangulate the surface patches separately
and then combine them into a single surface mesh [1, 209, 132, 37, 127]. Ad-
ditionally, Bajaj et al. approximate the patches by spline surfaces to simplify
the triangulation [10, 11, 12, 250]. One of the fastest methods was proposed
by Ryu et al., which uses subdivision surfaces [206, 205]. However, their ap-
proach is not able to handle all possible singularities. They focus only on
the ones that occur most often. A high quality triangulation of the MSS was
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3D scene

camera

image plane
light

view ray

Figure 3.6: The general concept of ray casting. Through each pixel in the image plane, a
ray from the camera is traced. If the ray intersects an object in the 3-dimensional scene, the
closest intersection point to the camera is detected. A second ray from the intersection point
to the light source is used to shade the pixel with a simple illumination model.

proposed by Cheng et al. [38, 39, 40]. Nevertheless, all currently available
methods to triangulate the SES or MSS are either not fast enough to use them
for dynamic protein data or their quality is insuf�cient.

An alternative to the triangulation-based rendering is ray casting. Classical
ray casting algorithms compute for each pixel of the �nal image the view ray
from the camera through this pixel. If this ray intersects one or more objects,
the closest intersection point is detected and a simple illumination model is
used to compute the color of the pixel (Figure 3.6). The advantage of this
approach is, that the degree of detail is determined by the number of pixels
in the �nal image and not by the 3-dimensional scene. However, this requires
the computation of the intersection of the ray with all objects in the scene.
Depending on the complexity of the objects, this can be very time-consuming
and is sometimes not even analytically possible. But due to the continuous
advances in computer graphics hardware and the possibility to program the
graphic pipeline with shader languages, for several applications, ray casting
has become more ef�cient than triangulation.

One application is the rendering of simple algebraic surfaces. Recall, that
algebraic surfaces are implicit surfaces that can be described by polynomials
(Section 2.1.2). Consider, for example, the surface of a sphere, which can be
described as algebraic surface of degree two, called quadric. A high quality
triangulation of a sphere requires several hundreds or thousands of triangles.
On the other hand, the computation of the intersection of a ray with a sphere
results in the detection of the root for a polynomial of degree two, which is
quite simple. For this reason, the classical ray casting was transferred to the
GPU to interactively render simple algebraic surfaces with high quality.

In contrast to the classical ray casting, where the whole scene is rendered at
once, on the GPU each surface instance is rendered independently. To do so,
one or more simple polygons or polyhedrons are generated for each surface
patch such that their projection to the image plane encloses the projection
of the corresponding surface patch. These objects will be called rasterization
primitives here. After the projection, in the fragment shader, for each fragment
of the rasterization primitive, the view ray from the camera is computed and
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the intersection test with the corresponding surface patch is performed. In
case of an intersection, the illumination model is applied to color the frag-
ment. Furthermore, the correct depth of the intersection point instead of the
rasterization primitive is computed and stored in the depth buffer. Because
the GPU stores automatically only the closest fragment, all occluded intersec-
tions of the ray with other patches are ignored.

In 2003, one of the �rst GPU-based ray casting approaches was presented
by Gumhold to render ellipsoids in tensor �elds [82]. The data transfer of
his technique was optimized by Klein and Ertl to illustrate magnetic �eld
lines [114]. In 2006, Sigg et al. presented an ef�cient and general ray cast-
ing approach for arbitrary quadrics [216]. In contrast to the previous ap-
proaches that were developed only for orthogonal projection, they are able
to use perspective projection. Additionally, they used point sprites to further
reduce the data transfer to the GPU. They demonstrated the applicability of
their technique on the ball-and-stick representation and the van der Waals
surface. Loop and Blinn developed the �rst ray casting technique to render
piecewise algebraic surfaces up to degree four [153]. They use the analytical
Ferrari-Lagrange method presented by Herbison-Evans [90] to compute the
intersections of the ray with the surface patches. Toledo and Lévy also inves-
tigated the ray casting of algebraic surfaces up to degree four with the focus
on tori [227, 226]. They analyzed the performance depending on different ras-
terization primitives and different iterative approaches for the computation of
the intersection points. Based on their results, they recommend the iterative
Newton-Raphson algorithm, which they found to be superior to Hart's sphere
tracing [86] and the analytical solution used by Loop and Blinn [153]. Ray
casting of algebraic surfaces of even higher degree than four was presented
by Singh and Narayanan [217]. However, the focus of their approach lies on
the rendering of a single surface patch.

Both, MSS and SES are composed of piecewise algebraic surface patches.
While the MSS consists only of patches of degree two, the patches of the SES
are of degree two and four. The latter patches are also known as quartics.
Since the intersections of a ray and these algebraic surfaces can be computed
very ef�ciently, the MSS and SES are ideally suited for ray casting. Chavent et
al. presented the �rst ray casting algorithm to visualize the MSS directly on
the GPU [36]. A similar but more ef�cient approach was presented by Krone
et al. for the SES [120].

The performance of GPU-based ray casting is mainly determined by two
operations. First, the complexity of the computation of the intersections of
rays with the algebraic surface. Thus, the faster the intersections can be com-
puted, the faster the surface can be rendered. Second, the number of rays that
need to be tested for intersections is determined by the size of the selected
rasterization primitives, because for each rasterized fragment, an intersection
test will be done. The smaller these primitives are, the less rays need to be
tested. However, a small number of rays will only be worthwhile if not too
much time is spent for computing the primitives. In the following, the ray
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1. vertex
construction

2. vertex shader

3. geometry
shader

4. fragment shader

Figure 3.7: Concept of ray casting on the GPU for a surface patch of the SES. First for each
patch a vertex is created which contains the implicit surface equation and the patch boundary.
Second, in the vertex shader, the patch is transformed into modelview space. Third, a tight
�tting quadrangle enclosing the complete patch after projection is generated by the geometry
shader. And fourth, the ray casting is performed for each fragment of the quadrangle.

casting of the SES and MSS is presented, where these two operations are op-
timized to achieve interactive rendering.

3.2.1 Pipeline

Before the two important operations are described in detail, an outline of the
optimized ray casting pipeline on the GPU is given. The pipeline is illustrated
in Figure 3.7. In case of the SES, for each surface patch a single vertex is cre-
ated which contains all information about the patch. For example, the vertex
for a concave spherical patch stores the position and radius of the sphere and
the three boundaries of the spherical triangle. The vertices are then trans-
ferred to the GPU, where each patch is transformed by the modelview matrix
in the vertex shader. Afterwards, a rasterization primitive for each patch is
created in the geometry shader. For the SES, a tight �tting quadrangle is cre-
ated out of the single vertex. Additionally, for each vertex of the quadrangle,
the view ray from the camera is computed. During the rasterization of the
quadrangle, the view rays will be automatically interpolated such that each
fragment gets the correct ray. Then, in the fragment shader, the actual ray cast-
ing is performed. First, the intersection with the surface patch is computed.
In case of an intersection, the classical Blinn-Phong [17] illumination model
is applied to color the fragment. Finally, the correct depth of the fragment is
required to enable depth tests with neighboring patches. Using the geometry
shader to create the rasterization primitives has two important advantages.
First, the data upload to the GPU is minimized, similar to the work of Sigg
et al. [216]. And second, it is possible to create individual tight �tting raster-
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(a) (b) (c) (d)

Figure 3.8: Computation of a tight planar object that includes a cylinder after rasteriza-
tion (d). In (a) and (b), two possibilities for the outer points of the cylinder are depicted.
(c) displays how the outer points are used to span the object.

ization primitives as it was done by Gumhold [82] or Toledo and Lévy [226],
which is, for example, not possible with point sprites.

3.2.2 Rasterization Primitives

In the following, some details are described about the rasterization primitives
that will be suitable for the patches of the SES and MSS.

SES

Recall that a convex spherical patch describes a part of the van der Waals
sphere of an atom which is bounded by arcs. The boundary of each arc can
be implemented by a clipping plane. However, the clipped parts of the van
der Waals sphere lie completely inside the SES and never penetrate it. Hence,
for an opaque visualization of the SES, it is faster and easier to render the
whole van der Waals spheres. For each van der Waals sphere, a single vertex
is created, which stores only the center of the sphere and the radius. In the
geometry shader, a square is computed as rasterization primitive. This square
is placed orthogonally to the line from the camera to the sphere center. The
size of the square depends on the distance to the camera and the radius of
the sphere. It is chosen in a way that it tightly surrounds the silhouette of the
sphere, from the view of the camera.

A toroidal patch is a piece of an inner part of a torus which is bounded by
at most four circular arcs. Two arcs connect the toroidal patch with two con-
vex spherical patches. These two boundaries can be represented by clipping
planes that are orthogonal to the torus axis. The other two arcs occur in case
the patch is neighbored to concave spherical patches Figure 3.1. However,
similar to the convex spherical patches along these directions, the toroidal
patch lies always inside the SES. Thus, again it is faster and easier to ignore
these boundaries. For this reason, the vertex of a toroidal patch stores the
midpoint and axis of the torus as well as the small and big radii and two
distances from the midpoint for the two clipping planes in direction of the
convex spherical patches. For the computation of a rasterization primitive,
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the patch is �rst bounded by a tight cylinder. While the direction of the axis
of the cylinder is equal to the axis of the torus, it can be shifted to minimize
its radius. Therefore, the vertex stores also the shifting and the radius of the
cylinder.

Ignoring the self-intersections, a concave spherical patch is a spherical tri-
angle with vertices v1, v2, and v3. Similar to the toroidal patches, a bounding
cylinder is constructed. The cylinder is chosen such that the radius is equal
to the radius of the circumcircle c of v1, v2, and v3. The cylinder axis starts in
the midpoint of c and is orthogonal to the plane Hs spanned by v1, v2, and
v3. The cylinder length is equal to the probe radius rp minus the orthogonal
distance from the probe center pp to Hs. As mentioned before, each vertex
representing a concave spherical patch stores the position and radius of the
sphere as well as the three vertex positions of the spherical triangle.

For the bounding cylinder of the toroidal patches and the concave spherical
patches, a bounding quadrangle can be computed as follows (Figure 3.8).
Let Hc be the plane spanned by the cylinder axis and the vector from the
camera position to the cylinder center. Then, the four intersection points of
Hc with the cylinder caps are determined. The right-most and left-most points
are detected, which are depicted by the red points in Figure 3.8 (a) and (b).
Through these two extremal points, a trapezoid is spanned the parallel sides
of which are orthogonal to Hc. The lengths of these sides need to be chosen
such that the trapezoid completely encloses the cylinder (Figure 3.8, c). In
Figure 3.8 (d) the projection of the cylinder and the corresponding quadrangle
is shown.

MSS

For the convex spherical patches of the MSS, the same bounding quadrangles
are used as for the SES. For the hyperbolic patches corresponding to Voronoi
faces, truncated pyramids are used. And for the other two types of patches,
directly the mixed cells are used. These cells are prisms with triangular base
area and tetrahedra, respectively. Note that here is room for further optimiza-
tion, but optimizing the rasterization primitives for the two hyperbolic and
the concave spherical patch types is more complex.

3.2.3 Ray Intersection

After computing the tight-�tting rasterization primitives, for each fragment
of a primitive, the ray casting is performed in the fragment shader. In order
to compute the intersection of the view ray with the surface patch, the para-
metric description of the ray is inserted into the implicit surface equation of
the patch. The intersection points are the roots of the resulting polynomial.
In case of quadric patches, the polynomials have degree 2. The analytical so-
lution for solving roots of quadrics is well studied, and stable formulas are
available [195]. These formulas will be directly used in the fragment shader
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x0x1x2...

camera

Figure 3.9: Ray casting of a toroidal patch. First the intersection point x0 with the bounding
cone is computed. Then the sphere tracing is started from this point. The distance to the
surface determines the step size.

to compute the intersection points for all spherical patches as well as the hy-
perbolic patches of the MSS.

For intersecting a ray with the toroidal patch, the roots of a polynomial
of degree four need to be detected. Although there are analytical solutions
to this problem [90] that have been successfully used for these patches [120],
here sphere tracing [86] is applied. In order to get a good start position for the
algorithm, �rst the intersection x0 2 R3 of the ray with the minimal bounding
cone of the patch is computed (Figure 3.9). If the ray does not intersect the
cone or if it intersects the conic object at the �at ends, the ray does not intersect
the toroidal patch. Otherwise, the sphere tracing is started at the intersection
point x0. In each iteration step i of the algorithm, the minimal distance l i 2 R
from the current position xi 2 R3 to the patch surface is computed. Because
l i is the minimal distance, it is guaranteed that the next point xi+ 1 along the
ray with distance l i to xi still lies in front or exactly on the surface of the
patch. From xi+ 1 again the minimal distance l i+ 1 is computed. The algorithm
proceeds until the minimal distance reaches a �xed threshold or a maximal
number of steps is reached. If the last point still lies too far away from the
surface, it will be ignored. Otherwise, the last point is taken as intersection
point. Based on visual experience, a good choice for the maximal number of
iteration steps is 30, whereby the actual maximal number can be computed
depending on the distance of the patch to the camera. Thus for close patches
maximal 30 iterations should be used while for far patches often 10 or less
iterations are enough to achieve a high visual quality.

Most of the patches of the SES and MSS are bounded by clipping planes.
While in most cases the number of clipping planes is small and �xed, this is
not the case for the singularities of the concave spherical patches of the SES.
To remove the self-intersections, the corresponding clipping planes describing
the self-intersection are stored in a texture as done by Krone et al. [120]. The
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Figure 3.10: Comparison between pure surface rendering (�rst row) and surface rendering
with post-processing (second row) of pdb: 1X5V (left), pdb: 2RNT (middle), and pdb: 2JQC
(right). For 1X5V and 2JQC, the MSS is shown and for 2RNT the SES is visualized. In all
three examples, silhouettes are used and for 2RNT and 2JQC also depth darkening is applied.
Additionally, the surface of 2JQC is blended with the ball-and-stick representation.

fragment shader then tests each intersection point whether it is clipped by
any clipping plane. In case the point is clipped, it will be discarded.

3.2.4 Post-Processing

Although the surfaces of the SES and MSS are smooth, it can still be dif�cult
to focus on speci�c regions, especially for large molecules. The most critical
point is the depth perception due to the simple direct illumination model.
Many techniques have been proposed to interactively enhance the depth per-
ception. Under these techniques especially the visualization of silhouettes
and the interactive approximation of a global illumination model play impor-
tant roles. However, even very simple techniques, like depth cueing, can be
very effective. During this work, all three techniques were implemented for
the visualization of the SES and MSS. Therefore, the surface is �rst rendered
to a frame buffer object, which stores two textures for the shaded colors and
the depth values. In a second pass, a screen space �lling rectangle is ren-
dered with both textures. During this rendering a shader implements one ore
more of these techniques. For the depth cueing, simply the color is bright-
ened or darkened with increasing distance. For silhouettes, the gradient of
the depth is approximated using the local neighborhood. The result is then
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Figure 3.11: Comparison between pure SES rendering (left) and surface rendering with
post-processing of pdb: 1J4N (top), pdb: 1AF6 (middle), and pdb: 1AON (bottom). In all three
examples, the post processing applies silhouette detection and depth darkening as well as
depth cueing for 1AF6 and 1AON. Additionally, the surface of 1AF6 was blended with the
secondary structure representation.

combined with the color. In order to approximate global illumination Luft et
al. presented a simple but ef�cient technique, called depth darkening [157].
For each pixel, the depth function is smoothed using a Gaussian kernel. Af-
terwards, the difference between the smoothed depth and the original depth
is used to darken the color of the pixel. This creates an illusion of global il-
lumination because at the boundaries of cavities the surface becomes darker.
Several examples that show the effect of these techniques can be seen in Fig-
ure 3.10 and 3.11.

The rendering of the SES and MSS, as described above, cannot visualize
the surface with transparency. Nevertheless, it is still possible to use a fast
blending by rendering only the front face of the surface transparently in com-
bination with other visualizations. This is for most applications suf�cient and
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PDB-ID #Atoms CB 1 (SES) AVD 1 (MSS) RS2 (SES)

1 8 1 8 1

1VIS 2 531 102 18 451 83 80
1AF6 10 517 451 73 2 113 369 360
1GKI 20 150 880 145 4 184 698 770
1AON 58 870 2 407 405 9 924 1 683 2 680
3G71 99 174 4 488 759 18 507 3 353 �
1System: 2 Intel Xeon E5540 2.53 GHz. 2System: Intel Core 2 Duo 3 GHz.

Table 3.1: Update times in milliseconds for the surface computations using OpenMP with
1 and 8 cores. For the SES, the contour-buildup algorithm (CB) was used and for the MSS,
the approximate Voronoi diagram (AVD) algorithm. The last column shows the update times
for the reduced surface (RS) algorithm, implemented by Krone et al. [120].

sometimes even more useful than a correct transparency. Examples are shown
in Figure 3.10 and 3.11.

3.3 Results

The implementations were tested on several molecules of different size. Static
proteins were used from the protein data bank [184] as well as dynamic data
sets from cooperation partners.

3.3.1 Surface Computation

In this section, the results for the parallelized versions of the contour-buildup
algorithm and the approximate Voronoi diagram algorithm are presented. All
tests were performed on an 8 core 2,53 GHz Intel system. Table 3.1 gives the
timings for the molecular surface computations performed on 1 and 8 cores.
The timings include the computation of all surface patches as well as their
transfer to the GPU. With 8 cores, a speedup of approximately 6 was mea-
sured for the SES and 5 to 6 for the MSS. The MSS was computed with a
shrink factor s = 0.3, because for this value, the surface seems to be most
similar to the SES with a probe radius of 1.4 Å.

The plots (a) and (c) in Figure 3.12 show the speedup for the computation of
the SES and MSS for the chaperonin molecule (pdb: 1AON) with � 60k atoms.
The plots contain the speedup for the overall computation and for the indi-
vidual parts. Note that for the main part of the computation (the blue curve),
a speedup of more than 7 was measured on 8 cores. The plots (b) and (d) in
Figure 3.12 show the proportionate time for each part of the algorithm.

Compared to the reduced surface algorithm [209] used by Krone et al. [120],
the contour-buildup algorithm scales better with the number of atoms (Ta-
ble 3.1). While for small molecules the running time is slightly higher for the
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Figure 3.12: Timings for SES (top row) and MSS (bottom row) of chaperonin molecule
(pdb: 1AON) on an 8 core 2,53 GHz Intel system. Diagrams (a), for SES, and (c), for MSS,
show the speedup for a complete update of the surface depending on the number of threads.
Diagrams (b) and (d) show the timings for the individual parts.

contour-buildup algorithm, for the largest molecule, 1AON, it is faster than
the reduced surface algorithm. Note that the computational times for the
contour-buildup algorithm include patch generation and data transfer to the
GPU. Next to the implementation of the approximate Voronoi diagram algo-
rithm for the MSS, it was also implemented for the SES. However, the contour-
buildup algorithm was approximately 1.3 times faster for all molecules in
Table 3.1.

Chavent et al. [36] reported a computation time of 15 s for the MSS of a
water channel molecule (pdb: 1J4N). With the approximate Voronoi diagram
algorithm the computation time was reduced to 320 ms for the same molecule
with s = 0.3 on a comparable single CPU core. Hence, the speedup is approx-
imately a factor of 40.
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PDB-ID #Atoms FR in % rendering performance (in fps)

SES SES [120] MSS 0.5 MSS 0.3

1VIS 2 531 60 74 60 39 25
1AF6 10 517 70 46 27 14 10
1GKI 20 150 70 26 19 8 6
1AON 58 870 55 18 13 4 3
3G71 99 174 60 14 � � �

Graphics card: NVIDIA GeForce GTX280.

Table 3.2: Rendering performance of static molecular surfaces. The table shows results for
the SES with rp = 1.4 and MSS with s= 0.5 and s= 0.3 compared to the SES results of
Krone et al. [120]. The �ll rate (FR) and the resolution (1024� 1024) are the same for all
renderings.

3.3.2 Rendering

In order to compare the rendering performances, the same GPU as well as the
experimental setup was used as described by Krone et al. [120]. The frame
rates are given in Table 3.2. With the tight bounding quadrangles, described
in Section 3.2.2 a speed-up of at least 1.3 was measured for the SES. Further-
more, the frame rates for the SES were higher by a factor of 2 to 4 compared to
the MSS with s = 0.5 and even higher for s = 0.3. Additionally, the MSS ren-
dering performance was compared to MetaMol [36]. On an NVIDIA GeForce
8800 GTX, 30 frames per second (fps) were measured for the water channel
(pdb: 1J4N), compared to 7 fps in MetaMol [36] on the same GPU. Thus, the
MSS rendering, presented here, is faster by a factor of approximately 4.

For both SES and MSS, typical colorizations and simple transparency using
blending were implemented. Furthermore, advanced depth perception tech-
niques like depth darkening [157] and silhouettes were implemented. The
overhead introduced by these techniques is constant, because they use sim-
ple image �lters. For example, for the more expensive depth darkening of
pdb: 1AON, the performance dropped from 18 to 16 fps.

3.3.3 Dynamic Molecular Surfaces

To evaluate the performance for real dynamic molecular data, the algorithms
were tested on several molecular dynamics data sets from cooperation part-
ners. The measurements comprise the multi-threaded surface computation
using 8 cores as well as the GPU data upload and the rendering. The overall
update rates are given in Table 3.3.

In the simulation of DynMol-2, 500 of 4 500 atoms were �exible [31]. In-
cluding the neighborhoods of these atoms, the contours of 1 500 atoms needs
to be recomputed. With this partial update, a speedup of 2.5 compared to
re-computing the whole SES was achieved.
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Molecule #Atoms overall update rate (in fps)

SES MSS (0.5) MSS (0.3)

DynMol-1 1 200 110 25 20
DynMol-2 4 500 33 7� 8 5
DynMol-3 6 500 20 5� 6 3 � 4

System: 2 Intel Xeon E5540 2.53 GHz, NVIDIA GeForce GTX280

Table 3.3: Overall update rates for dynamic molecules using OpenMP with 8 cores.

3.4 Discussion

For the computation of the SES, the contour-buildup algorithm seems to be
the method of choice. While it is trivial to parallelize, which is not obvious
for the reduced surface algorithm [209], it performs better than the approx-
imate Voronoi diagram algorithm. Furthermore, the approximate Voronoi
diagram algorithm has the drawback that it needs more memory, because it
also stores additional data structures for the feasible cells. The computation of
these additional data structures might also be the reason for its worse running
time. Nevertheless, the approximate Voronoi diagram algorithm has the nice
property that it can be used for the computation of both MSS and SES. The
plots in Figure 3.12 show that the patch computation limits scalability, while
the contour-buildup and the approximate Voronoi diagram algorithms alone
seem to scale well beyond 8 cores. The most likely reason for the limited scala-
bility is the concurrent memory access from all threads during patch creation.
Note also that the patch creation for the MSS has not been fully parallelized.

It seems that using tight-�tting bounding quadrangles as rasterization prim-
itives is the main reason for the improved SES rendering performance (1.3
times faster than Krone et al.[120]). To con�rm this, also the point sprite-
based approach was tested which was used by Krone et al. [120] and mea-
sured frame rates similar to theirs, which supports the explanation. Note that

construction rendering

SES 1 core: 1x to [120]
8 cores: 6x to 1 core

>1.3x to [120]

MSS 1 core: 40x to [36]
8 cores: 5x to 1 core 200x to [36]

>3x to [36]

SES to MSS SES 4x to MSS SES >3x to MSS

Table 3.4: Approximate speedups of SES and MSS compared to previous approaches, and
speedup of SES over MSS.
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3 Smooth Molecular Surfaces

the bounding quadrangles are computed in the geometry shader, so the data
transfer to the GPU is the same for the bounding quadrangles and basic point
sprites. For the high computational load caused by sphere tracing in the frag-
ment shader, tight-�tting bounding geometries seem to be superior to basic
points, which con�rms that “geometry shaders [offer] a viable option for the
construction of bounding geometry” [80]. Additionally, the Newton-Raphson
algorithm is 10-20% faster than the sphere tracing for the rendering of the
toroidal patches. However, a few pixel errors occurred at the patch contours
due to starting points that are too far from the intersection point. Hence,
sphere tracing [86] or the stabilized Ferrari-Lagrange method [90, 120] seem
to be the methods of choice.

There are mainly two reasons for the improvement in MSS rendering speed
(4 times faster than MetaMol [36]). First, the usage of tight-�tting bounding
quadrangles for the convex spherical patches. And second, for the hyper-
bolic patches corresponding to the Voronoi faces, 3-dimensional polyhedra are
used, which are possibly smaller than the mixed cells used in MetaMol [36].

Compared to the SES rendering, the MSS rendering is clearly more costly.
This mainly is due to the larger number of patches of the MSS. For shrink
factors of s = 0.5 and s = 0.3, there are approximately 4 times as many
patches as for the MSS. Moreover, the rasterization primitives are not fully
optimized. Hence, further improvements in the rendering performance might
be possible.

The results for dynamic data sets show that the overall update rates are lim-
ited by the surface construction. The data transfer to the GPU and rendering
times are negligible on an 8 core system.

3.5 Further Developments

Since the publication of the methods described above in 2010, several further
developments in this research area have been proposed. In the following, the
most important ones are summarized.

In 2010, Krone et al. [121] presented a parallel version of the reduced surface
algorithm for the GPU. The method computes in each frame only the visible
part of the SES, which makes it in general suitable for dynamic and large
molecular data. However, due to the complex parallelization of the reduced
surface algorithm, they achieved interactive frame rates only for molecules
with at most 2 000 atoms. One year later, they also implemented a parallel
version of the contour-buildup algorithm, but for the GPU using CUDA [123].
Due to the massive parallel computation power of the GPU, they could fur-
ther accelerate the computation. Additionally, Kauker et al. extended the ray
casting to visualize the SES with transparency [103].

In 2012, Parulek and Viola presented the �rst ray casting of the SES which
comes without a pre-computation of the analytical description of the sur-
face [180]. Therefore, they use a modi�ed sphere tracing and directly com-
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pute the implicit description of the surface along the local neighborhood of
the ray. This allows the user to directly visualize the SES of dynamic molecu-
lar data without changes in the frame rate. However, they achieved interactive
frame rates only for small molecules. Furthermore, the visualization contains
pixel artifacts, especially at singularities and patch boundaries. In order to
solve these problems, Parulek and Brambilla proposed a new approach that
approximates the SES by blending implicit functions [177]. With this approx-
imation they achieved interactive frame rates for dynamic proteins with sev-
eral thousand atoms. Additionally, the method produces less artifacts, but the
patch boundaries are still visible.

Besides to these direct ray casting approaches, Decherchi and Rocchia, pre-
sented a new triangulation method based on ray casting [50]. Although they
could accelerate the triangulation of the SES and MSS, the overall speed and
visual quality for both surfaces cannot reach the quality of the methods pre-
sented here.
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4Van der Waals Surface

In the previous chapter, it was shown how to visualize smooth molecular
surfaces to interactively analyze dynamic molecular data, especially proteins.
While these surfaces are suitable for many molecular visualization tasks, their
computation and rendering is too expensive for larger data sets. In order to
visualize this kind of data that comprises many length scales and a huge num-
ber of atoms, often hierarchical geometrical representations are used. For
the lower end of these length scales, the van der Waals surface is a good
compromise between simplicity and physical correctness compared to more
abstract representations like, for example, the secondary structure representa-
tion. However, the basic problem with hierarchical geometric representations
is to achieve visually seamless transitions between them. Typically, either its
underlying geometry is almost continuously coarsened, or only one or a few
discrete changes are made that visually are glossed over using, for example,
smooth blending. For both techniques, usually a compromise between per-
formance and visual quality needs to be selected.

In this chapter, a new approach is presented that enables the user to interac-
tively visualize the van der Waals surface, bridging �ve orders of magnitude
in length scale. The method was described in “ Interactive Rendering of Materials
and Biological Structures on Atomic and Nanoscopic Scale” in 2012 [150]. It shifts
the limit where atomic representations must be substituted by simpler geo-
metric objects. Thus, the problem of a seamless visual transition almost van-
ishes. This is achieved by a simple yet ef�cient GPU rendering method, based
on the idea of modern volume rendering. Furthermore, it will be exploited
that biological structures often consist of recurring molecular substructures.
The rendering is extended by a three-step surface normal computation in a
deferred shading step. This avoids aliasing artifacts and creates an improved
structure perception for far camera distances. Since the technique comes with
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4 Van der Waals Surface

Figure 4.1: A microtubule data set containing4025microtubules with approximately10
billion atoms. The microtubules were reconstructed from electron tomography images. The
ray casting approach of this chapter is able to render the data set with at least3 fps.

no explicit level of detail, it requires only a few fast precomputations and is
easy to implement. For biological structures, like microtubules and actin �l-
aments, interactive frame rates are still achieved for several billions of atoms.
For non-recurring data, like inorganic materials from atom probe tomogra-
phy, the number of atoms is mainly limited by the memory of the graphics
card. The approach can be utilized not only for interactive and exploratory
analysis, but also for the production of movies, e.g. for educational purposes
in molecular biology and nanosciences. An example of a visualization of a
microtubule data set is depicted in Figure 4.1.

4.1 Related Work

The most well known approaches for rendering large scenes use geometry
simpli�cation, which is often called level of detail. This is a vast research
topic with rather diverse techniques depending on the geometric primitives
and the speci�c goals. It comprises fundamental concepts, like progressive
meshes by Hoppe [94] and highly speci�c approaches, like vessel visualiza-
tions by Wischgoll et al. [242]. A broad overview of the most important tech-
niques for simpli�cation of triangular meshes was given by Luebke et al. [156].
More recently, Laine and Karras [128] showed that sparse voxel octrees can be
used for ef�cient occlusion detection during ray casting of large triangulated
scenes. However, since the approach presented in this chapter does not use
simpli�cation nor triangular meshes, the focus of this section lies on methods
dealing with the rendering of large atom or particle data sets.
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4.2 Rendering

Most closely related to this topic are probably the works by Sharma et
al. [214] and Grottel et al. [79]. Both approaches utilize occlusion culling to
speed up the rendering. Sharma et al. apply hierarchical view-frustum culling
as well as probabilistic and depth-based occlusion culling. Similarly, Grottel
et al. apply a two-level occlusion culling approach. On the coarse level, they
employ a grid structure and on the �ne level, hierarchical depth buffers [75]
are used. To reduce rendering artifacts and to generate coherent impressions
of large-scale structures, Grottel et al. make use of deferred shading.

While the method proposed by Grottel et al. as well as the method pro-
posed here render all visible atoms, many other techniques, including the
work by Sharma et al., employ hierarchical or level-of-detail representations.
For example, Arndt et al. [5] presented the Genome3D viewer, which was
speci�cally designed to visualize structural epigenomic data. To do so, the
authors designed level of detail approximations for substructures. This al-
lows them to visualize the whole human genome consisting of approximately
60 billion atoms. Frey et al. [68] visualized a large number of particles by cre-
ating representatives that capture the characteristics of the underlying particle
density and exhibit coherency. The Millenium Run data set, a large-scale cos-
mological data set containing 10 billion particles, was visualized by Fraedrich
et al. [66]. They achieved this by developing a visually continuous level of
detail representation based on a hierarchical quantization scheme for particle
coordinates and rules for generating coarse particle distributions. Their ap-
proach is well-suited for isotropic density-like particle distributions, but does
not apply to molecular models like the van der Waals surface.

In contrast to modern GPU-based ray casting approaches for simple implicit
surfaces, as proposed by Sigg et al. [216], the rendering technique that is
presented here, exploits the idea of ray-casting-based volume rendering as
described by Hadwiger et al. [83]. Instead of creating a primitive for each
atom sphere, the molecular data will be stored in regular grids rendered as
cuboids. By traversing the cells of the grids, the atoms that intersect the casted
ray can be quickly identi�ed.

4.2 Rendering

Biological structures often consist of a large number of recurring parts of a
single or a few proteins. To make use of this self-similarity property, com-
ponents will be created of which many instances can be rendered. Note that
these components do not necessarily correspond to a single protein or macro-
molecule. Rather, it is possible to combine as many molecules as is sensible
for a speci�c application into one such component. In this section, all ren-
dering steps are described in detail. An overview of the different steps is
shown in Figure 4.2. Since the rendering method is designed for the GPU,
also information about the implementation for OpenGL and GLSL [171] will
be given.
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4 Van der Waals Surface

(a) (b)

(c) (d)

Figure 4.2: Concept of the rendering pipeline using the example of actin �laments. First, ten
actin proteins pdb: 3MFP (a) are used to to create a component (b) of two intertwined strands.
Then many instances of this component are constructed with different transformations to form
the complete �laments (c). Additionally, ribosomes are shown in blue. Finally, all instances
are rendered in a single ray casting pass (d).

4.2.1 Ray Casting

As described in the previous chapter, modern GPU-based sphere ray casting
algorithms create for each sphere a simple primitive. Then, the ray from the
camera through each fragment of the primitive is computed and the intersec-
tion test with the sphere is performed. While this works very well for up to
a few million atoms, for larger data sets, mainly two problems arise. First,
the overall number of primitives is too high such that they do not �t into the
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4.2 Rendering

GPU memory. Second, the rasterization of so many primitives becomes too
expensive. Note that today's typical desktop monitors show images with up
to 4 million pixels. Thus, rendering data sets with several billions of atoms
implies that many atoms are not visible because they either lie outside the
view frustum or they are occluded by other atoms or they are located so far
from the camera that they are smaller than a pixel. Especially the two latter
reasons are problematic for the current GPU-based ray casting approaches,
because for all fragments, even occluded ones, the rasterization and ray cast-
ing is performed.

To solve these two problems, the self-similarity of biological structures is
used as described above. By storing only a few components of which many
instances can be rendered, the memory requirements are enormously reduced
(Figure 4.2). Furthermore, a ray casting technique is proposed that renders
the components similar to classical voxel rendering methods like volume or
isosurface ray casting [83]. All atoms of a single component are stored in a
grid data structure. The grid will be represented by a 3-dimensional texture,
like voxel data for volume rendering. Afterwards, only the bounding box of
the grid of the component is rendered, and the ray casting is performed in
the fragment shader. To compute the intersection of the ray with the atoms
stored in the grid, two different grid traversal approaches will be investigated
that differ both in time and memory ef�ciency. Once the ray intersects an
atom sphere, the traversal can be stopped. This avoids useless intersection
tests for occluded atoms. Finally, the correct depth, normal, and color for the
intersection point is computed in a postprocessing step

Grid Construction

The atoms of a component are stored in a �exible grid, as proposed in Sec-
tion 2.5 with the storage strategies shown in Figure 2.22. As mentioned before,
two grid traversal approaches will be investigated. For the �rst approach, an
atom is stored into all grid cells that intersect with the atom sphere. For the
second approach, an atom is inserted only into a single grid cell, that is, into
the cell in which the atom's center lies. The texture buffer object that stores
the atom spheres can use either 16- or 32-bit �oating point values. Besides
this buffer, a further 8-bit unsigned integer texture buffer object is used to
store a color identi�cation number per atom. With a 1-dimensional texture,
theses identi�cation numbers are mapped to colors during the ray casting.

Instancing and Ray Computation

In order to use the self-similarity property of biological structures, each re-
curring component is represented by a single grid. Then all instances of a
component are rendered by applying different transformations to the same
grid. So each instance consists of the bounding box of the component, a
rigid transformation T into world space, and an object identi�cation number

69



4 Van der Waals Surface

(a) (b)

(c) (d)

Figure 4.3: Illustration of the different spaces of the rendering pipeline. Many instances of a
component (a) can be rendered in world space (b) using different transformations. Afterwards,
each instance is transformed into model view space (c) and projection space (d). Only the
back faces (thick lines) of the instance boxes are rendered. The ray casting is performed in
component space (a) by transforming the ray from projection space into component space.
Finally, the intersection point is transformed again into projection space.

(OIN). The OIN is used during the shading to distinguish different biological
structures, for example, different microtubules.

In many volume-based visualization techniques, the start and end positions
of the rays are determined using two separate rendering passes of the front
and back faces of the bounding box of an instance. However, rendering n
instances separately requires 2n rendering passes per frame, which becomes
costly for large n. This problem is solved by performing the complete ray
casting of n instances in one pass including the determination of the start
and end points of the rays. To do so, the back faces of the bounding boxes
of all instances are rendered. This creates all necessary rays. Note that the
rendering of the front faces would create no rays for an instance when the
camera lies inside its bounding box (Figure 4.3).

To perform the ray casting in the space of the component, the rays need
to be transformed into this space, too. In more detail, the following is done.
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During the vertex shader, all vertices of the bounding box of each instance
are transformed from component space into the world space and then into
the projection space. This creates the correct coordinates for the rasterization
of the bounding boxes. Additionally, the vertex shader pass the vertex po-
sitions in component space to the fragment shader, which directly gives the
end points of the rays. In the fragment shader, the position of the camera is
transformed back from the projection space into the component space by us-
ing the inverse rigid transformation T� 1. Afterwards, the start position of the
ray is determined by computing the intersections of the ray from the camera
with the planes containing the bounding box. The intersection point closest
to the end position in the direction to the camera is the start position of the
ray. If this position is behind the camera, the position of the camera is used
as ray start. The different spaces for the rendering pipeline are illustrated in
Figure 4.3.

Ray Casting of Atom Spheres

During rasterization of the instances, ray casting of the atom spheres is per-
formed in the fragment shader. For this purpose two different GPU ray cast-
ing approaches are investigated, that make use of the grid data structures to
ef�ciently detect occlusion within an instance.

Ray Voxel Traversal Method. This approach was described by Amanatides
and Woo [2]. The algorithm is summarized here and illustrated in Figure 4.4.
It assumes a grid that stores an atom inside all cells that intersect the atom.
Let ro + t �~rd be the ray for the current fragment, where ro,~rd 2 R3 are the ray
start and direction, and t 2 R is the ray parameter. First, the cell c 2 N 3 is
computed in which the ray starts. Furthermore, the ray parameters t1, t2, t3 2
R are computed that represent the intersections of the ray with the boundary
planes of cell c in x, y, and z directions. The �nal initialization step is the
computation of the values d1, d2, d3 2 R, representing the ray parameters to
cross a complete cell in direction x, y, and z, respectively.

Now, the following steps are repeated. First, all intersections of the ray with
the atom spheres stored in cell c are computed. If the ray parameter t i 2 R
for the closest intersection is smaller than min (t1, t2, t3), the intersection lies
inside c and the algorithm stops. Otherwise, the algorithm proceeds with the
next cell. Consider t1 < t2 and t1 < t3, which means that the ray hits a neigh-
boring cell in x direction. For a positive x component of ~rd, the x component
of c is incremented, otherwise it is decremented. If the new cell c lies outside
the grid, the algorithm stops, because the ray does not intersect any atom
sphere. Finally, d1 is added to t1 and the algorithm jumps to the �rst step. If
t2 or t3 is the minimum, c is moved in y or z direction, respectively. Note that
this algorithm might compute intersection tests with an atom sphere several
times, because an atom sphere can be stored in several cells. Amanatides and
Woo suggest the solution to add a �ag to each sphere that characterizes that
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Figure 4.4: Left: Ray Voxel Traversal in 2D. The yellow grid cells1, ..., 7have to be con-
sidered in this order for the ray casting. Hence, intersection test with all blue atoms have
to be performed. The red atom is the �rst atom intersected by the ray. The blue dots depict
steps at which tx is minimal and the next cell lies in x direction. Accordingly, the orange
dots illustrate minima of ty. Right: Ray Layer Traversal in 2D. The main direction in this
example is the x direction. The cylinder for the ray is depicted by the dotted lines. For each
layer, pmin and pmax are computed, illustrated by the blue boxes, and intersection tests with
the blue atoms stored in the yellow grid cells are performed. The red atom is the �rst atom
that is intersected. The blue dots show the points p and pn for each layer.

an intersection test was already done for the ray. However, this solution is not
practicable on the GPU, due to the concurrent traversal of the grid with many
rays. A �ag for each possible ray would be too expensive.

Ray Layer Traversal Method. This approach is a modi�cation of the ray
voxel traversal method for grids that store an atom in a cell only if its center
lies inside this cell. Thus the approach uses less memory than the ray voxel
traversal method. Another advantage is that one can change the atom radii in-
teractively without recreating the grid. This is interesting for the visualization
of the solvent accessible surface (Section 2.3.3).

To perform a correct ray casting for this kind of sphere storage, the al-
gorithm needs to consider all grid cells that intersect a cylinder whose axis
is equal to the ray and whose radius is given by the maximal atom radius.
Therefore, the algorithm iterates over the cell layers of the grid in the main
direction of the ray that is given by the direction component with the largest
absolute value. Let d 2 R be the distance on the ray to go exactly the width
of one cell into the main direction. Furthermore, let p 2 R3 be the ray start
that lies in layer i 2 N , and let pn 2 R3 be the intersection of the ray with
the boundary plane of the layer in the main direction. Now, the expansion
e 2 R3 of the cylinder is computed in the remaining two directions. This
expansion is given by the intersection of the cylinder with the plane spanned
by the remaining directions. One can compute a maximal expansion using
trigonometric functions. Note that e is 0 in the component of the main direc-
tion. In the following, the iteration over the cell layers of the grid is described
(Figure 4.4).
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Figure 4.5: Usage of three normal calculations, depending on the distance d of the fragment:
analytically normal (red), approximated normal (yellow), and inverse view direction (blue).
The curve shows a possible radius function for the approximated normal.

First, pmin 2 R3 and pmax 2 R3 are computed, with pmin = min (p � e, pn �
e) and pmax = max(p + e, pn + e). Note that min and max work here in a
component-wise manner. Furthermore, pmin and pmax are clamped with the
boundary of the grid. Afterwards, the corresponding grid cells cmin 2 N 3 and
cmax 2 N 3 are detected. Note that cmin is equal to cmax in the component of
the main direction. Now, the algorithm iterates over the rectangle of grid cells
given by cmin and cmax and performs intersection tests with the atom spheres
stored inside these cells. Finally p becomes pn and pn becomes pn + d �~rd,
where ~rd 2 R3 is again the ray direction. This procedure is repeated until the
closest intersection point is found or until p and pn are outside the bounding
box of the grid.

Final Calculations. Let s 2 R3 be the closest intersection point of the ray
with any atom sphere. To compute the correct depth of the fragment, s is
transform into projection space by using again T. Additionally, the normal
in s is computed in modelview space and the color is determined from the
color identi�cation number and a color map. Depth, normal and color are
then written to a frame buffer object for later use. In the alpha channel of the
color, the OIN is stored.

4.2.2 Deferred Shading

Deferred shading is often used for fast illumination and post-processing ren-
dering techniques [207, 85]. However, similar to the work of Grottel et al. [79],
here, a deferred shading step is used to avoid visual artifacts due to strongly
varying normals of spheres that become small in image space. In addition, the
shading is extended to emphasize different molecular structures according to
the distances of the camera. Therefore, three different normal calculations are
used. If a fragment is close to the camera, the correct analytically computed
normal is used. With growing distance, this normal is linearly interpolated
with an approximated normal given by the surrounding fragments. Finally,
for large distances, the approximated normal is interpolated with a constant
normal to generate a �at shading (Figure 4.5).
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Figure 4.6: On the left image one can see the problem of silhouettes twice as thick for
partially occluded instances. The right image shows the result by computing only silhouettes
for the closer instance to the camera.

To approximate the normal, Grottel et al. use the positions of the eight
surrounding fragments and the position of the current fragment as control
points for a quadratic Bezier surface. The positions can be computed by the
depth values and the inverse projection matrix. The �nal normal is then given
by the normal of the midpoint of this surface.

This method is extended with a radius for the selection of the depth values
around the current fragment. The radius is a �oating point value and lin-
ear interpolation is allowed for depth texture fetches. To illustrate different
molecular structures and to avoid hard image changes during camera moves,
a function is proposed for this radius depending on the distance of the frag-
ment to the camera (Figure 4.5). First, the radius increases with the distance
until a given maximal radius is reached. Afterwards, the radius is constant
until the instance becomes very small and �nally, the radius is decreased
again. Using the radius function, a smooth surface impression of the data is
created with increasing camera distance, as the user would expect.

The main problem of the normal approximation occurs when neighboring
fragments belong to the background or another structure. For background
fragments, Grottel et al. suggest to replicate the data of the current fragment.
However, this creates silhouettes when neighboring fragments belong to other
structures, while the boundaries of the structure have no silhouettes (Fig-
ure 4.7). In contrast to this technique, here always all depth values of the
neighboring fragments will be considered. This results in maximal depth val-
ues for background fragments. Hence, the approach generates silhouettes at
structure boundaries, the thickness of which is given by the radius function.
While the silhouettes are suitable for visualization of the molecular structure,
they become disturbing if the instance becomes small in image space. For
this reason, the radius is decreased after a certain distance. One can also ob-
serve that the normal approximation is not sensible anymore when the whole
instance becomes only a few pixel wide in image space. Therefore the approx-
imated normal is interpolated with a constant vector representing the normal,
which reduces noisy artifacts. Overall, the normal of a fragment changes with
increasing distance from the computed analytic normal over an approximated
normal depending on a radius function to a constant vector (Figure 4.5).
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(a) (b) (c)

Figure 4.7: Comparison of different shading techniques using a microtubules data set: (a)
rendered without deferred shading using the analytically computed normals, (b) implementa-
tion of the approach by Grottel et al. [79], and (c) proposed deferred shading using a radius
function to increase the perception of molecular structures depending on the viewer distance.

If one instance is in front of another one and does not occlude it completely,
the silhouette between both instances is twice as thick (Figure 4.6, left). This
problem can be handled using the OIN. If a surrounding fragment has an-
other OIN and the depth value is smaller than the depth value of the current
fragment, the depth of the current fragment is used to compute the position of
the surrounding fragment. This avoids silhouettes for the occluded instances
(Figure 4.6, right).

Finally, also the color of a fragment is interpolated with the colors of the
surrounding fragments depending on the distance to the camera. For a better
depth perception, one can optionally add depth cueing. The �nal results of
this deferred shading in comparison to no deferred shading and an imple-
mentation of the deferred shading proposed by Grottel et al. [79] are shown
in Figure 4.7.

4.3 Data and Applications

In order to test and demonstrate the proposed rendering approach, several
data sets were investigated. These data sets and their construction are brie�y
described in the following.
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4.3.1 Materials

With atom probe tomography (APT) it is possible to create a 3D reconstruc-
tion representing a �eld evaporated volume of atoms from a sharp needle-
shaped specimen [105]. The reconstruction can consist of tens of millions of
atoms, where the position and the element type of each individual atom are
identi�ed, offering a near atomic resolution analysis. Visualization of such
data sets helps detecting crystallographic structures, lattice defects, as well as
clustering of substitutional elements. Examples can be seen in Figure 4.10.

4.3.2 Biological Structures

Among others, two important cellular structures are microtubules and actin
�laments, which together with the intermediate �laments form the cytoskele-
ton of cells. These �lamentous structures play a pivotal role in a variety
of cellular processes. With electron tomography, it is possible to obtain 3-
dimensional images of cytoskeletal structures in cellular environments. How-
ever, the resolution of such tomographic maps is not high enough to recon-
struct microtubules, actin �laments or intermediate �laments on an atomic
level as described in the review by Leis et al. [140]. Hence, these structures
are often only visualized using abstract geometric objects like tubes. With the
approach presented here, it is possible to bridge the gap between the cellular
and the atomic scale, thereby reminding the user of the fact that the phenom-
ena of the data being dealt with are driven by interactions on a molecular or
even atomic level.

Structures

• Microtubules are tube-like polymers of the protein tubulin [95] (Fig-
ure 4.1). The main building blocks are a- and b-tubulin. A third type
of tubulin is g-tubulin, which can be found at the minus ends of the
microtubules, contributing to a cap. The a- and b-tubulin build dimers,
many of which are arranged in a helical structure. Microtubules form
the core of organelles like axonemes but most importantly they form
bipolar spindles, structures involved in chromosome segregation mito-
sis. Depending on the species, the mitotic spindle apparatus can consist
of several thousands of microtubules.

• Filamentous (F) actin �laments are formed by polymerization of glob-
ular actin proteins. A single F-actin �lament appears as two intertwined
strands forming a helical structure (Figure 4.8). The polymerization and
depolymerization of actin into higher order structures, e.g. branched
networks or bundled �bers, is driving cytoplasmic organization and cell
motility [193].

• Ribosomes are cellular machines that assemble the aminoacids to form
proteins [199]. Because of the importance of ribosomes, many of these
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macro-molecular structures are present in each cell (Figure 4.8). Of high
interest is the distribution of ribosomes, because it gives hints about
regions of high protein biosynthesis.

Data Preparation

Both microtubules and actin �laments are reconstructed from electron tomo-
grams [203, 238]. As result of the reconstructions, the structures are given by
their piece-wise linear center lines. The recurring atomic data is taken from
the protein data bank [184]. To create the atoms for the center lines, �rst the
lines are smoothed and resampled such that the length of each line segment is
equal to the length of one recurring component. Then, for each line segment,
one instance of the component is created and placed along the segment to
form the biological structure.

• For the microtubules, the tubulin protein pdb: 1TUBis used, which com-
prises both a- and b-tubulin. Thirteen of these building blocks were
placed around a line segment with a radius of 12 nm to form one left-
handed spiral cycle with an extend of approximately 12 nm of the helix.
Ten consecutive cycles were combined to form one recurring component
of a microtubule. Several tens of instances of this component were then
placed along each line to form a complete microtubule.

• As building blocks for the actin �laments, the protein pdb: 3MFPis used,
which comprises two actin monomers, one for each strand. Twelve
of these building blocks were concatenated to form one component.
The blocks were placed along a line segment each rotated by the same
amount of degree. Several instances of this component were placed
along the whole line forming a complete actin �lament.

• For the ribosomes, only the positions were extracted from the electron
tomograms. Hence, the orientations are arbitrarily chosen. To repre-
sent the ribosomes, pdb: 2WDK and pdb: 2WDL are combined into one
component. At each position of a ribosome, a single instance is placed.

4.4 Results

For the data sets described above, the following results were achieved. These
results are compared to the rendering performance of the fastest previous
approaches. Before going into the details, the chosen parameters are given.

4.4.1 Parameter Choice

The number of maximal grid cells, see Section 2.5, is very important for bal-
ancing the performance and memory requirements. For the ray voxel traver-
sal, a number of cells equal to the number of atoms performed best in most
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4 Van der Waals Surface

Figure 4.8: Illustration of different perspectives of a reconstruction consisting of actin
�laments (yellow/orange) and ribosomes (blue) from an electron tomography image. One
image slice is shown as gray-value map in the background. Part of the membrane (green) was
reconstructed as triangulated surface.
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Data #Atoms #API FR FPS
(V)

FPS
(L)

FPS
(C)

MB
(V)

MB
(L)

1X9P (virus) 220 600 220 600 58 61 42 185 8.8 2.7
1OHG (virus) 904 200 904 200 76 41 25 105 29.7 9.9
1TUB (microtubules) 2 700 000 900 000 67 50 30 41 39.5 9.8
3MFP (actin) 7 850 000 35 500 57 29 18 15 1.3 0.5
APT (ion crystal) 36 000 000 36 000 000 77 26 15 1 1 092.6 362.3
APT (synthetic) 75 500 000 75 500 000 59 � 13 � � 831.4
1TUB (microtubules) 148 500 000 900 000 63 15 8 � 39.5 9.8

Graphics card: NVIDIA GeForce GTX 470.

Table 4.1: Performances in frames per seconds (FPS) for the ray voxel traversal (V), the ray
layer traversal (L), and the classical sphere ray casting (C). The table also shows the number
of atoms per instance (#API), the �ll rate (FR), and the memory requirements for the grid and
the atom data in MB, where the atom positions are stored as 16-bit �oating point values.

cases. In contrast, for the ray layer traversal, only one fourth of this number
leads to the maximal performance for the test data sets. The remaining pa-
rameters are needed for tuning the deferred shading. For rmin and rmax of the
radius function, see Figure 4.5, 0.25 and 2.0 pixels were used, respectively. The
radius is increased at a distance of 35 nm and the maximal value is reached at
300 nm. As already mentioned, the distance for the constant maximal radius
depends on the biological structure. For all structures, the radius is kept con-
stant until the instance is larger than 5 pixels in image space and it reaches its
minimum again when the instance becomes smaller than 2 pixels. Further-
more, the analytical normal is interpolated with the approximated normal
between 20 nm and 50 nm. The interpolation of the approximated normal
and the inverse camera direction is done between the instance sizes of 3 and
1 pixels.

4.4.2 Ray Casting Performance

The technique was tested for several biological data sets as well as materials
from ATP. The results were compared to the typical GPU-based ray casting of
spheres similar to the approach by Sigg et al. [216]. A direct comparison to
the optimized approach of Grottel et al. [79] was not possible, because of the
speci�c data sets. However, a comparison based on the order of the number
of visualized atoms seems to be suf�cient.

For the performance tests, an NVIDIA GeForce GTX 470 graphics card was
used with a �xed resolution of 1024 � 1024. Since the performance of all ap-
proaches depends a lot on the �ll rate of the image as well as the number of
occluded fragments, the data sets were placed in a way, such that approxi-
mately the worst case frame rate with respect to the distance of the data set
to the camera was achieved. Then, the data was rotated around its center of
gravity and the average �ll and frame rate was taken. The results are given in
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Figure 4.9: Illustration of the virus capsid 1X9P for different distances to the camera. One
can see that the smoothness of the surface increases with the distance.

Table 4.1. The �rst two data sets are icosahedral virus capsid structures from
the VIPERdb data base [233] (Figure 4.9). The third and the last data sets are
small sections from microtubule data sets. A part of an actin �lament data set
was used as fourth example. The whole data set can be seen in Figure 4.8. The
remaining two data sets are atom probe tomography examples (APT), where
the smaller one is a metallic ion crystal (Figure 4.10) and the other one is a
synthetic silicium data set created for performance tests. The table shows the
results for both ray traversal methods and the classical GPU-based ray casting
of spheres which is similar to the technique presented by Sigg et al. [216].
One can see that the ray voxel traversal method is nearly twice as fast as the
ray layer traversal. Furthermore, the classical ray casting is much faster for
small molecular data, but its performance decreases rapidly when the data
sets reach 5 million atoms. The proposed rendering technique scales much
better with the number of atoms and clearly outperforms classical ray cast-
ing of spheres for 10 million atoms and more. While the ray voxel traversal
is faster than the ray layer traversal, it requires 2 � 4 times more memory to
store a component. For this reason it was not possible to render the large APT
data set with the voxel traversal on this graphics card. So the size of a sin-
gle component is mainly restricted by the memory requirements of the grid
data structure for the corresponding ray traversal method. For the GeForce
GTX 470 graphics card, the largest component can consist of approximately
50 million atoms for the ray voxel traversal and 100 million atoms for the
ray layer traversal. Using many instances of a recurring component allows
reducing the memory requirements a lot. Note that the frame rate does not
directly pro�t from the instancing, but depends mainly on the overall num-
ber of atoms and the camera position. The frame rate changes approximately
linearly with the number of rendered fragments. When zooming, the number
of fragments changes mostly continuously. Thus, the frame rate also changes
continuously.

The proposed technique has a similar performance as the approach by Grot-
tel et al. [79] for up to 100 million atoms but scales better beyond this. This
claim is based on performance measures for the APT data sets, which seem
to have similar atom densities as their laser ablation simulations. For their
data set with 48 million atoms, Grottel et al. achieved a frame rate of about 7
fps for the sphere ray casting on an NVIDIA GeForce GTX 285. On the same

80



4.5 Discussion

Figure 4.10: Visualization of three different APT data sets using interactive cutting planes.
This allows analyzing clusters (a), (b) or the lattice structure (c).

graphics card, the smaller APT data set from Table 4.1 was rendered with
23 fps and 14 fps for the two traversal methods presented here. Besides, the
performance does not depend on the previous frame.

The rendering approach was also applied to larger data sets with up to bil-
lions of atoms. The whole actin data set, illustrated in Figure 4.8 comprises
about 700 million atoms and the large microtubules data set, shown in Fig-
ure 4.1, contains about 10 billion atoms. Therefore, the overall scale ranges
from 0.2 nm for a single atom to 8 000 nm for the whole data set. For the actin
data set, an average frame rate of 8 fps was achieved depending on the zoom
factor and the view direction. For the large microtubules data set, the frame
rate was at least 3 fps.

4.4.3 Deferred Shading

The deferred shading is relatively cheap in contrast to the ray casting of the
spheres. The complete deferred shading step takes about 1.7 ms per frame.
Hence the frame rate drops, for example, from 25 to 24 with deferred shad-
ing. However, the shading greatly improves the perception of the molecular
structure, similar as the approach by Grottel et al. [79]. The differences due
to the silhouette handling and the radius function are illustrated in Figure 4.6
and 4.7. With increasing distance, the visualization becomes more and more
like a smooth surface and shows the important structures for the correspond-
ing distance (Figure 4.9). Nevertheless, the deferred shading produces minor
�ickering artifacts at cavity boundaries as well as at the molecular boundary.
These artifacts are created by great distance differences between neighbored
pixels as well as their abrupt appearance and disappearance.
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4.5 Discussion

Although the approach, presented in this chapter, is one of the fastest tech-
niques to visualize large atomic data, it comes with some limitations.

The approach is currently only designed for static data and limited to rigid
transformations for the recurring substructures. In addition it is not suited for
all data sets consisting of spheres. Especially, large variations in the radii and
very sparse or not well distributed data sets can decrease the performance a
lot. However, typical molecular data sets do not fall under this category.

Since most molecular structures have a homogeneous atom density, a grid
should perform best for the storage of the atoms. The initialization of a grid
is very fast and its conversion into a 3-dimensional texture is straightforward.
Furthermore, the implementation of the ray traversal methods using GLSL is
quite easy. The main limitation is the memory requirement of the grid struc-
ture. Maybe other data structures, like octrees or k-d trees, are less mem-
ory demanding and can possibly better deal with more general data sets of
spheres. On the other hand, the ray traversal methods are usually more com-
plex for these spatial data structures.

Some �ickering artifacts can be observed during camera changes. It needs
to be investigated whether it is possible to handle the depth outliers by a
further rendering pass before the deferred shading. The depth difference
should be clamped depending on the distance to the camera for these pixels.
The �ickering at the data and cavity boundaries can possibly be handled with
a motion blur effect or a larger kernel for the normal approximation.

So far, occlusion culling is not used explicitly but only implicitly on the
atomic level of a single component by applying a grid-based approach, but
not on the instance level. This means, that instances occluded by other in-
stances will still be rendered. Thus occlusion culling on the instance level
could further speed up the rendering. At least two approaches are possible.
Similar to the cell level occlusion culling applied by Grottel et al. [79], oc-
clusion culling could be done on the instance level. Another possibility is to
use a hierarchical approach by inserting all instances of all components into
another grid similar to the component grid. Then, instead of rendering the
grids of all instances, only the grid containing the instances will be rendered.
This could be done on a per-fragment basis.

In 2012 and 2013, Falk et al. [62, 63] already presented two improvements to
accelerate the rendering. First, they subdivide the rendering of the instances
into several passes. In each pass only a subset of the instances is rendered.
The depth information are extended in the pass and the result of the previous
pass is used to early detect occlusions. The second improvement they call
hierarchical ray casting. This technique does not perform a ray casting for the
atom spheres if a grid cell becomes smaller than a pixel in view space. It is
only checked if the cell is empty or not. For the latter case an intersection
with the �rst atom is assumed. A similar technique is used if the whole grid
becomes smaller than a pixel in view space.
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More recently, Le Muzic et al. [138, 136, 137] presented a series of works
that follow the direction of explicit level of detail to render large biological
scenes with thousands of proteins. For this purpose, atom clustering tech-
niques are applied in combination with hierarchical Z-buffer (HZB) occlusion
culling [75]. In addition, they present advanced clipping techniques that allow
exploring dense data sets.

With the approach presented here, the limit where atomic representations
of complex objects must be substituted by simpler geometric objects is shifted
so far, that it should be easily possible to replace the atomic representa-
tions without creating visual artifacts. Thus, when rendering even larger
scenes containing several cells, level of detail representations should and
could clearly be applied. With these extensions and further advances in the
graphics hardware, it could become possible within the next few years to
render a whole cell with all its cellular structures at almost interactive speed.
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5Cavities: A Survey

In the previous two chapters, the computation and rendering of molecu-
lar surfaces was presented to visualize and analyze the results of molecular
simulations or reconstructions from microscopy data. The following chapters
deal with the complementary space of molecules, which represents the cav-
ity structure. Cavities are the main places where molecular interactions take
place and thus of particular interest for biophysicists. In order to investigate
the cavity structure in molecules, a novel method to compute, analyze, and
trace cavities over time, based on the molecule's geometry, will be proposed.
However, �rst a survey of existing methods is presented, which is partially
based on “Visual Analysis of Biomolecular Cavities: State of the Art” [125] from
2016.

The detection of molecular paths and cavities is a large research area with
many different approaches. Over the past two decades, several methods to
explore and visualize molecular paths and cavities have been proposed. How-
ever, most of them are restricted to a small subset of paths. Others concentrate
on the detection of all tunnels in a molecule but do not �nd paths in general.
And many methods do not compute path descriptions but only the surface of
possible cavities. Despite the large number of publications in this �eld, in the
following, an extensive overview of the most important works dealing with
geometry-based extraction and identi�cation of cavities and paths is given.

One can distinguish two groups of methods. The �rst group comprises
all algorithms that directly compute the shape of the cavities in the molecule.
This is often realized by analyzing a molecular surface or by �lling the cavities
with geometric structures. The second group on the other hand contains
all methods that compute possible molecular paths. Often it is simpler to
compute the shape of the cavities from these paths than the opposite. Of
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(a) (b) (c)

Figure 5.1: Illustrations of the algorithms in POCKET (a), SURFNET (b), and PASS (c).
Pocket: the blue grid points indicate points close to the protein and the red are grid points that
hit protein points in at least one main direction along positive and negative side. Surfnet: the
detection of two gap spheres is shown. PASS: detection of different layers of tangent probe
spheres. The grey spheres are �lter either because they lie too close to other probe spheres or
their burried value is two small.

course, some algorithms cannot be clearly classi�ed into one of these groups,
so that some assignments are probably arguable.

5.1 Category I: Cavity Computation

One of the �rst approaches to compute and visualize cavities is POCKET [141]
developed by Levitt and Banaszak in 1992. The algorithm creates a 3-dimen-
sional cubical grid with a user-de�ned cell width, which is typically around
1 Å. For each grid point, the closest distance to an atom center is computed.
If this distance is smaller than a prede�ned threshold (usually 3 Å), the grid
point is marked as protein contact point. Then, the neighboring grid points
in the three main directions of each unmarked grid point are investigated. If
such a point is bounded by protein contact points along both sides of at least
one direction, the density of the point is set to 1. Note, that the density is
initialized with 0. The initial idea of this grid-based density approach already
comes from Voorintholt et al. [235]. Finally a modi�ed Marching cubes al-
gorithm is used to compute the surface of the cavities (Figure 5.1). Because
of the small number of directions, that are investigated for each grid point,
the result depends a lot on the orientation of the molecule. Furthermore, and
this holds for all following grid-based methods, the geometrical accuracy as
well as the computation time and memory requirements depend greatly on
the resolution of the grid.

In 1994, Kleywegt and Jones developed the tool VOIDOO [116] to detect
closed cavities in molecules. The tool computes the solvent accessible surface
(Section 2.3.3) for a given probe on a discrete grid. Afterwards, all grid points
that can be reached from the boundary of the grid are removed. All remaining
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grid points outside the SAS are points inside closed cavities. These points can
be used to create a surface of the cavities or to measure their volumes. The
procedure is repeated several times with increasing scaling values for the
atomic radii. The scale factor that creates the most cavities is �nally used for
further analyses. However, the detection of this factor is not trivial, and small
variations can change the results a lot. Due to the nature of the algorithm,
only closed cavities can be detected but not channels or pockets.

One year later, Laskowski presented a tool which he called SURFNET [131].
It �lls the cavities in a molecule with gap spheresthat do not penetrate the atom
spheres. In more detail, between each pair of atoms a gap sphere is placed
in the middle, touching the two atom spheres. Afterwards, it is checked if
no other atom sphere penetrates the gap sphere. In case of a penetration,
the radius of the gap sphere is reduced (Figure 5.1). If the radius falls be-
low a user-de�ned threshold, the sphere is completely rejected. Finally all
gap spheres are sampled into a 3-dimensional grid using Gaussian density
kernels. From this grid a surface of the cavities can be easily generated. The
main shortcomings of this method are the time complexity, which is cubic,
and the geometric accuracy, which is not optimal, due to the �x position of
the gap sphere.

A similar approach to SURFNET is PASS [26] presented by Brady and
Stouten. The method adds an initial layer of probe spheres where each probe
is tangent to three atom spheres but does not penetrate any atom sphere. For
each probe, a buried value is computed, which is the number of atoms whose
distance to the probe is smaller than a given radius. If this value is smaller
than a selected threshold, the probe is removed. Furthermore, probes are
�ltered such that no two probes are closer than 1Å. Afterwards, additional
layers with smaller probes will be added tangent to the previous layers, and
the probes are �ltered in the same way. This is repeated until all probes of a
new layer are �ltered (Figure 5.1). Based on the buried values of the probes,
the centers of the cavities are computed.

Another approach was presented by Ho and Gruswitz which is imple-
mented in their tool HOLLOW [93]. But instead of placing a sphere between
each pair of atoms or tangent to atoms, they place them directly on a grid with
a �xed sphere size. Afterwards all spheres that penetrate the atom spheres or
that lie outside the envelope of the molecule are removed from the grid. The
remaining spheres of the grid are used as dummy atoms whose molecular
surface represents the surface of the cavities (Figure 5.2).

In contrast to a sphere placement, Yu et al. presented an algorithm, called
Roll [247], which is based on the solvent excluded surface (Section 2.3.3). The
volume of the cavities is de�ned as the difference of the volume enclosed
by the SES and the volume enclosed by the van der Waals surface. To com-
pute the difference ef�ciently, they sample the van der Walls surface into a
3-dimensional grid. Then, the SES is sampled by rolling the probe sphere
along the grid without intersecting the atom spheres. The grid points be-
tween the SES and the van der Waals surface lie inside cavities. All cavities
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(a) (b) (c)

Figure 5.2: Illustrations of the algorithms in HOLLOW (a), ROLL (b), and 3V(c). HOL-
LOW: probe placing on a grid, where probes that intersect the molecule or lie outside its
envelope are rejected. ROLL: all grid points (red) between the van der Waals surface and the
solvent excluded surface are de�ned as cavity points. 3V: all grid points (red) between two
solvent excluded surfaces with different probe radii are de�ned as cavity points.

that are completely surrounded by the van der Waals surface are speci�ed
as closed cavities. On the other hand, cavities that are partially surrounded
by the SES are denoted as pockets (Figure 5.2). The tool, in which Roll is
integrated, is called POCASA.

A generalization of Roll was developed by Voss and Gerstein, called 3V [237].
They compute the solvent excluded surface for two different probe spheres.
The �rst probe approximates the solvent of interest and the second is larger
and it is used to close all outer pockets of the molecule. For this reason they
call the second surfaceshell. The volume of all cavities is de�ned as the dif-
ference of the volume enclosed by the shell and the volume enclosed by the
SES of the solvent (Figure 5.2). In order to compute this in a robust way, they
also use a discrete grid to compute the SES for both probe spheres. In 2014,
nearly the same method was proposed again by Oliveira et al. in their tool
KVFinder [173]. In addition, Desdouits et al. [52] extract cavities in the same
manner to study their evolution throughout MD simulations.

In 2010, Kawabata presented the tool GHECOM [104], which is quite similar
to 3V [104]. The approach computes the SES for different probe radii. The
differences in the volumes of these surfaces provide the cavity information. In
contrast to 3V, where only two probes are used, this approach applies multiple
probes in order to rate the accessibility of the pockets. The de�nition of these
“multiscale” pockets is based on morphological operators for the van Waals
surface and the probe spheres. To achieve robust and ef�cient calculations,
the algorithm is discretized on a 3-dimensional grid.

A different approach is LIGSITE [89], presented by Hendlich et al. The
tool maps the SAS into a 3-dimensional grid. Afterwards, for each grid point
outside the SAS, all neighboring grid points are investigated within 12 Å into
the 3 main directions and the 4 cubic diagonal directions. If along both sides
of a direction a grid point lies inside the SAS, the direction is marked as
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protein, solvent, protein(PSP). All grid points with at least 2 PSP directions are
marked as cavity grid points and will be clustered. The surface of the cavities
is obtained by sampling the solvent probe sphere at each cavity grid point
(Figure 5.3).

A similar method by Exner et al. [61] maps the SES into a discrete grid rep-
resentation. For each grid point outside the SES, the grid points in the three
main directions are investigated within a given neighborhood radius. If at
least two directions contain grid points that lie inside the molecular surface in
positive and negative direction, the investigated grid point is marked as cavity
grid point. All cavity grid points are combined in clusters on which contrac-
tion and expansion operations are performed. The �nal clusters represent
the cavities. The main shortcomings are the limited detection directions. De-
pending on the neighborhood radius this can lead to missing cavities whose
medial shape axis is aligned diagonal to the main directions.

To overcome the limitation of only investigating 3 or 7 directions, Weisel et
al. developed the tool PocketPicker [239]. For each grid point that does not
lie inside an atom sphere and whose minimal distance to the atom spheres is
smaller than a user-de�ned threshold, a uniformly distributed set of 30 rays
is cast. The rays are computed by subdividing an octahedron. For each ray
the surrounding atom positions are orthogonally projected onto the ray. If
the distance between an original atom position and its projected position is
smaller than 0.9 Å, and the distance between the grid point and the projected
position is smaller than 10 Å, the ray is marked as buried. For 16–26 buried
rays, a grid point is de�ned as point inside a pocket. Grid points inside
pockets are again clustered. Additionally, the shape of a pocket is described
by evaluating the buried values and distances of all pairs of grid points in a
single 420-dimensional vector.

In 2006, Huang and Schroeder extended the original LIGSITE algorithm by
using the SES, like Exner et al. They called the new version LIGSITECS [97].
Additionally, the conservation of the neighboring residues of the three main
pockets is analyzed to rate the availability of the pockets. With this additional
feature, the algorithm is called LIGSITE CSC. In a further work, Huang pre-
sented the tool MetaPocket [96], which combines the results of LIGSITECS,
PASS [26], SURFNET [131], and Q-SiteFinder [133] to improve the identi�ca-
tion of possible binding sites. Q-SiteFinder [133] generates a 3-dimensional
grid and computes at each position the non-bonded interaction energy with
the program Liggrid. Using a threshold, all grid points with a high binding
energy are marked and clustered. Finally, volume calculations are performed.
More recently, Huang and Schroeder presented MetaPocket 2.0 [249] which
takes into account four further tools, namely Fpocket [135], GHECOM [104],
ConCavity [33], and POCASA [247].

In contrast to the previous approaches, An et al. proposed a more physically-
based technique, which is implemented in the tool PocketFinder [3]. Like
many other approaches they use a grid for the cavity detection. But instead
of geometrical properties, they compute at each grid position the Lennard-
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(a) (b) (c)

Figure 5.3: Illustrations of the algorithms in LIGSITE (a), CAST (b), and FPocket(c).
LIGSITE: at each grid point outside the SAS a set of rays is cast along the main directions
and the diagonals. If two rays hit a grid point inside the SAS along negative and positive
direction, the point is marked as cavity point. CAST: the cavities (red) are de�ned as the
Delaunay elements that do not belong thea-shape (gray). FPocket: a clustering of �ltered
a-spheres (red), placed at Voronoi vertices, describes the cavity structure.

Jones potential of a carbon probe atom (Section 2.2.1). In the next steps, they
smooth the discrete potential �eld and compute a threshold using the av-
erage �eld value and the root mean square distance of all values. With this
threshold the cavities are given by the isosurface of the discrete potential �eld.
Finally, the cavities the volume of which is smaller than 100 Å are �ltered out.

A similar approach is SITEHOUND [91], proposed by Hernandez et al. The
tool generates a grid and computes at each position the binding af�nity of
either a carbon or a phosphate atom. Therefore, the non-bonding interactions
between the atoms are investigated. Subsequently, only grid points with a
high binding af�nity are considered and clustered to get potential cavities.

Capra et al. presented the tool ConCavity [33], which makes use of Ligsite,
Surfnet, and PocketFinder for the geometrical cavity detection. These algo-
rithms are extended by a `voting' of the cavities, which is based on the se-
quence conservation of the surrounding residues. Therefore, the authors used
the Jensen Shannon divergence [34].

Edelsbrunner, Liang and others presented a series of papers dealing with
cavity detection and cavity analysis based on a-shapes. These works, �nally,
lead to the tool CAST [146]. The approach is based on the a-shape theory
by Edelsbrunner and Mücke [59] as well as their preliminary works [53, 55,
56, 57, 145, 143, 144]. Thea-complex is a subset of the Delaunay complex.
Each Delaunay element whose dual Voronoi element has a closer minimal
distance to the atom positions than a 2 R is also an element of the a-complex.
Note that the probe radius is integrated in the a value. All tetrahedra of the
Delaunay complex that are not part of the a-complex lie inside a cavity. Two
tetrahedras inside a cavity are neighbored if they share a common triangle.
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Thus neighbored tetrahedras can be clustered to analyze the volume and type
of a complete cavity (Figure 5.3).

In their �rst publication, Edelsbrunner et al. [55] described the detection
of internal cavities and the analytical computation of their volumes. These
cavities can be easily extracted from the a-shape. In a subsequent work, they
extended the cavity computation to the pocket detection [56]. The approach
uses the discrete �ow of the Delaunay tetrahedras to de�ne and identify
the pockets (Figure 5.3). Later, they presented the tool VOLBL to compute
all measurements, such as volume and area, for internal cavities and pock-
ets [143, 144]. Finally they integrated the detection and measurements into
the tool CAST [146]. Although the intersections of the atom spheres with
the cavity tetrahedra are considered during the volume and area computa-
tions, the shape of the cavities is only roughly approximated by the Delaunay
tetrahedras. Thus, the approach has limited visualization possibilities. Addi-
tionally, shallow pockets can not be detected by the algorithm.

Furthermore, Sridharamurthy et al. [222] used the a-complex to identify
robust voids and pockets that are stable according to noise in the atomic radii.
In order to detect these cavities, they investigate the topological changes of
the a-shape depending on changes in the atomic radii. Another Delaunay-
based approach was used by Maeda and Kinoshita [160] to analyze molecular
interfaces.

In 2013, a generalization of the CAST approach that considers the correct
atom radii by the b-shape was proposed by Kim et al. [110]. Additionally, the
potential molecular paths are extracted by the dual Voronoi diagram of the
atom spheres. Note that the path extraction is quite similar to the technique
that is presented in the following chapter. The algorithms are available via
the web application BetaCavityWeb [113].

A similar approach to CAST is Fpocket [135], which was presented by Guil-
loux et al. The algorithm computes �rst the Voronoi diagram of the atom po-
sitions and assigns to each Voronoi vertex a maximal a-sphere that does not
intersect the atom spheres. In a �rst step, all a-spheres the radius of which
is smaller than a minimal threshold or larger than a maximal threshold are
removed (Figure 5.3). Afterwards, the remaining spheres are labeled as apo-
lar or polar depending on the neighboring atoms. Then, a 3-step clustering
method is applied to the spheres. In the �rst step, a-spheres are clustered if
they are connected by a Voronoi edge and if their distance is smaller than a
threshold. In the second step, clusters are aggregated based on the distance
of their centers of mass. Finally, the pairwise distances between a-spheres of
clusters are investigated. If a certain number of distances is smaller than a
threshold, the two clusters are aggregated. After clustering, small and hy-
drophobic cavities are removed and the remaining cavities are ranked.

In 2009, Bajaj et al. [9] presented an approach based on topology analysis
of the isosurfaces of a discrete distance �eld of the molecule. For this, they
compute the contour tree of the distance �eld. Then a clustering and classi-
�cation algorithm is applied to identify cavities and to distinguish between
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different types. Since the technique computes the extremal structures of the
distance function, automatically potential molecular paths can be provided
that correspond to the cavities.

A further approach was presented by Till and Ullmann, called McVol [225].
The approach computes �rst the SAS of the protein as a discrete set of points
with the method proposed by Eisenhaber et al. [60] based on a user-selects
probe radius rp 2 R. Internal cavities are detected by connecting neighboring
points of the SAS, followed by a connected components search on the result-
ing graph. Typically, the largest connected component represents the outer
part of the SAS, while the other components represent the internal cavities.
In addition, a second possibility to extract the internal cavities is proposed. To
do so, further points are sampled inside the bounding box of the protein. If a
point lies inside the SES it is marked as protein point otherwise it is marked
as solvent point. Then, a grid is constructed, where each cell is marked as a
solvent cell if at least one sample point in the cell is a solvent point, otherwise
the cell is de�ned as a protein cell. Neighboring solvent cells are connected
and again all connected components are detected, which results in the exte-
rior of the protein as well as all internal cavities. Since this method does not
detect pockets, the authors proposed a modi�cation to extract them in a sep-
arate pass. For each solvent cell, all surrounding cells within a given cube are
investigated. If the ratio of protein cells and solvent cells is larger than a user-
de�ned threshold, the cell is marked as a pocket cell. Note that the accuracy
of the algorithm depends on the number and quality of the point samplings.
Furthermore, the de�nition of internal cavities and pockets is rather heuristic.

Borland proposed a method that uses ambient occlusion as an indicator for
cavities [24]. For this, a triangulated surface of the molecule is required. Then
ambient occlusion is pre-computed for the surface. Afterwards, the ambient
occlusion values are used to setup the transparency of the surface. High occlu-
sion leads to high opacity; low occlusion leads to high transparency. Thus the
user can quickly identify the cavities of the molecular surface. Additionally,
the cavities can be colored or extracted by an ambient occlusion threshold.

In 2011, Olechnovi�c et al. presented Voroprot [172], which is one of the
�rst tools using the Voronoi diagram of the atom spheres instead of the atom
positions. They compute the diagram in order to analyze interatomic contact
surfaces but also to study cavities. For the latter, they investigate the Voronoi
vertices. For each vertex, there exists an empty sphere which is tangent to four
atom spheres. Such a sphere corresponds to an internal cavity if it is larger
than a given probe sphere and if it is not accessible by the probe sphere from
outside the molecule. However, the authors do not give a clear de�nition nor
a visualization concept for molecular cavities.

In 2010, Raunest and Kandt presented one of the �rst tools, called dxTu-
ber [200], that investigates the internal cavities based on the dynamics of the
protein and water inside and around the protein. To achieve this, the protein
dynamics are simulated inside a lipid membrane (in case of a membrane pro-
tein) and surrounded by water using the Gromacs simulation package. The
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positions of the water molecules yield the cavities of the protein. The authors
found that short simulations of only 100 ps are suf�cient to detect all cavi-
ties reachable by water. In order to compute the shape of the cavities, two
3-dimensional discrete grids will be generated that store the number of water
and protein atoms per grid cell. The number can either represent the average
number of atoms over the simulation time or the minimal number. Similar to
LIGSITE [89] and the method by Exner et al. [61], the cavities will be detected
and characterized by investigating for each grid cell all cells along the 3 main
directions. A grid cell is characterized as internal cavity if it is surrounded
along all 3 axes in positive and negative direction by the protein. This means
the values in the protein grid are at least as large as a user-de�ned threshold.
If only two of the three directions are surrounded by the protein, the grid cell
is characterized as tunnel and in case of only one direction the cell is de�ned
to be inside a pocket. Finally, the grid cells are clustered and the result is
�ltered to get the description of the cavities. While the algorithm is suitable
to detect cavities accessible by water, it cannot detect empty cavities. These
cavities are often more �exible and their dynamics are often related to confor-
mational changes in the protein. Furthermore, the algorithm results in a static
representation of the cavities, which does not allow to study cavity dynamics.
Hence, transport processes due to cavity changes that build, for example, a
dynamic channel that is not an always open tunnel cannot be investigated.

One year later, Schmidtke et al. presented MDPocket [211]. The tool uses
FPocket [135] to compute the Voronoi diagram of the atom positions for each
time step of a molecular dynamics trajectory. Then a grid is created on which
a discrete density is computed based on the size of the a-sphere at the Voro-
noi vertices. By selecting not the complete trajectory but different parts, the
speci�c dynamic processes of the cavities can be analyzed. The cavities are
visualized using an isosurface of the discrete density function. However, as
for Raunest and Kandt, it is dif�cult to analyze the detailed dynamic behavior
of the cavities.

In the same year, Krone et al. [122] presented the �rst tool to interactively
trace selected cavities over time from a molecular dynamics trajectory. They
use a density kernel at each atom position, similar to the Gaussian kernel,
to create a discrete scalar �eld of the protein. This allows them to quickly
visualize an approximation of the molecular surface by GPU-based isosurface
ray casting. Additionaly, the isosurface is used to separate the protein from
its cavities. One can select a cavity in an arbitrary time step, which is facili-
tated by optionally showing a 2-dimensional cut of the surface. Once a cavity
is selected a �ood �ll is performed on the scalar �eld. The �ood �ll marks
all positions in the �eld that do not belong to the protein. At each of these
positions, a small sphere is rendered to show the shape of the cavity. After-
wards, one can move to the next or previous time step and the cavity will be
automatically traced. To do so, the intersection of the marked cavity positions
and the new cavity positions of the updated scalar �eld is computed. This is
followed by a new �ood �ll to get the complete shape of the cavity. Besides
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the 3-dimensional tracing and visualization, a plot of the size of the selected
cavity is shown. Although, the tool allows one to interactively investigate the
dynamics of a cavity, there are still some limitations. The main limitation is,
that only a single cavity can be investigated at once and that in case of a split,
one part of the cavity will be ignored. Furthermore, the shape and size of the
cavity is not restricted to a minimal size given by the shape of the ligand of
interest. Thus, it becomes possible to trace the cavity into a region that is ge-
ometrically not accessible for the ligand. To achieve the interactivity the fast
generation of a discrete density �eld is used. However, this cannot achieve
the geometrical accuracy of, for example, Voronoi-based approaches.

In the more recent approaches, Krone et al. [126, 124] improved their method
to overcome the limitation of tracing only a single cavity. First they changed
the original density kernel to a modi�ed Gaussian kernel, which results in
a quantitative better approximation of the solvent excluded surface. Second,
they replaced the ray casting by a GPU-based Marching tetrahedra method to
generate a triangular mesh of the molecular surface. And third, the cavities
are now de�ned by an ambient occlusion approach like it was done by Bor-
land [24]. For this, the fast object-space ambient occlusion by Grottel et al. [78]
is used. Based on an ambient occlusion threshold, the triangulated molecu-
lar surface is separated into parts that belong to the boundary of a cavity
and parts that lie outside the molecule. The cavity parts are then labeled
according to their connectivity, such that all triangles of the same connected
component store the same label. This is used to trace topological events like
splits and merges over time but also to visualize the different cavities. The
tool is completed by graphs showing, for example, the diameter of a channel
along its length or the topological evolution of the cavities over time. While
the new approach allows one to keep track of the dynamics of all cavities over
time, the cavity de�nition is purely based on the Gaussian molecular surface
and the object-space ambient occlusion as boundary. This makes it dif�cult
to rate the accuracy of the accessibility of the cavities for ligands, even in a
purely geometric sense. While ambient occlusion in general provides a good
boundary estimation, the result of the fast object-space version [78] depends
a lot on the user-selected grid size. Thus, it is dif�cult to evaluate the quality
and quantity of the result.

5.2 Category II: Path Computation

One of the earliest tools to compute a possible molecular path was HOLE by
Smart et al. [219]. The tool computes a path from a user-de�ned start point
inside a cavitiy to the outside of the molecule. The path direction is steered
by a given direction vector ~v of the cavity. With a Monte Carlo simulating
anealing approach the start point is moved to the position where the distance
to the atom spheres becomes locally maximal. During this process the point
stays in the plane which includes the original start point and is orthogonal
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(a) (b) (c)

Figure 5.4: Illustrations of the algorithms HOLE (a), CAVER (b), and MOLE (c). The
algorithms detect a path from a user-de�ned internal position close to a binding site to the
outside of the molecule. HOLE computes slices along a given direction and for each slice the
point with the local maximal distance. Caver uses a distance-based grid for this purpose and
Mole a Voronoi Diagram.

to ~v. Afterwards the point and the plane move a step into the direction of ~v
and the simulated anealing approach starts again. This is repeated until the
outside of the molecule is reached (Figure 5.4). Note that the approach cannot
guarantee to detect the optimal point with the local maximal distance to the
atom spheres. Furthermore, the algorithm fails to detect paths in cavities of
which the medial axis is more complex, such that it cannot be described by a
single direction.

To overcome these drawbacks, Pet�rek et al. developed a new tool, called
CAVER [189], in 2006. CAVER creates a 3-dimensional grid whose grid points
and edges are interpreted as a vertex-weighted graph. The weight at each
grid point x 2 R3 is given as 1/ r(x)2, where r(x) is the radius of a sphere
with center x and maximal radius such that it does not penetrate the atom
spheres. Note that all grid points with r(x) � 0 are removed from the graph.
Afterwards, a modi�ed Dijkstra shortest-path algorithm is applied to �nd a
possible molecular path from a user-de�ned start point to the convex hull
of the atom spheres (Figure 5.4). However, it is neither clear that the vertex-
weighting is optimal nor that the shortest path algorithm �nds the most prob-
able path.

To reduce the memory requirements and enhance the geometrical accuracy
Pet�rek et al. modi�ed CAVER and called the new version MOLE [188]. The
grid is replaced by the Voronoi diagram of the atom positions. The Voronoi
vertices and edges now build the graph for the Dijkstra algorithm. They also
modi�ed the weighting to consider the path length. Instead of vertex weights,
now each edgeeis weighted by l (e)/ d(e)2, where l (e) is the length of the edge
and d(e) is the minimal distance to the atom spheres. Edges whose minimal
distance is smaller or equal 0 are removed from the graph (Figure 5.4).

A further extension of this technique was presented by Yaffe et al. in their
tool MolAxis [246]. Since the Voronoi diagram of the atom positions does not
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(a) (b) (c)

Figure 5.5: The algorithms by Colmann and Sharp(a), Giard et al. (b), and Cortes et
al. (c). The algorithm by Colmann and Sharp samples a molecular surface into a grid and
computes for each grid point outside the surface the shortest path to the convex hull. Giard et
al. compute the shortest path to the convex hull along the surface and rays between surface
points or surface points and the convex hull. The algorithm by Cortes et al. uses rapidly-
exploring random trees RRTs to consider the geometry and dynamics of a substrate.

take into account the different atom radii, the paths computed by MOLE are
geometricaly not optimal. To increase the accuracy of the paths in MolAxis,
the atoms are approximated by sets of spheres with constant radii. While,
for example, a hydrogen atom can be approximated by a single sphere, a
carbon atom is approximated by a cluster of several spheres with the same
size. Afterwards, again the Voronoi diagram of the centers of the placed
spheres is computed. In the next step, all edges that correspond to spheres
of the same cluster or that intersect the atom spheres are removed from the
graph. The weighting and the path detection is equal to MOLE with the
difference that not only a single path is computed but a tree rooted at the
user-de�ned start position.

Parallel to MOLE, Medek et al. [163] developed a similar aproach. Like
Yaffe et al., they also considered the different atomic radii in their theoretical
investigations. For geometrical optimal paths of probe spheres, this requires
the Voronoi diagram of the atom spheres, instead of the atom positions. How-
ever, due to the lack of implementations, they also use the classical Voronoi
diagram of the atom positions. In contrast to MOLE, the Voronoi diagram
is not directly computed, but it is derived from its dual Delaunay complex.
Furthermore, a different weighting and Dijkstra modi�cation is used. Each
edge is weighted by its minimal distance to the atom spheres and the best
path is de�ned as the path with the edge of maximal minimal weight. They
also propose extensions to compute alternative paths.

At the same time when CAVER was developed, Colemann and Sharp pre-
sented a similar approach, called travel depth [43]. In this approach, �rst a
triangulated surface of the molecule, like the SAS or SES (Section 2.3.3), is
computed together with the corresponding convex hull. Then, a grid is cre-
ated and for each grid point it is evaluated if the point lies outside or inside
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the convex hull. For the latter case it is additionally checked if the point lies
inside or outside the molecular surface. After this procedure, the minimal
distance of all grid points outside the surface to the convex hull is computed,
which approximates the important shortest paths for probe spheres from the
convex hull to the reachable cavities (Figure 5.5). Note that paths inside closed
cavities are ignored in this approach. To visualize the results, the surface is
colored according to the travel depth distance to the convex hull.

In order to improve the time and space complexity, Giard et al. [71] pre-
sented more recently an approach which does not require a grid. In contrast,
they detect for each point of the triangulated molecular surface the closest
point on the convex hull. Then, they use a ray casting approach to evaluate
if the surface point is visible from the convex hull or if it is hidden by the
molecular surface. For all hidden points, minimal paths to visible points are
computed. These paths either follow the triangular mesh or include other
direct connections between surface points. For the direct connections it is
again checked that the connecting line does not intersect the surface. This re-
sults in an approximation of the minimal travel depth for each surface point
(Figure 5.5).

In 2009, Pellegrini-Calace et al. [32] presented PoreWalker, which detects the
main channel in membrane proteins without user interaction. The method
can be summarized in 3 steps. First the orientation of the main channel is
aligned parallel to one of the coordinate axes. Therefore, the orientation of
the channel is computed by analyzing the directions of long secondary struc-
ture elements. Second, the center of the channel in the middle of the protein is
detected. This is realized by investigating the properties of the amino acids in
the region of the channel. Finally, an iterative procedure slices along the chan-
nel direction. In each iteration, a position in the slice close to the computed
channel direction is computed whose distance to the atom spheres becomes
locally maximal. As with previous algorithms, the main drawbacks are the
geometrical accuracy and the limitations for the channel structure, which is
expected to be linear.

A technique to compute all channels in a protein, was developed by Cole-
man and Sharp in their tool CHUNNEL [44]. They compute a triangulation of
the SES using a grid-based approach. Afterwards, all topological loops on the
surface are detected as triangle strips. These strips characterize the channels
in the molecule. In the �nal step the topological paths through the channels
and the corresponding loops are computed such that their distance to the sur-
face becomes maximal. While the approach is one of the �rst which detects
automatically all channels, the algorithm is very slow and geometrically in-
valid channels can be detected. These invalid channels come from circular
singularities of the SES.

In 2013, Brezovsky et al. [28] investigated and compared the tools CAVER,
MOLE, and MOLAXIS for general path detection from an active site to the
outside as well as HOLE, MOLAXIS, CHUNNEL, and POREWALKER for the
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specialization of channel detections. Furthermore, they compared HOLLOW
and 3V in case of general cavity detection.

In the same year, Sehnal et al. presented MOLE 2.0 [213], which comes with
several improvements. The tool approximates automatically possible cavity
centers based on the Voronoi diagram of the atom positions. Then, instead of
only one path, several paths are computed from these centers to the outside
of the molecule in a similar way as in the original version. Subsequently, the
paths are �ltered according to their bottleneck. Furthermore, if the center-
lines of two paths are quite similar, the longer path is removed. Then, the
main feature of the new method is applied. It computes along each remain-
ing path physiochemical properties, like charge, hydropathy, hydrophobicity,
mutability, and polarity based on the surrounding side chains of the amino
acids. These properties can be used to �lter the most probable paths.

One of the rare methods that take into account the geometry and dynam-
ics of the substrate was developed by Cortes et al. [48]. They use rapidly-
exploring random trees (RRTs) [134] to compute a possible molecular path
to a binding site. RRTs were originally developed for fast path planning in
robotics. A tree is incrementelly constructed by adding random valid roboter
con�gurations as tree nodes until a node reaches a point or area of interest.
For molecular path detection, the substrate is considered as the roboter and
the protein is the labyrinth for which a path should be detected from a user-
de�ned start position to the outside of the protein. The start position is the
root of the tree and a valid con�guration is a position and orientation of the
substrate such that it does not penetrate the protein and that can be reached
by the closest node in the current tree. The second condition means that the
substrate must be close enough to an existing node in the tree such that it is
guaranteed to move the substrate from the tree node to the new con�gura-
tion without penetrating the protein (Figure 5.5). Depending on the number
of free variables for the con�guration of the substrate, the algorithm can be
very slow. Furthermore, it is dif�cult to setup a stop criterion for the tree
construction. In 2011, Cortes et al. [47] extended their previous approach to
better visualize and analyze the results of the RRT. To do so, they generate a
3-dimensional voxel map, on which the RRT is mapped. Note that the voxel
map is not restricted to the 3-dimensional position of the ligand. The three
variables of the map can encode any user-selected ligand property of interest,
such as 3 selected bond torsions. The algorithm for the mapping is straight-
forward and classical visualization techniques are applied.

Sethian and Haranczyk [84] also take into account the geometry of the sub-
strate by proposing a discrete approach for a 7-dimensional space which in-
cludes translational, rotational, and internal degrees of freedom of the sub-
strate. For each sample in this space, it is checked if the substrate is in a
valid state according to the receptor molecule. After sampling the space,
the shortest path for the substrate is computed based on the valid samples.
However, due to the sampling of the 7-dimensional space, the approach is
time-consuming and requires a lot of memory.
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A method to analyze the cavities in molecular dynamic trajectories was
presented by Parulek et al. [178, 179]. They compute the cavities for a certain
time step by randomly sampling points inside and around the protein. All
points inside the SES will be removed afterwards. Then, at each remaining
point a ray is cast along the gradient of the distance �eld of the SES. If the
ray does not hit the SES, the corresponding sample point is also removed.
In the next step all remaining sample points are moved to the center of the
line segment that connects the previously computed hit point of the ray with
the SES and the hit point of the inverse ray with the SES. Finally, a modi�ed
minimal spanning tree method is applied to connect the sample points and
to generate a skeleton graph representation for the cavities. Instead of tracing
cavities over time, Parulek et al. propose brushing and linking to analyze the
cavitiy structure. They compute for each skeleton graph, several attributes
based on the degree of vertices or the maximal and average paths in the graph.
Then, based on selected attributes, each graph is rendered as a point into
a 2-dimensional scatter plot. By selecting points in the scatter plot, the 3-
dimensional visualization is updated and shows the corresponding skeleton
graphs. This allows one to detect and visualize, for example, cavities with
similar properties. However, the coherency of cavities from time step to time
step and their topological changes cannot be analyzed with this technique.
Furthermore, the geometric accuracy of the de�nition of the cavity skeletons
has not the quality of a Voronoi diagram of the atom spheres.

Recently, the tool CAVER 3.0 [42] was presented, which uses the same strat-
egy as MolAxis [246] to approximate the different atom radii. Each atom is
represented by a set of spheres with constant radius. Based on the Voronoi
diagram of the centers of the spheres, paths are detected from a user-selected
start point to the outside of the protein using again a modi�ed Dijkstra al-
gorithm. However, the main new feature of CAVER 3.0 is that it does not
compute the paths for a single snapshot but for a molecular dynamics trajec-
tory. Then a geometric heuristic is applied to cluster paths that correlate over
time and to cluster quite similar paths in the same snapshot. Finally the paths,
clusters and the corresponding cavities are visualized. The most critical part
of the algorithm is the heuristic for the clustering of paths.

In 2016, Kim et al. [107] proposed a GPU-accelerated algorithm that extracts
cavities using a grid-based Voronoi diagram of spheres. Their method �rst
computes a voxelized approximate convex hull. Next, each convex hull voxel
that is not within an atom is classi�ed whether it belongs to a Voronoi diagram
edge. This results in a discretized grid representation of the edges of the
Voronoi diagram, which are then clustered and subsequently used to �nd
paths.
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Figure 5.6: A grouping of algorithms and tools to compute molecular paths and cavities.
The tools highlighted by a red color deal with molecular dynamics trajectories.

5.3 Summary

In the previous sections a lot of algorithms and tools have been outlined to
compute molecular paths and cavities. To get a better overview, in this section
a proposal for a grouping of the different techniques is proposed. This group-
ing is shown in Figure 5.6. As already mentioned in the previous section, two
main groups of cavity computation algorithms and path detection methods
can be distinguished.
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Most of the cavity computation algorithms are based on a 3-dimensional
grid to discretize the space around the molecule. Note that the time and mem-
ory complexity of these grid-based methods grows cubically with decreasing
lattice spacing. However, on the other hand these algorithms are often easier
to implement and provide numerical stable solutions. Most of the grid-based
algorithms analyze at each grid point if a molecular surface representation can
be reached in a �xed number of directions. There are several algorithms that
compute simple physical properties at the grid points to detect valid cavities.
In addition, some of these techniques also use a geometry-based direction
analysis. Apart from the grid-based algorithms, there are several approaches
based on Voronoi diagrams or Delaunay complexes. Usually, these methods
have a higher geometrical precision but their implementation is often more
dif�cult.

In the �eld of path detection methods, there is a large group of algorithms
that compute only a single path, sometimes with alternative solutions. More-
over, most of these algorithms require a user-selected start position. Again,
there is a group of algorithms based on Voronoi diagrams or Delaunay com-
plexes. Since these structures provide a full path network with high geomet-
rical accuracy, recently a few works, including the approach presented in this
thesis, exploit this for a complete path analysis without user-selected start
points. Other approaches that deal with the full path network computation
either analyze the topology of a molecular surface or use geometric heuristics
to compute in the end a graph with similar properties as a Voronoi diagram.

101





6Cavity Computation

In this chapter, the method presented in “ Voronoi-Based Extraction and Vi-
sualization of Molecular Paths” [149] from 2011 is described. It enables the
user to compute the whole cavity structure inside a molecule as well as the
corresponding signi�cant possible molecular paths. A formal de�nition of
molecular paths and cavities was given in Section 2.4. To achieve a good
tradeoff between computation time and accuracy, the algorithms are solely
based on the geometry of the atom spheres of the receptor molecule and the
geometry of a probe sphere to approximate a ligand, solvent, or ion. This
means, a molecular path is a continuous curve in R3 whose distance to any
atom sphere is greater than the probe radius. Furthermore, a molecular cavity
is the union of all points inside all probe spheres that are interconnected by
static molecular paths. The boundary will be de�ned by an ambient-occlusion
approach.

Since the computation of all molecular paths is not possible, only a �nite
subset is computed, which in this thesis is called the set of maximal molecular
paths. These paths are de�ned as the ones with the local maximal distance to
the atom spheres. With this de�nition, it is guaranteed that for each possi-
ble path inside a cavity, there exists at least one representative maximal path.
Note that the edges of a Voronoi diagram have a local maximal distance to
the corresponding input geometry (Section 2.1.3). Thus the maximal molec-
ular paths are a subset of the vertices and edges of the Voronoi diagram of
the atom spheres. In other words, the network of Voronoi vertices and edges
contains all geometrical optimal paths for spheres. The approach presented
in this chapter is one of the �rst that used the Voronoi diagram of spheres for
the computation of possible molecular paths. Except for some rare and com-
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Figure 6.1: Two of four chains of the Water Channel protein pdb: 2F2B (blue) inside a lipid
bi-layer membrane (green). The internal cavities are shown as colored surfaces in which two
main channels can be identi�ed.

putational expensive techniques that take into account the ligand geometry,
such as the approaches by Sethian and Haranczyk [84] or by Cortes et al. [47],
this method has the highest geometrical accuracy in the �eld of geometry-
based molecular path computation for macromolecules. Furthermore, the
approach is able to compute the full path network and the corresponding
cavities, instead of a single path. Nevertheless, the speed of the algorithm can
still compete with most other geometry-based molecular path computation
algorithms. A preview of the resulting cavities in a water channel protein can
be seen in Figure 6.1.

6.1 Voronoi Diagram of Spheres

The Voronoi diagram of spheres is an extension of the classical Voronoi di-
agram. While its computation is more complex than that of the Voronoi di-
agram of points, the separating faces of the decomposition can still be com-
puted analytically. In contrast to the Voronoi diagram of points, only a few
publications deal with the computation of the Voronoi diagram of spheres.
Aurenhammer [7] outlined a method where the Voronoi diagram can be ob-
tained from the power diagram of the transformed spheres in one dimension
higher. A lower envelope algorithm for the construction of the Voronoi re-
gions was presented by Will [241]. Boissonnat and Delage [21] proposed a
method to compute the regions of the diagram by convex hulls of spheres.
Kim et al. [108] presented an approach that starts with the Voronoi diagram
of points using the sphere centers, that is, with all radii set to zero; subse-
quently the radii are incrementally increased sphere by sphere. However,
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6.1 Voronoi Diagram of Spheres

Figure 6.2: Classical Voronoi diagram of points (left) compared to the Voronoi diagram of
sphere (right) for the 2-dimensional case. The Voronoi vertices are shown in yellow, the edges
in black and one closed Voronoi cell is highlighted in red in both diagrams.

the implementation of the algorithms mentioned above is quite complicated.
Hence, the simple yet ef�cient edge-tracing algorithms are more often used
in practice [164, 161, 149].

The idea of tracing edges for computing Voronoi diagrams was already pro-
posed by Luchnikov et al. [155] and later described for spheres in detail by
Kim et al. [109] and Medvedev et al. [164]. One important step in both algo-
rithms is to determine the tracing direction when computing the end vertex
of an edge from a start vertex. While this step is missing in the description
of Kim et al. [109], Medvedev et al. [164] use a procedure that works only
for a speci�c kind of input data. Since an incorrect computation of this di-
rection can lead to errors in the Voronoi diagram, this is an essential step of
the algorithm. In this section, a criterion is derived that allows the correct
computation of the edge tracing direction for the general case.

In addition, the complete computation of the 3D Voronoi diagram of spheres
is described. Instead of a set of input points, as in the Voronoi diagram of
points, input spheres de�ne the Voronoi regions. A 2-dimensional illustration
of both types is shown in Figure 6.2 and an example of a 3-dimensional dia-
gram of spheres is visualized in Figure 6.3. Each Voronoi region is de�ned by
the set of points whose distance to the corresponding input sphere is smaller
than or equal to any other input sphere.

Voronoi Region of a Sphere . Let S � R3 � R be a �nite set of m
spheres(pi , r i ), with i = 1, ...,m. The Voronoi Region Vi corresponding
to the ith sphere is

Vi =
n

p 2 R3
�
�
� kp � pik � r i �


 p � pj


 � r j , 8j 2 f 1, . . . ,mg , j 6= i

o
.

The Voronoi diagram of spheres is the set of all nonempty intersections of
Voronoi regions of spheres.
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6 Cavity Computation

Figure 6.3: Voronoi diagram of a set of 3-dimensional spheres. Left: Voronoi edges colored
according to their distance to the input spheres (blue). Right: All closed Voronoi cells.

Voronoi Diagram of Spheres . Let S � R3 � R be a �nite set of m
spheres(pi , r i ), with i = 1, ...,m and let Vi be the corresponding Voronoi
regions. The Voronoi diagram VS of S is

VS =

(

VX

�
�
� VX 6= Æ, VX =

\

i2 X

Vi , X � f 1, . . . ,mg

)

.

Similar to the Voronoi diagram of points, the 3-dimensional Voronoi diagram
of spheres consists of four element types called regions, faces, edges and ver-
tices. These elements are generated by the intersection of Voronoi regions.
For this reason, the corresponding input spheres are called generator spheres
or simply generators of the respective Voronoi element. In the non-degenerate
case, each face is the intersection of exactly two regions, each edge of exactly
three regions, and each vertex of exactly four regions. Note that the algorithm
presented here assumes that no degenerate case occurs. As for the classical
Voronoi diagram, this assumption can be satis�ed by either perturbing the
input data by a small amount that is irrelevant for the corresponding ap-
plication or by `simulation of simplicity', as described by Edelsbrunner and
Mücke [58].

For the following assume a set of n spheres S � R3 � R like the atom
spheres of a molecule with positions pi 2 R3 and radii r i 2 R, with i 2 I =
f 1, . . . ,ng.

6.1.1 Voronoi Elements

Before the description of the computation of the 3-dimensional Voronoi dia-
gram of spheres is given, in this section, �rst the properties, analytical repre-
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6.1 Voronoi Diagram of Spheres

Figure 6.4: Four input spheres (blue) can generate no Voronoi vertex (left), one vertex
(middle) or two vertices (right). The Voronoi vertices are represented by the yellow spheres.

sentations and derivations of all Voronoi elements are described. In contrast
to the Voronoi diagram of points, there is no one-to-one correspondence be-
tween an element of VS and a single face, a single edge or a single vertex. For
example, in the Voronoi diagram of spheres, it is possible that two Voronoi
vertices are generated by the same four generator spheres (Figure 6.4, right).

Vertices

For non-degenerated Voronoi diagrams, each Voronoi vertex is given by the
intersection of exactly 4 Voronoi regions. Consider a Voronoi vertex v, which
is an element of the intersection of four distinct regions Vik, with ik 2 I , k =
1, ..., 4. This means thatv has the same distance to the four generator spheres
(pik, r ik). Another interpretation is that there exists a sphere s = ( pv, rv), with
pv = v that is tangent to the four generator spheres. Note that except for the
four generator spheres, no other input sphere exists that penetrates or touches
sphere s. For this reason, s is called empty.

Given the generator spheres of a Voronoi vertex, its position can be deter-
mined by computing the spheres tangent to the generator spheres. An elegant
algorithm to compute the tangent spheres for a set of spheres in an arbitrary
dimensional space was presented by Gavriola et al. [70] and is summarized
here for the 3-dimensional case. The solution to this problem can be for-
mulated by a system of equations. In each of these equations, the distance
between the position of the tangent sphere and the position of a generator
sphere is equal to the sum of their radii.


 pv � pik


 = rv + r ik, k = 1, ..., 4. (6.1)

Because the left side of the equation is always positive, rv must be greater
than or equal to � r ik. Under this condition both sides can be squared which
yields

(pv � pik)
2 = ( rv + r ik)

2, k = 1, ..., 4. (6.2)

One can see that it is possible to add a constant value rc 2 R to the radii of
the generator spheres without changing the position of the tangent sphere.
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6 Cavity Computation

Figure 6.5: Possible solutions of tangent spheres for input spheres (blue) from the system
given by (6.3) and (6.4) transformed back and illustrated in 2D. Valid vertex spheres are
dipicted in yellow and invalid spheres in red. Both radii of the tangent spheres are positive
(left), negative (right) or one is positive and the other negative (middle).

But the same value is subtracted from its radius. Furthermore it is possible to
move all spheres by a constant vector pc 2 R3 without changing the radii or
their relative positions to each other. So the problem is translation invariant

(( pv � pc) � (pik � pc)) 2 = ( rv � rc + r ik + rc)2, k = 1, ..., 4.

The main trick to solve the system of equations (6.2) is to shrink one of the
input spheres to a point and move it to the origin of the coordinate system.
Without loss of generality, the sphere with index i1 is selected. So the trans-
formed positions of the input spheres are p̃ik = pik � pi1, and their radii are
r̃ ik = r ik � r i1. Hence, the new system of equations is

p̃2
v = r̃2

v (6.3)

( p̃v � p̃ik)
2 = ( r̃v + r̃ ik)

2, k = 2, ..., 4. (6.4)

By subtraction of the �rst equation from the others, the system is decomposed
into a linear part, consisting of three equations, and a quadratic part given by
the �rst equation. The linear part results in the following under-determined
system of equations.

2

2

6
6
6
4

p̃T
i2

r̃ i2

p̃T
i3

r̃ i3

p̃T
i4

r̃ i4

3

7
7
7
5

2

4
p̃v

r̃v

3

5 =

2

6
6
6
4

w̃i2

w̃i3

w̃i4

3

7
7
7
5

with w̃ik = p̃2
ik

� r̃2
ik

, k = 2, ..., 4. (6.5)

The system can be solved, for example, using Gaussian elimination with piv-
oting. Since the system is under-determined, one has to choose a free variable,
for example r̃v. The linear solution of (6.5) can then be inserted into (6.3). This
gives two, one or no solution for r̃v. For the typical case of two solutions, two
tangent spheres transformed back into the original space have to be consid-
ered. Depending on the signs of the radii rv1 and rv2, there are four possi-
ble solution combinations, illustrated in Figure 6.5. However, these tangent
spheres do not necessarily represent valid Voronoi vertices. Therefore one
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6.1 Voronoi Diagram of Spheres

Figure 6.6: Three input spheres (blue) can create no Voronoi edge curve (left), a non-closed
edge curve (middle), or a closed edge curve (right). The points on the edge curves with the
minimal and maximal distances to the input spheres are illustrated by the red spheres.

has to check if the spheres violate the conditions rv1/2 � � r ik, which means
that the four generator spheres lie completely inside the tangent sphere with
radius

�
� rv1/2

�
� . In summary, four input spheres can generate zero, one or two

Voronoi vertices (Figure 6.4).

Edges

A Voronoi edge e is given by the intersection of exactly 3 different Voronoi
regions Vik, ik 2 I , k = 1, ..., 3, that is e � Vf i1,i2,i3g 2 VS. For each point on
the edge, the distance to the three generator spheres(pik, r ik) is equal, and
the distance to any other input sphere is at least as large as the distance to
the generator spheres. Similarly to a Voronoi vertex, each point on the edge
corresponds to an empty sphere that is tangent to the three generator spheres.

Consider �rst the complete curve, which includes the edge. A point pe 2 R3

on this curve has the same distance re 2 R to the three generator spheres.
Hence, the curve is given by the solution of a system of equations, equivalent
to the system for the computation of a Voronoi vertex (6.1). But it consists only
of three equations with four variables. After applying the same transforma-
tion, it results into two linear equations (6.4) and one quadratic equation (6.3).
A rearrangement of these equations leads to

p̃2
e = r̃2

e

p̃e, p̃i2

�
+ 1/2 ( r̃2

i2 � p̃2
i2) + r̃er̃ i2 = 0



p̃e, p̃i3

�
+ 1/2 ( r̃2

i3 � p̃2
i3) + r̃er̃ i3 = 0.

The �rst equation describes a sphere that lies in the origin of the coordinate
system and has the radius r̃e. The second equation describes a plane with
normal p̃i2 and a distance to the origin that depends linearly on r̃e. The same
is true for the third equation with normal p̃i3. The solution of this system
of equations is the intersection of these three geometric representations. The
intersection of the two planes can be empty, a line, or a plane.

1. If p̃i2 and p̃i3 are linearly independent, the intersection of the two planes
is a line. Since the distance of the planes to the origin change linearly
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6 Cavity Computation

with r̃e, all resulting lines also lie in a plane. This means that the whole
edge curve lies in a plane. The intersections of the lines and the sphere
depending on r̃e is equivalent to the intersection of the plane, containing
the lines, and a cone. Thus, the edge curve can be described as a conic
section. Note that the intersection points of a line with a sphere are sym-
metric with respect to the plane that contains the center of the sphere
and that is orthogonal to the line. For all r̃e, this is exactly the plane
containing p̃i2, p̃i3, and the origin. Hence, the edge curve is symmetric
to the plane that contains the positions of the 3 generator spheres. For
r i1 = r i2 = r i3, the planes have a constant distance to the origin. Thus,
the edge curve becomes a line.

2. For the special case thatp̃i2 and p̃i3 are linearly dependent, their inter-
section is empty or a plane. In this case, the 3 generator spheres lie on
a line. Since p̃i2 6= p̃i3, there exists only one r̃e for which the intersection
can be a plane. The intersection of this plane with the sphere can be
empty, a point, or a circle. If the intersection is a point the edge and
thus the whole Voronoi diagram is degenerate. For the case, that the
intersection is a circle, the edge curve is also a circle, the center of which
lies on the line through the position of the input spheres.

To summarize, the edge curve lies in a plane and is symmetric to the plane
spanned by the positions of the three generator spheres. Additionally, the
edge curve is a conic section and can be closed or non-closed. While a non-
closed curve intersects the symmetry plane once, a closed curve has two in-
tersection points. These intersection points correspond to the tangent spheres
with minimal and maximal radius. Note that a non-closed curve has only
a minimum. The computation of the intersection points with the symmetry
plane is equivalent to the computation of the Voronoi vertices in one dimen-
sion lower. The 2-dimensional Voronoi vertices correspond to the circles tan-
gent to the three circles given by the intersection of the symmetry plane with
the generator spheres. For a solution with two vertices, the edge curve is
closed, otherwise it is non-closed. The Voronoi edge of a closed curve can
be unbounded or bounded by two Voronoi vertices; a Voronoi edge of a non-
closed curve can be unbounded, bounded by one Voronoi vertex or bounded
by two Voronoi vertices.

For analysis and visualization purposes, it is often necessary to compute
a parametric description of the edges. As mentioned before, an edge curve
can be described by a conic section. Hence a fully bounded edge can be
parameterized by a rational quadratice Bézier curve [64]

eB(t) =
(1 � t)2vs + 2w(1 � t)tvc + t2ve

(1 � t)2 + 2w(1 � t)t + t2 , t 2 [0, 1] � R, (6.6)

where vs 2 R3 ist the start vertex and ve 2 R3 is the end vertex. Together
with vc 2 R3, they create the control triangle of the curve. Note that vc is the
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6.1 Voronoi Diagram of Spheres

pf

~v1
~v2

B p

q

pi1pi2

Figure 6.7: Left: Illustration of the empty tangent spheres on the edge curve. The sphere
with minimal distance is depicted in red. Right: Geometrical proof that a tangent plane in a
point pf on a Voronoi face is an angle bisector of the corresponding vectors~v1 and~v2.

intersection point of the tangents through vs and ve. The weight w 2 R can
be computed by a third point on the edge curve, for example, the point with
the minimal distance to the three generator spheres.

In the following, the proof by Kim et al. [109] is summarized, which shows
that the direction ~te of a tangent in a point pe on the edge curve is equi-angular
to the three vectors pik � pe, k = 1, ..., 3. Thus, it can be computed by solving
the system of linear equations

*
pik � pe

 pik � pe

 ,~te

+

= c, k = 1, ..., 3, (6.7)

where c 2 R is a constant that is set to a value unequal to 0. For the special
case where pe lies in the symmetry plane, all vectors pik � pe lie in this plane.
So the equi-angular vector is normal to this plane. Consider an arbitrary
point p f 2 Vf i1,i2g, which means p f lies on the face given by the intersection
of the Voronoi regions Vi1 and Vi2. Let ~v1 = pi1 � p f and ~v2 = pi2 � p f and
without loss of generality, assume j~v1j � j~v2j. Furthermore, let B be the angle
bisector plane of ~v1 and ~v2. For an arbitrary point p 2 B, with p 6= p f , one
can construct a kite with the vertices p f , pi1, p, and a point q 2 R3 on ~v2,
(Figure 6.7). Next to the kite, a triangle remains with vertices p, q, and pi2.
This triangle leads to the inequality


 p � pi2


 � (r i2 � r i1) +


 p � pi1


 ()


 p � pi2


 � r i2 �


 p � pi1


 � r i1.

This means that the distance of any point p of B to the sphere (pi2, r i2) is
always less than or equal to the distance of p to the sphere (pi1, r i1). Thus,
B is the tangent plane in p f , because it never penetrates the Voronoi face.
Consider now an arbitrary point pe on a Voronoi edge. The edge is part of
three Voronoi faces, and the tangent in pe lies inside the tangent planes of
the three faces and thus it has the same angle to the three vectorspik � pe,
k = 1, ..., 3.
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6 Cavity Computation

The last missing parameter to describe the edge is the weight w in (6.6). It
was shown [64], that the weight can be computed by

w =
l 2

2
p

l 1l 3
,

where l i , i = 1, ..., 3, are the barycentric coordinates of a point on the edge
curve according to the triangle Dvsvcve. Note that the sign of w has to be
reversed if the point on the edge curve with the minimal distance to the 3
input spheres is outside the bounds of the edge.

Faces

A Voronoi face f is part of the intersection of two distinct Voronoi regions Vi
and Vj , thus f � Vf i ,jg 2 VS. It was shown by Goede et al. [73] that a face
is part of a hyperbolic surface Hf i ,jg. To show this, Goede et al. used a rigid
transformation such that pi lies in the origin and pj on the x-axis. Without
loss of generality, assume r i � r j . For each point p f 2 R3 on Hf i ,jg


 p f � pi


 � r i =


 p f � pj


 � r j .

After applying the transformation, a point p̃ f on H̃f i ,jg is given by


 p̃ f


 � r i =








p̃ f �

2

4
di j
0
0

3

5








� r j ,

q
p̃2

f1
+ p̃2

f2
+ p̃2

f3
� r i =

r
�
p̃ f1 � di j

� 2 + p̃2
f2

+ p̃2
f3

� r j ,

q
p̃2

f1
+ p̃2

f2
+ p̃2

f3
� r i + r j =

r
�
p̃ f1 � di j

� 2 + p̃2
f2

+ p̃2
f3

,

where di j =

 pi � pj


 . Squaring this equation leads to

p̃2
f + r2

ij � 2r i j

q
p̃2

f1
+ p̃2

f2
+ p̃2

f3
= d2

ij � 2di j p̃
2
f1

+ p̃2
f ,

r2
ij + 2di j p̃

2
f1

� d2
ij = 2r i j

q
p̃2

f1
+ p̃2

f2
+ p̃2

f3
� 0,

where r i j = r j � r i . Note that di j is always larger than r i j . Otherwise one
sphere would lie completely inside the other, and there would not exist a
Voronoi face. Under this condition, the equation can be squared again and
divided by 4 (d2

ij � r2
ij ), which leads to

�
p̃ f1 �

di j

2

� 2

�
r2
ij

d2
ij � r2

ij

�
p̃2

f2
+ p̃2

f3

�
=

r2
ij

4
, (6.8)
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6.1 Voronoi Diagram of Spheres

Figure 6.8: Two examples for a Voronoi face between two input spheres. A Voronoi face is
part of one sheet of a hyperboloid of two sheets.

with p̃ f1 � di j /2 � r2
ij /2 di j . Equation (6.8) describes one sheet of a circular

hyperboloid of two sheets whose rotational axis is equal to the x-axis (Fig-
ure 6.8). In general such a hyperboloid is given by the equation

a
�
p̃ f1 � m1

� 2 � b
�
p̃ f2 � m2

� 2 � c
�
p̃ f3 � m3

� 2 = w,

where m 2 R3 is the center and a, b, c, w 2 R are nonnegativ parameters de-
scribing the shape. Additionally, the circular property satis�es the condition
b = c. For the hyperboloid in (6.8) this means

m =

2

4
di j /2

0
0

3

5 , a = 1, b = c =
r2
ij

d2
ij � r2

ij

, w =
r2
ij

4
.

Voronoi faces are bounded by Voronoi edges. Since a Voronoi edge lies in
a plane, a face can be completely described as the intersection of the half-
spaces, given by the planes of the Voronoi edges, and the hyperboloid. A
similar description of Voronoi faces and their discretization into triangular
meshes was given by Kim et al. [109].

6.1.2 Algorithm

In this section, a complete algorithm for the computation of the Voronoi dia-
gram of spheres is presented. This algorithm is a combination and extension
of the algorithms presented by Kim et al. [109] and Medvedev et al. [164].
Similarly to these algorithms, the Voronoi diagram is not directly computed,
but a graph representing the Voronoi vertices and edges. The analytical de-
scription of all Voronoi elements can be quickly and easily computed from
this graph. for this reason the graph is called Voronoi graph.
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Overview

Before the algorithm is described in detail, �rst an overview is given. The
Voronoi graph is constructed in an incremental manner from a single start
vertex. Recall that each vertex is de�ned by exactly four and each edge by
exactly three generator spheres. Let i, j, k, l 2 I be the indices of the four
spheres generating the start vertex. Each combination of three of these gen-
erator spheres creates one Voronoi edge. The four possible combinations are
( i , j, k), ( j, k, l ), (k, l , i), and ( l , i, j). Thus, four edges are traced from the start
vertex. These edges are stored on a stack. During the incremental construc-
tion of the Voronoi graph, in each iteration of the algorithm, an edge is taken
from the stack. If the edge already exists in the Voronoi graph, it will be
ignored. Otherwise, the corresponding end vertex is computed. If the end
vertex is already stored in the graph, only the edge is added to the graph. In
case, the vertex does not exist, the vertex is added to the graph, too. Further-
more, the three possible new edges from the end vertex are pushed onto the
edge stack. If the edge has no end vertex, which means it is unbounded, a
synthetic end vertex on the edge curve is computed. This vertex is marked as
in�nity vertex and added to the graph. The procedure will be repeated until
the stack is empty. The following steps summarize the algorithm.

1: initialize empty Voronoi graph G = ( V, E)
2: compute start vertex, add it to V, and push the 4 edges on the stack
3: while stack is not empty do
4: take edge e from stack
5: if e /2 E then
6: compute end vertex ve of e
7: if e is unbounded then
8: compute in�nity vertex and add it to V
9: else

10: if ve /2 V then
11: add ve to V
12: push the 3 new edges to the stack
13: end if
14: end if
15: add e to E
16: end if
17: end while

It is possible that the Voronoi graph contains more than one connected com-
ponent. To get the complete graph, one has to run the described algorithm for
each component. Furthermore, the algorithm does not compute completely
unbounded edges, that is, edges which are not connected with any of the Vo-
ronoi vertices. In order to compute both, all components as well as completely
unbounded edges, the method needs to check all input spheres. If a sphere
is not a generator of a vertex or an edge in the current graph, the tracing
algorithm starts again at this sphere. During the start vertex computation, it
is possible that the algorithm fails, because the Voronoi region of the sphere
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6.1 Voronoi Diagram of Spheres

does not contain a vertex. Thus it is only bounded by a single face or by more
than one face with unbounded edges.

Computation of a Start Vertex

The initial step of the algorithm comprises the computation of a valid start
vertex. Two possibilities to achieve this are described in this section. The �rst
possibility was presented by Medvedev et al. [164]. Their algorithm takes an
arbitrary input sphere and detects its closest neighboring sphere. In the next
step, the closest sphere to these two spheres is computed. Finally, the clos-
est sphere to the three spheres is detected. To achieve this, the distance ofk
spheres to another input sphere is de�ned as the radius of the smallest sphere
corresponding to a Voronoi vertex of the k + 1 spheres in k� dimensional
space. The computation for k = 3 was described in Section 6.1.1 and is
equivalent in other dimensions. If a Voronoi vertex does not exist, the Vo-
ronoi region of the sphere is bounded either by a single unbounded face or
by more than one face with unbounded edges. This is evaluated by analyzing
the closest sphere fork < 3. Then, the algorithm proceeds with another input
sphere.

The second possibility was presented by Kim et al. [109]. They suggested to
add four synthetic input spheres. These four spheres are placed in a way that
they de�nitely generate a Voronoi vertex. For example, the spheres can be ar-
ranged at the vertex positions of a tetrahedron residing outside the bounding
box of the other spheres. Then, the graph computation is run until a Voro-
noi vertex is found that is generated by the original input spheres only. This
vertex is then used as a new Voronoi start vertex, and the previous computed
graph as well as the four synthetic input spheres are removed. Note that it is
much more dif�cult to compute all components or unbound edges with this
approach.

From the start vertex, four Voronoi edges need to be traced. Each edge is
stored on the stack as a 5-tupel (g1, g2, g3, vs, s), where g1, g2, g3 are the three
generator spheres,vs is the start vertex of the edge, and s is the fourth input
sphere that together with g1, g2, g3 generated vs.

Computation of the End Vertex of an Edge

This is the core step of the algorithm. For each edge on the stack, represented
by a 5-tupel (g1, g2, g3, vs, s), the end of the edge needs to be computed. An
example of such an edge in two dimensions is illustrated in Figure 6.9. Recall
that the curve containing the edge is symmetric with respect to the plane
spanned by the positions of the generator spheres g1, g2, and g3. Furthermore,
the curve itself lies in a plane and each point on the curve corresponds to a
sphere tangent to the three generator spheres. The start vertexvs is the center
of one of these tangent spheres. Recall that this sphere is always empty. The
complete edge is de�ned by the positions of all empty spheres traced from the
start vertex vs until reaching the �rst non-empty sphere. The last traced empty
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g1

g2

s
vs

g1

g2

s
vs ve

Figure 6.9: A Voronoi edge tracing step in 2D. Left: the initial con�guration with the start
vertex vs, the generator spheres g1 and g2 of the edge and the remaining tangent sphere s.
Right: computation of the end vertex ve, which is the closest empty sphere tangent to g1 and
g2 and another input sphere.

sphere de�nes the position of the edge's end vertex. Note that there are two
directions into which the curve can be traced from the start vertex. However,
only one of these directions is correct. When tracing the curve into the wrong
direction, no empty tangent sphere can be found. Thus, the determination of
the correct tracing direction is a crucial step of the algorithm. With the correct
direction, the end vertex is the closest point to the start vertex along the curve
such that the corresponding sphere is also tangent to one other input sphere
from I n f g1, g2, g3g. The end vertex must be different to vs, and the distance
is measured along the edge. Thus, in order to determine the end vertex of an
edge, two problems remain to be solved: (1) the determination of the correct
direction, and (2) how to measure the distance of an arbirary point on the
edge curve to the start vertex.

One possibility to measure the distance between two points on the edge
curve is to use the angle between the vectors from a �xed point p f to the
two points (Figure 6.10). Note that p f must not lie on the edge curve. Apart
from other possibilities for p f , it is a reasonable choice to select a point at the
concave site of the curve on the symmetry plane, for example p f = 1/2 (vs +
ṽs), where ṽs is the point symmetric to vs. For the special cases thatrg1 =
rg2 = rg3 or vs = ṽs, p f lies on the edge curve and one has to select another
arbitrary point on the symmetry plane, for example the center of a generator
sphere. The distance between two points a 2 R3 and b 2 R3 on the edge
curve can then be de�ned as the angle between a � p f and b � p f . Here, the
angle is based on the direction from a to b along the edge. Since the angle can
be larger than p , it is not uniquely de�ned without a direction. This direction
can be de�ned by the normal vector v f of the plane in which the edge curve
lies. Then the angular distance d f between the points a and b is

d f (a, b) =
�

] (a � p f , b � p f ), if


v f , (a � p f ) � (b � p f )

�
> 0

2p � ] (a � p f , b � p f ), else.

The detection of the correct edge tracing direction de�ned by v f can be based
on the analysis of the Euclidean distance between sphere s and the tangent
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Figure 6.10: Illustration of the edge-tracing in the plane of the edge for a non-closed edge
curve (left) and a closed edge curve (right). The tracing direction is depicted by the dotted
arrow. The start vertex is vs and its symmetric point is̃vs. The �xed point for the angular
distance measurement is pf and the point with the minimal distance to the 3 input spheres is
pm. A valid end vertex has an angular distance smaller thanamax. Furthermore, ve illustrates
a possible end vertex of the edge (red).

spheres corresponding to the edge curve. When following the edge curve
in one tracing direction, the corresponding spheres will intersect s while in
the other direction they will not, (Figure 6.9). Consider the start vertex and
its empty tangent sphere. Imagine that the edge is traced along one of the
two directions by adding an e 2 R, with jej being very small, to the radius
of the start vertex sphere and computing the position of the new sphere for
this radius such that it is tangent to the spheres g1, g2, and g3. Due to the
symmetry of the curve, there are two possible positions for a sphere with this
radius, but the one on the side of the start vertex is selected. If this sphere
intersects with sphere s, the tracing direction is wrong, otherwise it is correct.
This approach to detect the direction is correct for an arbitrarily small jej and
was applied by Lindow et al. [149] for protein data. However, the choice of
e is dif�cult in practice and might result in a numerically unstable computa-
tion. To circumvent this problem, here a new analytical way to compute v f is
presented.

Let e(t) be a parametric representation of the edge curve with e(0) = vs.

Lemma. The tangent e0(0) in vs points into the correct tracing direction
if

*

e0(0),
vs � ps

kvs � psk
�

vs � pg1
 vs � pg1




+

> 0

Otherwise it points into the opposite direction.

Proof. For each point e(t), the radius of the corresponding tangent sphere is
re(t) =


 e(t) � pg1


 � rg1. Note that g2 or g3 could also be used to de�ne

re(t). The Euclidean distance de(t) of the tangent spheres to the input sphere
s is then given by

de(t) = ke(t) � psk � rs � re(t) = ke(t) � psk �

 e(t) � pg1


 � rs + rg1.
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As described above, in one tracing direction the distance de(t) decreases, be-
cause the tangent spheres intersect spheresand in the correct tracing direction
de(t) increases. Hence, only the sign of the derivative of de(t) for t = 0 has to
be analyzed to get the correct tracing direction. Therefore, consider �rst the
derivative of ke(t) � pk, where p 2 R3 is an arbitary point.

ke(t) � pk0=
� q

e2(t) � 2he(t), pi + p2

� 0

=
2he(t), e0(t)i � 2he0(t), pi

2ke(t) � pk

=
he0(t), e(t) � pi

ke(t) � pk

With this auxiliary calculation, the derivative of de(t) is

d0
e(t) =

he0(t), e(t) � psi
ke(t) � psk

�



e0(t), e(t) � pg1

�


 e(t) � pg1




=

*

e0(t),
e(t) � ps

ke(t) � psk
�

e(t) � pg1
 e(t) � pg1




+

.

Thus, the sign of the derivative depends only on two normalized vectors and
e0(t), which is a tangent vector in e(t). A closer look at the case t = 0, reveals

d0
e(0) =

*

e0(0),
vs � ps

kvs � psk
�

vs � pg1
 vs � pg1




+

.

�
The only unknown part in this formula is the tangent vector e0(0). With the
system of equations (6.7) one can compute a tangent vector in a point on the
edge curve. The direction of the tangent is de�ned by the sign of the constant
c. For a positive c the tangent points to the symmetry plane. Because only
the sign of the scalar product is of interest for the direction detection, it is not
necessary to have the correct length ofe0(0). Furthermore, by a rearrangement
of d0

e(t) one can see that the equation is independent of the selected generator
sphere:

*

e0(t),
e(t) � ps

ke(t) � psk
�

e(t) � pg1
 e(t) � pg1




+

=

�
e0(t),

e(t) � ps

ke(t) � psk

�
�

*

e0(t),
e(t) � pg1

 e(t) � pg1




+
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(a) (b) (c) (d)
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Figure 6.11: Detection of the edge tracing direction by Medvedev et al. [164](a) and (c),
compared to the presented detection method(b) and (d). The start vertex and the traced
edge are depicted in red. The sign of the scalar product of the red vectors de�nes the tracing
direction. Note that for(a) and (c) the tracing direction is equal to the tangent if the scalar
product is negative, which is correct in(a) but not in (c). For (b) and (d) the tangent points
into the tracing direction if the scalar product is positive, which is correct in both cases.

The �rst part of the difference is independent of the input sphere g1 and the
second part describes the angle between the tangent and the normalized vec-
tor from pg1 to e(t). Recall that this angle is equal for the three input spheres
(Section 6.1.1). Thus,d0

e(t) is independent of the selection of the generator
sphere. The correct direction is given by the sign of d0(0). If d0(0) > 0 then
e0(0) points into the correct direction, otherwise it is the opposite direction.
Let pm 2 R3 be the point on the edge curve with the minimal distance to g1,
g2, and g3 and t > 0 for e(t) = pm, then the direction can be represented by

v f =
�

(vs � p f ) � (pm � p f ), if d0
e(0) � 0

(pm � p f ) � (vs � p f ), else.
(6.9)

In contrast, Medvedev et al. [164] proposed the computation of the direction
by the analysis of e0(0) and only the vector ps � vs. If he0(0), ps � vsi < 0,
the tangent e0(0) points already into the correct direction, otherwise it points
into the opposite direction. A simple 2-dimensional example, depicted in
Figure 6.11, shows that this can lead to a wrong direction.

Using the result from the Lemma, which leads to Equation (6.9), it is pos-
sible to measure distances along the correct edge tracing direction. However,
for non-closed edge curves, the maximal distance amax for a possible end ver-
tex is smaller then 2p (Figure 6.10). For non-closed curves,amax is given by

amax =
�

p + ] (vs � p f , pm � p f ), if d0
e(0) � 0

p � ] (vs � p f , pm � p f ), else.
(6.10)

For closed curves, amax = 2p . If vs = pm, then an arbitrary other point on
the edge curve needs to be selected. Note that the direction of e(t) depends
on the choice of this point. The whole method to compute the end vertex is
summarized by the following algorithm.

1: mark end vertex ve as invalid
2: compute pm and edge type (closed or non-closed)
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6 Cavity Computation

3: compute �xed point pf for distance measurement
4: compute tracing direction v f for distance measurement (6.9)
5: compute maximal distance amax (6.10)
6: for c 2 I n f g1, g2, g3g do
7: compute possible vertices vci for g1, g2, g3, and c (Section 6.1.1).
8: for all vci do
9: a  df (vci , vs)

10: if a < amax then
11: ve  vci

12: amax  a
13: mark ve as valid
14: end if
15: end for
16: end for

If this algorithm does not �nd an end vertex, then the traced edge is un-
bounded in one direction and, hence, it is in�nitely long. Handling such cases
is described in the following section.

Computation of In�nity Vertices

For the visualization and analysis of Voronoi diagrams, it is often useful to
restrict an unbounded edge by cutting off the part going to in�nity. Therefore,
a synthetic vertex along the tracing direction is added and marked as in�nity
vertex. Recall that only non-closed edge curves can be unbounded in the
sense that they have only one or no end and thus extend to in�nity.

The edge tracing algorithm detects only unbounded edges with one vertex.
Since the edge is unbounded in one direction, there exists a point on the edge
in the correct tracing direction that has a larger distance to the spheres g1, g2,
and g3 than the start vertex vs. Depending on the application one can choose
a distance dinf , which should be larger than the distance of vs to g1, g2, and
g3. Then, the two possible points pin f1,2

with distance dinf to g1, g2, and g3 are
computed. Only one of the points pinf k

has an angular distance d f (vs, pinf k
)

that is smaller than the maximal distance amax.

Extensions

In 2006, Cho et al. [41] presented an extension of the edge-tracing algorithm to
reduce the search space for the 4th input sphere that generates the end vertex
of a Voronoi edge. While this extension accelerates the algorithm, the time
complexity for this step is still quadratic. Therefore, Ma�nák et al. [161] pre-
sented an optimization that incrementally reduces the search space to achieve
an expected time complexity that is linear to the number of input spheres.
Even faster computations can be achieved by using a combination of the re-
duced search space strategy and a 3D data structure, as described by Lindow
et. [149]. An additional acceleration can be achieved by parallelization.
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Figure 6.12: Illustration of the search space (yellow) for the end vertex computation of a
non-closed edge (left) and a closed edge (right). The search space (yellow) is the union of all
spheres that correspond to potential end vertices of the edge. All input spheres that do not
intersect the search space (yellow) can be ignored for the end vertex computation.

Reduced Search Space During the computation of an end vertex of an edge,
nearly all input spheres need to be investigated. For each of these input
spheres, the tangent spheres that possibly represent the end vertex are com-
puted. Since this is computationally expensive, a reduction of the investigated
input spheres would accelerate the algorithm a lot. To achieve this, one has
to quickly identify input spheres that cannot be a generator of the end ver-
tex. Note that the space of possible end vertices is restricted to all points
on the edge curve from the start vertex along the correct tracing direction.
This means that only an input sphere that intersects a corresponding tangent
sphere of this space can be a generator sphere of the possible end vertex.
Additionally, if a possible end vertex is detected, the space of possible end
vertices further reduces to all points on the edge curve between the start ver-
tex and the potential end vertex. Thus, the space of possible end vertices
successively reduces.

For non-closed edge curves, the space of the tangent spheres that corre-
spond to possible end vertices can be decomposed into a half-space and the
tangent spheres between this half-space and the start vertex (Figure 6.12). The
half-space corresponds to the tangent sphere, the center of which lies on the
edge curve at in�nity into the correct tracing direction. It is given by the plane
tangent to the edge generator spheresg1, g2, and g3. All input spheres that do
not intersect one of the two spaces can be ignored for the end vertex detection.

For closed edge curves, the space of the tangent spheres that correspond
to the possible vertices of the edge is described by a generalized torus. The
torus has an elliptic edge curve as skeleton with a varying small radius from
the minimal to the maximal tangent sphere (Figure 6.12). All input spheres
that do not intersect the torus can be ignored for the end vertex detection.

In order to quickly identify a potential end vertex that is as close as possible
to the expected end vertex, Ma�nák et al. [161] use the Delaunay triangulation
of the centers of the spheres as spatial data structure. However, this requires
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d

Figure 6.13: The left image shows the expansion of the search space by looping over rings
of grid cells starting from the red cell. On the right side, the break condition d> rmax + re is
illustrated for the blue generator spheres of the edge with the yellow start vertex and the red
end vertex.

the pre-computation of the Delaunay complex which produces an additional
overhead.

3D Data Structure Instead of using the optimization by Ma�nák et al. [161],
it is more ef�cient to reduce the search space by using a 3-dimensional grid
as spatial data structure (Section 2.5). The grid stores all input spheres in a
way that each grid cell contains all input spheres whose centers lie inside the
cell. The grid allows a fast detection of the end vertex without touching all
n � 3 input spheres. This is done by looping over rings of grid cells. In the
�rst loop, all spheres in the cell of the start vertex are tested. The second loop
tests all spheres of all grid cells that touch the cell of the �rst loop, and so
on (Figure 6.13). When a state is reached at which the distance between the
current end vertex and the position of the nearest remaining potential input
sphere with greatest possible radius rmax is greater than the sum of their radii,
the end vertex has been found. A lower bound d of this distance for the ith
loop is given by

d = ( i �
1
2

)cmin �

 cg � ve


 > rmax + re

where cg is the center of the cell of the �rst loop and cmin is the smallest
cell dimension. The vertex position is ve and its radius is re (Figure 6.13).
If d becomes larger than rmax + re, the end vertex has been found. The �rst
part of the distance is the radius of the maximal inscribed sphere of the cur-
rent search space in the grid. Thus, each input sphere, the center of which
lies inside this sphere has already been checked. Overall, the equation de-
scribes the distance of the sphere that corresponds to the current end vertex
to the boundary of the inscribed sphere. If the input spheres are relatively
small compared to their overall bounding box and if the spheres are spatially
distributed such that their distances to their closest neighbors is similar, the
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6.1 Voronoi Diagram of Spheres

grid reduces the complexity for the detection of the end vertex to O(1) in re-
gions with high sphere density, but does not speed up the vertex detection at
boundaries where edges are unbounded.

Parallelization To further improve the run time, a parallel version of the
algorithm was proposed [149]. For this, two stacks of edges are required,
an active and an inactive one. The algorithm computes all end vertices for
all edges of the active stack in parallel. Then, sequentially the vertices are
popped from the active stack. If the vertex already exists in the graph, only
the edge is added, otherwise the vertex is also added and the three possible
new edges are pushed onto the inactive stack. In the last step, the active and
inactive stacks are switched and the procedure is repeated until the active
stack is empty. Note that with this strategy the most expensive part of the
algorithm is done in parallel.

Boundary Handling For most applications, only the Voronoi elements close
to the input spheres are required, for example, all Voronoi elements inside
the bounding box of the input spheres. This can be used to improve the com-
putation in two ways. First, only a part of the Voronoi graph needs to be
computed, which reduces the computation time, and second, the algorithm
becomes more stable because the numerical errors are greater for the Voro-
noi elements that lie far away from the input spheres. To achieve this, the
algorithm simply does not trace edges at Voronoi vertices that lie outside a
user-de�ned region of interest. Additionally, the Voronoi elements can be cut
with the region of interest in a post-processing step. For example, if the region
of interest is a box, one can cut the Voronoi elements by this box. Therefore it
is necessary to compute the intersections of the Voronoi elements and planes.
During the cutting process Voronoi elements can completely disappear be-
cause they lie outside the box, or they shrink in one direction or even split.
For Voronoi elements that will be cut, new arti�cial Voronoi vertices need
to be generated, similar to the Voronoi vertices for the unbounded Voronoi
edges.

6.1.3 Topological Structure

The Voronoi diagram of spheres describes the complete topology of the Eu-
clidean distance function of the input spheres. Therefore, the de�nition of the
critical points is adapted from Siersma [215]. The critical points are given by
the intersection of the Voronoi elements and their dual structures. The dual
structure of a Voronoi diagram of spheres is called quasi-triangulation [112,
111], which is the analogon of a Delaunay complex for a classical Voronoi di-
agram. The quasi-triangulation consists of regions, faces, edges and vertices.
Each region is topologically a tetrahedron de�ned by the centers of the four
generator spheres of its dual Voronoi vertex. A face is a triangle given by the
centers of the three generators of its dual Voronoi edge. Accordingly, an edge
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Figure 6.14: Voronoi diagram of spheres and dual quasi-triangulation (left). Distance func-
tion of the input spheres with the corresponding critical points (right). Positive distances are
depicted in red and negative in blue. Maxima are shown as red dots, minima as blue dots, and
saddles as yellow dots.

is a line segment connecting the centers of the generator spheres of the dual
Voronoi face, and each vertex corresponds to the center of the sphere of its
dual Voronoi region. Thus, the quasi-triangulation creates a 3-dimensional
triangulation of the centers of the input spheres. However, in contrast to the
Delaunay complex of the classical Voronoi diagram, the quasi-triangulation is
not always a valid simplical complex.

The critical points of the distance function can be distinguished in four
different types:

• Minima. The minima are the centers of the input spheres that lie inside
the corresponding Voronoi region.

• Index-1 saddles. An index-1 saddle lies in the Voronoi face at the inter-
section point with its dual quasi-triangulation edge.

• Index-2 saddles. An index-2 saddle lies on a Voronoi edge at the inter-
section point with its dual quasi-triangulation face.

• Maxima. The maxima are the Voronoi vertices that lie inside their dual
quasi-triangulation region.

An example for the 2-dimensional case is shown in Figure 6.14. Note that
the critical points do not have a one-to-one correspondence to the Voronoi
structures, that is, there does not exist a critical point on every Voronoi face,
edge, or vertex. For each nonempty Voronoi region, the center of the input
sphere and thus the quasi-triangulation vertex is always inside the region.
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(a) (b) (c)

(d) (e) (f)

Figure 6.15: Path �ltering pipeline for a putative membrane protein from Corynebacterium
diphtheriae (pdb: 3C8I). Starting from the Voronoi diagram clipped by the bounding box of the
molecule (a) the following �lters are applied: Boundary �lter with threshold 0.4 (b), probe �lter
with r p = 1.2Å (c), cycle �lter (d), branch �lter with threshold0.9 (e). The most signi�cant
paths (e) are visualized together with the SES (f). The path color illustrates the distance to the
atoms from black (close distances) to white (far distances).

6.2 Path and Cavity Computation

Consider the Voronoi diagram of the atom spheres of a molecule. As men-
tioned before, the vertices and edges describe all paths with the locally max-
imal distance to the atom spheres. Hence, these paths describe the geometri-
cal optimal paths for spheres, especially, they include all maximal molecular
paths for a given probe sphere. In the following, it is described how to extract
all maximal molecular paths from the Voronoi diagram and the shape of the
corresponding cavities. Additionally, a method is proposed to �lter the most
signi�cant paths from the set of all maximal paths. A result of this pipeline
can be seen in Figure 6.15
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Figure 6.16: The computation of the boundary values for two Voronoi vertices (left). The
directions are discretized (red) to approximate the analytical solution (yellow). The probe �lter
(right) removes all edges of which the minimal distance is smaller than the probe radius (grey).
Thus all dotted edges are removed, and only the red ones remain.

6.2.1 Boundary Filter

The Voronoi diagram contains many edges outside the domain of the molecule,
and a lot of them are in�nitely long. These edges are non-relevant for the
analysis of molecular paths and create visual clutter around the molecule.
In addition, these paths do not lie inside real cavities. Hence, a boundary
needs to be de�ned that separates regions inside and outside the molecule as
described in Section 2.4.

To remove these parts, the Voronoi diagram is �rst cut by the axis-aligned
bounding box. Of course, this does not suf�ce for molecules whose shapes
are not box-like. So in the second step, the remaining paths are removed by
applying a simple technique that is also used in computer graphics for the
approximation of ambient occlusion. The more ambient light is received by a
Voronoi vertex, the more it lies outside the molecule. To realize this, at each
Voronoi vertex, a set of rays is cast. The rays are uniformly distributed in
all directions. The more rays hit the molecule the more likely it is that the
vertex resides inside the molecule. For vertices inside cavities and channels,
many rays will intersect the molecule. One interpretation for this method is
that vertices with sparse ambient illumination are inside or near the molecule.
The ratio of ambient occlusion is given by the ratio between the number of
rays hitting the molecule and the overall number of rays. All vertices with
an ambient occlusion ratio smaller than a user-de�ned threshold are removed
together with their interconnected edges. Note that a value of 0.5 approxi-
mately cuts the Voronoi vertices with the convex hull of the molecule. Fig-
ure 6.16 (left) illustrates the analytical and discrete boundary values for two
vertices and a result of the �lter is shown in Figure 6.15 (b).

In order to implement this technique ef�ciently, the set of uniformly dis-
tributed rays can be precomputed using, for example, sphere sampling algo-
rithms or subdivision of an icosahedron [190]. This distribution is then used
for all vertices. Like in the previous ray casting algorithm (Section 4.2.1), the
atom spheres are stored in a grid and the ray traversal by Amanatides [2]
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is used to quickly check for ray atom intersections. Since each ray and each
Voronoi vertex can be handled independently, the algorithm can be easily par-
allelized using, for example, OpenCL. To achieve this, the grid can be realized
by two simple arrays that store the cells and the atom sphere, as it was de-
scribed in Section 2.5. A further array stores the precomputed ray directions.
Then the parallel kernel program computes either the intersection test for a
single ray or all tests for a single vertex.

6.2.2 Probe Filter

In contrast to the boundary �lter, which removes paths outside the domain
of the molecule, the probe �lter removes paths whose distance to the atom
spheres is too small. Similar to the SES, the probe is a hard sphere with a
user-de�ned radius rp 2 R, which approximates the size of an ion, solvent,
or substrate. The probe is not allowed to penetrate the atom spheres of the
molecule while moving its center along the Voronoi edges. Hence, all Voronoi
edges with a smaller minimal distance to the atom spheres than rp cannot be
visited or completely passed by the probe. For this reason these edges are
removed, because they are not part of a maximal molecular path.

The point on the edge with the minimal distance to the atom spheres is the
index-2 saddle on the edge. This is the intersection point of the edge with
the dual face of the quasi-triangulation. Its computation was described in
Section 6.1.1. If the edge does not intersect the dual face, which means the
edge does not contain an index-2 saddle, the point with the minimal distance
to the atom spheres is one of the end vertices of the edge. After removing all
edges whose minimal distance is smaller than rp, some of the Voronoi vertices
are possibly not interconnected with an edge anymore. These vertices will be
also removed. The �lter is illustrated in Figure 6.16 (right) and a result can be
seen in Figure 6.15(c).

The user-de�ned probe should be selected carefully. For example, the min-
imal bounding sphere of a substrate used as probe will remove too many
edges and thus underestimates the accessibility. Using a too small sphere,
on the other hand, leads to an overestimation of the accessibility. The maxi-
mal probe that guarantees to not miss a geometrically accessible path, is the
maximal sphere which lies completely inside the van der Waals surface of the
substrate. For small substrates, this sphere is often equivalent to the largest
atom sphere in the substrate. Furthermore, the probe depends on the selected
atomic radii. In many applications using van der Waals radii, rp is set to 1.4
Å to approximate a water molecule

6.2.3 Cavity Extraction

After �ltering, the remaining graph of Voronoi vertices and edges contains
all maximal molecular paths that are accessible to the selected probe sphere.
And each connected component in the reduced graph represents the skeleton
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of a single cavity. For simplicity, from now on, the connected components
are called path components. Recall that each Voronoi vertex de�nes an empty
sphere tangent to four generator atom spheres whose Voronoi regions created
the vertex. Furthermore, each point on a Voronoi edge de�nes an empty
sphere tangent to the three generator atoms whose Voronoi regions created
the edge. In order to visualize, measure and analyze the shape of a cavity, a
�nite subset of empty spheres of the corresponding path component is used
to represent the cavity. The union of theses empty spheres approximates the
volume of the cavity.

The quality of this approximation naturally depends on the sampling den-
sity along the edges. The empty spheres along the Voronoi edges are placed
such that the largest circle inside the intersection of neighboring spheres is
at least rp. With this criterion, a probe sphere is guaranteed to be able to
move along all the paths of a path component without colliding with the sur-
face of the cavity approximated by the set of empty spheres. In detail, the
following procedure is used to extract the spheres. First, all spheres which
correspond to Voronoi vertices are extracted and all spheres on the edges
which correspond to index-2 saddles. Then the intersection circle between
two neighboring spheres is computed. If the radius of this circle is smaller
than rp, a further sphere on the edge is extracted between the two spheres. In
the following, the term cavity is also used for its approximation by the �nite
set of spheres.

6.2.4 Signi�cant Paths

Although the possible molecular paths are already reduced to the set of max-
imal molecular paths, it is still visually dif�cult to analyze them. Many of the
paths are redundant, because there exists a more signi�cant representative
path in the same cavity. The detection of these redundant paths was already
described in a previous work [149]. However, the �ltering requires 4 different
steps and is based on geometrical heuristics. In this section, an improved ver-
sion is presented, which can be separated in 2 different steps. In the �rst step,
all redundant paths are removed by analyzing cycles of Voronoi edges. The
remaining branches are evaluated in the second step by an importance-based
measurement. In contrast to the previous version, the new �ltering is much
faster and geometrically more stable.

Topology Graph Creation

The �ltering of the most signi�cant paths is not directly applied to the remain-
ing Voronoi vertices and edges, but on a new graph, called topology graph. The
topology graph is a directed vertex-labeled graph ~G = f V, Eg that is based on
the topology of the distance function (Section 6.1.3). Its undirected version is
denoted by G only. The set of vertices V consist of all remaining Voronoi ver-
tices and all index-2 saddle points on the remaining edges. The corresponding
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Figure 6.17: Illustration of the Voronoi diagram (left) and the corresponding topology graph
(right). Maxima are shown in red, minima in blue and regular vertices in yellow.

labels are given by the mapping l : V ! f maximum, minimum, regularg. For
a vertex v 2 V, l (v) is de�ned as

• maximum if v is a local maximum of the distance function.

• minimum if v is an index-2 saddle of the distance function. This means
that index-2 saddles of the distance function turn into minima in the
topology graph. They represent the narrowest points on the maximal
molecular paths.

• regular if v is neither a maximum nor a minimum.

The edges E of ~G are now constructed as follows. For each u 2 V with
l (u) = minimum, two edges (u, v) and (u, w) are added to E, where v and
w are the end vertices of the corresponding Voronoi edge on which u lies.
For each remaining Voronoi edge without an index-2 saddle, an edge (u, v)
is added to E if d(u) < d(v), where u and v are again the end vertices of the
corresponding Voronoi edge. Note that v can be either a regular vertex or a
maximum. In Figure 6.17 a topology graph of a Voronoi diagram is shown
for the 2-dimensional case. In the topology graph, each minimum has only
outgoing edges, each maximum only incoming edges, and each regular vertex
incoming and outgoing edges.

Cycle Filter

Based on the structure of a Voronoi diagram, the undirected topology graph
consists of many cycles that bound the Voronoi faces. If a cycle lies completely
in a single cavity, it always consists of a redundant path. By removing an
arbitrary edge, the probe is still able to visit all vertices in the topology graph.
Let w : E ! R be the minimal distance of an edge to the atom spheres. This
means w((u, v)) = min f d(v), d(w)g, for (u, v) 2 E. By removing the smallest
edge in such a cycle the remaining paths have a larger distance to the atom
spheres than the paths including the removed edge. For this reason, the paths
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6 Cavity Computation

that include the minimal edge are de�ned as redundant and the minimal edge
is removed.

The idea of this cycle cancellation is similar to the previous presented cycle
�lter. In the former version [149], cycles were detected by applying a modi�ed
depth �rst search with backtracking on the undirected topology graph. The
investigation if a cycle lies completely inside a single cavity was done by a
geometrical heuristic. A set of rays was cast from the center of the cycle to
regularly sampled points along the cycle. If none of the rays hit the atom
spheres, the cycle lay completely inside a cavity. With the new method the
detection of cycles is accelerated and the geometrical heuristic is replaced by
an analytical solution.

Instead of searching cycles in the topology graph with a depth �rst search,
all minimal cycles are already described by completely bounded Voronoi
faces. The search for these bounded Voronoi faces can be done quickly by
tracing the edges in the topology graph. Since the Voronoi diagram is non-
degenerate, each face is created by exactly two atom spheres and each edge
by exactly three atom spheres. So each Voronoi edge is part of three faces.
Note that the edges in the topology graph correspond to edges of the Voronoi
diagram. Let e 2 E be such an edge whose corresponding Voronoi edge was
generated by the atom spheres i, j, k 2 I . Then e is a boundary of the faces
given by the atom spheres ( i , j), ( j, k), and (k, i). To get all edges of the face
given by ( i , j), all those adjacent edges toe are traced, whose corresponding
Voronoi edges were also generated by ( i , j) and a third atom sphere. Based on
the properties of the Voronoi diagram, at most one edge at each end of e can
exist. The tracing is continued with the new edges until the cycle is closed or
the tracing stops because no adjacent edge was generated byi and j. In the
�rst case, the edges are stored in a list according to their cyclic order. In the
second case, the face is either unbounded, or an edge of the face was removed
in a previous �ltering step. For each edge, three possible cycles can be traced.

A cycle lies completely inside a cavity if each point of the corresponding
face is a valid center of the probe such that the probe does not intersect the
atom spheres. In other words, if the minimal distance of the face to the atom
spheres is larger than rp, the face lies inside a single cavity. The point with
the minimal distance on a face is the index-1 saddle, given by the intersection
of the face with its dual quasi-triangulation edge. If the intersection is empty
and the face does not contain an index-1 saddle, the minimal distance is given
by a point on a boundary Voronoi edge. Hence, it is either an index-2 saddle
or a Voronoi vertex. In the topology graph, this corresponds to the vertex of
the cycle with the minimal distance to the atom spheres. All cycles whose
corresponding minimal face distance is smaller than rp are removed from the
following investigations.

The remaining cycles are processed iteratively until the list of valid cycles
is empty. First, the redundant part of the cycle is removed. It is de�ned as the
edge with the minimal distance to the atom spheres, and all traced adjacent
vertices and edges until the end branching vertices are detected. Note that a
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(a) (b) (c) (d)

Figure 6.18: Illustration of four steps of the cycle �lter. In the �rst step (a), the yellow cycle
is selected the minimal edge of which is highlighted in red. The cycle shares this edge with
two other cycles (blue). After removing the edge and the corresponding branches, only the two
neighboring cycles remain (b). Then, the next cycle is selected (yellow) and its minimal edge
is selected (red). After removing the cycle, only one cycle remains (c). Finally, the minimal
edge and the corresponding branches of this cycle are removed (d).

branching vertex in G has at least three adjacent edges. The redundant part of
a cycle is possibly part of other cycles. To remove this part, it is necessary to
check if all involved cycles share only the redundant part and no further ver-
tices and edges. In this case, all vertices and edges of the redundant part can
be removed in G except the end vertices. Otherwise, the algorithm proceeds
with the next cycle. After removing the redundant part, the other involved
cycles are extended by the remaining part of the original cycle and the orig-
inal cycle is removed from the list of cycles. This can be seen as a merging
of the corresponding Voronoi faces (Figure 6.18). The new cycles does not
correspond to a single Voronoi face anymore but to a set of neighbored faces
that all lie in the same cavity. For the special case that a cycle has only a single
branching vertex, only the minimal edge is removed.

After applying the cycle �lter, the topology graph either contains no more
cycles or the remaining cycle can not be removed. Thus only signi�cant paths
remain in the topology graph. An illustration of the cycle �lter is shown in
Figure 6.15

Branch Filter

After removing all redundant parts in cycles, there still exist many branches
that do not represent signi�cant paths. A branch is a connected subgraph
Gb of G, where each vertex has at most two adjacent edges inG and at least
one vertex has degree one. A branch with exactly one vertex of degree one is
connected to a branching vertex in G. During this �ltering step insigni�cant
branches are detected and removed from the topology graph.

A branch that consists only of regular vertices is called regular branch. A
regular branch describes a directed path in ~G. From the beginning to the end
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6 Cavity Computation

Figure 6.19: Illustration of the importance measurement of the branch �lter for two examples
(red). The minimal and maximal distances along the branches are illustrated by the grey
circles.

of the path, the distance to the atom spheres monotonically increases. This
means a regular branch does not contain a real bottleneck. Accordingly the
branch does not describe a path into a new region of the cavity. For this
reason, regular branches can be removed from the topology graph.

A further branch �ltering cannot be done without a user-de�ned evalua-
tion, because all remaining paths are geometrically possible signi�cant paths.
However, while these paths are geometrically signi�cant, the user might want
to �lter even more branches. One possible measurement of the importance
of a branch can be derived from difference between the smallest vertex and
the largest vertex (Figure 6.19). The smallest vertex is de�ned as the vertex
with the smallest distance to the atom spheres. Accordingly, the largest ver-
tex has the greatest distance to the atom spheres. The difference between the
smallest and largest vertex can be either evaluated using the absolute differ-
ence of their distances or relatively using the ratio between the smallest and
the largest distance. The threshold for this difference is given by the branch
signi�cance parameter bs 2 R. For the absolute difference, all branches are
removed whose signi�cance is smaller than bs. In the case of the relative dif-
ference, all branches are removed whose signi�cance ratio is larger than bs.
Note that bs 2 [0, 1] for the relative signi�cance. An example of the branch
�lter, using the relative importance, can be seen in Figure 6.15

6.3 Results

In the following, the performance of the computation of the Voronoi diagram
and the �ltering in order to compute the cavities and the signi�cant molecular
paths is analyzed. To this end, several molecules from the PDB [184] are in-
vestigated. Table 6.1 shows the results for the full Path computation pipeline.
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Figure 6.20: Times for the computation of the Voronoi diagram of spheres for 27 molecules
from the PDB [184] using a single CPU core (red) and 6 cores (blue).

All results presented here were obtained on an Intel Xeon X5650 E5540 2.66
GHz system with 6 cores and an NVIDIA Geforce GTX470 graphics card.

6.3.1 Voronoi Diagram Computation

The computations of the Voronoi diagram were run on a single CPU core as
well as on multiple cores using OpenMP [175]. The computation times for
1 and 6 cores are given in Table 6.1. The algorithm was also tested on other
machines with 4 and 8 cores. On all machines, the performance speed-up
due to parallelization was approximately 0.5 � c, where c is the number cores.
The theoretical time complexity of the algorithm is O(n � e) [109], where n is
the number of input spheres and e is the number of Voronoi edges. How-
ever, with the optimizations presented in Section 6.1.2, for the tested PDB
molecules with up to 100 000 atoms, the algorithm scales almost linearly with
the number of atoms (Figure 6.20).

Furthermore, the performance was compared to the results of Ma �nák et
al. [161], who are the only ones presenting timings for molecules of the PDB.
As for the results of Ma �nák et al., an Intel Core 2 QUAD 2.4 GHz system
was used for the computation. The computation times are approximately two
times faster in contrast to their approach on a single core. For example, for
the protein pdb: 1HX6 it takes 5.8 seconds in contrast to 11.2 seconds with
Ma �nák's algorithm.
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6 Cavity Computation

PDB-ID #Atoms VD BF rp P

1 6 1 6 GPU

2OAU 13 573 4.2 1.1 10.4 1.9 0.2 1.0 0.3
1GKI 20 150 6.3 1.5 13.6 2.4 0.3 1.4 0.3
1G3I 46 040 15.9 4.0 36.2 6.4 0.7 2.0 0.4
1AON 58 870 19.4 5.2 46.9 8.6 0.8 3.0 0.3
1JJ2 98 543 38.8 9.3 82.9 15.2 1.4 1.4 1.2

System: Intel Xeon X5650 E5540 2.66 GHz, NVIDIA Geforce GTX470.

Table 6.1: Computation times in seconds of the Voronoi diagram (VD), the boundary �lter
(BF) and the cavity and path computation (P). The VD and BF were computed with 1 and 6
cores using OpenMP. Additionally, the BF was computed on the GPU using OpenCL

6.3.2 Path Filtering and Cavity Computation

The boundary �lter depends on the number of rays and the hit ratio (Sec-
tion 6.2.1). For all tests, 100 rays and a hit ratio of 0.5 were used. The timings
for one and six CPU cores as well as for the GPU implementation are given in
Table 6.1. The timings show that the boundary �lter scales linearly with the
number of atoms. On the CPU it is the most expensive part in the computa-
tion pipeline. The speedup for six cores is around 5.5 and for the GPU it lies
between 50� 60 with respect to a single CPU core.

After applying the boundary �lter, the probe �lter is applied with the user-
de�ned radius rp (Section 6.2.2). Then all cavities are extracted as described
in Section 6.2.3). Finally, the most signi�cant paths are �ltered using the
cycle and branch �lter (Section 6.2.4). The timings for all these steps are
summarized in the last column of Table 6.1. For the branch �lter, a further
parameter is required to steer the reduction. In all tests the relative distance
between the smallest and largest vertex was used with a threshold parameter
of 0.95. Note that the most expensive part of these steps is the cycle �lter. The
speed of the �ltering and cavity computation depends mainly on the number
of atoms, but also on the number of elements in the graph after applying
the boundary �lter. Nevertheless, in contrast to the previous version [149],
it is so fast that the computation time is nearly negligible. Overall, the full
�ltering pipeline is done within a few seconds, even for large molecules. As
comparison, CHUNNEL [44] requires several hours to detect all channels in
molecules with only a few thousand atoms.

6.4 Discussion

In this chapter, the computation and �ltering of potential molecular paths and
cavities based on the geometry of the van der Waals spheres of the atoms was
described.
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6.4 Discussion

By computing the molecular paths from the Voronoi diagram of spheres,
it becomes possible to extract the paths from the exact distance transform of
the molecule in contrast to others [188, 163, 246], who use approximations.
The Voronoi diagram computation, as described in this chapter, is about two
times faster than the optimized algorithm presented by Ma �nák et al. [161].
One reason might be the overhead by computing the Delaunay complex for a
fast neighbor search instead of using a grid data structure. The algorithm by
Medvedev et al. [164] was also tested. However, their algorithm is restricted
to data with periodic boundary, which allows them to use a simpler edge
direction detection, which fails for typical proteins. After several minutes, the
program still computes new Voronoi vertices although the number of maximal
elements is already reached. This leads to the assumption that the algorithm
runs in an in�nite loop.

From the Voronoi diagram of spheres, the most signi�cant paths and cav-
ities are computed by applying a sequence of methods. Among these, the
boundary �lter is the most expensive one. There are several alternatives to
the presented approach. For example, one could cut all vertices v of the Vo-
ronoi diagram with d(v) greater than a given value. This �lter is quite similar
to a boundary de�nition by a large probe sphere that rolls over the atoms
to create an envelope. Such a �ltering would be very fast, but it would also
eliminate paths inside large cavities. Another alternative is to use a mask
approximating the structure of the molecule. However, creating such a mask
would involve user interaction and might be time consuming for complex
molecules. The presented boundary �lter seems to be a good compromise
between fast computation and good boundary estimation. Furthermore, the
hit ratio will be computed only once and is stored. The �xed ratio of 0.5
in the tests, cuts the paths approximately at the convex hull, like in many
other molecular path detection algorithms. A cut with the convex hull can
be done much faster, but with the ambient occlusion approach the user can
change the ratio to keep for example only paths deep inside the molecule.
Empirically, 100 rays seem enough to cover the domain around a vertex. The
implementation for graphics cards greatly accelerates this method.

To the best of the author's knowledge, the presented approach was the �rst
that detects all maximal paths through tunnels as well as into cavities. For
example, CHUNNEL [44] detects only paths through tunnels. Additionally,
the method described here is faster by at least two orders of magnitude. Fi-
nally, for several examples, it could be shown that the �ltering keeps only
the signi�cant paths, which contained also the main paths extracted by oth-
ers [32, 44, 188, 189].
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7Cavity Analysis

The analysis of cavity structures is as least as important as its computation.
The analysis comprises measurements, like the volume or area, as well as vi-
sualization in order to analyze the location and shape of the cavities. Both
topics will be investigated in this chapter. An example of a result is depicted
in Figure 7.2. Most of the techniques were described in “ Voronoi-Based Extrac-
tion and Visualization of Molecular Paths” [149], “ Dynamic Channels in Biomolecu-
lar Systems: Path Analysis and Visualization” [147], and in “ Exploration of Cavity
Dynamics in Biomolecular Systems” [148]. The methods are applied to the cavity
description proposed in the previous chapter.

Recall that the skeleton of each cavity is a connected path component of
the �ltered Voronoi graph of the atom spheres. The graph consists of Voronoi
vertices and edges. Each cavity will be represented by a �nite set of empty
spheres. The positions of these spheres lie on the Voronoi edges of the path
component and their radii are maximal such that they do not intersect the
atom spheres (Section 6.2.3).

7.1 Measurements

The analysis of cavities involves computing their volumes and areas. A correct
computation of the area and volume of the union of a set of spheres, where
the spheres can intersect each other, was described, for example, by Gibson et
al. [72] and Petitjean et al. [187]. Depending on the input spheres, these algo-
rithms are often complex, dif�cult to implement, and numerically unstable.
Hence, an approximation of the volume and area using a discretization of R3

is usually preferred in practice. In the following, several discrete solutions for
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7 Cavity Analysis

Figure 7.1: Concept of three algorithms to discretize the volume of a cavity given by a �nite
set of spheres. Left: Counting the voxels the centers of which lie inside the cavity. Middle:
Distance approximation and triangulating of the cavity using marching cubes [154]. Right:
Ray casting to approximate boxes inside the cavity.

the volume and area estimation of general surfaces are investigated for their
application to molecular cavities. For all techniques, let cpj 2 R3 be the posi-
tions and cr j 2 R be the radii of the empty spheres representing a cavity, with
j 2 f 1, ...,mg. Furthermore, let a 2 R be a sampling width, which is used to
discretize R3 in each direction.

7.1.1 Volume

For the computation of the volume of a cavity, three methods are described in
this section.

• Volume by Voxels. The axis-aligned bounding box of the cavity is sam-
pled in all directions by a, which divides the box into small cubes with
side length a, called voxels. The volume of the cavity is de�ned as the
sum of the volumes of all voxels, the centers of which lie inside at least
one empty sphere of the cavity. This is the simplest technique to ap-
proximate the volume of a cavity (Figure 7.1, left).

• Volume by Triangulation. Again, the bounding box is sampled in all
directions with an edge length a. Then, for each sample position px,y,z 2
R3 the distance dx,y,z 2 R to the cavity is approximated by

dx,y,z = min
j2 M



 px,y,z � cpj



 � cr j

This creates a discrete distance �eld of the cavity. Using the marching
cubes algorithm [154], a closed triangulated surface of the cavity is ex-
tracted from the distance �eld. The volume of a closed triangulated sur-
face can be computed in the following way. First, compute the volumes
of all tetrahedra given by the triangles of the surface and an arbitrary
but �xed point. In case the dot product of the triangle normal and a
vector from the �xed point to a triangle vertex is negative, also the sign
of the corresponding volume of the tetrahedron needs to be inverted.
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1000 Å3

0 Å3

Figure 7.2: Cavity structure inside a dehalogenase mutant from Rhodococcus rhodochrous,
pdb: 4WCV. Left: Path components with clipped molecular surface. Right: Cavities with
secondary structure. The path components and cavities are colored according to the cavity
volume.

Finally, the overall volume is the sum of all tetrahedra volumes. Note
that the result is negative if the �xed point lies inside the cavity. The
approach is illustrated in Figure 7.1 (middle).

• Volume by Ray Casting. The technique, as presented here, is based
on the method by Phillips et al. [192]. It describes the measurement of
volumes and areas for molecular surfaces. However, the general concept
is a classical discrete integration of the molecular surface volume. In
contrast to the previous two techniques, only one side of the bounding
box is sampled by a, for example the minimal xy� side. Then from each
sample position a ray is cast into the remaining direction, which is the
z� direction in this case. For each ray, all intersection points with the
cavity spheres are computed and sorted by their order of appearance.
From these intersection points all pairs of points are computed, where
the ray enters and leaves the cavity. Each pair corresponds to an axis-
aligned box whose width is given by the distance of the points and
whose remaining side lengths are a. The overall volume is the sum of
all box volumes. An illustration of the method is shown in Figure 7.1
(right).

7.1.2 Area

In contrast to the volume computation, it is more dif�cult to compute a good
approximation of the surface area. For example, it is not possible to modify
the voxel approach by summing up the areas of the outer voxel faces. The
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a

Figure 7.3: Concept of three algorithms to discretize the ares of a cavity given by a �nite
set of spheres. Left: Distance approximation and triangulating of the cavity using marching
cubes [154]. Middle: Counting intersection points of uniformly distributed rays within a
bounding sphere. Right: Ray casting to approximate quadrangles tangent to the surface
which approximate the area.

approach would not converge to the correct result. Consider, for example, a
squared diagonal plane and its discrete voxel approximation given by stairs.
While increasing the resolution would lead to �ner stairs, that are closer to
the diagonal plane, the surface area would not change. Even the application
of the algorithm based on marching cubes does not necessarily converge to
the correct value [115]. However, it gives a much better approximation than
the voxel approach. For many years people have been working on ef�cient
algorithms that are easy to implement in order to compute surface areas by
discretization. Some common approaches are summarized by Brimkov et
al. [29].

In this chapter, three of these algorithms are investigated. The �rst is quite
similar to the triangulation-based method for the volume computation. The
second and third are based on ray casting, where one method is quite similar
to the ray casting for the volume computation.

• Area by Triangulation. The triangulation-based method is equal to the
volume approach, except that the volume computation of the tetrahedra
is replaced by the computation of the areas of the surface triangles. The
rest of the algorithm is identical. An illustration is given in Figure 7.3
(left).

• Area by Ray Casting and Surface Angles. Phillips et al. [192] described
a modi�cation of their volume computation approach to approximate
the surface area. As described above, �rst the entry and exit points of
the ray with the cavity are computed. At each of these points the area
is approximated by the square with side length a scaled by

�
�cos(a) � 1

�
� ,

where a is the angle between the ray direction and the surface normal
at the intersection point. Note that this approximation is not stable in
case the two vectors are nearly orthogonal and even unde�ned in case
of orthogonality. For this reason it is necessary to bound the range for
cos(a). The algorithm is illustrated in Figure 7.3 (right).
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• Area by Ray Casting and Counting Intersections. The original algo-
rithm was proposed by Li et al. [142] for general surfaces and later par-
allelized by Juba and Varshney [101] for the computation of molecular
surface areas. The main idea of the algorithm is to apply the Cauchy-
Crofton formula in order to estimate the area of a surface. Brie�y, the
surface area of a cavity is estimated by counting the intersection points
of uniformly distributed lines with the cavity and with a bounding
sphere. The areaAc 2 R is then given by

Ac �
kc

ks
� As ,

where ks is the number of intersections with the bounding sphere, kc is
the number of intersections with the cavity, and As is the surface area of
the bounding sphere. By increasing the number of lines, Ac converges
to the correct surface area.

In practice, �rst a tight bounding sphere of the cavity is computed. The
smaller this sphere, the less lines are required. In order to keep the al-
gorithm simple and stable, one can use the center of the axis aligned
bounding box of the cavity and compute the radius accordingly. While
this sphere does not represent the minimal bounding sphere, it is usu-
ally still small enough. Then, a set of uniformly distributed lines is
computed. Recall that lines that do not intersect the bounding sphere
and thus also not the cavity are useless. For this reasons, the lines are
computed by sampling pairs of points on the sphere. Hence ks is twice
the number of lines. Uniformly distributed points ps 2 R3 on a sphere
with radius rs 2 R can be sampled by

ps = rs �

2

6
6
6
4

p
1 � u2cosa

p
1 � u2sina

u

3

7
7
7
5

, u 2 [� 1, 1], a 2 [0, 2p ).

Instead of using default pseudo random values for u and a, low-discrep-
ancy sequences, like the one by Niederreiter [169], generate better dis-
tributions of samples. Finally, the number of intersections of the lines
with the cavity surface are computed.

7.1.3 Implementation

All algorithms were implemented for the CPU with OpenMP for paralleliza-
tion. Additionally, the voxel-based approach and the triangulation-based al-
gorithms were also implemented for the GPU using OpenCL. The main ac-
celeration structure for all algorithms is a grid that stores the empty spheres
that represent the cavity.
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Grid

The grid consists of cubical cells and stores a sphere inside a cell if the sphere
intersects the cell (Section 2.5). For the voxel-based volume computation, the
grid is used to quickly check if the voxel center lies inside a sphere. To do
so, the grid cell in which the voxel center lies is computed and the distances
of the center to all spheres, stored in the grid cell, are computed. In case a
distance is negative, the volume of the voxel is added to the overall volume
and the algorithm immediately continues with the next voxel. Several prac-
tical experiments showed that a cell size of approximately 5 � a gives a good
performance on CPU and a cell size of 15� a performs well for the GPU, where
a is the sampling width for the voxels.

For the triangulation-based algorithms, the grid is used to quickly compute
the approximation of the distance function. Brie�y, the marching cubes algo-
rithm iterates over all cubes with side length a, given by the sample positions.
In case the distance values of the 8 vertices of a cube are positive and neg-
ative, the surface must intersect the cube and the algorithm creates triangles
that represent the intersection. For cubes whose vertices have only positive
distances the algorithm assumes that the cube lies completely outside the sur-
face and, thus, will not create any triangles. Similar, for cubes with pure
negative distances the algorithm assumes that the cubes lie completely in-
side the surface. For this reason it is not necessary to correctly compute all
distance values of all samples. Only the samples of cubes with positive and
negative distances need to be correct. For the rest, it is suf�cient that the sign
of the samples is correct. Hence, for each sample position, the grid cells are
detected that intersect the cube, the center of which is the sample position
and the side length is 2 � a. Then, the minimal distance of the sample position
to all spheres in these cells is computed. Since the side length of a grid cell
is usually larger than 2 � a, at most 8 grid cells need to be investigated. If
all these grid cells are empty the distance at the sample position is set to a.
Similar to the voxel-based approach, a cell size of 5 � a performs good for the
CPU version and 15 � a works well for the GPU version.

The approaches based on ray casting use a grid to quickly compute the
intersection points of the rays with the cavity spheres. For this task, the ray
voxel traversal by Amanatides [2] is applied, which was already successfully
used for the fast ray casting of biological structures (Section 4.2.1). Brie�y,
the algorithm iterates over the grid cells that intersect with the ray in the
order of their intersection. For each cell, the intersections of the ray with the
spheres, stored in the cell, are computed. In contrast to the GPU version used
for rendering (Section 4.2.1), the volume computation on the CPU uses a bit
�eld to avoid multiple intersection computations with the same sphere. For
this algorithm a cell size of 16 � a results in a good performance for protein
cavities.
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OpenMP

The voxel-based approach consists of a single parallelized loop over all centers
of voxels. In each iteration, the 3-dimensional position of the voxel center is
calculated. Then, the corresponding grid cell is detected and the distance
computation with the spheres is performed. In case the center lies inside a
sphere, the volume of the voxel is considered for the overall volume.

The triangulation-based method consists of two steps. In the �rst step the
discrete distance function is computed. Similar to the voxel-based technique,
a single parallelized loop over all samples is executed. In each iteration, the
3-dimensional position of the sample is computed, and the distance to the
spheres is approximated using the grid data structure. Note that this algo-
rithm requires memory for the 3-dimensional discrete distance function. In
the second step, a modi�ed marching cubes algorithm is applied. Again, a
single parallelized loop over all sample cubes is executed. Depending on the
distance values at the cube vertices, the surface triangles inside the cube are
computed. Since the triangles can be handled independently of each other
for the volume and area computation, the volume of the tetrahedrons or the
triangle areas are computed immediately and the triangles are discarded after-
wards. Note that the actual volume or area computation is nearly negligible
in contrast to the computation of the distance function and the triangulation.
For this reason, it is advisable to compute directly both quantities in a single
run.

For the ray casting algorithms, a single parallelized loop over all rays is
executed. In each iteration, the intersection points of the ray with the spheres
are computed and sorted using the introsort algorithm [168]. Finally, the pairs
of intersections where the ray enters and leaves the cavity are detected and
the volume or the area is computed accordingly.

To avoid a synchronization of the threads, in all algorithms each thread has
its own volume or area variable. Finally, the sum of all these sub-volumes or
sub-areas is computed in a separate loop.

OpenCL

In contrast to the CPU version of the voxel-based algorithm, for the GPU
version a thread is started for each voxel center in the x- and y-direction.
Then, each thread iterates over the remaining z-direction and adds up the
volume of all voxels, the centers of which lie inside a cavity sphere. Finally,
the sum of the sub-volumes in x- and y-direction is computed on the CPU.

The triangulation-based algorithm is divided into two separate OpenCL
kernels. The �rst computes the distance function and the second implements
the modi�ed Marching cubes algorithm. Similar to the voxel-based algorithm,
for both kernels a thread for each sample position or cube in the x- and y-
direction is started and each thread iterates over the z-direction.
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For both algorithms the grid of the spheres is represented by three arrays as
described in Section 2.5, and a sphere is stored into a grid cell if it intersects
the cell.

7.2 Visualization

One of the most challenging problems in 3-dimensional visualization is to
render features surrounded by their corresponding geometry. Although the
molecular paths can be visualized by illustrating the �ltered Voronoi edges, it
is dif�cult to analyze them without seeing the surrounding molecular struc-
ture. In this section several techniques are proposed to show molecular paths
or cavities together with an adequate molecular visualization.

7.2.1 Paths

Molecular paths can be visualized by rendering the �ltered path components
or the extracted signi�cant paths as 3-dimensional tube-like structures. There-
fore, the paths are converted into piece-wise linear curves. Each linear seg-
ment is rendered as a cylinder that is cut by the angle bisector planes to the
next segments at the ends. Thus, it �ts perfectly together with the neighbor-
ing segments. In case of a very acute angle between two segments, one can
cut the segments with the orthogonal planes at these ends and place an addi-
tional sphere at this position. One can also use such spheres for the ends of
the paths.

To quickly generate and visualize this 3-dimensional geometry for the paths,
again ray casting is used. The technique is the same as described in Section 3.2
for the ray casting of smooth molecular surfaces. Brie�y, for each linear piece
of the path a vertex is generated that stores the properties of the cylinder seg-
ment. In the geometry shader, the vertex is expanded to a quadrangle that en-
closes the cylinder segment after projection. In the fragment shader, the actual
ray casting is performed. A better visual tracing of the paths can be achieved
by smoothing the paths in a pre-processing step. Examples of this kind of
path visualization are shown in Figures 7.4 and 7.6. An extension is the use
of cones instead of cylinders to change the thickness of the paths according
to their distance to the surrounding atoms or other properties. Furthermore,
the paths can be color-coded to show the distance to the surrounding atoms
or to visualize other properties. In Figure 7.2, the paths are colored according
to the volume of the corresponding cavities and in Figure 6.15 the distance of
the paths to the atoms is color-coded.

7.2.2 Cavities

Recall that the cavities are geometrically approximated by a well selected �-
nite subset of corresponding empty spheres. But instead of rendering only
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a set of spheres, a better visualization with a geometrically more accurate
shape of the cavity is achieved by using the skin surface of the empty spheres
(Section 2.1.4). The skin surface helps to compensate the discretization of the
cavity by a set of �nite spheres. However, one needs to be careful with the
selection of the shrink factor. Too small a shrink factor leads to an overes-
timation of the size of the cavity, which results in intersections of the skin
surface with the surrounding atoms. Practical investigations have shown that
a shrink factor around 0.7 avoids such intersections and creates a smooth sur-
face of the cavity. The analytical description as well as a fast computation
and visualization of the molecular skin surface was given in Chapter 3. These
techniques can also be used for the visualization of the skin surface of the
cavities. Finally, the surface can be colored according to local features like the
size of the closest empty sphere.

7.2.3 Illumination

Illumination plays an important role for shape and depth perception of 3-
dimensional objects. Although direct illumination is a fast way to emphasize
the 3-dimensional shape, it does not provide a good depth perception, which
is of particular interest for cavity structures. To enhance the correlation be-
tween the computed paths and the surrounding molecular structure, a novel
technique is presented here. The main idea of this technique is to place many
small point lights along the computed molecular paths to draw the user's
attention to the channels and cavities reached by the paths. Results of this
technique are depicted in Figure 7.4.

In order to guarantee a high visual quality as well as interactive speed for
many light sources, deferred shading [207, 85] is used. The technique was
developed to reduce the costs of illumination to the number of pixels in the
�nal image instead of lighting all fragments of the scene including hidden
ones. This is realized by rendering the molecular structure into multiple ren-
der targets, represented by a set of textures. During this �rst rendering the
fragments are not illuminated, but their color, normal, and depth is stored in
three target textures. In the following rendering passes, only a screen-space
�lling quad is rendered. During these passes, the previous textures are used
as input and the illumination is computed only for the visible fragments. Ad-
ditional passes can be implemented, for example, to add ambient occlusion.
The �nal pass computes the direct illumination by a global directional light
as well as the illuminations by the point lights placed along the paths. The
illumination passes are described in more detail in the following.

Ambient Occlusion

Ambient occlusion is a technique to approximate global illumination. The
goal is to measure the possible incoming ambient light for all points in the
scene. Points that lie in a cavity often receive less ambient light, because the
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(a) (b)

(c) (d)

Figure 7.4: Visualization of the illumination pipeline for the most signi�cant paths in
Porcin pepsin (pdb: 5PEP). Direct illumination with depth cueing (a), additional screen space
ambient occlusion (b), added point lights along the paths with HDR (c), and an extra glow
effect (d).

light is re�ected by occluding geometry. Showing this effect leads to a much
better depth perception. Because it is such a relevant technique, in many
computer graphical �elds a lot of work was done in the past years especially
for real-time rendering of dynamic scenes, which plays an important role
for the game industry. Similar to the �rst de�nition by Zhukov et al. [251],
ambient occlusion is often modeled for a point p 2 R3 on a surface with
normal ~n 2 R3 as

a(p,~n) =
1
p

Z

w2W
v(p, w) jw � ~nj dw,

where w is a direction given by the hemisphere W in the point p with ro-
tational axis ~n. Furthermore, v is a visibility function which returns 1 if p
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is not occluded from direction w and otherwise it returns 0. Typically W is
discretized by a �x number of uniformly distributed rays. If a ray hits the
surrounding geometry, the ambient light is blocked in this direction, and v
returns 0. Over the years mainly two groups of approaches were proposed to
achieve ambient occlusion at interactive frame rates.

The �rst group is a post-processing technique, called screen-space ambient
occlusion (SSAO). The probably most simple variant of such an algorithm
is depth darkening [157], which was brie�y described in Section 3.2.4. More
realistic approaches sample the surrounding depth values of a fragment to get
an approximation of the occluding geometry in the hemisphere. Because most
approximations lead to noisy results, a blurring �lter is applied afterwards.
More information about these techniques as well as implementation details
can be found, for example, in the works by Mittring [167], Bavoille et al. [15],
and McGuire et al. [162]. An example of the implementation of the algorithm
by Bavoille et al. can be seen in Figure 7.4. Due to the computation of the
ambient occlusion in screen-space, the technique has usually a constant upper
bound for the time complexity per frame and can be implemented completely
on the GPU. Thus, ambient occlusion can be achieved interactively for fully
dynamic scenes and is state of the art in most 3-dimensional computer games.
Nevertheless, depending on the quality and resolution, screen-space ambient
occlusion can still decrease the frame rate. Furthermore, due to the limited
information around the surrounding geometry it can create incorrect results
in certain situations.

In addition to the screen-space versions, there exists a group of algorithms
that work in object-space. Thus it is called object space ambient occlusion
(OSAO). The most common techniques pre-compute ambient occlusion for
the objects in the scene and store the result in textures. These textures can
then be used directly during the rendering. For the computation, the ambi-
ent light directions are discretized on the hemisphere and intersection tests
for each ray are performed with the surrounding geometry. Depending on
the number of rays and resolutions for the textures, the ambient occlusion is
often more realistic and creates better results than the SSAO variants. How-
ever, the pre-computation requires a lot of time and memory as well as a
parametrization of the objects for the texture mapping. This makes it imprac-
tical for dynamic scenes. One example, is the approach presented by Tarini
et al. [224] for the van der Waals surface and the ball-and-stick representation
of molecules. Other approaches create ambient occlusion volumes. Grottel
et al. [78] presented such an approach to approximate ambient occlusion for
molecular dynamics data. Instead of analyzing the occlusion by surrounding
geometry, the density of the geometry is directly used as indicator of occlu-
sion. Consider therefore a regular grid representing a 3-dimensional scalar
�eld. At each grid point, the surrounding density of the geometry is approx-
imated. The density grid is stored in a 3-dimensional texture. During the
rendering, the ambient occlusion in a point is calculated by the density into
the direction of the normal. While a high density indicates to a high ambient

147



7 Cavity Analysis

occlusion, for a low density the point probably receives much more ambient
light. The technique is applicable even for dynamic molecular data. However,
the result and quality depends a lot on the resolution of the density grid and
it is dif�cult to implement the technique for arbitrary geometries.

Path Lighting

While ambient occlusion improves the depth perception and allows quickly
identifying cavities at the outer surface, it is still dif�cult to distinguish be-
tween the accessible cavities and all existing cavities. Therefore, a new tech-
nique is applied, which places many point lights along the detected molecular
paths. A point light is de�ned by its position and a radius. Furthermore, the
strength of the light fades out linearly from the center to its radius. At each
remaining Voronoi vertex v 2 R3 of a path component, a point light is placed.
The radius of the point light is set depending on the distance d(v) from the
vertex v to the atom spheres. To take effect, the radius needs to be larger
than d(v), otherwise the light would not reach the molecular structure. One
suitable selection is min(2 � d(v), 4 � rp), where rp is the radius of the probe.

The described placement can generate several thousand point lights for an
average-sized protein. Even with classical deferred shading, it is not possi-
ble to render scenes with so many lights interactively. However, due to the
bounded lighting size it is not necessary to consider all point lights for each
fragment in the scene. Only light sources closer to the fragment than their ra-
dius can illuminate it. For a fast detection of the lights, again a 3-dimensional
grid data structure is used (Section 2.5). The grid stores a light into a cell if
the light position lies inside the cell. In addition to the texture buffer object
with the light positions and radii, a further buffer object can be used to store
for each light a color.

During the deferred shading, for each fragment all point lights within a
radius of 4 � rp are detected. Each light creates a simple diffuse illumination
of the fragment using Lambertian re�ectance. Additionally, a global weak
directional head light is applied to avoid darkness at positions without paths.
Working with so many lights often creates white arti�cial areas due to the
color clamping. To solve this problem, high dynamic range (HDR) rendering
is used. Instead of color components between [0, 1], HDR allows using values
in the range of [0,¥ ). In a further rendering pass, a simple tone mapping
function is applied to map these values back to [0, 1]. Together with a gamma
correction, a much better illumination is obtained (Figure 7.4).

In order to make the whole illumination model more intuitive for the user,
a glow effect is added at the boundary of the molecular structure. This creates
an impression of lighted cavities like the active chambers in a mine. The effect
is realized by collecting for each boundary fragment all neighboring colors in
a certain radius. The new fragment color is then set to the average of the
collected colors. Note that for large radii, the glow effect can be expensive to
compute due to the large number of texture fetches. One possibility to reduce
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Figure 7.5: Illustration of the clipping technique. Left: Cross-section of the molecular
surface (blue) and the cavity (yellow). Middel: Depth rendering (red) of the cavity. Right:
Clipping of the molecular surface by the cavity depth.

this amount for large radii is to use the same strategy as for screen-space
ambient occlusion. Only a small set of randomly selected sample points is
selected. These samples shall be uniformly distributed in the neighborhood
of the fragment. An additional smoothing �lter reduces noise artifacts in the
result (Figure 7.4).

7.2.4 Clipping

The methods presented so far enable the user to get a good overview of the
interesting cavities and paths. But if the molecule is very complex, it becomes
dif�cult to follow the paths and cavities into buried regions, even if the sec-
ondary structure or the ball-and-stick representation is used. To solve this
problem, a simple but effective clipping method is presented. The molecu-
lar structure, in particular the molecular surface, is clipped using the surface
of the selected cavity. A similar technique was previously used by Jones et
al. [100] for visualizing �ow trajectories together with volume data.

Since there are several possibilities to realize such a clipping, the developed
method is presented here in detail. The �rst step is to render the surface of
the cavity into a texture without storing colors and normals or computing
illumination, because only the depth values are of interest. In contrast to the
default rendering, where the closest depth values to the camera are stored, the
depth buffer is cleared with 0 distance and stores the farthest depth values
into a texture. During rendering of the molecular structure, this texture is
used to discard all fragments closer to the camera than the value given by the
texture. The algorithm is illustrated in Figure 7.5.

Two additional features help to distinguish between the area behind the
cut and the rest of the structure. The �rst is a boundary around the cut and
the second is a brightness change behind the cut. To compute the boundary,
for all fragments with a depth value of 0 in the texture, the surrounding
depth values within a given radius are checked. The ratio rcol between the
number of depth values equal to 0 and the overall number of values is used
to color the cutting boundary. The �nal pixel color cpix is determined by
cpix = rcol � cmol + ( 1 � rcol) � cbound, where cmol is the color of the molecular
structure and cbound is the boundary color. The result can be seen, for example,
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Figure 7.6: Sodium ion channel (pdb: 3HGC). The channel is important for epidermal ion
transport into the cell. Blocking the channel by amiloride is a way to treat cystic �brosis. The
molecular surface is clipped in order to see the internal structure of the channel.

in Figure 7.6, where the boundary appears to be black. For the second feature,
the brightness of all fragments behind the cut is changed by a user-de�ned
value. In Figure 7.6, the pixel values behind the cut have been brightened.

7.3 Results

This section contains some experimental results for the cavity measurement
algorithms and the visualization techniques. Especially for the measurement
algorithms, this helps to select the most suitable algorithm depending on the
underlying data and requirements. Furthermore, it will be shown that the
visualization techniques are interactive, even for large proteins.

7.3.1 Measurements

For the evaluation of the performance and accuracy of the volume and area
computation methods, the cavities of several molecules were investigated that
differ in both size and shape. The results for two representative molecules,
pdb: 3MTH and pdb: 1AON, are summarized in Figure 7.7 and 7.8. The dia-
grams show the sum of the cavity volumes and areas as well as the computa-
tion times depending on the sampling width a. While 3MTH has a common
protein size with cavities, the size of which ranges from several hundred Å 3

to a few thousand Å 3, 1AON is much bigger. It has a huge cavity structure
located in the center with a volume of approximately 1 574 nm3, the shape of
which has many small features.

The most important result is that the voxel-based volume computation and
the ray casting-based technique converge much faster than the triangulation-
based algorithm. The latter starts quite fast to underestimate the volume
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Figure 7.7: Cavity volumes (left column) and their computation time (right column) de-
pending on the grid resolution in Å for three algorithms and two proteins: pdb: 3MTH (top
row) and pdb: 1AON (bottom row).

with increasing sampling width. This is even worse if linear interpolation is
used for the Marching cubes algorithm to compute the vertices of the surface.
Additionally, the ray casting-based approach converges slightly better than
the voxel-based technique. To achieve a similar quality for the triangulation-
based algorithms than for the other methods, the sampling width needs to be
between a quarter and a half of the original sampling width, which can be
seen in Figure 7.7.

The convergence of the algorithms for the surface area computation is worse
than those for the volume computation techniques. The ray casting algorithm
which counts the intersection points with the cavity has the best convergence,
when Niederreiter pseudo random sampling is used. Furthermore, it is the
only algorithm of the three that converges to the correct result. This is not
guaranteed for the other two algorithms. Both, the ray casting algorithm with
surface angle measuring and the triangulation with marching cubes under-
estimate the real surface area in most cases. Especially, the angle measuring
technique can never converge to the correct result, because of the clamping
of angles close to 90 degrees. However, it converges faster than the triangula-
tion based approach, in particular for large cavities. The smaller the angular
bound, the better is the result for �ne resolutions but the larger is the error
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Figure 7.8: Cavity surface areas for three algorithms and two proteins: pdb: 3MTH (top
row) and pdb: 1AON (bottom row).

for decreasing resolutions. In all cases, a bound of 0.01 for the cosine of the
angle performed better than 0.07. For smaller bounds, the resolution needs
to be much higher such that it is impractical. In order to compare the ray
casting technique which counts the cavity intersections with the grid-based
approaches, the same number of rays was used as for the ray-casting-based
algorithm with the surface angle measurement.

In general, the voxel-based approach is the fastest technique. The ray
casting-based method is a bit slower, especially for large cavities. However,
in several cases it performs slightly better for very small sampling widths
for mid-size and small cavities. The Marching Cubes-based method performs
much worse in comparison to the other two techniques. The GPU imple-
mentations in OpenCL of both, the voxel-based method and the Marching
Cubes-based approach perform, in general, better than the CPU implementa-
tions using OpenMP, especially for large data sets and small sampling widths.
With increasing sampling width, the overhead for the data transfer to the GPU
and the creation of the GPU speci�c data structures becomes too big relative
to the pro�t of the highly parallel computation. In such cases the CPU im-
plementations of the voxel-based method and the ray casting-based approach
perform better. Note that the ray casting-based algorithms for the surface
area computation have the same performance as the ray casting algorithm for
the volume computation. Furthermore, the ray casting-based algorithm which
measures surface angles can compute the volume at the same time with nearly
no overhead. The same is true for the triangulation-based techniques.

7.3.2 Visualization

The visualization of the smooth molecular surfaces SES and MSS was already
described in Chapter 3. It provides performance measurements for both sur-
face types. In this section, the focus lies on the performance of the presented
illumination techniques.
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PDB-ID #Atoms FR(%) DL #PL +PL +SSAO +Glow

2OAU 13 573 65 61 36 897 27 19 13
1GKI 20 150 65 45 19 655 24 18 12
1G3I 46 040 55 43 21539 20 15 10
1AON 58 870 55 42 10 787 22 15 10
1JJ2 98 543 83 28 101 201 16 12 9

Graphics card: NVIDIA Geforce GTX 470.

Table 7.1: Rendering performance given in frames per second w.r.t. the given �ll rate (FR).
First, the SES and the paths were rendered with only one directional head light (DL), then
the point lights (PL) were added, the screen space ambient occlusion (SSAO), and �nally the
glow effect.

In order to test the performance of the illumination techniques, several
molecules of different size were investigated together with their molecular
paths. To do so, direct illumination was compared with the advanced illumi-
nation by switching on one extension after the other, starting with the screen-
space ambient occlusion over path lighting to the glow effect. Note that the
molecules and the paths used for this performance tests are the same as pre-
sented in Table 6.1. The rendering results were obtained from a �xed image
size of 1024� 1024. The frame rates for this setup are shown in Table 7.1.
The paths were rendered as tube-like structures, see Section 7.2.1, and the
molecular structure was shown using the solvent excluded surface (SES). The
fastest rendering was achieved with only a single directional head light. By
adding the point lights along the paths, the performance decreased to nearly
half the frame rate. However, for all tested molecules the visualizations were
still interactive, even if screen-space ambient occlusion and the glow effect
were added. With the most expensive illumination, still a frame rate of 9 fps
was achieved.

In addition to the illumination tests, the performance of the clipping by
the cavities was analyzed. Of course, the performance depends mainly on
the complexity and size of the selected cavities. Nevertheless, a great per-
formance loss could not be recognized because of the relatively large shrink
factor. For example, the clipping of the SES of pdb: 1AON by the large cavity
in the middle decreased the frame rate from 15 to 13 fps.

7.3.3 Application Results

In Figure 7.9, the �ltered paths of a dendritic core multi-shell nanotransporter
(CMS-NT) are shown. Image (c) shows all extracted paths for a probe radius
of 3 Å. A probe of this size approximates a morphine molecule. The goal
of the design of this nanotransporter is to carry morphine through the epi-
dermis. To achieve this, morphine needs to bind as deep as possible in the
transporter. None of the paths reaches the core of the molecule. Only some
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(a) (b)

(c)

Figure 7.9: Molecular paths in a CMS nanotransporter for a water probe with a radius of
1.4Å (a). These paths can reach the inner core, which is shown by clipping the molecular
surface with the cavity of a selected path(b). Paths for morphine, which is approximated by
a probe radius of3.0Å can reach cavities in the outer shell but not the core(c).
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deep cavities in the outer shell are detected. For comparison, in image (a) all
paths are shown for a probe with radius 1.4 Å, which is approximately the
size of a water molecule. Several of these paths can reach the inner core of
which one is shown by surface clipping in the right image.

Another example is given in Figure 7.6, which shows the feasible sodium
channels in pdb: 3HGC. These channels are accessible for NA+ ions but can be
blocked by amiloride. Note that NA+ ions and amiloride have approximate
radii of 1 Å and 2.5 Å, respectively. The image shows the paths extracted using
a probe �lter of 1 Å. As can be expected from the 3-fold rotational symmetry
of 3HGC, the extracted paths also show such a symmetry.

7.4 Discussion

For the computation of the volume and area of the cavities, three algorithms
were proposed. In order to get the best mixture of accuracy and performance,
the voxel-based approach and the ray-casting based technique, implemented
with OpenMP, seem to be the best algorithms for the volume computation of
mid-size and small cavities. The experiments showed that usually a sampling
width smaller than 0.5 Å does not seem to be necessary for both techniques.
However, if high accuracy is desired or for large cavities, the implementation
of the voxel-based approach using OpenCL is superior to the other methods.
For the surface area, the algorithm with the best accuracy is the ray casting
approach that counts the intersections with the cavity. Especially with the
Niederreiter sampling, it converges faster than the other techniques. The con-
vergence of the ray casting approach with the angular measurements is only
slightly worse, but it does not converge to the correct surface area. It is dif�-
cult to estimate the error depending on the angular threshold. On the other
hand, a threshold of 0.01 for the cosine of the angle produced good estima-
tions in all tested cases from small to large cavities. The triangulation-based
approaches for volume and area measurements performed worst. A sampling
width smaller than 0.2 Å is needed to get a similar accuracy as with the other
algorithms with 0.5 Å. The triangulation-based approach and the ray casting
that measures the surface angle can be slightly modi�ed to compute both,
volume and area, with nearly no overhead. Thus the GPU implementation of
the triangulation-based approach could be interesting for large molecules.

The bad convergence of the triangulation-based algorithms has mainly two
reasons. The �rst is the approximation in the distance function of the cavity.
While this function is correct for points outside the surface, for points inside
the surface, the distance is often overestimated. As an example, consider a
point that lies in the intersection region of two empty spheres that represent
a cavity. The distance of this point to the cavity surface is usually the distance
to the intersection circle of the two spheres. But the approximation takes the
smaller distance to the surface of one of the spheres, which is typically larger.
This overestimation of the distance leads to a smaller triangulated surface by
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the Marching Cubes algorithm. However, the sign of the distance is always
correct and the distance converges to the correct distance, the closer the point
lies to the cavity surface. Computing the correct distance function would be
too time consuming and can be numerically dif�cult. The second reason for
the bad accuracy is that most parts of the cavity surface are spherically convex.
The Marching Cubes algorithm computes vertices on the cavity surface and
triangulates them. The planar triangles always cut off a part in these convex
regions. For the other two algorithms the overall volume is given by the sum
of the volume of boxes. In some regions, these boxes overestimate the volume,
and in some regions they can not cover the whole volume of the cavity. This
leads to a compensation of over- and underestimation and thus to a better
convergence for the volume computation of cavities.

Most of the described approaches for the volume and surface area compu-
tation use a uniform sampling of a region of R3. In the literature one can
�nd many modi�cations that use other pseudo random sampling techniques
to get a better convergence. This was observed for the experiments of the
surface area measurement with the ray casting technique which counts the
intersections. The sampling by the Niederreiter sequences performed better
than the default pseudo-random sampling. For the other algorithms, except
the triangulation-based approach, similar tests were performed, where the
result was close to the uniform sampling and only in rare cases slightly bet-
ter. But on the �ip side of the coin, these samplings can require some more
computation time.

The interactive rendering with the combination of screen space ambient
occlusion and the novel lighting of cavities provides a good depth perception
and allows one to quickly identify the important regions. Nevertheless, it can
be dif�cult to understand still pictures, because it is more intuitive for the user
to see dark cavities, where typically no light exists. To make the illumination
more consistent and the visualization more intuitive, often a dark background
and a blur effect at the boundary is used, which creates the impression of
glow.

Instead of using lights, one could also color the molecular surface accord-
ing to the distance to the paths. Illumination, however, has the advantage that
one can still use the color to display other properties of the molecule. Fur-
thermore, one could use the lights for dynamic illumination of selected paths
only and for path animations.

The visualization of the cavities using the ray casted skin surface is much
faster than previous approaches, since it is not necessary to triangulate the
surface or to create a 3-dimensional scalar �eld. The clipping of the molecular
surface by the surface of the cavities greatly improves the understanding of
the location of the paths with respect to the molecular structure.
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Untill now, only the computation and analysis of cavities for a certain time
step of a molecule was investigated. However, due to the dynamics of the
molecules, also the cavity structure changes over time. These dynamics can
lead to dynamic channels that work like pumps or to opening and closing
pockets that lead to binding sites. To study cavity dynamics, it is necessary
to trace them over time and to identify topological changes. The algorithm
that is presented in this chapter consists of a pre-processing step where the
structure of the cavities for each time step of the trajectory is computed from
the Voronoi diagram of the van der Waals spheres using the algorithms de-
scribed in Chapter 6. This step is followed by an interactive stage where
the user can explore speci�c cavities and their spatiotemporal evolution. An
overview of the cavity dynamics can be derived by rendering the dynamic
cavities in a single image that gives the cavity surface colored according to its
time-dependent dynamics. Additionally, more abstract graph representation
of the cavity dynamics help to detect and keep track of important events.

The applicability of the resulting tool is shown for molecular dynamics tra-
jectories of bacteriorhodopsin embedded in a hydrates lipid membrane. Bac-
teriorhodopsin is a light-driven proton pump in which proton translocation is
coupled to protein structural rearrangements and relocation of internal water
molecules [92, 4]. Because access of water and protons from the two sides of
the lipid membrane is tightly regulated during vectorial ion transport, under-
standing the location, geometry (volume/spatial extent), and the dynamics
of cavities large enough to host water is an important aspect of investigating
conformation-coupled proton transport.
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t t + 1

r1 r2

Figure 8.1: Illustration of the tracing algorithm in 2D. The red cavity of time step t in-
tersects the two cavities of time step t+ 1 with maximal radii r1 and r2 of the intersection
circles. Both radii are large enough (i.e. larger than the user-de�ned minimal radius of the
intersection sphere) such that the tracing detects a split event.

8.1 Cavity Tracing

In this section, the computation of dynamic molecular cavities is described.
As mentioned before, the computation consists of two stages. In the �rst
stage, all static molecular paths and the corresponding cavities are computed
for each time step separately. In the second stage, the paths and cavities
are interactively traced over time. To achieve a high geometric accuracy, the
Voronoi approach described in Chapter 6 is used for the �rst stage. Recall,
that the result contains for each time step all maximal static molecular paths,
that is all paths whose distance to the atom spheres becomes locally maximal
and does not fall below a user-de�ned value, the probe radius. Additionally,
the corresponding static cavities are given by the union of the empty spheres
along these paths (Section 6.2.3).

From these static paths and cavities, the dynamic molecular paths and cav-
ities will be derived in the second stage. A dynamic molecular path is de-
�ned by the connection of static paths over time. Due to the restriction on
the computation of purely geometric paths and the discretization of the time,
valid connections between static paths over time can be de�ned as follows.
Consider, two connected components of static paths representing the skele-
tons inside two cavities of consecutive time steps. The probe sphere can be
moved along the paths without intersecting the receptor molecule. A connec-
tion of two points of the two components is valid if the probe sphere can be
moved along a continuous curve between these two points and lies always
completely inside both cavities. This means, the overlap of the two cavities
is large enough to host the probe sphere. Because it is not possible in prac-
tice to compute all possible connections, only a discrete number of points is
checked. Additionally, a fast heuristic is used to accelerate the test if the probe
lies completely inside both cavities.

8.1.1 Tracing

Often, the analysis of cavities and their dynamics depends on the application
and interests of the user. For ligand binding applications it is possible that the
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user wants to focus on a single cavity or a small subset of the cavities. But for
some applications, the user wants to keep track of all cavities. To achieve this
�exibility, the cavity tracing can be initialized by a manual selection of one or
more start cavities of interest in an arbitrary time step. When proceeding to
the following or previous time step, the selected cavities will be automatically
traced over time. For each cavity, four topological events can occur. A cavity
can appear, disapear, split, or merge with one or more cavities. If the user
focuses on a selected subset of cavities, a new cavity cannot appear during
the tracing.

As brie�y described before, the tracing detects the evolution of cavities over
time. In other words, it decides for each cavity if it belongs to a cavity of the
next or previous time step. For a tracing over m time steps, this evolution
can be stored in a directed m-partite graph G = ( C, E), where C consists of
m disjoint sets of vertices Ct , with t = 1, ...,m. Each cavity of time step t is
represented by a single vertex in Ct . If a cavity c 2 Ct belongs to a cavity
u 2 Ct+ 1 then (c, u) 2 E. Furthermore, for each edge (c, u) 2 E with c 2 Ct
and u 2 Cs, s � t = 1. The topological events of the cavities are directly given
by the degrees of the corresponding vertices in the graph. Let c be the vertex,
which represents a cavity. The cavity appears if the indegree of c is zero.
Analogously, it disappears if the outdegree of c is zero. If the cavity splits,
the outdegree of c is larger than one, and in case that the cavity is the result
of a merge, the indegree of c is larger than one. Note that the computations
of the edges in G are independent of each other and can be done in parallel.
The graph G is called time graphin the following.

Consider two path components of consecutive time steps together with
their corresponding cavities. Recall that each cavity is represented by a �nite
set of empty spheres, as described in Section 6.2.3. To achieve an interactive
tracing, the connections between the two cavities are computed by measuring
the size of intersection circles of pairs of empty spheres. If the radius of an
intersection circle between an empty sphere of the �rst cavity and an empty
sphere of the second cavity is equal or greater than the user-de�ned probe
radius rp, the cavities belong to each other and the centers of the spheres will
be connected, see Figure 8.1. On the other hand, if all radii of intersection
circles between the two cavities are smaller than rp, the cavities do not belong
to each other. In detail a complete tracing step is performed in the following
way.

For each empty sphere s of each cavity in time step t, all empty spheres of
all cavities in time step t + 1 are detected that intersect s with an intersection
circle larger than rp. For all pairs of spheres that ful�ll this condition, the
corresponding cavities are mapped onto each other, which means an edge
between the cavities is added to E in the time graph G. In addition, the path
components will be connected at the centers of the spheres. Note that here
the intersection circle of two spheres is de�ned as the largest circle inside the
intersection volume of both spheres. The tracing can be restricted to a certain
subset of cavities in t by considering only the empty spheres of these cavities.
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Ct � 1 Ct
Ct+ 1

Figure 8.2: Two tracing steps of the cavities in a bacteriorhodopsin monomer. The time
graph is illustrated, and the identi�cation numbers computed by the matchings are color-
coded. Splits and merges can be identi�ed, for example, from time step t� 1 to t the yellow
cavity splits into three cavities and then merges with four cavities from time step t to t+ 1.

A further optional feature of the tracing algorithm is the detection and re-
moval of dead ends. Dead ends are cavities that disappear during the tracing.
These cavities are automatically identi�ed, removed, and traced back in time
until a splitting in the time graph is found. This allows the user to focus on
stable cavities and to reduce visual clutter.

8.1.2 Assignments

While G contains already all relationships between the cavities over time, it
does not contain unique assignments. In order to support the visual tracking,
each component is assigned an identi�cation number. This number can be
related to a speci�c color and allows the user to easily visually trace single
cavities over time, which can be seen in Figure 8.2. To represent the assign-
ments of cavities, the identi�cation numbers are computed by the following
iterative approach. Assume that the identi�cation numbers for all cavities in
time step t are already computed. The numbers in t + 1 are determined by
computing a matching in the bipartite subgraph, which contains the cavities
of t and t + 1 and the edges between them. This matching represents the best

160



8.1 Cavity Tracing

mappings of the tracing, so if cavity ct is matched to cavity ct+ 1, then ct+ 1
gets the same identi�cation number as ct . All unmatched cavities of t + 1 are
splits and all unmatched cavities of t are not traced to t + 1 or merge into one
or more cavities of t + 1. The main problem is the de�nition of a matching
criteria that represents the best tracing correlations. This is mathematically
dif�cult to describe and might be ambiguous in several cases. Hence, the
following heuristic is proposed.

For each edge in the subgraph, the intersection volume of the correspond-
ing cavities is computed, as described below. Then the edges are sorted ac-
cording to the intersection volumes, starting with the largest one. The sorted
edge are consecutively processed. Letct and ct+ 1 be the cavities of the current
edge in the list. If one of the two components is already matched, this edge is
ignored and the algorithm continues with the next edge in the list. Otherwise,
ct is matched with ct+ 1. This procedure is repeated until all edges in the list
are processed. In the last step, the identi�cation numbers are set according to
the matching. For all unmatched cavities in t + 1, new identi�cation numbers
are set so that �nally each cavity in a time step gets a unique number. For the
initial time step the cavities are numbered consecutively.

To compute the intersection volume of two cavities, the voxel approach
described in Section 7.1.1 is modi�ed. The two sets of spheres representing
the cavities are combine into a single one. Let the �rst n spheres represent
all empty spheres of the �rst cavity followed by the spheres of the second
cavity. The rest of the algorithm is quite similar to the one described above.
Only the condition during the distance tests is modi�ed, such that the sample
must be inside at least two spheres where one sphere has an index smaller
than or equal to n and the other has an index larger than n. The performance
of the implementation can be improved by reducing the number of samples.
Instead of the bounding box of the combined set of spheres, one can take
the intersection of the bounding boxes of both cavities, which again is an
axis-aligned bounding box. Then, the grid is reduced to this bounding box,
and all spheres that do not intersect the box are ignored. A result of this
assignment is shown in Figure 8.2.

Based on the matching criteria, another option of the tracing system is to
forbid splits. For this, only the matched cavities of t + 1 are kept and all
unmatched ones are removed. This allows the user to explicitly follow sin-
gle cavities and analyze their locations and dimensions. In Figure 8.3, the
absolute volume of a single cavity is plotted over time. The tracing of single
cavities together with the volume computation also allow the user to compare
the volume of the cavity with the actual number of water molecules contained
in the cavity.
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Figure 8.3: Analysis of the correlation between the volume and the actual internal water
molecules for a single cavity. The plot (bottom) shows the volume of the cavity, where blue
markers indicate 3 internal water molecules and red markers 2. For two examples the 3-
dimensional structure of the cavity (red) is shown.

8.2 Dynamics Visualization

For the interactive cavity exploration, a visualization system was developed,
which is described in this section. The system offers all common molecu-
lar representations, such as ball-and-stick, molecular surfaces, and secondary
structure (Section 2.3). The surface representations include the van der Waals
surface, the solvent accessible surface (SAS), the solvent excluded surface
(SES), and the molecular skin surface (MSS). Onto all molecular representa-
tions, attributes can be mapped using pseudo-coloring. These attributes can
represent properties of atoms, residues, and functional groups. Furthermore,
�lters can be applied to hide parts of the molecule that are of less interest.

Several methods to visualize molecular paths and cavities for a single time
step were already provided in the previous Chapter in Section 7.2. Since the
computation timings for these techniques are very fast, they can be also used
to visualize time dependent data. If the user proceeds to the next or previous
time step, the path and cavity visualizations will be immediately updated.
The visualizations can be restricted to the selected and traced cavities and the
identi�cation numbers, computed during the tracing can be used to color the
cavities.
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Figure 8.4: While the split and merge graph (top) gives an abstract representation of topolog-
ical changes of the cavities over time, the evolution graph (bottom) shows the spatial position
and estension of the cavities for a user-de�ned direction.

8.2.1 Timeline Visualizations

While the 3D visualization of cavities provides a good representation of their
size and location, it does not necessarily allow ef�cient detection of splitting
and merging events that can occur during the trajectory. For this reason, two
different timeline visualizations of the time graph were developed. These 2-
dimensional graph representations show topological and geometrical changes
in a user-de�ned time range (Figure 8.4). Note, that the range of time can be
changed interactively.

Split and merge graph

The �rst graph representation shows topological events like splits and merges
in a similar way as in the sketch in Figure 8.2. Each traced cavity is visualized
as a polyline from left to right, representing the direction of time. If a cavity
splits into two or more cavities during tracing, the corresponding polyline
also splits. Accordingly, polylines merge if the corresponding cavities merge.
Due to the splits and merges, intersections of polylines can occur over time.
These intersections could be possibly reduced using an optimized graph lay-
out. Currently, however, the cavities are simply rendered from top to bottom.
To keep consistency between the 3-dimensional visualization and the timeline
graph, the same colors are used for both representations. Additional informa-
tion, like the size of a cavity, can be encoded by the line thickness. Figure 8.4
(top) shows an example of a split and merge graph.

Evolution graph

The second timeline visualization shows the evolution of the traced cavities
along a user-de�ned direction. Especially for membrane molecules, whose
main path direction is often along the membrane normal, it is interesting to
analyze the geometrical evolution of the cavities over time. Similar to the
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time

retinal retinal

Figure 8.5: Front and back view of a dynamic molecular cavity crossing the region of the
retinal. The color indicates the evolution of the cavity over time.

split and merge graph, each cavity is depicted as a polyline from left to right.
The main difference is that the position and the thickness of a line depend
on the position and expansion of the corresponding cavity along the selected
direction. By using alpha blending, occlusion of lines is avoided. In addition,
an orthogonal projection of the molecule is added to the background of the
graph. This helps to identify the location of the cavities and to stay connected
with the 3D view. One can see an example of an evolution graph of bacte-
riorhodopsin in Figure 8.4 (bottom). A single cavity that was traced creates a
dynamic channel from the cytoplasm side (top) to the extracellular side (bot-
tom). During the �rst time steps, only cavities above the retinal (Figure 8.5)
get interconnected. Then, at time step 196, the cavities on the cytoplasmic side
of the retinal connect with cavities on the extracellular side. It is important to
mention here again that this connectivity across the retinal Schiff base region
is a pure geometrical construct: it does not necessarily imply that a physically
stable channel forms through the retinal region.

8.2.2 Cavity Dynamics

Instead of only animating the traced cavities and the molecular structures
over time, the system provides a visualization of the dynamics of a cavity as
compact representation in a single image. Recall that a dynamic path is a
union of static path components that are connected over time. The user can
extract an arbitrary dynamic path by selecting a cavity in the split and merge
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60% 40% 20%

Figure 8.6: Cavity residence probabilities for a complete monomer over the full trajectory
visualized as isosurfaces. Only for probabilities smaller than 25%, a connection exists between
cavities from the cytoplasmic region to the extracellular region.

graph. To assist the selection, the evolution graph can be used for an overview
of the progression of penetration. Once a time region of particular interest
has been identi�ed, the user can select a cavity in the split and merge graph.
The end of the dynamic path is given by a further selection of a cavity in a
subsequent time step. Then the path between these two cavities is computed
by a modi�ed depth �rst search. A different path can be achieved by adding
further intermediate selections.

The dynamic cavity corresponding to the selected path can be rendered
ef�ciently using again the skin surface approach. Therefore, the skin surface
is computed of all empty spheres of all cavities belonging to the dynamic
path. Thus, a static representation of a dynamic process is achieved. To still
keep track of the path dynamics, a color-coding is added according to the
time evolution of the cavities. In Figure 8.5 an example of a dynamic cavity,
crossing the region of the retinal, is shown.

8.2.3 Cavity Probability

Visualizing the skin surface of a dynamic cavity is suitable to analyze its
maximal dimension and dynamic progress, but sometimes the user is more
interested in the residence probability instead of a hard boundary. This global
representation of the cavity dynamics is given by the residence probabilities
of all cavities. For a given time interval the residence probabilityof a point is the
proportion of time in which the point is inside a cavity. These probabilities
can be easily computed by regularly sampling R3 in the axis aligned bound-
ing box of the molecule. For each sampling point, the number of time steps
is detected in which the point lies inside a cavity. For a fast detection, again
a 3-dimensional grid structure is used to store the cavities. Finally, the prob-
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Figure 8.7: Residence probability for a single user-selected cavity visualized by a maximum
intensity projection. Two examples of the cavity variation are shown left and right.

ability of each sampling point is the quotient of the detected number of time
steps and the overall number of time steps. The residence information can be
visualized using volume rendering or isosurfaces. Images for different isoval-
ues for bacteriorhodopsin are shown in Figure 8.6. Note that the residence
probabilities of this approach are similar to the ones described by Raunest
and Kandt [200] and Jardón-Valadez et al. [99], in which water molecules are
accumulated over time to generate a density that is visualized with an isosur-
face.

Additionally to this global visualization over all cavities, the user can also
focus on a single cavity. For a selected time interval, the residence probability
is computed as described above but restricted to a single cavity and its axis
aligned bounding box. A volume rendering of the probability with a maxi-
mum intensity projection is suitable to highlight the �xed core of the cavity.
In Figure 8.7, the maximum intensity projection (MIP) of the residence prob-
ability of a single dynamic cavity is shown together with two corresponding
static cavities of two time steps. The stable core can clearly be distinguished
from the more unstable cavity regions. In uncertainty visualization, similar
techniques are used to distinguish between certain and uncertain regions of
data sets [77, 194].

8.3 Results

8.3.1 Performance

Detailed computation and �ltering timings of the molecular paths and cavi-
ties as well as rendering timings for the visualizations of the paths, cavities
and the molecular structure were already given in Sections 6.3 and 7.3. In this
section, the focus lies on the computation and visualization of the dynamic
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cavities of a trajectory of one monomer of bacteriorhodopsin with 3 624 atoms
and 2 000 time steps. These time steps were taken from the last 20 ns of an
equilibrated simulation trajectory. The precomputation of the cavities took
21 min on an Intel Xenon 5650 with 2.67 GHz and 6 cores. Thus, the average
computation time for one time step was approximately 630 ms. For the com-
putation of the cavities, a probe radius of 1.4 Å was used, which approximates
a water molecule. Since for the shown application, the internal cavities were
more interesting, the boundary �lter was set to 15%.

During visualization, a worst case frame rate was obtained when render-
ing the solvent excluded surface of the molecule clipped by the cavities. For
this setting, frame rates between 40 and 50 fps were reached including path
lightening and screen space ambient occlusion with depth cueing. For all
other renderings, the frame rates were even higher. Note that for these per-
formance measures a screen resolution of 1024� 1024 was used and the whole
protein with an average �ll rate of 75% was shown. The rendering was done
for a single time step with an NVIDIA Geforce GTX 470 graphics card. When
the next time step was selected, the frame rate decreased due to the recompu-
tation of the molecular surface and the tracing of the cavities. Nevertheless,
the frame rate was still approximately 25 fps. The path tracing itself is so fast
that it has nearly no in�uence on the performance.

8.3.2 Cavities in Bacteriorhodopsin

Visualizing the cavities of single time steps of the protein shows a structural
barrier in the region retinal. Cavities from the cytoplasmic half are not con-
nected to those on the extracellular side (Figure 8.8). This con�rms the in-
dications of previous molecular simulations [81] and reaction path computa-
tions [22]. The barrier prevents water molecules from moving between the
two halves of the protein on the nanosecond timescale.

Due to the cavity dynamics and their topological changes, 3-4 dynamic
channels can be traced, which connect the two halves of the protein (Fig-
ure 8.5). These channels are geometrically large enough to transport a water
molecule. The appearance of cavities in the region of the retinal can also be
seen in the path probability visualizations (Figure 8.6). However, these dy-
namic channels are the result of purely geometric computations, which do
not consider electrostatics or non-bonded physical forces. Nevertheless, these
channels provide new insights that need to be further investigated.

By analyzing single cavities over time, a cavity on the extracellular side of
the retinal was detected that is large enough to host four or even �ve water
molecules, but only three can be found in the crystal structure and in sim-
ulations (Figure 8.3). This is an interesting �nding that clearly needs to be
investigated. One reason can be the high dynamics of the cavity including
topological changes such as splits.
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Figure 8.8: Visualization of the cavities of a snapshot of a monomer of bacteriorhodopsin
as surface cut (left) and in combination with the secondary structure (right). The water
molecules close to the retinal are shown in blue.

8.4 Discussion

Exploring the dynamics of cavities is of potential interest to study protein dy-
namics. The versatile tool presented in this chapter combines the advantages
of high geometric accuracy and advanced path and cavity visualization with
interactive analysis of molecular dynamic trajectories. The tool is the �rst that
can be used to compute all possible geometric cavities with a user-de�ned
minimum constriction size for time-dependent data.

Although, the tool requires a precomputation of the cavities, it lies still in
a reasonable amount of time to study even long trajectories. One could also
think about an extension that enables already the analysis of the processed
time steps during the precomputation. Another idea is to use a simpler ap-
proach that can be applied in real-time as preview.

The quality of the tracing depends mainly on two factors. First, how good
the intersection of two empty spheres can re�ect the overlap of the full cav-
ities. Since the probe itself is a sphere, the intersection between two empty
spheres seems to be the most reasonable bottleneck connection. In all exper-
iments, complex overlaps that result from multiple empty spheres, without a
valid tracing of two empty spheres, were not observed. And second, the reso-
lution of the trajectory over time needs to be suf�ciently high. The closer the
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time steps, the better is the tracing. Too large time steps can lead to missing,
false positive, or and false negative tracings.

The residence probability of all cavities computed for a certain time range
gives a good overview of cavity dynamics and could be used to identify cavi-
ties that could be subject to closer investigation. When computed for a single
dynamic cavity selected by the user, the residence probability gives insight
into the dynamics of a particular region of the protein. The visualization of
the cavity dynamics could be further enhanced by adding movement illustra-
tions as suggested, for example, by Meyer-Spradow et al. [166].

The current implementation of the cavity analysis tools allow the user to
exploit the timeline graphs to rapidly identify events where cavities split or
merge. This task can become dif�cult in case of graphs containing a large
number of cavities. To circumvent this limitation, an optimized layout of the
split and merge graph would be helpful.
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For the accessibility visualization using the SES in Chapter 3 as well as
for the cavity analysis in Chapters 6 and 7, the ligand is approximated by a
probe sphere. With this approximation, a real-time computation of the SES
and a cavity analysis can be achieved in a reasonable time, even for dynamic
data. However, despite the fact that the geometrical accuracy for the cavity
detection is higher than in most other approaches, if the shape of the ligand
differs signi�cantly from a sphere, a different approach is necessary. In this
chapter a new surface model is presented that shows the accessibility for a
receptor molecule based on the van der Waals surface of the ligand and its
dynamics. Thus receptor and ligand are geometrically represented in the
same manner. According to SES, the new surface is called ligand excluded
surface(LES). The surface was presented in “Ligand Excluded Surface: A New
Type of Molecular Surface” in 2014 [151]. An example of an LES is shown in
Figure 9.1, which also demonstrates the difference to the SES.

First, the LES is de�ned as an implicit surface of a distance �eld, then it
is discretized for the computation using a grid representation. In order to
approximate the distance �eld well enough, a possibly large number of ori-
entations of the ligand needs to be considered. Since a brute-force approach
placing the ligand at all positions of the grid with a large number of ori-
entations would be computationally too expensive, a two-phase approach is
applied that signi�cantly reduces the computational effort. Moreover, an im-
plementation of the method on the GPU is proposed, which further speeds
up the computation.

Fortunately, apart from the surface, the algorithm for computing the LES
can be easily extended to compute also cavities that are large enough to host
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(a)

(b)

(c)

Figure 9.1: Comparison of solvent excluded surface (SES) and and ligand excluded surface
(LES) on the example of ketosteroid isomerase (pdb: 1OGZ). To simplify the comparison, both
surfaces have been cut. (a) SES of isomerase with probe radius1.4Å. The probe is depicted as
red sphere. (c) LES of isomerase for the ligand equilenine, computed with grid spacing0.25Å
and200orientations. The ligand (red) is depicted in its active position. (b) Overlaid surface
cuts showing differences between SES and LES.

the ligand molecule (Figure 9.7). In addition to the geometry of the cavities,
also information about how the ligand is positioned inside the cavities are
obtained. This might be of particular interest for the application of subsequent
docking simulations.

9.1 LES De�nition

Informally, the LES of a receptor can be de�ned as the surface enclosing the
space around the receptor that is not accessible to a speci�c ligand. Based on
this, a mathematical de�nition of the LES is derived.

Let r be the receptor molecule for which the LES is de�ned based on a
ligand l. Let the receptor consist of n atoms with positions pr

i 2 R3 and
radii r r

i 2 R, with i = 1, ...,n. Furthermore, let the �exibility of the ligand l
be given by a set of c conformations, and let the ligand consist of m atoms
with positions pl

jk 2 R3 and radii r l
j 2 R, with j = 1, ...,m and k = 1, ...,c.

The state of the ligand is described by a conformation k 2 f 1, ...,cg, a trans-
lation T 2 R3, and an orientation R 2 SO3, which is given by a rotation
(Figure 9.2, left). A state is de�ned as valid if no ligand atom intersects any
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Figure 9.2: Left: A ligand state (yellow), given by a conformation k, a rotation R, and a
translation T. Right: Valid (yellow) and invalid (red) ligand states according to the receptor
molecule.

atom of the receptor molecule. This can be formulated using a binary func-
tion Ir,l : (N ,R3,SO3) ! f 0, 1g that is 1 if the state is valid and 0 otherwise
(Figure 9.2, right).

Ir,l (k, T, R) =

(
1,



 pr

i � (Rpl
jk + T)



 � r r

i + r l
j , 8i = 1, ...,n, 8j = 1, ...,m

0, otherwise.

Now the ligand excluded surface can be de�ned as the surface that encloses
all points in R3 that are not reachable by a valid ligand state. This is mathe-
matically described by a ligand-dependent distance function dr,l with

dr,l (p) = max
k= 1,...,c,

T2R3,R2SO3

8
<

:

max
j= 1,...,m

r l
j �



 p � (Rpl

jk + T)


 , Ir,l (k, T, R) = 1

� ¥ , otherwise.

The ligand excluded surface is then given as the implicit function of all points
p with dr,l (p) = 0. The inner maximum is a distance function of a valid lig-
and state. It returns a reverse distance, which means the distance is positive
if the point lies inside the ligand and negative if it lies outside (Figure 9.3,
left). For simplicity, but without loss of generality and correctness, the dis-
tance function does not return the correct Euclidean distance for points inside
the ligand. However, the distance converges monotonically to 0 if the point
approaches the ligand boundary. The outer maximum selects a valid ligand
state that results in the largest distance for p. Thus, for a point inside the LES,
the closest valid ligand state does not contain the point, which results in a
negative distance, because of the ligand reverse distance function, (Figure 9.3,
right). Note that dr,l is bounded in positive direction by the largest atom ra-
dius of the ligand. The exception that no valid state exists for a point p is only
of theoretical interest.

For a `ligand' consisting of a single atom, the LES is equal to the SES; thus
the LES is a generalization of the SES. In contrast to the SES, it is dif�cult to
compute the ligand excluded surface analytically. For this reason the surface
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Figure 9.3: Local reverse distance function of a ligand state (left) and overall distance func-
tion dr,l (right). The LES (black) is the implicit surface of this distance function.

is geometrically approximated by discretizing the space of ligand states. By
using a �nite set of c conformations, the dynamics of the ligand are already
discretized. Additionally, the orientations and positions of the ligand are
discritized. To do so, two parameters are introduced, the number o 2 N of
ligand orientations and the spacing g 2 R of the cubic grid being used for
uniform sampling of the ligand positions. Based on this discretization, the
LES can be computed as follows.

9.2 Algorithm

Before the algorithm is described in detail, an overview of the main steps is
given (Section 9.2.1). Then, the two phases in which the algorithm can be
subdivided are presented (Section 9.2.2 and 9.2.3). This is followed by the
computation of the cavity structure based on the LES (Section 9.2.4).

9.2.1 Overview

According to the LES de�nition, �rst a signed distance �eld is computed
that is negative inside the LES and positive outside. Hence, the LES is the
implicit surface of this distance �eld. To compute the LES, it is not necessary
to compute the complete exact distance �eld; it needs to be exact only in the
vicinity of the LES. The �eld is discritized by a cubical grid that is initialized
with � ¥ . In order to ef�ciently approach the correct distance �eld values
close to the LES, a two-phase approach is applied.

In the �rst phase, a sphere completely enclosing the ligand is used to update
the distance �eld at positions of the grid where the ligand can rotate around
its center without ever intersecting any atom of the molecule. In the following,
this sphere is called ligand bounding sphere. For all positions at which the
ligand bounding sphere (blue points in Figure 9.4, left) can be placed, an
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Figure 9.4: Illustration of phase I of the algorithm. Left: The gray spheres depict the receptor
molecule and the grid points show the discretization of the space around the molecule. Red
dots mark sample positions where the ligand inscribed sphere (red circles) cannot be placed
without intersecting the receptor; blue dots mark sample positions where the ligand bounding
sphere (blue circles) can be placed without intersecting the receptor. The yellow dots mark
the remaining sample positions, which need to be processed in phase II. Right: The distance
�eld after completing phase I. The resulting implicit surface is equal to the SES of the lig-
and bounding sphere. The yellow spheres depict the ligand molecule enclosed by its ligand
bounding sphere.

update of the distance �eld for all grid points inside the bounding box of the
ligand bounding sphere is applied. The resulting distance �eld is depicted
in Figure 9.4 (right) together with its implicit surface. This implicit surface
is a discrete representation of the SES for a probe sphere equal to the ligand
bounding sphere. Note that after computing the distance �eld, the largest
distance value will be equal to the radius of the ligand bounding sphere.
This value is set at all positions where the ligand bounding sphere could be
placed. In addition to modifying the distance �eld, all positions where the
ligand bounding sphere could be placed are marked. These positions do not
need to be considered any further. In this �rst phase, a second sphere is used
to conservatively mark grid points at which no ligand can be placed without
intersecting the molecule, including grid points inside the molecule but also
some grid points close to the LES. These grid points are depicted in Figure 9.4
(left) as red points.

The second phase completes the computation of the distance �eld in the
vicinity of the LES. It uses all information computed in the �rst phase, in
particular the grid positions that are neither marked blue nor red. These are
marked as yellow points in Figure 9.4 (left) and represent the remaining sam-
pling positions to be considered. At these positions, it will now be tested
whether the ligand can be placed without intersecting with any atom sphere
of the molecule. To approach the distance �eld as well as possible, the lig-
and will be rotated at each of these positions. Furthermore, if the ligand is
�exible, more than one conformation can be considered. For each rotation
and each conformation for which the ligand does not intersect any atom of
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Figure 9.5: Left: The distance �eld and resulting LES after completing phase II of the
algorithm. Each grid position in the vicinity of the LES stores the minimal distance to a valid
ligand. Right: Illustration of local discrete distance �elds. The �rst row shows the ligand
bounding sphere and the corresponding distance �eld which is used for the distance updates
in phase I. The second and third rows show two ligand orientations and the corresponding
local distance �elds. These �elds are used for the distance updates in phase II.

the molecule, the distance �eld of all grid points inside the bounding box of
the ligand will be updated. Note, however, that the distance values will be
updated only if the values increase. The result of phase II is illustrated in
Figure 9.5 (left).

9.2.2 Phase I

In phase I, the discrete �eld is sampled with two spheres. The �rst one is
a small sphere that is inscribed in the ligand atom spheres and is therefore
referred to as ligand inscribed sphere(see red spheres in Figure 9.4, right). The
second sphere is usually much larger than the �rst one and completely con-
tains all ligand atom spheres. As mentioned previously, this sphere is denoted
as ligand bounding sphere(see blue spheres in Figure 9.4, right). These spheres
are used to initialize the distance �eld and to make later computations more
ef�cient.

Ligand Bounding Sphere

The ligand bounding sphere is de�ned as the smallest sphere completely con-
taining all ligand atom spheres. If pb 2 R3 is the position and rb 2 R is
the radius of the ligand bounding sphere, then


 pb � pl

i


 + r l

i � rb, for all
i = 1, ...,m, and no smaller sphere exists for which the inequality also holds.
The minimal bounding sphere of a set of spheres can be tangent to more
than four input spheres, but it is already de�ned uniquely by at most four
spheres. It can be computed with a simple iterative algorithm. More ef�cient
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algorithms have been proposed [65], but since the number of atoms in a lig-
and is generally small and the computation has to be performed only once
per conformation, the simple algorithm is suf�cient. The algorithm starts
by computing the minimal bounding sphere of four randomly selected in-
put spheres [70]. Then, the bounding condition of this bounding sphere is
checked for all remaining input spheres. If a sphere is not enclosed by the
current bounding sphere, the sphere is interchanged with one of the previ-
ous four selected spheres such that the radius of the new minimal bounding
sphere becomes maximal. This procedure is repeated until all input spheres
are enclosed by the current bounding sphere.

The ligand bounding sphere is computed for each ligand conformation sep-
arately. Then, the overall ligand bounding radius rmax 2 R is the maximum
of the radii of all ligand bounding radii rb computed for all conformations.
The sphere with radius rmax can be used to determine positions on the grid,
where all ligand conformations, no matter what orientations they have, can
be placed without intersecting any receptor atom sphere. This is illustrated
in Figure 9.4.

Ligand Inscribed Sphere

The ligand inscribed sphere is also computed for each ligand conformation
separately. To determine the ligand inscribed sphere for a single conforma-
tion, the sphere is placed at the center of the ligand bounding sphere. Then
the maximal radius is determined such that the sphere is completely enclosed
by the atoms of the ligand. The ligand inscribed sphere is illustrated as red
circle in Figure 9.4. Note that the ligand inscribed sphere has a negative ra-
dius, if the center of the ligand bounding sphere lies completely outside the
ligand conformation.

From the ligand inscribed spheres of all ligand conformations the radius
rmin 2 R is computed as the minimum radius of the ligand inscribed spheres
over all conformations. The sphere with radius rmin will be used to exclude
grid positions from being tested with either the ligand bounding sphere or
the ligand geometries. The reason for this is that if a sphere with radius
rmin intersects the protein atoms, all ligand conformations placed at the same
position, no matter what orientations they have, will also intersect the protein
atoms (Figure 9.4).

The two spheres with radii rmax and rmin accelerate the surface computation
as will be described next.

Distance Field Initialization

In phase I, the ligand positions are uniformly sampled and the discrete dis-
tance function is initialized. According to the de�nition, a sample position
will be denoted by T. Note that the same samples are used for the ligand
positions and the grid of the distance function. In addition, all positions will
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be detected for which all ligand conformations and orientations have to be
investigated.

To compute the discretization of the sample positions and the distance �eld,
�rst the minimal axis-aligned bounding box of the atom spheres of the recep-
tor molecule is computed. This box is then extended in all directions by rmax.
Afterwards, the box is uniformly sampled in all directions with a user-de�ned
grid spacing g.

The distance �eld is initialized with the negative value of the maximal
atomic radius rr of the receptor. Then the algorithm iterates over all sample
positions T and performs at each position an intersection test of the receptor
atom spheres with the minimal ligand inscribed sphere with radius rmin. If
an atom i intersects the sphere, that is


 pr

i � T

 < r r

i + rmin, all ligand con-
formations and orientations also intersect this atom. Hence, the position can
be ignored for further investigations. In case that the minimal ligand sphere
does not intersect the receptor, a second intersection test is performed with
the maximal ligand bounding sphere having radius rmax. If this sphere does
not intersect the receptor atom spheres, all ligand conformations and orienta-
tions at this position are valid, that is, they do not intersect the receptor. In
this case, the distance value at this position is set to rmax. For all remaining
positions T̃, where the maximal ligand sphere intersects the receptor and the
minimal ligand sphere does not, the ligand conformations and orientations
need to be investigated in phase II. These positions are marked by yellow
points in Figure 9.4, left.

Finally, the algorithm iterates over all sample positions T at which the dis-
tance �eld has a value equal to rmax. If one of the 26 neighboring grid points
has a distance that is smaller than rmax, the distance function in the neigh-
borhood is updated using the local distance function of the ligand bounding
sphere, which is depicted in Figure 9.5, right. This function has a value of
rmax in the center, 0 at the border of the sphere, and outside the sphere, the
values take on the negative distance to the sphere border. The new distance
at a neighboring position p is set to the maximum of the old distance and
rmax � kp � Tk. After this phase, the implicit function de�ned by the current
distance function represents the discrete SES with probe radius rmax as can be
seen in Figure 9.4, right.

9.2.3 Phase II

In the second phase of the algorithm, the discrete distance function is re�ned
in the vicinity of the LES. For this, all sample points T̃ (yellow points in Fig-
ure 9.4) are considered that might contribute to this re�nement. At all these
points, all conformations of the ligand are placed one after another and in
case the state of the ligand is valid, the distance �eld is updated accordingly.
Of course, considering only a single orientation per ligand conformation will
lead to large errors in approximating the LES. Therefore, a user-de�ned num-
ber of o orientations for each ligand conformation is used. These orientations
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should be sampled such that the space of all orientations is well represented.
An algorithm for computing such a sampling of orientations is described in
the next section followed by a detailed description of the re�nement step.

Precomputation of Ligand Orientations

To obtain the most different ligand orientations, the computation of the ori-
entations is done for each conformation separately. Consider a single con-
formation with m atoms whose positions are pl

i 2 R3 and atomic radii are
r l
i 2 R, with i = 1, ...,m. For the purpose of sampling the orientations, the

ligand is moved such that the center of its ligand bounding sphere lies in the
origin. The transformed atom positions p̃l

i 2 R3 are given by p̃l
i = pl

i � pb,
for all i = 1, ...,m. Due to transforming the ligand such that its bounding
sphere center lies in the origin, for each rotation of the transformed ligand,
all atoms are always inside the ligand bounding sphere with radius rb. For
the computation of the o orientations, �rst a uniform distribution of points
on the surface of the unit sphere is computed. The vectors from the center
of the unit sphere to the sampled points represent the axes for the rotations
of the orientations. Furthermore, the angles for the rotations around each
axis are uniformly sampled. Initially õ = 10 � o orientations are computed.
Afterwards, the differences between orientations are computed and the most
signi�cant o orientations are selected. These orientations are de�ned as the
ones with the maximal minimal distance between the ligand orientations. This
strategy allows �ltering unnecessary orientations due to, for example, sym-
metry properties of the ligand. Let Rj be the initial sampled rotations with
j = 1, ...,õ, õ � o. The difference between orientations can be approximated
by the root mean square metric (RMSM) of the atom positions. Let D 2 R õ,õ

be the symmetric matrix that stores the distances between the orientations,
then

dj,k =

s
m

å
i= 1

(Rj p̃l
i � Rkp̃l

i )
2.

with dj,k being the matrix element in row j and column k. The goal is to
�nd the o most different orientations of the õ orientations. This can be math-
ematically formulated by �nding the set of o orientations where the mini-
mal distance becomes maximal. One can approximate the solution of this
optimization problem using k-means clustering, which is much faster than
computing the optimal solution. The k-means clustering algorithm starts by
randomly selecting o orientations as cluster centers. Then, each orientationRi
is assigned to the cluster center Rj with the minimal distance di ,j . This creates
o clusters of orientations. In each cluster, the orientation is computed the max-
imal distance of which within the cluster becomes minimal. If this orientation
is different to the previous selected center, the orientations are interchanged.
Then the assignments and the new cluster centers are recomputed. This is
repeated until no cluster center changes anymore. To achieve an even better
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solution, the algorithm can be run several times. The best solution is then the
one with the maximal minimal distance.

Distance Field Re�nement

With the discretization of the ligand positions, orientations, and conforma-
tions, the �nal part of the algorithm is executed. During this last step, at each
position of T̃, intersection tests of the ligand with the receptor molecule are
performed for all conformations and orientations. If the ligand does not in-
tersect the protein for a certain position, orientation, and conformation, the
distance function is updated using the reverse distance function of the ligand
as depicted in Figure 9.3, left. In detail, the following steps are performed.

1: for k = 1, ...,c do
2: for all orientations R do
3: for all ligand positions T̃ do
4: if Ir,l (k, T̃, R) = 1 then
5: for all distance samples p 2 R3 do

6: dr,l (p) = max
�

dr,l (p), max
j= 1,...,m

r l
j �



 p � (Rpl

jk + T̃)




�

7: end for
8: end if
9: end for

10: end for
11: end for

Note that the values of the distance function are only updated if they be-
come larger. During the distance updates, points reachable by a ligand be-
come positive and unreachable points stay negative, but might still increase.
Since the ligand excluded surface is the surface which separates positive and
negative values, it is de�ned by the implicit description dr,l (p) = 0.

9.2.4 Cavity Structure

Apart from computing the LES, the described sampling approach can be also
extended to extract the cavity structure of the receptor. To do so, all valid and
invalid ligand states need to be stored during the algorithm. The states are
maintained in a bit array of length c � o at each sample point. In this bit array,
for each ligand conformation and orientation, it is stored whether the ligand
is valid or not. If the conformation and orientation is valid, the bit is set to 1,
otherwise it is set to 0. Note that for sample points where the maximal ligand
bounding sphere can be placed, all bits of the array are set to 1. On the other
hand, all bits of the array are set to 0 if the minimal ligand inscribed sphere
intersects the receptor molecule. Thus, it is only necessary to store bit arrays
for all sample points T̃, depicted as yellow points in Figure 9.4, left.
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(a)

(b)

(c)

Figure 9.6: SES and LES with cavity cores of a dendritic core multi-shell nanotransporter:
(a) SES, (b) LES of morphine, (c) LES of fentanyl. In the image, the probe sphere and the
ligands have been scaled by a factor of 5. The surface of the nanotransporter is depicted
in yellow, the cut of the surface is gray, and the cavity cores are colored according to their
clustering.

All points with at least one bit set to 1 de�ne valid sample points of a
cavity. However, usually one is only interested in positions that represent real
cavities. This requires the de�nition of a boundary (Section 2.4). To do so, the
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same ambient occlusion technique is applied as described in Section 6.2.1. For
each sample position with at least one valid ligand state, a set of uniformly
distributed rays is cast from this position. The ambient occlusion value for this
sample is the quotient of the number of rays that hit any receptor atom sphere
and the overall number of rays. Thus, the higher the ambient occlusion value
the less ambient light is received at this position and the deeper the sample
lies inside the receptor molecule. All sample points with a value less than a
user-de�ned threshold are removed from the following considerations.

The remaining sample positions are then clustered to get the cores of the
cavities. Two neighboring sample positions belong to the same cluster if at
least one entry is 1 at the same position in both bit arrays. This means, for all
samples of the same cluster, the ligand can move from one sample position
to a neighboring one without changing the orientation or conformation. At
a sample position, the ligand can change its orientation or conformation to
another valid state. Each cluster de�nes a core of a cavity. Additionally,
small clusters can be �ltered out according to a user-de�ned minimal cluster
size. Examples of clustered sample positions to cavity cores can be seen in
Figure 9.6 for a nanotransporter and different ligands.

From the cores of a cavity, its surface can be easily generated using again
a discrete distance �eld. This is also initialized with a negative value, for
example � rr . Then the distance �eld is updated according to the maximum
of all distance functions of valid ligand states of the cavity. The surface of
the cavity is then de�ned as the implicit surface given by this distance �eld.
In Figure 9.7, the three main cavities are shown. Based on the storage of
valid and invalid ligand states and the clustering, one can easily compute
trajectories of the ligand from inside the cavity to the outside or vice versa.

9.3 Implementation

The algorithm, as described in the previous section, is quite expensive in case
of a naïve implementation. In this section, several optimizations and their
implementation are proposed for the most critical parts of the algorithm.

9.3.1 Intersection Tests

During the execution of the algorithm, many intersection tests between spheres
have to be carried out. In phase I, the algorithm performs intersection tests
between the minimal ligand inscribed sphere and the maximal ligand bound-
ing sphere with the atom spheres of the receptor. In phase II, intersection
tests between the ligand atoms and the receptor atoms need to be computed.
Without using a data structure to reduce the number of intersection tests, n � m
sphere-sphere intersections tests need to be carried out for a single receptor
ligand intersection test in the worst case, where n is the number of receptor
atoms and m the number of ligand atoms. Of course, the algorithm stops
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Figure 9.7: Cavities of hexameric insulin (pdb: 3MTH) for methylparaben, computed by the
LES algorithm (with 200 orientations). The three main cavities are depicted by their surfaces
together with methylparaben. The insulin molecule is represented by its secondary structure
and blended with the LES.

testing if the �rst intersection has been found, but if the molecules do not in-
tersect, all intersection tests are needed. Hence, a data structure is required to
reduce the number of intersection tests. Since the receptor molecule is static,
the atoms can be stored in a 3-dimensional grid data structure (Section 2.5).
This reduces the complexity for the intersection test of the ligand with the
receptor from O(n � m) to O(u � m), where u is a constant, which is typically
smaller than 20.

In addition to the usage of a 3-dimensional grid as accelerator, one can
further speed-up the intersection tests by computing them in parallel. This
is possible since intersection tests of spheres with the receptor molecule are
independent of each other. On the CPU, OpenMP [175] is a good solu-
tion for parallelization. Even faster computations can be achieved by run-
ning the intersection tests on the GPU. In order to be platform independent,
OpenCL [174] is suitable. Each thread computes the intersection of one sphere
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with the receptor molecule. Here, the grid is stored using two arrays as de-
scribed in Section 2.5 and illustrated in Figure 2.22.

9.3.2 Distance Field Updates

The distance �eld updates are the most expensive part of the algorithm. Re-
call that distance �eld updates are needed for two types of instance, that is,
for the maximal ligand bounding sphere and for the ligand conformations
with different orientations. If any of these instances is placed at a particular
sample position, updating the distance �eld means that for each point in the
distance �eld, the algorithm needs to compute the distance to the boundary
of this instance. For the maximal ligand bounding sphere, this boundary is
the sphere surface. For a ligand conformation, this boundary is the van der
Waals surface of the ligand atoms, which is the surface enclosing all ligand
atom spheres.

Since the distance �eld de�ning the LES is negative inside the LES and
positive outside, the signs of the distances to the instance boundaries need to
have inverted signs. Hence, the distance of a point to the instance is positive
if the point lies inside the instance and negative if it lies outside. Recall that
the distance �eld is initialized with the negative maximal atom radius of the
receptor. For computing the correct distance �eld, an initialization with � ¥
is required. However, since the distance �eld itself is not of interest but the
implicit surface de�ned by dr,l (p) = 0, only the grid points close to the LES
need to have the correct values. For all other grid points, it suf�ces to have
the correct distance sign. Once, the distance of a particular grid point to
the instance boundary is computed, the distance is updated only if the new
distance value is larger than the current one. That is, the values of the distance
�eld only increase.

Now, if s is the number of grid points and the algorithm updates the dis-
tance �eld in the naïve way, that is, all grid points for each instance at all
sample position, the running time is O(s2). Even for medium-sized grids, this
would result in very long computation times. Hence, in the following, two
ways are described to reduce this running time.

Local Distance Fields

The �rst observation is that it is not necessary to update the whole distance
�eld, but only part of it that is in the local neighborhood of the sample point.
Here, the size of the neighborhood is de�ned by the particular instance. In
fact, it is suf�cient to consider all those grid points p 2 R3 that are inside the
axis-aligned bounding box of the instance plus those points within a distance
kp � pbbk¥ � g to the closest point pbb 2 R3 of the bounding box (Figure 9.5).
Thus, the instance will be completely surrounded by grid points with negative
distance to the instance.
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Moreover, the distances can be precomputed for the local neighborhood of
an instance, because the grid points of the distance �eld are the same points
as the sample points of the instances. To do so, the algorithm computes
local distance �elds placed in the origin with the same grid spacing g. This
is done for each instance, that is, for the maximal ligand bounding sphere
and all ligand conformations and orientations (Figure 9.5). Then, during an
update step, the local distance �eld only needs to be moved to the current
position and the algorithm compares the values of the global distance �eld
with those of the local distance �eld directly. The maximum of these two
values determines the new value.

Since the average sizes̃ of the local distance �eld is usually much smaller
than s, the running time reduces from s2 to s̃ � s. However, since s̃ is a �xed
fraction of s, that is, s̃ = as, where a is constant, the complexity of the algo-
rithm remains O(s2).

Use of KD-Tree

A second observation can be used to further reduce the number of grid points
that need to be updated: The only grid points de�ning the implicit surface
dr,l (p) = 0 are the ones in whose neighborhood the sign of the distance values
changes. Furthermore, recall that the distance values only increase over the
duration of the algorithm. Hence, if a grid point p has a positive value and
all of its 26 neighbors also have positive distance values, p will not contribute
to the de�nition of the implicit surface. Hence, the algorithm does not need
to consider p any further.

For this purpose, a KD-tree is maintained that only contains those sample
points that possibly need further updates. Using the KD-tree, these points can
be quickly queried. Furthermore, dynamical updates of the KD-tree remove
all samples that become positive and also have only positive neighbors. Thus,
if an instance is placed at a particular sample point T, the KD-tree is used to
quickly identify the grid points in the local neighborhood of T with respect
to the instance size and only those points are updated if needed.

Parallel Distance Updates on the GPU

While the KD-tree is used to accelerate the CPU implementation, for the GPU
a parallel distance �eld update was implemented. For this, the OpenCL ker-
nel receives three inputs: the overall distance �eld, the local distance �eld,
and a set of valid ligand positions for this �eld. Each thread corresponds to
one sample point of the ligand distance �eld. The thread iterates over the
ligand positions and detects in each step the corresponding sample point in
the distance �eld. If the value in the distance �eld is smaller than the value
in the ligand distance �eld, it is replaced by the new value. Note that this can
lead to concurrent accesses of different threads on the same sample point in
the distance �eld. However, as mentioned before, the values in the distance
function can only increase. Thus, if the OpenCL kernel is executed several
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times, the distance values converge to the correct result. To ensure the correct
result, a single boolean variable is used, which is initialized with `false' before
each call of the kernel. If during the call a distance value has changed, the
variable is set to `true'. The kernel is called again as long as the variable is
`true'. Thus, the kernel is usually executed at least two times and in practice
on average three to four times.

9.4 Visualization

The results of the above algorithms are a discrete scalar �eld describing the
distance function in the local vicinity of the LES, and the cavities given by
all their valid ligand states. In this section, a short description is given about
how to render the LES and the cavities.

The LES can be visualized either by extracting a triangular mesh with the
marching cubes algorithm [154] or by direct isosurface ray casting [83]. With
todays GPU implementations of marching cubes, the surface can be generated
nearly as fast as with direct ray casting. With some additional effort, the tri-
angular surface can be colored according to arbitrary molecular properties. It
can also be used to measure the area of the surface and its enclosed volume.
Since the discrete distance function describing the LES is a signed distance
function which is positive outside the LES and negative inside, ray casting
the LES can be further accelerated. Outside the LES, the distance in the dis-
tance �eld is always smaller or equal to the minimal Euclidean distance to the
LES. Hence, instead of using a constant step size for the direct isosurface ray
casting, the algorithm can directly use the distance in the discrete �eld. This
is similar to the classical sphere tracing by Hart [86], which is usually faster
than a ray casting with constant step size.

The cavities can be visualized both by its cores and their surfaces. To render
their surfaces, for each cavity a distance �eld can be constructed similar to the
LES distance �eld, which is then rendered in the same way (Figure 9.7). The
cavity cores are visualized by placing at each core sample position a small
sphere (Figure 9.6). For the sphere rendering, modern GPU-based ray casting
is used as presented in Chapter 3. The depth perception of all representations
can be improved by ambient occlusion, silhouettes, or surface cuts.

9.5 Results

All results have been produced on an Intel Xeon X5650 E5540 2.66 GHz with
6 cores and an Nvidia GeForce GTX 680. For measuring the quality and
performance, several molecules from the PDB [184] were used as well as two
other data sets from cooperation partners.
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Figure 9.8: For the graphs shown above, the LES of ketosteroid isomerase (pdb: 1OGZ; also
see Figure 9.1) with respect to the ligand equilenine was computed for different grid spacings
and an increasing number of orientations. Note, however, that the used orientations were
independent of each other. The graphs in the two images plot the enclosed volume (top) of the
LES and the surface area (bottom) of the LES against the number of ligand rotations used for
computing the LES.

9.5.1 Parameters

Although the surface de�nition is independent of parameters, the algorithm
requires parameters due to the discretization. The two parameters used for
the LES computation are the grid spacing g and the number of orientations
o. In Figure 9.8, the enclosed volume and the surface area of the LES is plot-
ted depending on the number of orientations. For this, ketosteroid isomerase
with ligand equilenine was used ( pdb: 1OGZ, Figure 9.1). Between 10 and 200
orientations the LES was computed by increasing the number of orientations
by 5 in each step. From 200 to 1 000 orientations, the number of orientations
was increased by 100 each, and from 1 000 to 10 000 orientations, a step size of
1 000 orientations was used. For each number of orientations, the triangular
mesh of the LES was generated and the surface area and volume were com-
puted. One can observe, that the main changes in surface area and volume
occur between 10 and 1 000 orientations. Furthermore, it can be observed that
for a smaller grid spacing the changes are more rapid than for larger grid
spacings.

In most of the following experiments, 200 or fewer orientations were used.
Only in the case of the HIV-protease with inhibitor amprenavir the algorithm
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g = 1.0 Å g = 0.75 Å

g = 0.5 Å g = 0.25 Å

Figure 9.9: LES of HIV protease (pdb: 1HPV) for ligand amprenavir (yellow) with differ-
ent grid resolutions. For the computation of the LES, four ligand conformations with 1 000
orientations were considered. For a grid spacing of 1.0 Å, the ligand binding site was not
found.

was not able to �nd the binding site with this number of orientations. With
1 000 orientations, however, it found the binding site even with a grid spacing
of 0.75 Å (Figure 9.9).

The cavity analysis only needs one parameter, which determines when a
sample point is considered to lie outside the boundary of the molecule. To
determine the degree of burriedness, ambient occlusion was used by casting a
�xed number of 100 rays. The user can then set a threshold at which ambient
occlusion value a sample point is considered to lie outside the molecule.

9.5.2 Performance

Let s 2 N be the number of sample positions, which is de�ned by the grid
spacing g and the size of the receptor. Note that s grows cubically when
linearly decreasing g. Because of the grid data structure, the cost for each
intersection test with the receptor molecule becomes constant. Hence, the
intersection tests have a complexity of O(c � o � s). An upper bound for the
number of values in the local distance �eld of the ligand is a � s, where a is the
ratio of the volume of the local �eld and the overall distance �eld. Hence the
updates of the distance �eld have a complexity of O(c � o � a � s2). The k-means
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Figure 9.10: Difference between the SES (left) and the LES (right) for an enzyme
(pdb: 4DFR). The LES was computed for methotrexate (red). Each surface point is colored
according to its minimal distance to the other surface.

clustering is the most expensive part for the computation of the orientations.
It grows polynomially with o. However, compared to the rest of the algorithm,
in practice the computation of the orientations is negligible.

The maximal memory requirements for the algorithm are given by the fol-
lowing data structures. The global distance �eld with a space complexity of
O(s), the local distance �eld with O(a � s), the grid data structure of the recep-
tor molecule with O(n), the KD-tree with a worst case complexity of O(s), and
the ligand orientations at all sample points with a complexity of O(s � o � c).
For the intersection tests on the GPU, the grid of the receptor molecule and a
set of spheres are required. For the distance updates on the GPU, the global
and local distance �elds and a set of update positions given by sample indices
are required. Based on several performance tests, for each call of an OpenCL
kernel, the number of spheres for the intersection tests was set to 65 536 and
the number of positions for the distance updates to 1 024.

The most amount of memory is required to store the valid ligand orien-
tations at each sample position (Table 9.1, bottom). For the nanotransporter
and morphine, this structure requires approximately 50 MB. For 1HPV and
amprenavir with a grid spacing of 0.25 Å, approximately 3 GB are required.
However, this memory is only temporarily needed if cavities are computed.
The largest memory consumption on the GPU is due to the global distance
�eld. For the nanotransporter and morphine, this �eld requires approxi-
mately 25 MB. For 1HPV and amprenavir with a grid spacing of 0.25 Å, ap-
proximately 66 MB are required. Detailed memory requirements are given in
Table 9.1, bottom.
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processor receptor
(#atoms)

ligand
(#atoms)

g
(in Å)

o phase I
IT

phase I
DU

phase II
IT

phase II
DU

LES boundary
detection

core com-
putation

cavity
surface

overall

CPU 1GRM (272) water (3) 0.25 200 0.2 0.7 32.8 114.7 148.4 11.5 0.1 14.1 174
GPU 1GRM (272) water (3) 0.25 200 0.1 0.2 4.6 16.2 21.1 0.6 0.1 1.5 23

CPU* 1OGZ (944) equilenine (20) 0.5 200 0.4 5.6 265.4 1 057.1 1 328.5 16.3 0.1 3.5 1 348
CPU 1OGZ (944) equilenine (20) 0.5 200 0.4 5.6 255.4 383.1 644.4 15.7 0.1 3.6 664
GPU 1OGZ (944) equilenine (20) 0.5 200 0.1 0.4 29.5 50.9 80.9 0.7 0.1 0.5 82

CPU nanotrans. (16 487) water (3) 0.5 200 0.4 1.6 87.7 297.7 387.3 125.2 1.6 128.0 642
CPU nanotrans. (16 487) sulfate (5) 0.5 200 0.5 3.3 159.2 557.1 720.1 122.7 0.9 236.1 1 080
CPU nanotrans. (16 487) morphine (40) 0.5 200 2.8 13.1 2 175.6 762.4 2 955.1 131.7 0.4 533.0 3 620
GPU nanotrans. (16 487) water (3) 0.5 200 0.4 1.2 15.8 51.9 69.3 4.5 1.6 11.7 87
GPU nanotrans. (16 487) sulfate (5) 0.5 200 0.4 1.2 18.2 58.5 78.3 3.9 0.9 20.4 104
GPU nanotrans. (16 487) morphine (40) 0.5 200 0.8 0.9 367.1 139.2 508.1 4.2 0.4 82.4 595

GPU 1HPV (1 516) amprenavir (35) 1.0 4 000 0.1 0.1 345.2 152.7 498.1 0.3 0.1 0.1 499
GPU 1HPV (1 516) amprenavir (35) 0.5 4 000 0.3 0.9 2 436.7 1 970.2 4 408.1 1.7 0.1 0.2 4 410
GPU 1HPV (1 516) amprenavir (35) 0.25 4 000 1.2 21.9 18 540.9 66 939.2 85 503.2 11.8 0.5 6.3 85 522

System: Intel Xeon X5650 E5540 2.66 GHz with an Nvidia GeForce GTX 680.

receptor
(#atoms)

ligand
(#atoms)

g
(in Å)

o global distance
�eld (in MB)

local distance
�eld (in KB)

grid
(in KB)

kd-tree
(in MB)

valid ligand
states (in MB)

LES surface
mesh (in MB)

1GRM (272) water (3) 0.25 200 4.5 13.2 50.8 2.1 5.0 2.1
1OGZ (944) equilenine (20) 0.5 200 5.3 76.9 127.9 1.4 9.0 1.1
nanotrans. (16 482) water (3) 0.5 200 19.3 2.8 2 381.3 8.7 15.7 13.1
nanotrans. (16 482) sulfate (5) 0.5 200 20.6 5.2 2 381.3 10.3 13.3 11.8
nanotrans. (16 482) morphine (40) 0.5 200 24.9 47.5 2 381.3 12.5 49.7 8.2
1HPV (1 516) amprenavir (35) 1.0 4 000 1.1 26.8 220.1 0.3 46.9 0.4
1HPV (1 516) amprenavir (35) 0.5 4 000 8.5 197.9 220.1 2.2 383.9 1.5
1HPV (1 516) amprenavir (35) 0.25 4 000 66.2 1 519.6 220.1 16.3 3 106.9 6.3

Table 9.1: Running times in seconds (top) and memory requirements (bottom) for LES and cavity computation for different receptors, ligands, grid
spacings (g) and number of orientations (o) both on CPU (*without KD-tree) and GPU. Phases I and II are split into the two most time-consuming
steps: intersection tests (IT) and distance updates (DU). Note that for 1HPV, four conformations of amprenavir were used with 1 000 orientations
each. Note that the storage of valid ligand states is not necessary for the LES computation, but temporarily it is used to extract the cavities. The LES
surface mesh was extracted from the global distance �eld by using the marching cubes algorithm.
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9.6 Feedback by Domain Scientists

In phase I all sample positions are detected that have to be investigated for
each ligand conformation and orientation. This preprocessing accelerates the
algorithm, because many of the sample positions can be ignored in phase II.
The amount of acceleration depends mainly on the size of the ligand and the
ratio between this size and the size of the receptor, but also on the geometrical
complexity of the receptor. For water, which has a bounding radius of 1.52 Å,
approximately 90 % of the sample positions can be ignored in phase II. For
morphine, with a bounding radius of 5.44 Å, still around 75 % of the sample
positions can be ignored and for fentanyl the bounding radius of which is
8.47 Å, approximately 68 % can be ignored. For all tested ligands, on average
the number of sample points was higher than 60 %. Note that the percentages
for each ligand were averaged over a couple of receptors of different size,
ranging from 272 atoms to 58 870 atoms.

Detailed timings for all parts of the algorithm are given in Table 9.1, top. In
all examples of common receptor-ligand systems the computations could be
accelerated by a factor between 6 and 10 using the GPU compared to the CPU
with KD-tree. On the CPU, the use of the KD-tree accelerated the computation
by a factor of at least two. Furthermore, the intersection tests can be slower
than the distance updates, although the complexity of the distance updates
is worse (see, for example, 1HPV or the nanotransporter with morphine in
Table 9.1).

While the SES can be computed interactively, the computation of the LES
usually takes several minutes up to hours depending on the grid spacing
and the number of orientations (Table 9.1, top). On the other hand, the LES
better re�ects the actual accessibility of a certain ligand, which can be seen in
Figure 9.1, 9.6, and 9.10.

9.6 Feedback by Domain Scientists

Apart from an evaluation in terms of computational complexity and perfor-
mance, a small survey was carried out about the usability of the proposed
new molecular surface by performing a structured interviewabout potential
advantages and disadvantages of the LES. To do so, four senior experts from
different labs were interviewed, working in molecular dynamics simulation
and dealing with a wide range of applications. In the following the most
important statements were summerized.

Advantages:All collaborators agreed that the LES provides valuable ligand-
speci�c information. In particular, the LES can help identify binding sites
that have so far been unknown from experimental data. Furthermore, the
LES allows one to discard cavities that are poor candidates as hosts for a lig-
and. Thus, more expensive methods computing the binding free energies or
molecular dynamics simulations using force �elds can be applied more ef-
fectively. If a protein can bind different ligands, the LES might also enable
the identi�cation of different binding sites for different ligands. The pure
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9 Ligand Excluded Surface

visualization of the LES is of interest, because in many applications of molec-
ular modeling, the chemical intuition of the observer is an important addition
to fully automatic methods. This intuition is even further supported by the
identi�ed cavities.

Disadvantages:If both the protein and the ligand are highly �exible, the
computation of the LES is expensive. In this case it might be favorable to use
the SES to identify binding sites and cavities and compute the LES only for a
few time steps or locally around the binding site.

9.7 Discussion

The most crucial parameter of the algorithm is the number of orientations.
With the plot in Figure 9.8 of the surface area and the enclosed volume, an
intuition of the quality of the result depending on the number of orientations
is given. It is clear that both curves will converge, but the plots indicate how
fast this convergence will be. What can be clearly seen is that the largest
changes occur between 10 and 1 000 orientations. This suggests that with
fewer than 1 000 orientations the LES can be very well approximated. For
most tested data sets 200 or even fewer orientations were enough to reproduce
most known cavities. In rare cases, however, it might be necessary to use more
than this number or even more than 1 000 orientations. Hence, if the running
time is of minor importance, 500 � 1 000 orientations seem suitable.

More important in terms of running time is the choice of the grid spacing.
The running time grows quadratically with the number of grid points, which
again grows inversely cubically with the grid spacing. For grid-based cavity
analysis, commonly a minimal grid spacing of 0.5 Å is used. While a grid
spacing of 0.25 Å is clearly favorable in terms of precision, it requires approx-
imately a 28-fold running time (Table 9.1). Furthermore, in all experiments, a
grid spacing of 0.5 Å was suf�cient to �nd the known binding sites. Hence, a
grid spacing of 0.5 Å seems to be suitable.

If the ligand binding site is very tight and the �exibility of the ligand is
high, it might be necessary to use a large number of conformations. Since
the running time depends linearly on the number of conformations, this is
expensive. In this case, it might be possible to reduce the complexity by
taking into account the redundancy in the conformations.

9.8 Potential Extensions

As described above, with a minor extension of the algorithm, the whole cav-
ity structure of the molecule with respect to the ligand can be computed with
almost no run-time overhead. In addition to the positions, also possible orien-
tations and conformations of the ligand are obtained. This information might
be exploited to steer molecular docking simulations, where the ligand binding
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time

Figure 9.11: LES (blue) depicted for four selected time steps of a simulation trajectory of
b-lactamase (data courtesy of Gregory L. Bowman and Philipp L. Geissler [25]). During
the simulation, the active site of theb-lactamase opens. The sequence of images shows the
computed positions of the CBT ligand (yellow) closest to the active site.

path into the active site is detected. On the other side one can use these infor-
mation to compute molecular paths from dynamic trajectories of the receptor
molecule as can be experimentally seen in Figure 9.11.

It is obvious that with the calculation of the LES a new computational chal-
lenge is associated. In the following some ideas are proposed on how the
computation could be improved and extended.

First, instead of a �xed user-de�ned number of orientations, it would be
favorable to avoid a �xed number by measuring the error rate between in-
creasing numbers of orientations. For this, the algorithm might start with a
few orientations and subsequently add more orientations while at the same
time measuring the rate of change of the volume. As long as the change is
larger than a prede�ned fraction, the algorithm would continue adding more
orientations. This strategy, however, requires a suitable way to successively
pick new orientations from a large set of orientations such that the distances
between neighbored orientations remains similar. It is not obvious how such
a selection can be done most ef�ciently.

Currently, each sample position with at least one valid ligand state belongs
to exactly one cavity core. However, it is possible that the ligand cannot
continuously change from one valid state to another valid state at the same
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9 Ligand Excluded Surface

sample position without intersecting the receptor molecule. Hence, the cav-
ity cores might have to be split at such positions, which also means that a
sampling position can belong to different cavities and, thus, that the cores
can overlap. In order to handle such situations, it is necessary to de�ne valid
changes of orientations and conformations within a sample position.

Despite the algorithmic optimizations, the running time of the algorithm
can still be long, particularly for large molecules and a small grid spacing.
In terms of cavity analysis, one is often only interested in cavities existing in
certain regions. Thus, it might be sensible to restrict the cavity computation
to user-de�ned regions. Furthermore, a combination of the LES approach
with one that approximates the ligand by a sphere, such as the molecular
path computation described in Chapter 6, might signi�cantly speed up the
computation.

Additionally, one could investigate whether the use of tetrahedral meshes
with the same number of grid points as for hexahedral meshes improve the
surface quality and leads to a faster convergence.

The high memory requirements to store the valid and invalid ligand states
could be further reduced by applying compression algorithms to the bit ar-
rays. Especially, algorithms that come with a fast decompression are of high
interest to handle further tasks that depend on this data. Two promising
techniques are the LZO [159] and the LZ4 [158] approaches.

The focus of this chapter lies on the de�nition and computation of a purely
geometry-based representation of the accessibility of a receptor with respect
to a ligand molecule. The de�nition of the LES could be further extended
by considering physico-chemical properties, like the binding af�nity of the
ligand. By considering only those positions and orientations for which the
binding af�nity is high, the LES might even better re�ect the true accessibility
of the ligand.
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10Conclusion and Outlook

10.1 Conclusion

In this thesis, improvements for the visualization of molecular surfaces as well
as for the detection and analyzes of cavities were presented. For the smooth
surfaces, that is the solvent excluded surface (SES) and the molecular skin sur-
face (MSS), the computation of the surface and its rendering were accelerated
in order to apply these models to molecular dynamics data of typical proteins
and enzymes. This approach is still one of the fastest ways to render the SES
and MSS with a very high visual quality. Concerning the van der Waals sur-
face, the focus was on the size of the molecular data. The presented technique
allows one to interactively visualize static biological data sets with up to sev-
eral billion atoms. It was the �rst approach to visualize cellular data and
atom probe tomography samples on atomic resolution bridging �ve orders
of magnitude in length scale. In the �eld of cavity analysis, a Voronoi-based
technique was presented that comes with a very high geometrical accuracy
while keeping the computation fast enough to apply it to molecular dynam-
ics data sets. To investigate topological changes of the cavities, a new tracing
was proposed. In addition to the computation, the cavity analysis includes
several visualization techniques. Especially the novel lighting of cavities and
the dynamic cavity visualization techniques are of high interest for biophysi-
cists. Finally, a new molecular surface model was presented, called ligand
excluded surface (LES). In contrast to the SES, the LES considers the full van
der Waals surface of the ligand instead of approximating it by a single probe
sphere. Thus, it better re�ects the accessibility for a certain ligand. Addition-
ally, the proposed algorithm for the computation of the LES detects the cavity
structure. With all the proposed techniques, molecular visualization based
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on hard spheres was improved in several directions, such as speed, size, or
accuracy.

10.2 Outlook

Even though substantial improvements concerning speed were achieved in
this thesis, it certainly is possible to further accelerate the proposed molecular
visualization and analysis techniques, either by improving the existing algo-
rithms or by developing new faster techniques. This is important to quickly
investigate molecular data in real-time but also to deal with the increasing
size of the data. Especially in the molecular dynamics �eld, scientists are
working more and more on multi-scale simulations and analyzes for both,
time and size. This requires corresponding visualization tools to investigate
the data. Parallelization plays an important role for these developments in
order to get the full performance of new hardware systems. While acceler-
ation of existing techniques and development of multi-scale visualizations is
a demanding and interesting research �eld, there is another important di-
rection in molecular visualization that seems to be even more challenging.
The goal of this direction is to improve and develop visualization techniques
that better re�ect the physical reality. A �rst step into this direction was done
with the de�nition and computation of the ligand excluded surface. However,
the whole visualization of molecules based on hard atom spheres indeed is
questionable for some applications, especially if chemical binding processes
are investigated. For such purposes, visualization models based on quantum
mechanics are required. This �eld has been rarely investigated in the past
and often just scalar �elds are derived from the simulation data sets that are
then visualized using classical isosurface rendering or volume rendering tech-
niques. It will be a demanding and interesting task to develop tools that bring
forward molecular investigations based on quantum mechanics.
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