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1 Introduction
This paper is concerned with an optimization problem of the following type:
minimize J(z) subject to e(x) = 0, (P)

where J : X — R and e : X — Y are sufficiently smooth functions and X, Y
are real Hilbert spaces. These types of problems occur, for example, in the op-
timal control of systems described by partial differential equations. To solve (P)
we use the augmented Lagrangian-SQP (sequential quadratic programming) tech-
nique as developed in [9]. In this method the differential equation is treated as an
equality constraint, which is realized by a Lagrangian term together with a penalty
functional. We present an algorithm, which has second-order convergence rate and
depends upon a second-order sufficient optimality condition. In comparison with
SQP methods the augmented Lagrangian-SQP method has the advantage of a more
global behavior, see e.g. [9, 12, 13]. For certain examples we found it to be less sensi-
tive with respect to the starting values, and the region for second-order convergence
rate was reached earlier. We shall point out that the penalty term of the augmented
Lagrangian functional need not to be implemented but rather that it can be realized
by a first-order Lagrangian update.

Augmented Lagrangian-SQP methods applied to problem (P) are essentially New-
ton type methods applied to the Kuhn-Tucker equations for an augmented op-
timization problem. Newton methods and their behavior under different linear
transformations were studied by several authors, see [3, 4, 5, 6, 8], for instance. In
this paper, we combine both lines of work and present an affine invariant setting
for analysis and implementation of augmented Lagrangian-SQP methods in Hilbert
spaces. An affine invariant convergence theory for inexact augmented Lagrangian-
SQP methods is presented. Then the theoretical results are used for the construction
of an accuracy matching between iteration errors and truncation errors, which arise
from the inexact linear system solves.

The paper is organized as follows. In section 2 the augmented Lagrangian-SQP
method is introduced and necessary prerequisites are given. The affine invariance
is introduced in section 3. In section 4 an affine invariant convergence result for
the augmented Lagrangian-SQP method is presented. Two invariant norms for
optimal control problems are analyzed in section 5, and the inexact Lagrangian-
SQP method is studied in section 6. In the last section we report on some numerical
experiments done for an optimal control problem for the Burgers equation, which
is a one-dimensional model for nonlinear convection-diffusion phenomena.

2 The augmented Lagrangian-SQP method
Let us consider the constrained optimal control problem

minimize J(z) subject to e(z) = 0, (P)



where J: X - R e: X — Y and X, Y are real Hilbert spaces. Throughout we do
not distinguish between a functional in the dual space and its Riesz representation
in the Hilbert space. The Hilbert space X x Y is endowed with the Hilbert space
product topology and, for brevity, we set Z = X x Y.

Let us present an example for (P) that illustrates our theoretical investigations and
that is used for the numerical experiments carried out in section 7. For more details
we refer the reader to [14].

Ezample 2.1. Let © denote the interval (0,1) and set @ = (0,7") x Q for given
T > 0. We define the space W(0,T) by

W(0,T) = {p € L*(0,T; H'(Q)) : ¢ € L*(0,T; H ()},

which is a Hilbert space endowed with the common inner product. For controls
u,v € L?(0,T) the state y € W(0,T) is given by the weak solution of the unsteady
Burgers equation with Robin type boundary conditions, i.e., y satisfies

y(0,") =yo in L*(Q) (2.1a)
and

(ye(t,+), ©) (aymn + 01(H)y(E, 1)e(1) — ao(t)y(t, 0)¢(0)
(2.1b)
+ /Q vy (t, )@ + (y(t, )y (t, ) — F(t,-)pdz = v(t)e(1) — u(t)e(0)

for all € H'(Q2) and ¢ € (0,T) a.e., where (-,-) (1) 1 denotes the duality pairing
between H'(Q) and its dual. We suppose that f € L?(2), yo € L*®(f), 09,01 €
L*°(0,T) and that v > 0. Recall that W (0,T) is continuously embedded into the
space of all continuous functions from [0, 7] into L%(Q), denoted by C([0, T]; L%(9)),
see e.g. [2, p. 473]. Therefore, (2.1a) makes sense. With every controls u,v we
associate the cost of tracking type

1 1T
J(y,u,v) = §/Q|y—z|2dxdt-|— 5/ a|ul® + B |v|* dt,
0

where z € L?(Q) and o, 8 > 0 are fixed. Let X = W(0,7) x L*(0,T) x L?(0,T),
Y = L?(0,T; H'(Q)) x L?(R2) and = = (y,u,v). We introduce the bounded operator

é: X — L*(0,T; H(Q)"),
whose action is defined by

(€(y,u, ), A) 120,117 (), 20,1311 ()
T
= / <yt(t7 ')7 A(ta '))(Hl)’,Hl dt + / (Vywkw + yyw)\ - f)‘) dxdt
0 Q
T
+/ ((Uly('a 1) - U))‘('a 1) + (on(', 0) - U’))‘(a O)) dt
0
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for A € L2(0,T; H(Q2)). Defining e : X — Y by

e(y, u, 'U) = ((_A + I)_lé(y’ u, U)a y(Oa ) - yO)a
where for given g € H'(Q)' the mapping (-A + I)~! : HY(Q)' — HY(Q) is the

Neumann solution operator associated with

/ v'¢' +opdr = (g,¢) gy m forall p € HY().
Q

Now the optimal control problem can be written in the form (P). ¢

For ¢ > 0 the augmented Lagrange functional L. : Z — R associated with (P) is
defined by

c 2
Le(z,4) = J(2) +{e(2), A)y + 5 lle(@)lly-
The following assumption is rather standard for SQP methods in Hilbert spaces.

Assumption 1. Let * € X be a reference point such that

a) J and e are twice continuously Fréchet-differentiable, and the mappings J"
and €' are Lipschitz-continuous in a neighborhood of x*,

b) the linearization e'(z*) of the operator e at z* is surjective,

c) there exists a Lagrange multiplier \* € Y satisfying the first-order necessary
optimality conditions

L(z*,)*) =0, e(z*) =0 for all ¢ >0, (2.2)

where the Fréchet-derivative with respect to the variable x is denoted by a
prime, and

d) there ezists a constant k > 0 such that
(Lo (2", A, x)x 2 wllxly  for all x € kere/(z7),
where ker €' (z*) denotes the kernel or null space of e'(z*).

Remark 2.2. In the context of Example 2.1 we write z* = (y*, u*, v*). It was proved
in [14] that Assumption 1 holds provided [|y* — 2| 12(g) is sufficiently small. ¢

The next proposition follows directly from Assumption 1. For a proof we refer
to [10] and [11], for instance.

Proposition 2.3. With Assumption 1 holding z* is a local solution to (P). Fur-
thermore, there ezists a neighborhood of (z*,\*) such that (x*,\*) is the unique
solution of (2.2) in this neighborhood.



The mapping = + L.(z,A*) can be bounded from below by a quadratic function.
This fact is referred to as augmentability of L. and is formulated in the next propo-
sition. For a proof we refer the reader to [9].

Proposition 2.4. There exist a neighborhood U of * and a constant ¢ > 0 such
that the mapping x v+ L (x, \*) is coercive on the whole space X for all x € U and
c>c.

Remark 2.5. Due to Assumption 1 and Proposition 2.4 there are convex neighbor-
hoods U(z*) C X of z* and U(X\*) C Y of A* such that for all (z,A) € U =
U(z*) x U(X*)

a) J(z) and e(z) are twice Fréchet-differentiable and their second Fréchet-deri-
vatives are Lipschitz-continuous in U(z*),

b) €'(z) is surjective,

c) Lj(z, ) is coercive on the kernel of ¢'(z),

d) the point z* = (z*, \*) is the unique solution to (2.2) in U, and
)

e) there exist ¥ > 0 and ¢ > 0 such that

(L@, )X x)x > & x| forall x € X and ¢ > & ¢ (2.3)
To shorten notation let us introduce the operator

Fo(z,\) = (Li((”’x’))‘)> for all (z,)) € U.

Then the first-order necessary optimality conditions (2.2) can be expressed as
F.(z*,\*) =0 for all ¢ > 0. (0S)

To find z* numerically we solve (OS) by the Newton method. The Fréchet-derivative
of the operator F, in U is given by

VF,(z,)) = (Lé,(a;) e'(g)*> , (2.4)

where €'(z)* : Y — X denotes the adjoint of the operator €'(z).
Remark 2.6. With Assumptions 1 holding there exists a constant C' > 0 satisfying
IVF.(z,A) lgz) < C forall (z,)) €U (2.5)

(see e.g. in [7, p. 114]), where B(Z) denotes the Banach space of all bounded linear
operators on Z. ¢



Now we formulate the augmented Lagrangian-SQP method.
Algorithm 1. a) Choose (z°,\°) € U, ¢ > 0 and put k = 0.
b) Set X = M 4 ce(zF).
c) Solve for (Ax,AN) the linear system
V Fo(a, 3F) (ﬁ‘;) — _Fy(a*, 3). (2.6)
d) Set (1 Net1) = (zF + Az, A¥ + AN), k = k+ 1 and go back to b).

Remark 2.7. Since X and Y are Hilbert spaces, (z*t!, \¥*1) can equivalently be
obtained from solving the linear system

VE, (" AF) (ii) — _F.(zk, \F) (2.7)

and setting (zF+1, \Ft1) = (2% + Az, \¥ + A)). Equation (2.7) corresponds to a
Newton step applied to (OS). This form of the iteration requires the implemen-

tation of € (z¥)*e/(z*), whereas steps b) and c) of Algorithm 1 do not. In case of

Example 2.1 this implies an additional solve of the Poisson equation. ¢

3 Affine invariance

Let B: X — X be an arbitrary isomorphism. We transform the x variable by
x = By. Thus, instead of (P) we study the whole class of equivalent transformed
minimization problems

minimize J(By) subject to e(By) =0 (3.1)

with the transformed solutions By* = z*. Setting

B:(jo§ ?> and - Ge(y,€) = B*Fe(z,))  with (z,)) = (By,£),

the first-order necessary optimality conditions have the form

Ge(y,&) =0 forall ¢ > 0. (05)

Applying Algorithm 1 to (C/)\S) we get an equivalent sequence of transformed iterates.

Theorem 3.1. Let (2°,)\°) € U and (y°,£°) = (B~12%,A%) be the starting iterates
for Algorithm 1 applied to the optimality conditions (OS) and (OS), respectively.
Then both sequences of iterates are well-defined and equivalent in the sense of

(ByF, &%) = (zF,0F)  fork=0,1,... . (3.2)



Proof. First note that the Fréchet-derivative of the operator G, is given by
VG.(y,€) = B*VF.(z,\)B with (z,\) = (By,¢). (3.3)

To prove (3.2) we use an induction argument. By assumption the identity (3.2) holds
for k = 0. Now suppose that (3.2) is satisfied for k& > 0. This implies By* = z*
and ¢k = Ak, Using step b) of Algorithm 1 it follows that &5 = ¢¥ 4 ce(By*) = M.
From (3.3),

V() (3}) = ~Fuleh 3 and V6ol € (RF) = ~Gulsh €

we conclude that (Ay, A¢) = (B~'Az, A)). Utilizing step d) of Algorithm 1 we
get the desired result. O

Remark 3.2. Due to the previous theorem the augmented Lagrangian-SQP method
is invariant under arbitrary transformations B of the state space X. This nice
property should, of course, be inherited by any convergence theory and termination
criteria. In section 4 we develop such an invariant theory. ¢

Remark 3.3. The invariance of Newton’s method is not limited to transformations
of type (3.1). In fact, Newton’s method is invariant under arbitrary transformations
of domain and image space, i.e., it behaves exactly the same for AF,.(BZ) = 0 as for
F.(z) = 0. Because F, has a special gradient structure in the optimization context,
meaningful transformations are coupled due to the chain rule. Meaningful transfor-
mations result from transformations of the underlying optimization problem, i.e.,
transformations of the domain space and the image space of the constraints. Those

are of the type
B 0 7 B; 0 T
0 B3 0 By)\\) )"~

For such general transformations there is no possibility to define a norm in an
invariant way, since both the domain and the image space of the constraints are
transformed independently: Bye(B1%). ¢

4 Affine invariant convergence theory

To formulate the convergence theory and termination criteria in terms of an appro-
priate norm, we use a norm that is invariant under the transformation (3.1).

Definition 4.1. Let z € U. Then a norm || - ||, : Z — R is called affine invariant
for (0S), if

|VE.(2)Az||, = |[VG(B *3)B 'Az|g-1, forall2€U and Az € Z. (4.1)



We call {|| - ||2}2ev a y-continuous family of invariant norms for (OS), if
7l a. = 7| < IVE(2)A2], 7], (4.2)
for every r,Az € Z and z € U such that z + Az € U.

Utilizing affine invariant norms we are able to present an affine invariant convergence
theorem for Algorithm 1.

Theorem 4.2. Assume that there are constants w > 0,y > 0, and a -y-continuous
family of affine invariant norms {|| - ||, }.cv, such that the operator VF, satisfies

|(VEu(z+ 8A2) = VE(2) A2l a, < swl[VE()A2]? (4.3)

for z € U and Az € Z such that z+ Az € U. For k € N let hy, = w||F.(2*)||,x and
let

() = {ce U 1RO < (1+ 2IEEL) IR} (44)

Suppose that hg < 2 and that the level set L£(2°) is closed. Then, the iterates stay
in U and the residuals converge to zero at a rate of

1
hgt1 < 3 h:.
Additionally, we have
1Fe(Z* ) e < IFe(2F)]] e (4.5)

Proof. By induction, assume that £(z*) is closed and that hy < 2 for k¥ > 0. Due
to Remark 2.5 the neighborhood U is assumed to be convex, so that z + nAz € U
for all n € [0,1]. From VF,(z¥)Az* = —F,(2*) we conclude that

n
F (2* + nAZ*) = F.(2*) + / VF. (2% + sAZF)AzF ds
0
n
= (1 —n)F.(z) —I—/ (VF(2* + sAZ*) — VF.(2F))AZF ds
0
for all n € [0,1]. Applying (4.2), (4.3), hx = w||F.(2*)||,» and hy < 2 we obtain
1Fe (2" +nAZ5) | iy yas

n 2
< (L =)@+ Yl Fe () L) |1 Fe (") +/0 sw||VF(z")AZF |« ds

)+ FL0) + ) ) s

( (1= PPl ) 1P
(14 ZUFC) L ) Fe() e

<
<



If 2% + AzF ¢ L(2%), there exists an 7 € [0, 1] such that z* + 7AzF € U\L(2), i.e.,
1P + 182 s gaze > (14 TIF() ] ) Il
which is a contradiction. Hence, zF*! € £(2*) and
IFEH)lwnn < SIF)I-

Thus, we have k1 < h2/2 and L(zFT1) C L(zF). Since L£(2*) is closed, every
Cauchy sequence in £(z**1) converges to a limit point in £(z*), which is, by (4.4)
and the continuity of the norm, also contained in L£(z*¥*!). Hence, L£(zFT!) is
closed. O

Remark 4.3. We choose simplicity over sharpness here. The definition of the level
set L£(z) can be sharpened somewhat by a more careful estimate of the term

N F()ax = D)+ (hi/2 = A Fe(2M) ). ©

Theorem 4.2 guarantees that limy_,oo by = 0. To ensure that zF — 2* in Z as
k — oo we have to require a further property of the invariant norm.

Corollary 4.4. If, in addition to the assumptions of Theorem 4.2, there exists a
constant C > 0 such that

<], < C |\VF.(2)¢||, forall{ € Z and z €U,

then the iterates converge to the solution z* = (z*,\*) of (OS).

Proof. By assumption and Theorem 4.2 we have
k ~ k = (ho g 0
1827 < CE()e < C (5 ) IE(20)]0-

Thus, {z*}ren is a Cauchy sequence in £(2°) C U. Since £(2°) is closed, the claim
follows by Remark 2.5-d). O

For actual implementation of Algorithm 1 we need a convergence monitor indicating
whether or not the assumptions of Theorem 4.2 may be violated, and a termination
criterion deciding whether or not the desired accuracy has been achieved.

From (4.5), a new iterate 2¥*! is accepted, whenever

IFe(2 D) < ()] (4.6)

Otherwise, the assumptions of Theorem 4.2 are violated and the iteration is con-
sidered as to be non-convergent. The use of the norm || - ||,» for both the old and
the new iterate permits an efficient implementation. Since in many cases the norm
|Fo(25F1)|| % is defined in terms of AzFtl = VF.(2¥)"1F,(2¥*1), the derivative




need not be evaluated at the new iterate. If a factorization of VF,(z*) is available
via a direct solver, it can be reused at negligible cost even if the convergence test
fails. If an iterative solver is used, Az¥t! in general provides a good starting point
for computing Az*¥*!, such that the additional cost introduced by the convergence
monitor is minor.

The SQP iteration will be terminated with a solution z

k+1 as soon as

1 (")l < TOL [|Fe(2°)]l 0

with a user specified tolerance TOL. Again, the use of the norm || - ||+ allows an
efficient implementation.

5 Invariant norms for optimization problems

What remains to be done is the construction of a y-continuous family of invariant
norms. In this section we introduce two different norms.

5.1 First invariant norm

The first norm takes advantage of the parameter ¢ in the augmented Lagrangian.
As we mentioned in Remark 2.5, there exists a ¢ > 0 such that L!(z) is coercive
on X for all z € U and ¢ > ¢. Hence, the operator L(z)~! belongs to B(Z) for all
c>CcC.

Let us introduce the operator S, : U — B(Z) by

"
Sc(z) = (Lcéz) ?) for all z € U and ¢ > 0. (5.1)

Since L!(z) is self-adjoint for all z € U, S¢(z) is self-adjoint as well. Due to (2.3)
the operator S.(z) is coercive for all z € U and ¢ > ¢. Thus, for all z € U

1522 (2) - 1| = 1/(Se(2) -,-) (5.2)
is a norm on Z for ¢ > ¢.
Proposition 5.1. Let ¢ > ¢. Then, for every z € U the mapping
lrll. = 1Se(=) 2V Fe(2) ']l for v € Z (5.3)
defines an affine invariant norm for (2.2).

Proof. Let z € U be arbitrary. Since ||Scl/2(z) - || defines a norm on Z for ¢ > ¢
and VF,(z) is continuously invertible by Remark 2.6, it follows that | - ||, is a norm
on Z. Now we prove the invariance property (4.1). Let L. denote the augmented
Lagrangian associated with the transformed problem (3.1). Then we have L"(¢) =
B*L!(z)B for z = B¢ € U. Hence, setting S.(¢) = B*S.(z)B we get

I7ll; = 15:(O) Y2V G () || for r € Z.
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From (3.3) we conclude that
VF,(2) ' VF,(2) = BVG:(() ' VG(()B™! (5.4)
with z = B¢, % = B¢ € U. Using (5.3) and (5.4) we obtain
IVF(2)82]|, = [|Se(2)/*V Fe(2) "'V Fe(2)02]|
= [1Se(2)/* BVG(¢) T VG(() B 82|

= [|(B*Sc(2)B)'*VG.(() 7' VG(() B 62|
== |[VGe(¢)B™ 62,

which gives the claim. O

In order to show the y-continuity (4.2) required for Theorem 4.2, we need the
following lemma.

Lemma 5.2. Suppose that ¢ > ¢ and that there ezists a constant w > 0 such that

[(VFe(z 4 62) = VFe(2))Cll 115, < w [IVFe(2)d2]|, [V Ee(2)C], (5.5)

forall( € Z, z€ U and 6z € Z such that z+ 6z € U. Then we have

1S (= + 62)'/%¢|| < \/1 +w(l+Ce) |VE(z, Nz, [1Se(2)"*¢ll,

where

ol @
Ce = p{@'é(wa)\)&ﬁ)x'( ,/\)eU,feX\{O}}>O

Proof. Let ¢ = (¢1,¢2)" € Z and z € U. From (5.1) and (5.2) we infer

1Se(z + 82)2¢||? = (Se(z + 62)¢, () 4
= (Sc(2)¢,C) 5 + ((Se(z + 02) — Se(2))¢,€) (5.6)
< 1Se(2) /¢ + (LY (2 + 62) — Ly(2))C1, ) x

By assumption S.(z) is continuously invertible. Utilizing the Lipschitz assump-
tion (5.5) the second additive term on the right-hand side can be estimated as

11



((Le(z + 62) — Lg(2))C1, Cr) x
= ((VF(z+62) = VF.(2))(¢1,0)7, (C1,0)7)
= (VF.(2)S:(2) ' 8e(2)VF.(2) {(VFe(z 4 62) — VFe(2))(¢1,0)T, (¢1,0)T) 4
= (Sc(2) VFe(2) " (VFe(z + 62) = VFe(2))(¢1,0) T, Se(2) T VFe(2)(¢1,0)T)
< ||Se(2) 2V Fe(2) M (VFu(z + 62) = VFe(2))(¢1,0) 7|

NSe(z) AV F(2)(¢1,0) 7|
= [(VFe(z + 82) = VFe(2))(C1,0)TI1,11Sc(2) TV Fo(2)(¢1,0) 7|
< w [[VF(2)82, VFe(2)(G1,0)TIl, 1Se(2) 2V Fe(2)(¢1,0)T
< w [VF(2)82l, 1Se(2)' ¢l 1Se(2) /2 V Fe(2) (61, 0) 7.
Note that
1Se(2) 2V Fe(2) (1, 0) 7|12

= (VFe(2)(¢1,0)T, Se(2) 1V F(2)((1,00T) = (LE(2)C1, Q) x + e/ (@)l
< (14 Ce) (L)1 ) x = (14 Ce) [1Se(2) (¢, 0) T

This implies
((Ly(2 +62) = L{(2))C1, Q) x < w(l+Ce) |[VF(2)82], 1ISe(2)/2¢)7. (5.7)
Inserting (5.7) into (5.6) the claim follows. O

Proposition 5.3. Let all hypotheses of Lemma 5.2 be satisfied. Then {|| - ||;}.cv
is a w(3 + Ce)/2-continuous family of invariant norms with

1
V&

for all { € Z and z € U, where & > 0 was introduced in (2.3).

IKllz < —= IVF(2)C]], (5.8)

Proof. From (5.3) it follows that

171,165 < 1Se(z + 62) 2V Fo(2) " !r|
+ |18e(z + 62) 2 (VEL(z + 62)~" — VE.(2)"Yr|.

We estimate the additive terms on the right-hand side separately. Using Lemma 5.2
we find

|Sc(z + 5z)1/2VFc(z)_17‘|| < \/1 +w(l+ Ce)||VE.(2)dz|,Ir|l,-
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Applying (5.3) and (5.5) we obtain
|Se(z + 62) /2(VF,(2 4 62) F — VF.(2) V)r|
= ||Sc(z 4 62) 12V F (2 + 62) Y (VF,(2) — VFu(2z + 62))VF.(2) 7|
= [[(VFe(2) = VEe(z + 62))VFe(2) 7|45, < w [VEe(2)0z]], ]I,

Hence,
w
I7llss, < (1453 + CIVELE, ) I,

and it follows that {||-||; }.cv is a w(3+ C,)/2-continuous family of invariant norms.
Finally, from

||VFC(Z)C||§ = (SC(Z)VFC('Z)_IVFC('Z)C’ VFC(Z)_IVFC(Z)C>Z
= (S:()¢: Q)2 2 R ¢l
we infer (5.8). O

5.2 Second invariant norm

In section 5.1 we introduced an invariant norm provided the augmentation param-
eter in Algorithm 1 satisfies ¢ > ¢. But in many applications the constant ¢ is not
explicitly known. Thus, L”(z,)~! need not to be bounded for ¢ € [0,¢), so that
Sc(z,A) given by (5.1) might be singular. To overcome this difficulties we define a
second invariant norm that is based on a splitting X = kere'(z) @ X, such that at
least the coercivity of L{j(z, \) on ker ¢/(z) can be utilized. For that purpose let us
introduce the bounded linear operator T,.(z,\) : kere'(z) x Y x Y — Z by

" ! *
Te(z,\) = (Lce,(é;))‘) € (g) (I)> for (z,\) € U and ¢ > 0.

Lemma 5.4. For every (z,\) € U and ¢ > 0 the operator Te(z, ) is an isomor-
phism.

Proof. Let v = (r1,72)' € Z be arbitrary. Then the equation T,.(z,\)¢ = r for
¢ =((1,60,63)T €kere(z) x Y x Y is equivalent with

VF,(z,)) (g) - (’3) and 3 = 1o, (5.9)

Due to Remark 2.6 the operator VF.(z, ) is continuously invertible for all (z, ) €
U and ¢ > 0. Thus, ¢ is uniquely determined by (5.9), and the claim follows. [
We define the bounded linear operator R.(z,\) :kere/(z) x Y xY — Z x Y as

L (z,A) 0 0
R.(z,\) = 0 I0 for (z,A) € U and ¢ > 0. (5.10)
0 0 I

13



Note that R.(z, ) is coercive and self-adjoint. Next we introduce the invariant
norm

Ir|l, = \/<Rc(z)TC(z)_1r, Te(z)"r),y forzeUandre Z (5.11)

To shorten notation, we write ||7||, = ||Re(2)"/2T,(2) 17|

Proposition 5.5. For every z € U the mapping given by (5.11) i4s an affine in-
variant norm for (OS). Moreover, there exists a constant C' > 0 such that

I¢ll; < C |[VF(2)¢]|, forall¢ € Z and z € U. (5.12)
Proof. Let z € U be arbitrary. Since R.(z) is coercive and T,(z) is continuously
invertible, it follows that || - ||, defines a norm on Z. Now we prove the invariance
property (4.1). For (z,\) = (By, &) € U we have
B*LI(y,&)B B*e'(y)* 0\ _ o« B 0
( ¢(0)B 0 1) = B*T.(z, \) 0 1) (5.13)

Utilizing (3.3), (5.11) and (5.13) the invariance property follows. Finally, setting
¢ = T.(2) 'V F.(2)¢ we conclude

||VFc(z)C||§ = <RC(Z)TC(Z)_1VFC(Z)Ca TC(z)_IVFC(z)C>kere’(1:)><Y><Y
= <Rc(z)£7£>kere’(w)xY><Y 2l ||£||12<ere’(:c)><Y><Y

for some ¢; > 0 from the coercivity of R.(z). Since both VF,.(z) and T.(z) are
isomorphisms by Remark 2.6 and Lemma 5.4, there is some c3 > 0 such that

||§||kere’(m)><Y><Y > C2 HC”Za

and (5.12) follows. O

The following proposition guarantees that {|| - ||,}.cv is a y-continuous family of
invariant norms for (OS).

Proposition 5.6. Suppose that there exists a constant w > 0 such that
N(VFL(z +02) = VE2)Cl s < IVE02LIVEIC,  (5.14)
forall{ € Z, z€ U and 6z € Z such that z+ 6z € U. Then we have

Sw
Il s < (14 5 IV E2)32, ) Il

For the proof of the previous proposition, we will use the following lemmas.

Lemma 5.7. With the assumption of Proposition 5.6 holding and z = (z,)\) it
follows that

| Re(z + 02)Y/%¢|| < \/1 + ‘*’”VFC(Z)‘SZHz||Rc(z)1/2g‘||

for all { € kere'(z) XY XY and ¢ > 0.
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Proof. Let z = (z,A) € U and ¢ = ((1,(2,(3)T € kere/(z) x Y x Y. Using (5.10)
and (5.11) we obtain

1Re(z +62)'/%¢|[* < [|Re(2)/2CI° + ((LE (2 + 62) — LY(2)¢, (k- (5.15)

For all ¢ > 0 the operator R.(z) is continuously invertible. Furthermore, R.(z) is
self-adjoint. Thus, applying (5.14) and

VFC(Z)(CD O)T = T(Z)*(Cl, O)T = RC(Z) (gl’ Oa O)T

the second additive term on the right-hand side of (5.15) can be estimated as

((Ld(z + 0z) = Li(= ))(h(l)x
= ((VF (7«+52) Fe(2))(¢1,0)7, (¢1,00T)
= (Te(2)Re(2) ™ ( )Te(2)” (VF (2 +02) = VFe(2))(¢1,0) 7, (G1,0)T)
= (Re(2)Te(2) T (VEe(2 + 02) = VE(2))(C1,0)T, Re(2) T Te(2)*(¢1,0) ) 7y
< [|Re(2)*Te(2) ™ (VFc(Z+5Z) = VF(2)(C1, 0TIl [Re(2) ™2 Te(2)*(G1,0) 7|
< w||VF(2)82||, IV Fe(2) (61, 0) Tl | Re(2) /2 (¢1,0,0)T]|
< Wl|VEe(2)b2l, | Re(2)/*C1%.
Inserting this bound in (5.15) the claim follows. O

Lemma 5.8. Let the assumptions of Theorem 5.6 are satisfied. Then
|(Tu(z + 02) = TE)Te(2) 1l < WIVE(02IL I, for all 7 € Z.

Proof. For arbitrary r = (r1,r9)7 € Z we set ¢ = (1,(2,(3)" = Te(2)"'r. Us-
ing (5.9) and (5.14) we estimate

I(Te(% + 62) — Te(2) Te(2) 7 7]l 450
= [[(VFe(2 + 02) — VFe(2))(61,62) |l 462 < wlIVFe(2)0z] [ VEe(2)(G1,62) .
= w|[VF(2)8z] [|(r1, 0)[|, < wl|VFe(2)0z]], I,

so that the claim follows. O

Proof of Proposition 5.6. Let z,z + dz € U. Utilizing (5.11), Lemmas 5.7 and 5.8
we find

171,50 = 1 Re(z + 02) 12T (2 + 62) 7|
< |Re(z 4 62)Y2To(2) " r|| + || Re(z + 82) Y2 (T (2 + 62) ™" — To(2) ™ H)r||
< \/1 + w||VF ()82 ,lIr|l, + |(Te(2) — Te(z + 62))Te(2) "7l 15,
< \/1 + w||VFe(2)dz]],||I7|l, + wl|VFe(2)dz]], ||,

3w
< (1 + 5 IIVFC(Z)&IIZ)IITIIZ-

Hence, {|| - ||z }zev is a 3w/2-continuous family of invariant norms. O
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Remark 5.9. Note that the Lipschitz constant of the second norm does not involve
Ce and hence is independent of the choice of c. In contrast, choosing ¢ too small
may lead to a large Lipschitz constant of the first norm and thus can affect the
algorithm.

5.3 Connection to the optimization problem

When solving optimization problems of type (P), feasibility e(z) = 0 and optimality
are the relevant quantities. This is well reflected by the proposed norms || - ||,. Let
z = (z,)) and Az = (Az,AN)T = —VF.(z) !F.(z). Using Taylor’s theorem
(see [15, p. 148]) and the continuity of L, we obtain for the first norm

IFe(2)2 = (Se(2)Az,Az) ,
= (Li(2)Az, Az) y + | AMT
= (Li(2) Az, Ax) x + clle' () Acly + |AN]

* * 2
= (L") A, A + ofll2” — 2I) + elle (x) Aal} + AN
2(Lo(2) - ( ) +olllz" = 2llz) + clle(@)Ily + 1A
2(J(z) = J(@*) = (A, e(@)y) + clle(@)3 + | AMF +o(llz"* — z]17)-

The second norm is based on the partitioning Fi.(z,\) = (L.(z,\),e(z))T and cor-
respondingly on a splitting of the Newton correction into a optimizing direction
VF.(x,))((1,6)T = —(LL(z,)),0)T tangential to the constraints manifold and a
feasibility direction VF,(x,\)(£1,&)T = —(0,e(z))T. Since e'(x)¢1 = 0, we have for
z=(z,\)

1Fe (217 = (L2 (2)¢1,G) x + [1Gally + lle()II5
= (L§(2)C1, G x + [1Cally + lle(@)I
= (Lg (=" )¢, Q) x + olllz" = zl17) + lICally + lle(=) I3

)
2(Lo(2) — Lo(z )) I3 + le@)lly + ol — 2II%)
2(J(z) — J(z*) — (N e(@)y) + lle@)lly + ISy + o(llz” — 21%)-

Recall that A\ = (5 + &. Thus, in the proximity of the solution, both affine invari-
ant norms measure the quantities we are interested in when solving optimization
problems, in addition to the error in the Lagrange multiplier and the optimizing
direction’s Lagrange multiplier component, respectively.

6 Inexact augmented Lagrangian-SQP methods

Taking discretization errors or truncation errors resulting from iterative solution of
linear systems into account, we have to consider inexact Newton methods, where
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an inner residual remains:

VFE,(2%)62F = —F,(zF) + r*, (6.1)

2K = k4 gk

With slightly stronger assumptions and a suitable control of the inner residual, a
similar convergence theory can be established as in section 4. Note that exact affine
invariance is preserved only in case the inner iteration is affine invariant, too.

Theorem 6.1. Assume there are constants w > 0, v > 0, and a ~y-continuous
family of affine invariant norms {|| - ||, }.cv, such that the operator VF, satisfies

|(VFu(z + 862) — VFu(2))02|| 105, < sw||VF.(2)dz|> (6.2)
for s €[0,1], z €U, and 6z € Z such that z+ 6z € U. Let hy, = w||F.(*)|,» and
— . g
£e) = {ce v IRQI < (1+ LRI IR}

Suppose that hg < 2 and that the level set £L(2°) is closed. If the inner residual r*
resulting from the inezxact solution of the Newton correction (6.1) is bounded by

r*1]e < 0k [1Fe(2")]] e, (6.3)
with
(146" 4 (L4 BIEE) e < 0 <O <L, (64)
then the iterates stay in U and hy converges to zero as k — oo at a rate of
hi+1 < Ophy. (6.5)
Additionally,
1Dl < (J+ 5 (14 8% ) () (6.6)
Proof. Analogously to the proof of Theorem 4.2, one obtains
F.(2* +n6zF) = (1 — n)F.(2%) + nr* + /On(VFc(z’c + 562%) — F.(2%))62" ds

for all n € [0,1]. From (6.3) we have

W) = YIFel) = e < YA+ BIF(H) e (67)
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We set xx = (L + &) || Fe(2%)| . Using (4.2), (6.2), (6.3), (6.4), and (6.7) we find

HF‘C(ZIc + nézk)sz—}-n(Szk
k k K ks k2
< (U =IFe(2) |k szt + 1l o pyo0 +/0 sw||VF(27)6z" ||« ds
< (1l VE(R)82 ) (1 = I Fe(9)l] e+ mllr* )
n?

+ 5 (1 66) B[ | Fe(25)

< (o) (= m)lIFe(et e+ I 1) + L0+ 8l Pl s

2
(1= 1+ ) + (1 e+ (14 5002 ) [Pl s
< (1 1)+ 70 + O E

A short computation yields
(L= n)(L+mxx) + Oy < 1+ 5 <14 2| ().
and thus
VP2 + 167 i ssr < (1 + TPt ) 1Pl e

If 241 ¢ U, then there is some n* € [0,1] such that z¥ +néz* € U for n € [0,7*] and
202k @ L(2%), i | Fo(2® + 07828 [k poze > (14 [ Fe(Z) 0 /2) [ Fe(2F) || e
which is a contradiction. Thus, z¥*! € U. Furthermore,

1Fe (25 ) s < Ol Fe(2*)]
and therefore £(zFT1) C L(2*) is closed. O
The next corollary follows analogously as Corollary 4.4.

Corollary 6.2. If, in addition to the assumptions of Theorem 6.1, there exists a
constant C > 0 such that

Ill; < CIVF(2)C,

for all ( € Z and z € U, then the iterates converge to the solution z* = (z*,\*)
of (0S).

For actual implementation of an inexact Newton method following Theorem 6.1 we
need to satisfy the accuracy requirement (6.4). Thus, we do not only need an error
estimator for the inner iteration computing d, but also easily computable estimates
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[w] and [y] for the Lipschitz constants w and - in case no suitable theoretical values
can be derived. Using (6.6) and hj, = w||F.(2*)||,, we construct the estimator

B 2 IEE e )
N T AR T AT ( 1E()] ‘”“) <

2k

in case || Fo(2t1)|x > 0k l|Fe(2¥)||,x. Due to possible cancellation of significant dig-
its, the estimate can only be expected to be reliable if | F,(2¥11) || & > 0k || Fe(2%)]| ,x,
i.e., in the beginning of the iteration when in fact the nonlinearity limits the con-
vergence speed. The degradation of the estimate when the inaccuracy starts to
limit the convergence rate can be observed in the numerical examples in Section 7.
By (4.2) we have

IFe (¥4 e < (14 IV E(2R)25 | o) [ Fe (2]

z

and thus we define

[’Y]k _ 1 ||FC(Zk+1)||zk+1 1l < v
IVFe(25)82%| i | [|Fe(2541)]]x -

Furthermore an estimate of hy is required for the computation of ) from (6.4).
Unfortunately, when defining [hy] = [w]g||Fe(2*)|,#, the evaluation of the norm
| F.(2%)|| » in general requires the yet unknown Newton correction §z* and therefore
k. Using the Lipschitz continuity (4.2) of the norm, hy can be substituted instead
by

(] = [ Fe(=) ] o1 (1 = Ml V(210257 s ) [w]i- (6.8)

Together the estimates can be used in the actually implementable accuracy require-
ment

1+ 5k)2[h2—k] + (14 (14 85) e Fe(28) )5 < O

Remark 6.3. If an inner iteration is used for approximately solving the Newton
equation (6.1) which provides the orthogonality relation (5z%, AzF — §2F), = 0 in
a scalar product (-,-),x that induces the affine invariant norm, the estimates can
be tightened by substituting (1 + d)? by 1 + 7. Furthermore, the norm ||Az*||
of the exact Newton correction is computationally available, which permits the
construction of algorithms that are robust even for large inaccuracies dx. The
application of a conjugate gradient method that is confined to the null space of the
linearized constraints [1] to augmented Lagrangian-SQP methods can be the focus
of future research. ¢

7 Numerical experiments

This section is devoted to present numerical tests for Example 2.1 that illustrate
the theoretical investigations of the previous sections. To solve (P) we apply the
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so-called ”optimize-then-discretize” approach: we compute an approximate solu-
tion by discretizing Algorithm 1, i.e., by discretizing the associated system (2.6).
In the context of Example 2.1 we have zF = (y*,uF,v*), 6z = (Jy,du,dv) €
W(0,T) x L?(0,T) x L?(0,T). To reduce the size of the system we take advan-
tage of a relationship between the SQP steps du, dv for the controls and the SQP
step 0\ for the Lagrange multiplier. In fact, from

82_[10 k Xk 86 k\x _ BLO k \k

o (@ A)ou + = (ah)*ox = = 2 (aF, 3,

8%Ly & <k 0e, pwer  OLo, 4 <p

ooz (@A) 00 + == (aF)Fox = =2 (aF, AF)

we infer that
]. Ik k 3
bu = (3,00 = (00 + 00, 0)) in (0,7),
~ (7.1)

5o = %(w-,l) — N O D) i (0,7),

where \¥ = A\¥4ce(2*) by step b) of Algorithm 1. Tnserting (7.1) into (2.6) we obtain
a system only in the unknowns (dy, d)). Note that the second Fréchet-derivative of
the Lagrangian is given by

T
(Ly(a*, XY, &)y = / G&E(L+ 25\'“) dr + / alaés + B(3&3 dt
Q 0

for ¢ = ((1,¢2,¢3), € = (&1,€2,&3) € X. The solution (dy, du,dv, ) of (2.6) is
computed as follows: First we solve

Yo — Vsz + (Y = —eF in Q,
v ,0) + ooy (,0) + 200 = (e 0) - 34,0)) in (0,7,
A+, 1) 1/~ )
vel ) Fouy(o1) = T = 5 (W61 = X)) in 0,7),
y(0,)) = 0 in 0, (7.2)
A=)y =N —vder — A = yF -2 in Q,
vAz(,0) + (y(-,0) + 09)A(-,0) = 0 in (0,7),
vAg(5 1) + (y(, 1) +o0)A(,1) = 0 in (0,7,
XT,) = 0 in €,

where ef = yf —vyk + yFyk — f, and set dy = y and 6\ = X\. Then we obtain Ju
and év from (7.1). For more details we refer the reader to [14].

For the time integration we use the backward Euler scheme while the spatial variable
is approximated by piecewise linear finite elements. The programs are written in
MATLAB, version 5.3, executed on a Pentium III 550 MHz personal computer.
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Run 7.1 (Neumann control). In the first example we choose T' = 1, v = 0.1,
op=01=0, f=0, and

_ 1 in(0,0.5],
Yo = 0 otherwise.

The grid is given by

T; = ;—0 fori =0,...,50 and t; = % for j =0,...,50.
To solve (2.1) for u = v = 0 we apply the Newton method at each time step. The
algorithm needs one second CPU time. The value of the cost functional is 0.083.
Now we turn to the optimal control problem. We choose @ = # = 0.01, and the
desired state is z(t,-) = yo for ¢t € (0,T). In view of the choice of z and the nonlinear
convection term yy, in (2.1b) we can interprete this problem as determining u in
such a way that it counteracts the uncontrolled dynamics which smoothes the dis-
continuity at z = 0.5 and transports it to the left as ¢ increases. The discretization
of (7.2) leads to an indefinite system

Ak Bk T
H* (g) =7k with HF = (Bk (ck) ) (7.3)

As starting values for Algorithm 1 we take y° = 0, 4’ = v* = 0 and \° = 0.

(i) First we solve (7.3) by an LU-factorization (MATLAB routine 1u) so that the
theory of section 4 applies. According to section 4 we stop the SQP iteration
if

IFe(z* )] < 2072 - | Fe(2°) o (7.4)

In the case if || F.(2°)]|,0 is very large, the factor 103 on the right-hand side
of (7.4) might be too big. To avoid this situation Algorithm 1 is terminated
if (7.4) and in addition

1Fe(Z* )6 < 1072

hold. The augmented Lagrangian-SQP method stops after four iterations.
The CPU times for different values of ¢ can be found in Table 7.7. Let us
mention that for ¢ = 0.1 the algorithm needs 102.7 seconds and for ¢ = 1
we observe divergence of Algorithm 1. As it was proved in [12] the set of
admissible starting values reduces whenever c enlarges. The value of the cost
functional is 0.041. In Figure 7.1 the residuum t — ||y(¢,-) — 2(¢, )| 12(q) for
the solution of (2.1) for u = v = 0 as well as for the optimal state is plotted.
Furthermore, the optimal controls are presented. The decay of || F.(z51)||,x,
k=0,...,3, for the first invariant norm given by (5.3) and for different values
of ¢ is shown in Table 7.1. Recall that the invariant norm is only defined for
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t=> {1y - z® Il 2 Optimal controls u’(t) and v'(t)

0.7, - 15¢
4
- -- optimal -
0.6 < v
0.5f
0045
|
%0.3 - T =
02/
[, -05f
0.1n !
0 I I I I I _1 ! I I I I
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8
t-axis t-axis

Figure 7.1: Run 7.1: residuum ¢ — ||y(t,-) — 2(¢,-)||z2(q) and optimal controls.

c=0 |c=103]c=10"2
(29,0 || 4.636278 | 4.630344 | 4.642807
| Fe(2h)]],0 || 1.635481 | 1.625800 | 1.581022
| Fe(22)],1 || 0.210650 | 0.202490 | 0.184842
(z°)
(z%)

IF.(z%)||,2 || 0.003625 | 0.003234 | 0.002663
[E.(z%)||,> | 0.000002 | 0.000001 | 0.000001

Table 7.1: Run 7.1-(i): decay of || F.(2**1)|| « for the first norm.
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(ii)

c=0|c=10"3 | ¢=10"2
[k]o | 0.020 | 0.020 0.020
[«]: | 0.019 | 0.019 0.020
[k]2 || 0.004 | 0.023 0.024
[k]3 | 0.021 [ 0.022 0.025

Table 7.2: Run 7.1-(i): values of [k]y for different c.

[1Fo(2%)]].0

[Fo(27) .0

17 (2%) .1

1Fo(2°) .2

[Fo(27)].s

26.77865

4.91492

0.63812

0.0105

0.00002

Table 7.3: Run 7.1-(i): decay of ||F.(z**1)||,x for the second norm.

¢ > ¢. Unfortunately, the constant ¢ > 0 is unknown. We proceed as follows:
Choose a fixed value for ¢ and compute

<L,cl($k= Ak)éx, 5$>X
52 %

[K]k =

in each level of the SQP iteration. Whenever [k]y is greater than zero, we have
coercivity in the direction of the SQP step. Otherwise, ¢ needs to be increased.
In Table 7.2 we present the values for [|;. We observed numerically that [x]
is positive for £ =0, ... ,3. Moreover, k] increased if ¢ increased.

Next we tested the second norm introduced in (5.11) for ¢ = 0. Again, the
augmented Lagrangian-SQP method stops after four iterations and needs 97.4
seconds CPU time. Thus, both invariant norms lead to a similar performance
of Algorithm 1. The decay of ||F.(z**!)||,+ can be found in Table 7.3.

Now we solve (7.3) by an inexact generalized minimum residual (GMRES)
method (MATLAB routine gmres). As a preconditioner for the GMRES
method we took an incomplete LU-factorization of the matrix

I PT

= )
by utilizing the MATLAB function 1uinc (D, 1e-05). Here, the matrix P is
the discretization of the heat operator y; — vy,, with the homogeneous Robin
boundary conditions vy.(-,0) + ooy(-,0) = vyx(-,1) + o1y(-,1) = 0 in (0,T).
The same preconditioner is used for all Newton steps. We chose O = 0.6
for all k. In section 6 we introduced estimators for the constants w and -+,
denoted by [w]x and [v]g, respectively. Using [w]x and [y]x we computed [hg]
by (6.8). To compute || F,(2°)|,0 and || F.(2')|,0 we take 69 = 1071 Then we
determine ¢, as follows:

(7.5)
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c=0 |c=10"3] =102

| F(29)],0 || 4.63628 | 4.63030 | 4.64281
|1F.(zh)|,x || 1.25125 | 1.24517 | 1.65165
|1 Fe(22)],2 || 0.24235 | 0.23416 | 1.45285
| F.(2%)]l,5 || 0.04235 | 0.04071 | 0.40544
| F.(2*)]« || 0.00525 | 0.00479 | 0.05616
1F-(2°)],5 || 0.00110 | 0.00099 | 0.00595
| F.(2%)],6 || 0.00028 — 0.00113
FACHIE: — — 0.00008

Table 7.4: Run 7.1-(ii): decay of || F,(z*)|,x for the first norm with ©, = 0.6.

0k = O;
h
while (1+ 0?8 4 (14 (14 8k |1 Fu(24)4)3% > O do
Ok |
2 )
end while;

5 =

for £ > 1. Since by Propositions 5.3 and 5.6 7y is of the same order of magni-

tude as w, we set [y]o = [w]o. The decay of || F(z*)]|,« is presented in Table 7.4.
Note that kg1 /hg = ||F (25| je+1 /|| F(2*)|| ;& holds. Thus we can check esti-

mate (6.5) without knowing the Lipschitz constant w. For our example it turns

out that (6.5) is satisfied numerically during the SQP iteration, see Table 7.4.

Algorithm 1 stops after at most six iterations. In particular, for ¢ = 1073 the
augmented Lagrangian-SQP method has the best performance. In Tables 7.5
and 7.6 the values of the estimators are presented. As we mentioned in sec-

tion 6 the value of [w]; can only be reliable if || F,(z5T1)|x > 6 || F.(2%)]|
holds. Introducing

GE = |[1Fe(z" )l — 0k [ Fe(z")ll#], k>0 and ¢ >0,

we find GE > 0.065 for k = 0,...,3, but G§ ~ 0.0075 and G5 = 0.0039.
Therefore, for ¢ = 0 the values [w]4 and, in particular, [w]s indicate that the

inaccuracy starts to limit the convergence rate. In Table 7.7 the CPU times
for the first norm are presented. It turns out that the performance of the
inexact method does not change significantly for different values of ©f. The
first norm leads to a better performance of the inexact method. Compared

to part (i) the CPU time is reduced by about 33% if one takes the first

norm. In case of the second norm the reduction is only about 9%, compare
Table 7.8. Finally we test the inexact method utilizing a variable ©. We

choose ©p = 0.9 and © = O;_1/2 for k£ > 1. It turns out that the inexact

method does not speed up significantly for the first norm, but in case of the
second norm the algorithm needs 81.8 seconds, i.e., the CPU time of the exact

method is reduced by about 16%.
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c=0]c=102|c=10"7?
[wlo || 0.15 0.15 0.15
[w] || 0.08 0.07 0.01
[w]2 || 0.06 0.05 0.38
[w]s | 0.17 0.24 0.18
[w]s || 3.53 3.38 0.13
[w]s || 22.00 — 1.62
Wwle || — — 6.11

Table 7.5: Run 7.1-(ii): values of [w]; for ©f = 0.6.

c=0]c=10"% | c=10"2
Vo | 015 | 0.15 0.15
[yl | 0.05 | 0.05 0.01
[v]2 || 0.06 | 0.06 0.08
s || 0.02 | 0.01 0.09
[v]s || 0.01 | 0.07 0.17
[vls | 0.02 — 1.89

Table 7.6: Run 7.1-(ii): values of [y]; for ©f = 0.6.

c=0]c=10"3|c=10""?
exact 97.5 96.8 96.9
inexact, ©p = 0.3 || 63.5 64.1 64.0
inexact, O = 0.4 || 61.8 61.9 63.1
inexact, O = 0.5 | 61.7 62.8 63.5
inexact, ©p = 0.6 || 64.1 62.0 65.7
inexact, ©y = 0.9 || 61.6 64.7 68.9

Table 7.7: Run 7.1-(ii): CPU times in seconds for the first norm.

first norm | second norm
exact 97.5 97.4
inexact, O = 0.3 63.5 86.9
inexact, O = 0.4 61.8 91.5
inexact, O = 0.5 61.7 90.0
inexact, O = 0.6 64.1 87.8
inexact, O = 0.9 61.6 86.3
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Figure 7.2: Run 7.2: optimal state and controls.

c=0 [c=103|c=10"7?
1F.(2%)]0 || 3.11799 | 3.12494 | 3.15978
I F.(2Y)] 0 || 1.25420 | 1.29953 | 1.75698
| Fe(22)]|,1 || 0.18289 | 0.18768 | 0.26507
|Fe(2%)]],2 || 0.01361 | 0.00849 | 0.01200
| F.(2%)]|,s || 0.00009 | 0.00003 | 0.00006

Table 7.9: Run 7.2-(i): decay of ||F.(z%*1)||,x for different c.

Run 7.2 (Robin control). We choose T' = 1, v = 0.05, 0¢(t) = sin(4nt), f =0,
a=p=0.01,

10 in (o,z), 1 in (0,1),
o1 = 2 and yp = 2

0 otherwise 0 otherwise.

The desired state was taken to be z(t,-) = yo cos(4nt) for ¢t € [0,T).

(i) First we again solve (7.3) by an LU-factorization. We take the same starting
values and stopping criteria as in Run 7.1. The augmented Lagrangian-SQP
method stops after four iteration and needs 105 seconds CPU time. The
discrete optimal solution is plotted in Figure 7.2. From Table 7.9 it follows

that (4.6) is satisfied numerically. Let us mention that [k]o,... , [«]|s are posi-
tive for ¢ € {0,1073,1072}. For the needed CPU times we refer to Tables 7.11
and 7.12.

Now we solve (7.3) by an inexact GMRES method. As a preconditioner we
take the same as in Run 7.1. We choose ©; = 0.5 for all k. The decay of
| F'(2%)|| ,» is presented in Table 7.10. As in part (i) we find that [s]y > 0

(ii)
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c=0 |c=10"3 | c=1072
|Fe(2%)],0 || 3.1180 | 3.1249 3.1598
|F.(zY)],2 || 1.2917 | 1.2812 1.2248
|Fe(22)]],2 || 0.3094 | 0.2894 0.2206
| Fe(23)],5 || 0.0368 | 0.0348 | 0.0533

(z°)

(2°)

(2°)

| F.(2%)]|,« | 0.0062 | 0.0045 0.0051
| Fe(2°)],5 || 0.0012 | 0.0007 | 0.0018
| Fe(2%)]|6 || 0.0002 — 0.0006

Table 7.10: Run 7.2-(ii): decay of ||F.(z%)]||,» for ©4 = 0.5.

c=0]c=103]c=10"?
exact 105.1 105.7 105.7
inexact, © = 0.5 50.4 49.3 51.6
inexact, O = 0.6 51.3 51.3 54.0
inexact, ©p = 0.75 53.2 50.7 55.2
inexact, © = 0.9 52.8 49.9 55.8

Table 7.11: Run 7.2-(ii): CPU times in seconds for the first norm.

for all test runs. The needed CPU times are shown in Table 7.11. As we can
see, the inexact augmented Lagrangian-SQP method with GMRES is much
faster than the exact one using the LU-factorization. For the first norm the
CPU time is reduced by about 50%, and for the second norm by about 28%.
Moreover, for our example the best choice for ¢ is ¢ = 1073. For smaller values
of O the method does not speed up significantly. As in Run 7.1 we test
the inexact method utilizing a variable ©;. Again we choose ©y = 0.9 and
O = O_1/2 for k > 1. As in Run 7.1 the inexact method does not speed up
significantly for the first norm, but in case of the second norm the algorithm
needs 68.5 seconds, i.e., the CPU time of the exact method is reduced by
about 35%.

first norm | second norm
exact 105.1 105.5
inexact, O = 0.5 50.4 75.3
inexact, ©p = 0.6 51.0 75.4
inexact, O = 0.75 53.2 77.2
inexact, © = 0.9 52.8 77.5

Table 7.12: Run 7.2-(ii): CPU times in seconds for both norms and ¢ = 0.
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