
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RALF BORNDÖRFER
BORIS GRIMM

MARKUS REUTHER
THOMAS SCHLECHTE

Optimization of Handouts for Rolling
Stock Rotation Visualization

This work has been developed within the Research Campus MODAL (Mathematical Optimization and Data Analysis Laboratories) funded by the German Ministry
of Education and Research (BMBF).

ZIB-Report 16-73 (December 2016)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Optimization of Handouts for Rolling Stock
Rotations Visualization
Ralf Borndörfer, Boris Grimm, Markus Reuther, Thomas
Schlechte1

1 Zuse Institute Berlin
Takustrasse 7, 14195 Berlin, Germany
{borndoerfer, grimm, reuther, schlechte}@zib.de

Abstract
A railway operator creates (rolling stock) rotations in order to have a precise master plan for the
operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply
traverses a set of operational days while covering trips of the timetable. As it is well known,
the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging
and still a topical research subject. Nevertheless, we study a completely different but strongly
related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce
a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In
our industrial application at DB Fernverkehr AG, the handout is exactly as important as the
rotation itself. Moreover, it turns out that also other European railway operators use exactly the
same methodology (but not terminology). Since a rotation can have many handouts of different
quality, we show how to compute optimal ones through an integer program (IP) by standard
software. In addition, a construction as well as an improvement heuristic are presented. Our
computational results show that the heuristics are a very reliable standalone approach to quickly
find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a
computational comparison to the IP approach.

1 Introduction

Railway companies that earn their money with passenger trips have to offer a timetable of
planned passenger trips. Usually, these trips repeat from week to week, i.e., a trip offered
on Monday is offered in exactly the same way each following Monday. Moreover, trips often
repeat for each day of the week or each working day. Hence, the timetable could be completely
defined as a set of trips for a set of seven consecutive operational days, which is called the
standard week. This week is repeated as long the timetable is valid. To operate these trips rolling
stock vehicles have to be assigned to the trips. In order to have a master plan for the validity
period of the timetable rolling stock rotations are developed by a railway operator in a certain
point of preparation. The rolling stock rotations are cycles in a graph containing a vertex for
each trip and arcs for operating two trips consecutively by a rolling stock vehicle. Each cycle
covers timetabled trips for the purpose of deciding what happens to a dedicated railway vehicle
after the operation of a timetabled trip. Each of these decisions is crucial for the operational
efficiency and must absolutely agree with several intricate conditions: vehicle composition rules,
maintenance constraints, and infrastructure capacities. This variety of requirements gives rise to
a very challenging competition on rolling stock rotation planning. Our productive optimization
software RotOR participates in this competition for one of the leading railway operators in
Europe: DB Fernverkehr AG (DBF). A distinguished feature of RotOR is the generation of
handouts for rolling stock rotations. In fact, even when RotOR finds rolling stock rotations
that can be proved to be optimal RotOR does not stop computing! That’s not a bug, that’s a
feature. In reality, it turns out that it is just not enough to compute a solution. We also have to
think about how to make it easy to manage. In simple words, we ask how to print a rolling stock

2 Optimization of Handouts for Rolling Stock Rotations Visualization

rotation on a physical paper? A good visualization of a rolling stock rotation is mandatory and
can not be neglected during the complex planning process that leads to the rotation’s operation.
We assume that a rolling stock rotation is given and is not allowed to be modified in this paper.
For this rotation, we introduce a function, i.e., handout that directly leads to a visualization,
see Section 2. A dedicated rotation can have many visualizations of different qualities. To
this end, we propose an optimization approach in Section 3. This approach is composed of an
integer program, a construction heuristic, and an improvement heuristic. These components are
described in detail in Section 3. We evaluate these algorithms for real-world rotations of DBF,
which we present in Section 4 of the paper. Finally, we provide a conclusion.

2 Rolling Stock Rotation Handouts

Visualizations of rolling stock rotations are made in order to conveniently communicate the
rotations in further planning steps. The methodology of these visualizations in terms of the
standard week is standardized across many railway companies from different (European) coun-
tries. For example, NS Reizigers from the Netherlands, the Österreichische Bundesbahn from
Austria, Trenitalia from Italy, and, of course, Deutsche Bahn are using the visualization concept
that we call handout concept. The vocabulary among these companies is not standardized, but
the methodology is exactly the same.

Imagine a directed graph D with a vertex for each trip of a cyclic timetable and an arc (t, t′)
between two trips t, t′ if a rolling stock vehicle operates t′ after t. The sequence of operated trips
of a rolling stock vehicle forms a cycle in D. We assume that each rolling stock rotation becomes
visualized separately. This assumption does not completely hold in industry, i.e., sometimes a
whole set of cycles is meant by a rotation and also the whole set of cycles is visualized together.
If several cycles are identified as a rotation in industry, a single cycle is called sub-rotation. The
explicit consideration of sub-rotations complicates notation and does not contribute any benefit
here. Therefore, we assume that we are given a single rolling stock rotation in this paper.

2.1 Handout Segments
By construction, each rolling stock rotation runs an integral number of times through the set of
operational days D until it reaches again its first trip. We denote this number by v ∈ Z+ for the
rolling stock rotation that we want to visualize. The number of rolling stock vehicles needed to
operate the rotation is also equal to v, i.e., v rolling stock vehicles run through the rotation one
by one.

For the visualization, we imagine a rolling stock rotation as a cycle that runs through
timetabled trips of a standard week, i.e., |D| = 7, as illustrated in Figure 1. Each number
inside of a box of Figure 1 describes a train number of a passenger train run of the timetable.
In order to find a convenient visualization, the rotation is split into |D| · v segments. A segment
represents the operation of the rotation on a single day of operation. In this way, the rolling
stock rotation with v = 2 in Figure 1 decomposes into |D| · v = 14 segments. A segment may be
empty, i.e., does not contain any timetabled trip at all.

Note that the assumption |D| = 7 is motivated by the fact that we consider the standard
week in most cases of our application. Nevertheless, all considerations in this paper also apply
to other non-trivial planning horizons. For example, five operational days could be considered if
one only plans for weekdays or |D| = 28 is applicable for handouts that visualize the operational
days of four weeks.

Let S be the set of segments of the rolling stock rotation to be visualized and let D(s) ∈
{Mon, . . . ,Sun} =: D denote the day of operation of the segment s ∈ S and the set of days of
operation, respectively. In addition, we denote by [v] := {k ∈ N | k ≤ v} the set of the first v

Ralf Borndörfer, Boris Grimm, Markus Reuther, Thomas Schlechte 3

3
7
4

M
o
n

1
0
6
1

374T
ue

1061

374

W
ed

1061
374

Thu

1061374

Fri

106
1

37
4

Sa
t

10
61

37
4

S
u
n1
0
6
1

2
7
7

M
o
n

9
9
4

37
3 T
ue

37
6

37
3

W
ed

376
373

Thu

376 373

Fri

376

373

Sat

376

373

S
u
n 3
7
6

Figure 1 Splitting of a rolling stock rotation with v = 2 into 14 segments.

natural numbers. A handout is a function Ω : S 7→ [v] such that

D(s) = D(t) ⇒ Ω(s) 6= Ω(t) ∀s, t ∈ S.

That is, Ω assigns different values of [v] to each pair of segments that are both associated with
the same day of operation. By definition, always exactly v segments of a rolling stock rotation
are associated with the same day of operation. Thus, if a handout Ω is at hand each segment
s ∈ S can be precisely identified by Ω(s) and D(s). This is an evident motivation for the concept
of handouts. For most of the rolling stock rotations in industry v is much greater than one.
Indeed, rolling stock rotations with v > 40 are not an exception at DBF. For those rotations
a handout obviously provides a significant gain: Segments can now be precisely distinguished
during all further planning steps. The major objective of a handout Ω is to create the standardized
visualization for rolling stock rotations that we mentioned above. Indeed,Ω completely defines
this visualization. The visualization appears by printing all segments one below the other such
that they are lexicographically ordered according to Ω and the day of operation. Figure 2 provides
two different visualizations (i.e., the two tables) derived from two different handout functions for
the rolling stock rotation of Figure 1. In both tables the first three columns state the value Ω(s)
for a segment s ∈ S associated with D(s). The underlying rolling stock rotation is not modified
by those visualizations. Therefore, the successor relations of the segments that are defined by the
rolling stock rotation remain. We denote by next(s) ∈ S that segment that directly follows s ∈ S
in the rotation. These successor relations are stated in the last columns of the two tables. The
rolling stock rotation that is visualized by a handout Ω can now be followed in the tables. For
example, for the direct successor t ∈ S of the segment s ∈ S (i.e., next(s) = t) with Ω(s) = 2 and
D(s) = Sun on the left of Figure 2 we know that Ω(next(s)) = Ω(t) = 1 and that D(t) = Mon
from the visualization. In this way, the successor segment t can be easily found and we are able
to double-check that both handouts in Figure 2 visualize the rolling stock rotation of Figure 1.

2.2 Handout Quality
The handout function Ω is extensively distributed as a planning tool in the railway industry. In
particular, the manual planning of rolling stock rotations is based on similar functions. There,

4 Optimization of Handouts for Rolling Stock Rotations Visualization

Ω(s) D(s) s ∈ S Ω(next(s))

1 Mon 374 1061 2

1 Tue 373 376 2

1 Wed 374 1061 2

1 Thu 373 376 2

1 Fri 374 1061 2

1 Sat 373 376 2

1 Sun 374 1061 2

2 Mon 277 994 1

2 Tue 374 1061 1

2 Wed 373 376 1

2 Thu 374 1061 1

2 Fri 373 376 1

2 Sat 374 1061 1

2 Sun 373 376 1

Ω(s) D(s) s ∈ S Ω(next(s))

1 Mon 374 1061 1

1 Tue 374 1061 1

1 Wed 374 1061 1

1 Thu 374 1061 1

1 Fri 374 1061 1

1 Sat 374 1061 1

1 Sun 374 1061 2

2 Mon 277 994 2

2 Tue 373 376 2

2 Wed 373 376 2

2 Thu 373 376 2

2 Fri 373 376 2

2 Sat 373 376 2

2 Sun 373 376 1

Figure 2 Two different handouts for the rolling stock rotation of Figure 1.

timetabled trips of a planned rotation are equipped with values of [v]. This is comprehensive
because such functions can be made visible (as we have seen for segments) and determine a large
part of the rolling stock rotations as well.

Thus, it is not surprising that the function Ω has some expectations in the railway industry.
For example, for all segments s ∈ S arranged in the left of Figure 2

Ω(next(s)) = (Ω(s) mod v) + 1 (1)

holds. If a successor relation follows equation (1) we call it logical turn. It is desired to have as
much logical turns as possible in a handout in order to obtain a visualization in that the rolling
stock rotations can be easily followed. Imagine that the segments are printed on paper in the
order given Ω. In case of a logical turn preceding and succeeding segments are printed very close
to each other. It is notable that it is not always possible to find a handout such that all successor
relations are logical turns. If we consider a handout that has the maximal number of logical
turns (i.e., |D| · v) and assume v = |D| · k for k ∈ Z+, we recognize (by following the logical
turns) that the handout visualizes seven individual sub-rotations. In this way, a single rotation
(without sub-rotations) with v = |D| · k for k ∈ Z+ can not have the maximal number of logical
turns.

By definition, Ω induces a natural partition of the segments of the rotation into blocks. All
segments s ∈ B of a block B ⊆ S have the same Ω(s), but a different day of operation. Therefore,
each block is of cardinality |D| and there are always exactly v blocks induced by a handout. On
the left hand side of Figure 2 the first seven segments B ⊂ S with Ω(s) = 1 for all s ∈ B form a
block1.

1 At DB Fernverkehr AG a block is called Umlauftag. This translates to the English term “rotation day”
or “day of rotation” which we do not use here.

Ralf Borndörfer, Boris Grimm, Markus Reuther, Thomas Schlechte 5

Another desired property (if not the most important) is related to the blocks of a handout.
For example, on the right hand side of Figure 2 we recognize that the first seven segments, (i.e.,
the segments of the first block) are all equal. We say that two segments u, v ∈ S with Ω(s) = Ω(t)
have a difference if they cover trips with different train numbers. In reality some more details
are taken into account for the quantification of differences but those details do not affect the
presentation here. A handout is desired to have as few differences in its blocks as possible. If the
number of differences is low, patterns can be easily remembered if they are arranged appropriately
in blocks. For example, the connection of trips with train number 374 to trips with train number
1061 is reflected in the handout on the right of Figure 2. This points out that a handout can only
contain fewer differences if appropriate patterns along the rotation exist. This is an important
requirement during rolling stock rotation planning. It is called regularity and is tackled by an
integrated hypergraph-based modeling approach for rolling stock rotations, see [2].

2.3 Handout Optimization Problem
Finding Ω is an optimization problem because many handouts of different quality w.r.t. logical
turns and differences exist for a given rolling stock rotation. We call this problem handout
optimization problem (HOP). In order to have a formal reference for this problem, we formulate
it as a quadratic assignment problem in this section. To this end, let xω

s ∈ {0, 1} be a binary
decision variable that takes value one if and only if Ω(s) = ω for the segment s ∈ S. In order to
qualify handouts we denote by diff(s, t) ∈ Z+ the number of different train numbers in s ∈ S and
t ∈ S with s 6= t. A straight-forward formulation of the HOP as a special quadratic assignment
problem (HOPQAP) reads as follows:

min
∑

ω∈[v]

∑

s,t∈S
s6=t

diff(s, t)xω
s x

ω
t − α

∑

s∈S

xω
s x

next(ω)
next(s)

 (HOPQAP)

∑

ω∈[v]

xω
s = 1 ∀ s ∈ S, (2)

∑

s∈S(d)

xω
s = 1 ∀ d ∈ D, ω ∈ [v], (3)

xω
s ∈ {0, 1} ∀ s ∈ S, ω ∈ [v].

Equalities (2) and (3) of program (HOPQAP) constrain the binary x-variables to perfectly match
all segments of S to pairs of D × [v], i.e., to form a perfect matching (i.e., an assignment) in a
bipartite graph that is composed of the two disjoint node parts S and D× [v]. Thus, any feasible
solution to program (HOPQAP) precisely defines a handout Ω where Ω(s) = ω if and only if
xω

s = 1. By the objective function of program (HOPQAP) we model both the minimization of
differences as well as the maximization of logical turns. To this end, quadratic terms are used.
Note that these two desired properties compete with each other. A handout that minimizes
differences may not maximize the number of logic turns and vice versa, see Figure 2. In general,
this leads to a bi-criteria optimization problem, but we only consider a single objective function
in model (HOPQAP) in this paper. In order to adjust the relationship between logical turns and
differences to a desired level, the parameter α ∈ Q is introduced. Note that the setting of α does
not lead to a proper prioritization of logical turns over differences or vice versa in our industrial
application at DBF.

I Theorem 1. The handout optimization problem is NP-hard even for α = 0.

Proof. For the 3-partition problem with n = 3k for n, k ∈ N the integer numbers a1, . . . , an ∈ N
fulfilling

∑n
i=1 ai = ka, a ∈ N are given. The problem is to decide whether there is a block

6 Optimization of Handouts for Rolling Stock Rotations Visualization

partition of the numbers a1, . . . , an into triples such that the sum over the three integers of one
triple sums up to a. We model an instance of the 3-partition problem as an instance of the HOP
(assuming α = 0) by introducing k blocks over a time horizon of a days as follows. For each
integer ai of the 3-partition instance ai identical segments are considered as segments of the HOP
instance. Two segments s, t ∈ S that originate from different integer values are considered to
have no differences, i.e., diff(s, t) = 0. Otherwise, i.e., if s and t belong to the same integer value
ai we define diff(s, t) = − 2ai

(n−1)n . It is easy to see that if and only if the objective value of the
respective HOP instance is −ka, a feasible 3-partition is at hand. This shows that the HOP is
NP-hard because the 3-partition problem is well known to be NP-hard as well, see [1] where a
similar argumentation is made for the (k, v)-balanced graph partitioning problem. J

3 Handout Optimization

In this section we show how the handout optimization problem (HOP) can be modeled and solved
via a mixed integer linear program. In addition, we provide fast construction and improvement
heuristics with which near-optimal solutions can be obtained very quickly. The intention of
the heuristics is to prevent the generation of the handouts from consuming more computation
time than the proper optimization of the rolling stock rotations themselves (RotOR reports
all intermediate solutions to the user). Nevertheless, we consider the IP model in this paper
in order to evaluate the quality of the solutions obtained from the heuristics. In addition, we
will see that program (HOPQAP) is not always trivially solvable and that the solution obtained
from the heuristics can significantly contribute to standard integer programming algorithms. In
fact, when RotOR is used with default settings the MIP model is not used for the creation of
handouts. Instead, the heuristic procedure is called, which is described in detail in Sections 3.2
and 3.3. For the sake of simplicity, we assume α = 1 for the parameter that weighs logical turns
and differences in the objective function of the HOP from now on.

3.1 Handouts via Integer Programming

In this section we present an integer programming (IP) model for the HOP. An IP formulation for
the HOP derives from program (HOPQAP) as follows. The main idea is to linearize its quadratic
objective function by introducing two types of additional variables. We use the first type, namely
the y-variables in order to model the minimization of differences. The second variable type, i.e.,
the z-variables are introduced in order to linearize the objective function in terms of logical turns.
Program (HOPMIP) states our linear IP formulation for the HOP:

Ralf Borndörfer, Boris Grimm, Markus Reuther, Thomas Schlechte 7

min
∑

ω∈[v]

∑

s,t∈S
s6=t

diff(s, t) yω
s,t − α

∑

s∈S

zs (HOPMIP)

∑

ω∈[v]

xω
s = 1 ∀ s ∈ S, (4)

∑

s∈S(d)

xω
s = 1 ∀ d ∈ D, ω ∈ [v], (5)

∑

t∈S(d)

yω
s,t = xω

s ∀ s ∈ S, ω ∈ [v], d ∈ D \ {D(s)}, (6)

xω
s − xnext(ω)

next(s) ≤ 1− zs ∀ s ∈ S, ω ∈ [v], (7)

xω
s ∈ {0, 1} ∀ s ∈ S, ω ∈ [v], (8)

yω
s,t ∈ Q+ ∀ s, t ∈ S, ω ∈ [v], (9)
zs ∈ Q+ ∀ s ∈ S. (10)

In program (HOPMIP) the x-variables and constraints (4) as well as (5) are exactly taken
over from program (HOPQAP) of Section 2. The y- and the z-variables are continuous, but they
automatically take binary values if the x-variables are all binary in a solution. This is easy to
see if their organization is understood via the following explanation.

y-variables.

Assume a solution (i.e., handout) with Ω(s) = ω, i.e., xω
s = 1 holds for the segment s ∈ S. Since

s is assigned to the block ω the solution contains |D| − 1 other segments in block ω. In order
to measure the differences of s to the other segments of the block we use the y-variables. The
variable yω

s,t ∈ {0, 1} with s, t ∈ S and ω ∈ [v] is a binary decision variable such that: If and only
if yω

s,t = 1 we have Ω(s) = Ω(t) = ω for s ∈ S and t ∈ S, i.e., the segments s and t belong to the
same block ω if and only if yω

s,t = 1. In order to force the correct configuration of the y-variables
w.r.t. the x-variables we introduce the constraints (6), which work as follows. Again, assume a
solution with xω

s = 1 for the segment s ∈ S. Now consider one dedicated constraint of type (6)
associated with the segment s, the block ω, and a day d that is different to D(s). This constraint
configures exactly one y-variable to take value one. This variable is associated with one other
segment t ∈ S(d) such that Ω(t) = ω and D(t) = d holds. Under this construction it is easy to
linearize the first part of the objective function of program (HOPQAP) by the y-variables as it is
denoted in program (HOPMIP). The combinatorial structure that is implied by the y-variables
in a solution can be interpreted as follows. It is a set of v cliques with |D| nodes each in the
undirected graph (V,E) with V := S × [v] and E = V × V . Each clique corresponds to a block
where each two segments of one block are connected by an edge of the clique. Each of the clique’s
edges is used to measure the differences of the connected segments.

z-variables.

As already mentioned, the z-variables are responsible for the contribution to the objective func-
tion value in terms of logical turns. The variable zs that is associated with the segment s ∈ S
equals one if and only if s is followed by a logical turn in the handout. More precisely, if zs = 1
equation (1) holds for s ∈ S and its succeeding segment next(s) ∈ S. This is accomplished via
constraints (7) of program (HOPMIP). If zs = 1, the solution needs to fulfill xω

s ≤ xnext(ω)
next(s) for all

ω ∈ [v], which is precisely the case if s is followed by a logical turn.

8 Optimization of Handouts for Rolling Stock Rotations Visualization

3.2 Construction Heuristic
In this section, we present an algorithm that creates a feasible handout, which is not necessarily
optimal, i.e., we introduce a construction heuristic. The procedure is subdivided into two stages
as it is outlined by Algorithm 1. There, the segments are partitioned into blocks but without
assigning a value to them. This is the first stage. In the second stage a value of [v] is assigned to
each of these blocks. Consequently, the segments take over the values assigned to each block in
that they are contained. The sum of differences of the segments within the blocks is minimized
in the first stage, while the number of logical turns is maximized in the second stage.

1 handoutConstructionHeuristic(S) // S i s the s e t o f segments
2 {
3 // p a r t i t i o n S i n t o b l o c k s B = {B1, . . . , Bv} , Bi ⊆ S , |Bi| = |D|
4 B := minimizeDifferences(S) ;
5
6 // compute b i j e c t i o n ΩB : B 7→ [v]
7 ΩB := maximizeLogicalTurns(B) ;
8
9 // f i n a l l y c r e a t e Ω : S 7→ [v]

10 for (B ∈ B) { for (s ∈ B) { Ω(s) := ΩB(B) ; } }
11 }

Algorithm 1 Two-stage construction heuristic for HOP

The first stage of the handout construction heuristic is denoted in Algorithm 2. Up to
line 5 the set of blocks is initialized such that each block contains exactly one segment associated
with Monday (where Monday is arbitrary). Afterwards, the blocks are iteratively increased. This
iteration is made for each day of operation independently. In one iteration an assignment problem
is set up and solved with an O(|V |3) implementation of the classical Hungarian method, see [4].
The denoted program in line 12 can be seen as a standard assignment problem in a bipartite
graph in that the two node parts are formed by the set S(d) (all segments associated with the
day of operation in the current iteration) and the set of blocks B. A (binary) variable zsB decides
if the segment s ∈ S(d) is assigned to the block B ∈ B. Note that, these z-variables are different
from those in (HOPMIP). The objective function of the assignment problem is configured for the
minimization of differences.

The second stage of the handout construction heuristic is denoted in Algorithm 3. The
blocks B = {B1, . . . , Bv} with |B| = |D| for all B ∈ B that are created in the first stage serve
as input data for this procedure. It remains to assign a value of [v] to each block of B. In
other words, a permutation of the blocks B has to be found. This is an Asymmetric Travelling
Salesman Problem (ATSP) in that the blocks B take over the role of the cities and the weight of
a connection between blocks corresponds to the number of logical turns between them. Note that
this ATSP instance has a slightly special objective function, which makes it non-obvious to derive
an alternative NP-hardness proof if one assumes that the blocks are already built. We also solve
this ATSP instance heuristically as denoted in Algorithm 3. At first, the assignment relaxation
of the ATSP is set up and solved. There, each binary variable zB1B2 is defined to be equal to one
if and only if block B2 ∈ B is the directed successor of block B1 ∈ B in the handout (assuming no
subtours). Possibly appearing subtours are patched in order to form a proper Hamiltonian cycle
through the blocks B. The objective function that is taken into account during this procedure
corresponds to the maximization of logical turns, see line 6 of Algorithm 3.

Ralf Borndörfer, Boris Grimm, Markus Reuther, Thomas Schlechte 9

1 minimizeDifferences(S) // S i s the s e t o f segments
2 {
3 B := ∅ ;
4 // i n i t i a l i z e b l o c k s
5 for (s ∈ S : D(s) = Mon) { B := B ∪ {s} ; }
6
7 for (d ∈ D \ {Mon})
8 {
9 S(d) := {s ∈ S |D(s) = d} ; // |S(d)| = v

10
11 // as s i gn segments o f S(d) to b l o c k s B by s o l v i n g

12 min

∑
s∈S(d)

∑
B∈B

∑
sB∈B

diff(s, 1, sB) zsB

∣∣∣∣∣∣∣∣∣

∑
s∈S(d)

zsB = 1 ∀B ∈ B,
∑

B∈B
zsB = 1 ∀ s ∈ S(d),

zsB ∈ {0, 1} ∀ s ∈ S(d), B ∈ B

13
14 // update b l o c k s B accord ing to the opt imal assignment
15 for (B ∈ B) { for (s ∈ S : zsB = 1) { B := B ∪ {s} ; }
16 }
17 }

Algorithm 2 First stage of handout construction heuristic

1 maximizeLogicalTurns(B) // B are v b l o c k s o f segments
2 {
3 // compute assignment r e l a x a t i o n o f
4 // ATSP over the graph (B,B × B)
5

6 max

∑
B1∈B

∑
B2∈B

∑
s1∈B1,
s2∈B2 :

ss=next(s1)

zB1B2

∣∣∣∣∣∣∣∣∣

∑
B1∈B

zB1B2 = 1 ∀B2 ∈ B,
∑

B2∈B
zB1B2 = 1 ∀B1 ∈ B,

zB1B2 ∈ {0, 1} ∀B1, B2 ∈ B

7
8 // compute ΩB : B 7→ [v] by pa tch ing sub tour s :
9 i := 1 ;

10
11 for (B1 ∈ B)
12 {
13 i f (ΩB(B1) i s not computed yet)
14 {
15 ΩB(B1) := i ;
16 B1 := B2 ; // s.t. zB1B2 = 1
17 i := i+ 1 ;
18 goto 13 ;
19 }
20 }
21 }

Algorithm 3 Second stage of handout heuristic

Finally, the following is easy to see but not natural in general for construction heuristics and,
therefore, remarkable:

I Corollary 2. Algorithm 1 always produces a feasible handout.

10 Optimization of Handouts for Rolling Stock Rotations Visualization

3.3 Improvement Heuristic
Since the handout construction heuristic from the previous section may not compute an optimal
handout, it is worth considering ways to improve the quality of the constructed handout. To this
end, we present an adaptation of the famous Kernighan-Lin heuristic for the graph partitioning
problem, see [3]. Let Ω be a feasible handout and let quality(Ω) ∈ Q be the negative of the
objective function value of program (HOPQAP) for xω

s = 1 if and only if Ω(s) = ω for all
segments s ∈ S. Further, let Ωs,t for s, t ∈ S with D(s) = D(t) be the resulting handout that
derives from Ω by interchanging s and t, i.e., Ωs,t(s) := Ω(t), Ωs,t(t) := Ω(s), and Ωs,t(o) := Ω(o)
for o ∈ S \ {s, t}. We define

gain(Ω, s, t) := quality(Ωs,t)− quality(Ω)

as the quality gain that we obtain if we interchange s ∈ S and t ∈ S with D(s) = D(t) in Ω. The
interchange operation can be seen as an 1-opt move. The idea of the Kernighan-Lin procedure
is to find beneficial k-opt moves that are iteratively composed by chaining 1-opt moves. This is
illustrated in Algorithm 4, which is always initiated with the best known handout and G := 0.
The procedure always chooses an interchange that maximizes the quality gain, see line 3. If such
an interchange already gives an improvement, the incumbent handout Ω? is updated. The main
idea of the partitioning procedure that was introduced by Kernighan and Lin is to increase the
k-opt move by further 1-opt moves, but only if the gain over all previous moves is positive, see
line 7. This criterion is known as positive gain criterion and leads to a significant increase of the
look-ahead since it allows investigating 1-opt moves with gain(Ω, s, t) < 0. This criterion was
latter also successfully applied to the symmetric TSP, see [5]. Within RotOR we call Algorithm 4
as long as no further improvement is found.

1 handoutImprovementHeuristic(Ω , G) // Ω : S 7→ [v] , G i s the current gain
2 {
3 (s, t) := argmax{ gain(Ω, s, t) | s, t ∈ S : D(s) = D(t) } ; // choose i f not unique
4
5 i f (quality(Ωs,t) > quality(Ω?)) { Ω? := Ωs,t ; } // update incumbent handout
6
7 i f (G+ gain(Ω, s, t) > 0) // go ahead whenever gain i s p o s i t i v
8 {
9 handoutImprovementHeuristic(Ωs,t , G+ gain(Ω, s, t)) ;

10 }
11 }

Algorithm 4 Handout Improvement Heuristic: Ω? is considered as a global vari-
able that stores the incumbent handout. The recursion is initialized by calling
handoutImprovementHeuristic(Ω, 0).

4 Computational Results

In this section we present computational results for the optimization of handouts. We implemen-
ted and integrated the proposed algorithms within RotOR. The considered HOP instances are
based on optimized rolling stock rotations also computed by RotOR for real world instances
provided by DB Fernverkehr AG. They differ in characteristics as number of trips, fleet sizes to
cover the trips, or possible connections of trips. In particular, these instances represent a wide
spectrum of problem sizes of interest in practice. All computations were performed on CPU
with 3.50GHz, 16GB of RAM in multi thread mode with four cores using Gurobi 6.0 with a
runtime limit of one hour (3600 seconds).

We consider the following three solution approaches to the HOP:

Ralf Borndörfer, Boris Grimm, Markus Reuther, Thomas Schlechte 11

Table 1 Computational results for handout optimization problems.

v columns rows δ1 δ3 t1 t2 t3 c1 c2 c3

2 182 208 0 0 0.01 0.99 0.01 36 36 36
3 588 426 0 0 0.16 0.61 0.15 111 111 111
4 1372 720 0 0 0.87 0 0.86 100 100 100
5 2660 1090 1 0 5.43 0.99 2.50 160 165 160
6 4578 1536 0 0 5.61 0.71 4.98 220 221 220
7 7252 2058 0 0 13.25 0.03 14.02 212 214 212
8 10808 2656 0 1 115.42 0.99 291.24 195 197 195
9 15372 3330 1 2 2621.30 1.25 3600.03 286 292 286
10 21070 4080 1 1 228.52 0.49 447.97 375 377 375
11 28028 4906 13 13 3600.01 1.25 3600.01 463 478 464
12 36372 5808 1 1 1839.42 0.42 1113.20 492 498 492
12 36372 5808 9 8 3600.01 1.25 3600.01 736 743 728
13 46228 6786 1 1 3600.01 0.61 3600.01 546 546 546
13 46228 6786 12 12 3600.01 0.99 3600.01 590 593 588
15 70980 8970 11 9 3600.01 0.55 3600.01 368 372 367
17 103292 11458 62 17 3600.01 0.55 3600.02 1141 522 520
18 122598 12816 7 7 3600.02 0.42 3600.06 952 959 951
23 255668 20746 8 7 3600.03 0.61 3600.05 1294 1286 1281
25 328300 24450 44 9 3600.12 1.25 3600.16 3233 1998 1990
29 512372 32770 ∞ 7 3600.00 0.49 3600.00 - 1470 1468
31 625828 37386 7 7 3600.11 0.71 3600.07 1528 1530 1527
31 625828 37386 46 9 3600.08 0.99 3600.07 3371 2006 1991

1. static solving of the MIP formulation (HOPMIP) with Gurobi 6.0,

2. a sequential heuristic approach of Algorithm 1 and Algorithm 4, and

3. a MIP approach using the solution of approach 2 as warmstart.

Table 1 provides the results of these three solution approaches for our test set. The number of
vehicles v range from 2 to 31, see the first column of Table 1. As a consequence, we have to solve
different models of HOPMIP. The corresponding number of columns and rows of (HOPMIP) are
given in columns two and three. Columns δ1 and δ3 provide the final relative gap for approach
1 and 3, respectively. Note that we explicitly refuse to include δ2 because without approach
1 it would not be possible to provide a quality measure for approach 2. The relative gap is
defined between the best integer objective UB and the objective of the best lower bound LB as
100 · UB−LB

UB . The last six columns show the computation time ti and the final cost value ci for
all three approaches i ∈ {1, 2, 3}.

In all cases the heuristic finds solutions within at most two seconds, see column t2. By using
the MIP approach we are able to benchmark the quality of the heuristic solutions, see the values
in columns, c1 to c3. This impressively demonstrates the high quality of the solutions provided
by approach 2. In addition, for the larger instances, e.g., v > 15, the warmstart approach is
beneficial in comparison to static MIP approach, see column δ1 and δ2. For example the static
MIP approach was not able to provide any solution for the scenario with 29 vehicles after one
hour. In contrast to that the approach 3 provides a solution with a gap of at most 7%. Note
that the MIP was only able to improve the heuristic solution with value 1470 to 1468 after one
hour. For the complete set of instances one could observe that approach 3 improves the solution
quality after one hour of at most 1%. Thus, we conclude that approach 2 is a very powerful
heuristic to solve real world instances of the HOP.

12 Optimization of Handouts for Rolling Stock Rotations Visualization

5 Conclusion

The construction of handouts for given rolling stock rotations is a crucial task which is widespread
and common in practice. In contrast, the problem is not at all investigated in the operations
research literature. We introduced the handout visualization problem for rolling stock rota-
tions and developed an optimization approach, i.e., an IP formulation. Moreover, we designed
a heuristic solution approach based on a assignment-based construction heuristic and a classical
combinatorial Kernighan-Lin procedure in order to construct high quality handouts fast. By
means of the IP formulation, and the resulting lower bounds, we are able to benchmark the heur-
istic approach. The results for the test set provided by our project partner DB Fernverkehr AG
demonstrate that the proposed heuristic is a very fast and powerful approach.

References
1 K. Andreev and H. Räcke. Balanced graph partitioning. Theory of Computing Systems,

39(6):929–939, 2006.
2 R. Borndörfer, M. Reuther, T. Schlechte, and S. Weider. A Hypergraph Model for Rail-

way Vehicle Rotation Planning. In Alberto Caprara and Spyros Kontogiannis, editors, 11th
Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Sys-
tems, volume 20 of OpenAccess Series in Informatics (OASIcs), pages 146–155, Dagstuhl,
Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

3 B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 49(2):291–307, 1970.

4 H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2(1-2):83–97, 1955.

5 S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21(2):498–516, 1973.

