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Abstract

The problem of allocating operating rooms (OR) to surgical cases is a challenging
task, involving both combinatorial aspects and uncertainty handling. In this article, we
formulate this problem as a job shop scheduling problem, in which the job durations
follow a lognormal distribution. We propose to use a cutting-plane approach to solve a
robust version of this optimization problem. To this end, we develop an algorithm based
on �xed-point iterations to solve the subproblems that identify worst-case scenarios and
generate cut inequalities. The main result of this article uses Hilbert's projective geometry
to prove the convergence of this procedure under some mild conditions. We also present
two extensions of our model, that allow to deal with add-on jobs (emergency arrivals),
and to balance the load over several planning period in a rolling horizon. We present
extensive numerical experiments for instances based on real data from a major hospital
in Berlin. In particular, we �nd that: (i) the present robust optimization approach �that
protects against likely scenarios from the lognormal durations� perform well compared to
a previous model that ignored the distribution of case durations; (ii) the proposed model is
able to e�ciently reserve capacity for emergency arrivals; (iii) compared to an alternative
stochastic programming approach based on the sample average approximation (SAA),
robust optimization yields solutions that are a bit more robust against uncertainty, at a
small price in terms of average cost; (iv) However the SAA approach is superior to the
robust optimization approach for instances in which the total duration of all cases is very
likely to exceed to total available time in all ORs.

1 Introduction

The operating theater (OT) is one of the most expensive hospital resources. Recent studies
indicate that in certain hospitals, surgical interventions concentrate up to 70% of all patient
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admissions, and as much as 40% of the total expenses [8]. The management of the OT is
a very complex task, which involves several hierarchical decision levels and combinatorial
aspects for many di�erent types of resources (Operating rooms, surgeons, nurses, anesthe-
siologists, etc.), all this in an uncertain environment (surgical durations, emergency cases,
availability of recovery beds). For this reason, there has been a considerable e�ort to develop
optimization procedures to improve the management of resources in the operating theater;
We refer the reader to [12] for a comprehensive review of the operations research literature
on OT management.

This paper focuses on the problem of allocating operating rooms to patients, typically on
the day prior to operation. More precisely, the goal is to assign operating rooms (OR) to
a list of patient blocks, that is, groups of elective patients to be operated one after another
by the same surgical team. This is a crucial planning step for the two widespread planning
processes, namely the block-scheduling and the open-scheduling systems. The former system
assumes that individual surgeons or surgical teams have prede�ned slots of OR-time allocated
in a periodic schedule, and cases are booked within these slots. In contrast, the latter system
�lls an empty schedule with cases until the day of operation, by taking into account medical
priorities and total waiting times of the patients.

The e�ciency of the OT can be measured by a combination of the number of under-
utilized hours and the number of over-utilized hours in the operating rooms [10]. However, a
few days before the day of surgery, the sta� has already been scheduled, and so the authors
of the previous article claim that under-utilized time does not cause a loss of revenue for the
surgical suite. This is consistent with [17], where it is shown that on a short-term perspective,
the goal is solely to minimize the overtime in the OR. However, under-utilization of the OR
can still have indirect costs on a rather short-term perspective (even with a �xed sta�ng).
This happens, e.g., when a case could have been scheduled on day j without causing overtime,
but is scheduled on day j + 1 in overtime. To deal with this issue while keeping a one-day
horizon, we will propose an extended version of our model with deferral costs in Section 4.2.
Also, in this paper we consider a �xed cost for opening an OR, as proposed in the model
of [9].

The bene�ts of robust optimization methods to handle uncertainty have been demon-
strated in several articles that we will review in Section 1.1. However, one caveat of these
approaches is that no speci�c assumption is made on the distribution of surgical durations.
It is well-known that surgical durations can be well modelled by heavy tailed distributions, in
particular there is a close �t with lognormal distributions, see e.g. [27, 14] and the references
therein. Therefore, we expect departures from the nominal scenario to be highly nonlinear, a
fact poorly captured by existing approaches.

In this paper, we propose to remedy this problem by using a cutting-plane approach to
solve a robust optimization problem that protects against all scenarios in a con�dence region
of the lognormal distribution. The problem we study is a variation of a problem introduced
in [9]. We present this problem and the cutting-plane approach in Section 2. Then, we
study the adversarial problem in Section 3, that is, the problem that generates new cuts
by identifying the worst case scenario for a given allocation. In particular, our main result
is stated in Proposition 3.2; we show with the help of Hilbert's projective metric that �xed
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point iterations can be used to solve very e�ciently the adversarial problem, although this
is a non-convex optimization problem. Two important extensions of our model are presented
in Section 4: the �rst one allows one to reserve room capacity for emergency cases, and the
second one can be used in a rolling horizon approach, in which we also select the patients to be
operated next. Finally, we present numerical results for the application to OR management
in Section 5.

Throughout this article, we adopt the terminology of the job shop schedul-

ing literature because we believe that the problem studied here could have other �elds of
application. Hence, patient blocks are called jobs and operating rooms are called

machines.

1.1 Related work

To the best of our knowledge, one of the �rst paper to consider the problem of allocating
operating rooms to a list of surgical procedures is [22], who proposed a mixed integer pro-
gramming (MIP) formulation to minimize the under- and overutilization of the ORs. This
paper makes the assumption that all the procedures of a given practitioner are performed in
the same OR. This is also the approach that we adopt in the present article (patients to be
operated by the same surgical team are grouped in a block), for two main reasons:

1. When a surgeon perform two procedures in two di�erent ORs, there is a risk that the
�rst procedure takes longer than expected, which induces waiting time in both ORs
and generates overtime. In contrast, it is known that planning all the procedures of
one surgeon in a single OR is a guarantee of stability, a feature desired by many OR
planners, in particular at the Charité hospital in Berlin.

2. Mathematical formulations allowing a practitioner to change of OR within a day are
much harder to solve, because they involve so-called big-M constraints to avoid that
two procedures performed by the same surgeon take place at the same time.

We are aware that in some cases, in particular when the number of surgeons is a bottleneck
for the planning, it might be better to let practitioners alternate between two rooms, so they
can perform surgery in room B while room A is being cleaned-up and prepared for the next
patient. This is the approach used for example in [23, 24]. where MIPs are proposed to
solve a resource constrained scheduling problem. However, these approaches only consider
the deterministic case, probably because of the very large number of variables and constraints.
Moreover, as mentioned above, these MIPs include particular constraints that cause branch-
and-bound solvers to make slow progress. One exception is the work of [16], where a stochastic
programming approach is proposed to schedule procedures for one surgeon operating in two
ORs.

Since the end of the 90's, many papers have demonstrated the bene�ts of robust optimiza-
tion (RO) to handle uncertainty. In many cases, it o�ers tractable mathematical formulations
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which are much easier to solve than their stochastic programming counterpart [2, 4]. More-
over, RO o�ers the possibility to tune the budget of uncertainty to choose the trade-o� between
performance and robustness.

This trend was also observed in the literature on OT management. A non-exhaustive
list of recent contributions using robust optimization follows: The authors of [13] allocate
slack times in each OR to reduce the risk of overtime; A RO model is proposed in [1] to
allocate patients to OR-blocks (in a block-scheduling system), by considering their individual
due-dates; A closely related paper is [25], where a similar problem is handled by means of
chance-constrained optimization, by assuming normal distribution of the surgical durations;
A distributionally robust model is proposed in [18], to select elective admission ratios in order
to balance bed occupancy.

The present paper builds on a robust optimization problem introduced by [9]. This paper
presented a MIP model (called MRORA) to �nd an optimal allocation of the ORs, robust against
all duration scenarios d for the patient blocks in the uncertainty set

D
MRORA

= {d ∈ Rn : ∀i, `i ≤ di ≤ ui;
∑
i

di − `i
ui − `i

≤ τ}, (1)

where the parameter τ controls the budget of uncertainty. As mentioned earlier, we know that
surgical durations have a good �t with the lognormal distribution. Therefore, we think that
the budget of uncertainty should be spent in a logarithmic fashion, a fact not represented
by the set D

MRORA
or the assumptions of the other articles cited above. This motivates our

approach to develop a RO model that is more suited for lognormal-like durations.

2 Problem Formulation

Throughout this article, plain italics denote scalars and lowercase boldface symbols denote
vectors. In particular, the vector with elements vi is denoted by v. The symbol Diag(v)
represents the diagonal matrix with elements vi on the diagonal, and 0n is the zero vector
of dimension n. We use the notation R+ for the set of nonnegative real numbers, and ‖ · ‖p
denotes the usual `p−norm. The expected value of a random variable X is denoted by E[X],
and P[E] stands for the probability of the event E.

We denote by J and M the sets of jobs and machines, of respective cardinality n and
p. The binary variable zm indicates whether machine m ∈ M is activated, and the binary
variable xjm tells whether job j is allocated to machine m. Each job must be allocated to
one activated machine, so the set of all feasible solutions reads

X :=

{
(x, z) ∈ {0, 1}n×p × {0, 1}p :

∀j ∈ J ,
∑

m∈M xjm = 1;
∀j,m ∈ J ×M, xjm ≤ zm

}
.

Denote by Tm the time available on machine m (if it is activated), cmf the �xed cost for
activating machine m and cmo the cost of overtime per unit of time on machine m. If the
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duration of job j is dj > 0, the total cost of an allocation (x, z) ∈ X can be measured as

F (x, z;d) :=
∑
m∈M

cmf zm + cmo

∑
j∈J

xjmdj − Tm

+

,

where (u)+ := max(u, 0) denotes the nonnegative part of u ∈ R.
In this paper, we consider the problem of �nding the allocation (x, z) minimizing the

overtime, while protecting ourselves against a set of likely scenarios D. This leads to the
following robust optimization problem:

min
(x,z)∈X

max
d∈D

F (x, z;d). (2)

We propose to use a cutting plane approach to solve Problem (2). Given a �nite set

of scenarios D̂ = {d(i) : i ∈ S} ⊆ D, we �rst observe that the restricted master problem
min(x,z)∈X maxd∈D̂ F (x, z;d) can be formulated as a mixed integer linear program:

min
x,z,∆,δ

∑
m∈M

cmf zm + ∆ (3a)

s.t. δim ≥
∑
j∈J

xjmd
(i)
j − zmTm, ∀i ∈ S,∀m ∈M, (3b)

δim ≥ 0, ∀i ∈ S,∀m ∈M, (3c)

∆ ≥
∑

m∈M
cmo δim, ∀i ∈ S, (3d)

(x, z) ∈ X (3e)

The objective function (3a) minimizes the �xed cost
∑

m c
m
f zm and the robust overtime

cost ∆, equations (3b) and (3c) de�ne the overtime δim for machine m and scenario d(i),
and (3d) makes sure that ∆ is the worst-case overtime cost over all scenarios in D̂. Finally, (3e)
ensures that (x, z) is a valid allocation.

We also point out that when several machines have the same values for cmf , c
m
o and Tm,

it is possible to strengthen the above formulation by using symmetry-breaking constraints;
see [9]. Also, note that we can drop the integer constraints on the variables zm, because the
continuous variable zm ∈ [0, 1] always takes the value 0 or 1 at the optimum.

Next, we introduce the adversarial problem, which, given a solution (x∗, z∗) of the re-
stricted master problem (3), �nds the worst scenario within the uncertainty set D,

max
d∈D

F (x∗, z∗;d). (4)

The cutting plane algorithm to solve Problem (2) can be summarized as follows. Start with
D(1) = {d̄}, where d̄i is the expected value of di. At iteration k ∈ N, solve Problem (3)
for D̂ = D(k) and set (x(k), z(k)) to the optimal solution. Then, solve Problem (4) with
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(x∗, z∗) = (x(k), z(k)), insert the worst case scenario d(k) in the restricted uncertainty set,
D(k+1) = D(k) ∪ {d(k)}, and iterate.

It is straightforward that at each iteration, the optimal value of Problem (4) is an upper
bound for the value of (2), while the optimal value of (3) provides a lower bound. Clearly,
this process �nishes after a �nite number of steps, because X is �nite, and x(j) = x(k) with
j < k would indicate that the process has converged at iteration k; cf. [19]. This cutting-plane
approach is summarized in Algorithm 1, where we use an additional tolerance parameter ε > 0
to speed-up the convergence.

We also point out that this process can also be re�ned by generating worst-case scenarios
directly at nodes of the branch-and-bound tree of the MIP (3); see [3] for mode details.

Algorithm 1 (ROBUST_CUTS)

Input: Instance de�ned by: J ,M, D ⊆ R|J |+ ,
∀m ∈M, cmo , c

m
f , Tm ∈ R+,

nominal scenario d̄ ∈ D,
tolerance parameter ε > 0;

Output: ε−approximate solution (x∗, z∗) of Problem (2).
1: L← 0
2: U ← +∞
3: D̂ ← {d̄}
4: while U > (1 + ε)L do

5: (x∗, z∗)← optimal solution of the restricted master problem (3)
6: F ∗ ← optimal value of the restricted master problem (3)
7: L← max(L,F ∗)
8: d∗ ← optimal solution of the adversarial problem (4)
9: U ← min(U,F (x∗, z∗;d∗))
10: D̂ ← D̂ ∪ {d∗}
11: end while

12: return (x∗, z∗)

As mentioned in the introduction, this work is motivated by an application to surgery
scheduling, where each job typically follows a log-normal distribution. In the next section,
we show how to solve Problem (4) e�ciently for adequate uncertainty sets.

3 Solving the adversarial problem

If we assume that log dj ∼ N (µj , σ
2
j ), it is natural to consider an uncertainty set of the form

D := {d ∈ Rn+ : log(d) ∈ E}, where E :=
{
y ∈ Rn :

∑n
j=1 σ

−2
j (yj − µj)2 ≤ r2

}
for some

r > 0. Note that the set D de�ned above is simply a log-transformation of some con�dence
ellipsoid of the multivariate normal law N (µ,Diag(σ)2).

Problem (4) may be reformulated as

max
ε∈{0,1}p

max
d∈D

∑
m∈M

cmf z
∗
m + εmc

m
o (
∑
j∈J

x∗jmdj − Tm), (5)
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which reduces to solving the inner maximization problem for the 2p values of the vector
ε ∈ {0, 1}p. Now, we make the change of variable yj = log dj . For a �xed ε, the value of the
inner maximization problem equals∑

m∈M
cmf z

∗
m − εmcmo Tm + max

y∈E

∑
j∈J

uje
yj , (6)

where we have set uj :=
∑

m∈M εmc
m
o x
∗
jm ≥ 0. If we put aside the trivial case u = 0, the

necessary Karush-Kuhn-Tucker (KKT) conditions for the maximization problem in (6) can
be written as follows:

∃λ > 0 :

{
∀j ∈ J , λ(yj − µj)σ−1

j = σjuje
yj∑

j∈J (yj − µj)2σ−2
j = r2,

(7)

where λ is a Lagrange multiplier. We can �nd the value of λ by substituting (yj − µj)σ−1
j =

λ−1σjuje
yj in the second equation: λ = r−1(

∑
j σ

2
ju

2
je

2yj )1/2. Substituting back in the �rst
equation, we �nd that for all j ∈ J ,

(yj − µj)(rσj)−1 = σjuje
yj (
∑
j

σ2
ju

2
je

2yj )−1/2.

In other words, the vector w := Diag(rσ)−1(y − µ) is a �xed point of the map g : w 7→
f(w)/‖f(w)‖ which maps the unit sphere of Rn onto itself, where

f(w) := σ ◦ u ◦ exp(µ+ rσ ◦w),

the exponential is elementwise, and ◦ denotes the Hadamard (elementwise) product: (a◦b)i =
aibi.

The next results give a condition �almost always veri�ed in practice, cf. discussion in
Section 3.2� which guarantees that �xed point iterations of g converge, and we can use
the �xed point to �nd a global optimum of (6). To do this, we prove the following result,
which relies on Hilbert's projective metric dH on the cone K := {x ∈ Rn : x > 0}. It is
de�ned by ∀x,y ∈ K, dH(x,y) := log maxi

xi
yi

+ log maxj
yj
xj
. Note that dH is actually a

metric over the space of rays of the cone K. However, dH de�nes a metric over the subsets
K(1) := {x ∈ K : ‖x‖1 = 1} or K(2) := {x ∈ K : ‖x‖2 = 1}.

We list hereafter a few important properties of dH , which are proved e.g. in [20]:

(i) ∀x,y ∈ K, dH(x,y) = 0 implies x = αy for some α > 0

(ii) ∀x,y ∈ K, dH(x,y) = dH(y,x)

(iii) ∀x,y ∈ K, ∀λ > 0, dH(x, λy) = dH(x,y)

(iv) ∀x,y ∈ K, ∀u ∈ K, dH(u ◦ x,u ◦ y) = dH(x,y)

(v) (K(2), dH) is a complete metric space.
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Algorithm 2 (LOGNORMAL_ADVERSE)

Input: Instance de�ned by: ∀m ∈M, cmo , c
m
f , Tm ∈ R+,

Parameters for the uncertainty set D: µ ∈ Rn,σ ∈ Rn+, r > 0,
Solution of the RMP (x∗, z∗),
tolerance parameter ν > 0.

Output: ν−approximate solution d ∈ D of Problem (4).
1: OPT ← 0
2: d∗ ← 0n
3: for all ε ∈ {0, 1}p, ε 6= 0p do
4: uj ←

∑
m∈M εmc

m
o x
∗
jm (∀j ∈ J )

5: w(0) ← 0n
6: ∆← +∞
7: i← 0
8: while ∆ > ν do

9: f ← σ ◦ u ◦ exp(µ+ rσ ◦w(i))
10: w(i+1) ← f

‖f‖2
11: ∆← ‖w(i+1) −w(i)‖2
12: i← i+ 1
13: end while

14: d← exp(µ+ rσ ◦w(i))
15: OPTε ←

∑
m∈M cmf z

∗
m + εmc

m
o (
∑

j∈J x
∗
jmdj − Tm)

16: if OPTε > OPT then

17: OPT ← OPTε
18: d∗ ← d
19: end if

20: end for

21: return d∗

The next result gives the Lipschitz constant of the (elementwise) exponential function
over K(2). It will be useful to ensure the convergence of �xed point iterations of g:

Theorem 3.1. The function h : x 7→ exp(x) is contractant for the Hilbert's projective metric

over K(2), with a global Lipschitz constant equal to 1√
2
:

∀x,y ∈ K(2), dH
(
h(x), h(y)

)
≤ 1√

2
dH(x,y).

The proof of this result is included in the appendix of this article. It relies on an interme-
diate result (Theorem A.1), which gives a formula to compute local Lipschitz constants for a
function de�ned over K(2). We are now ready to prove the following proposition, which gives
a simple condition ensuring convergence of the �xed point iterations.

Proposition 3.2. Assume that for all j ∈ J , rσj <
√

2. Then, there exists a point w∗ ∈ K(2)

such that the �xed point iterations g(g(· · · g(w0))) converge to w∗ for all w0 ∈ Rn. Moreover,

y∗ := µ+ rDiag(σ)w∗ is a global optimum of Problem (6).
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Proof. If uj = 0 for some j ∈ J , then it is clear that the �xed-point iterates w(k) = gk(w0)

will satisfy w
(k)
j = 0 for all k ≥ 1. So we assume without loss of generality that uj > 0 for all

j ∈ J for the rest of this proof.
Note that the existence of a �xed point of g is guaranteed by Brouwer's theorem, and any

�xed point must lie in K(2). By using the properties of Hilbert's projective metric, we �nd
that

∀x,y ∈ K, dH
(
g(x), g(y)

)
= dH

(
f(x), f(y)

)
= dH

(
exp(rσ ◦ x), exp(rσ ◦ y)

)
≤ r‖σ‖∞dH(ex, ey).

In the above expression, the �rst equality follows from Properties (ii) and (iii), and the
second equality follows from (iv). Therefore, Theorem 3.1 implies that g is contractant for
the Hilbert's metric over K(2) if r‖σ‖∞ <

√
2. Since (K(2), dH) is a complete metric space

(property (v)), Banach �xed point theorem ensures the unicity of a �xed point w∗ and the
convergence of �xed point iterations when r‖σ‖∞ <

√
2. In this case, y∗ := µ + rσ ◦w∗ is

the unique solution of the necessary conditions (7), so y∗ maximizes
∑

j uje
yj over E .

Our approach is summarized in Algorithm 2, which can be used to solve the adversarial
problem at line 8 of Algorithm 1; The condition of Proposition 3.2 ensures that this procedure
converges.

3.1 Choice of the parameter r

Care must be taken while setting the value of r de�ning E , to avoid overconservatism. Indeed,
the optimal solution of Problem (2) does not only protect against scenarios in D, but also
against all duration scenarios in D̄ = {d − u : d ∈ D,u ≥ 0}. For the lognormal model
log dj ∼ N (µj , σ

2
j ), we can see using the inclusion-exclusion principle that a scenario lies in

D̄ with probability

Pn(r) := Φ(r)n − (Φ(r)− 1

2
)n +

1

2n

√
χ2
n(r), (8)

where Φ is the standard normal cumulative distribution function (CDF), and χ2
n is the CDF

of the χ2-distribution with n degrees of freedom. Indeed, the probability that d lies in D̄ is the
same as the probability that the vector with coordinates σ−1

j (log dj−µj) �which has a standard
multivariate normal distribution� lies in the grey area depicted in Figure 1. The formula of
Pn(r) expresses this probability as the di�erence between the probability P1 = Φ(r)n of the
quadrant below the point A, and the probability P2 of the region denoted with stripes in the
�gure. The probability of the striped region is equal to the di�erence between the probability
of the cube with corners A and O, and the part of the ball of radius r that is situated in the
positive quadrant: P2 = (Φ(r)− 1

2)n − 1
2n

√
χ2
n(r).

For a con�dence level α, we can hence choose r by solving the equation Pn(r) = 1 − α.
Then, Problem (2) minimizes an upper bound of the (1− α)−quantile of F (x, z;d):

Proposition 3.3. Assume that the dj's follow independent lognormal distributions, with

log dj ∼ N (µj , σ
2
j ). Let (x∗, z∗) be the optimal solution of the robust job shop problem (2)

9



r

r

log(d1)−µ1
σ1

log(d2)−µ2
σ2

A

O

Figure 1: The probability Pn(r) that d ∈ D̄ is equal to the probability that a random vector
X ∼ N (0, I) ∈ Rn lies in the grey area. The formula (8) expresses this probability as the di�erence
between the probability of the quadrant below A and the striped region.

and let F ∗ := maxd∈D F (x∗, z∗;d) be its optimal value, where

D :=

d ∈ Rn+ :
n∑
j=1

σ−2
j (log dj − µj)2 ≤ r2

 and Pn(r) = 1− α.

Then,

P
[
F (x∗, z∗;d) ≤ F ∗

]
≥ 1− α.

Proof. We know that F (x∗, z∗;d) ≤ F ∗ for all d ∈ D, by de�nition of F ∗. But this is also true
for all scenarios that are dominated by a scenario in D, i.e., for d ∈ D̄ := D − Rn+. It follows
that P

[
F (x∗, z∗;d) ≤ F ∗

]
≥ P[d ∈ D̄] and by construction P[d ∈ D̄] = Pn(r) = 1− α.

3.2 Discussion on the assumptions of Proposition 3.2

Estimates of µj and σj usually come from an analysis of historical data. It seems reasonable
to assume that one can obtain estimates σj ≤ 0.5, because σj = 0.5 already allows huge
deviations from the nominal scenario: 95%-con�dence interval is [0.37mj , 2.67mj ], where
mj := eµj is the median of dj . In this situation, if we choose r by solving Pn(r) = 1− α, the
condition r‖σ‖∞ <

√
2 is satis�ed for n ≤ 21 jobs at the robustness level α = 0.05, and for

n ≤ 45 at α = 0.1.
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4 Extensions

4.1 Add-on cases (emergencies)

In this section, we propose an extension of our model to reserve capacity for additional
jobs that must be inserted in the schedule during its execution. This is motivated by the
application to surgery scheduling described in the introduction: many hospitals do not have
an OR dedicated to handle emergency operations. Instead, emergency cases are allocated to
one of the regular ORs after one of the ongoing operations has ended. This approach was
recommended in a simulation study for a large teaching hospital [28].

We point out that the proposed approach does not represent the whole complexity of
reserving capacity for emergency cases. In particular, our model assumes that capacity for
the kth emergency arrival is reserved in room rk. In life threatening situations however,
it might not be possible to wait for the end of the ongoing operation in rk, and the kth
emergency might have to be handled in some other OR. However, our simulation study of
Section 5.7 shows that we can operate the vast majority of add-on patients in room that was
foreseen, which justi�es the present approach.

Let NA be a random variable indicating the number of additional jobs that arrive during
the execution of the schedule. We assume that NA has a known distribution over a �nite
support {0, . . . , N}:

N∑
k=0

pk = 1, where pk := P(NA = k).

Let K := {1, . . . , N}. We introduce a set of decision variables xkm ∈ {0, 1} (∀(k,m) ∈
K×M), such that xkm = 1 indicates whether the kth add-on job will be scheduled on machine
m (in the event that NA ≥ k). Similarly, for all k ∈ K0 := {0} ∪ K the variable zkm ∈ {0, 1}
indicates whether machine m is activated if NA ≥ k. The set of feasible solutions is thus as
follows:

X̂ =

(x, z) ∈ {0, 1}|(J∪K)×M| × {0, 1}|K0×M| :

∀j ∈ J ∪ K,
∑

m∈M xjm = 1;
∀j,m ∈ J ×M, xjm ≤ z0m;
∀k,m ∈ K×M, xkm ≤ zkm;
∀k,m ∈ K×M, z(k−1)m ≤ zkm

 .

Let δk denote the duration of the kth additional job. Our simpli�ed model assumes that
all add-on jobs can be inserted directly after an existing job, so if NA = k the cost function
becomes

Fk(x, z;d, δ) :=
∑
m∈M

cmf zkm + cmo

∑
j∈J

xjmdj +
k∑
i=1

ximδi − Tm

+

,

where by convention the sum indexed by i is equal to zero whenever k = 0. Searching for
a solution (x, z) that protects against a set of likely scenarios (d, δ) might lead to overcon-
servatism. Indeed, we expect such a solution to focus on scenarios with a large number of
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additional jobs, although this might occur with a very low probability. Therefore, we propose
a hybrid approach between robust optimization and stochastic programming, in which we
minimize the expected worst case costs, conditionally to the number of add-on jobs:

min
(x,z)∈X̂

F (x, z;d, δ) :=
N∑
k=0

pk max
(dk,δk)∈Dk

Fk(x, z;d, δ),

where Dk ⊂ Rn+k is a set of likely scenarios with exactly k additional jobs.

It is straightforward to adapt the cutting plane approach of Algorithm 1 to solve the
above optimization problem. In place of the adversarial problem (4), there are now (N + 1)
independent problems to solve at each iteration: for all k ∈ K0,

max
(dk,δk)∈Dk

Fk(x
∗, z∗;dk, δk). (9)

The optimal solutions of these (N + 1) problems are to be inserted in a restricted

set of scenarios D̂. When the �nite set D̂ is given, the restricted master problem
min

(x,z)∈X̂

∑N
k=0 pk max

(d,δ)∈D̂∩Rn+k
Fk(x, z;d, δ) can be formulated as the MIP

min
x,z,∆,o

N∑
k=0

pk

( ∑
m∈M

cmf zkm + ∆k

)
(10a)

s.t. oim ≥
∑
j∈J

xjmd
(i)
j +

k(i)∑
k=1

xkmδ
(i)
k − zk(i)mTm, ∀i ∈ S,∀m ∈M, (10b)

oim ≥ 0, ∀i ∈ S,∀m ∈M, (10c)

∆k(i) ≥
∑

m∈M
cmo oim, ∀i ∈ S, (10d)

(x, z) ∈ X̂ , (10e)

where S is the �nite set of scenario indices, and for all i ∈ S the symbol k(i) denotes the
number of add-on jobs in scenario (d(i), δ(i)) ∈ D̂ (so we have δ(i) ∈ Rk(i)). In summary, at
each iteration the cutting plane approach to handle add-on jobs solves the (N+1) adversarial
problems (9). The extreme scenarios thus identi�ed are added in D̂, which translates into
adding cut inequalities of the form (10b)-(10d) in the restricted master problem (10).

For the application to allocation of operating rooms, we assume that all add-on cases have
the same distribution: ∀k ∈ K, log δk ∼ N (µ0, σ

2
0) (and as before, log dj ∼ N (µj , σ

2
j ) for all

j ∈ J ). Therefore, we shall consider uncertainty sets of the form

Dk :=

(d, δ) ∈ Rn+k :
n∑
j=1

(
log dj − µj

σj

)2

+

k∑
i=1

(
log δi − µ0

σ0

)2

≤ r2
k

 ,

for all k ∈ K0. Note that Dk has the same form as the uncertainty set D considered in
Section 3, so we can solve the adversarial problem (9) with Algorithm 2.

12



Finally, we point out that the guidelines of Section 3.1 can be used to set the parameters
r0, . . . , rN : given a robustness parameter α, solve the equations 1 − α = Pn+k(rk) (for all
k ∈ {0, . . . , N}).

4.2 Job selection and cancellation

Our model can also easily be adapted to the situation in which the decider may decide to
cancel some jobs, or on the contrary when he may accept more jobs than initially planned.
This naturally occurs in settings where the job shop scheduling problem is to be solved for a
sequence of several planning periods; in this case, the ability to postpone (or bring forward)
a job to a later (or earlier) planning period can help to balance the overtime over the whole
planning horizon. This is the case, e.g., in the application to OR management that motivated
this study.

This situation can be modelled by assigning a penalty λj to each job that we decide to
postpone to a later planning period. Of course, we can set a prohibitively high penalty to the
jobs that must be selected in the considered time period. Since it is not mandatory anymore
to select all jobs, the equalities ∀j ∈ J ,

∑
m∈M xjm = 1 de�ning the feasibility set must

be replaced by inequalities: ∀j ∈ J ,
∑

m∈M xjm ≤ 1. We must also add some terms in
the objective function of the restricted master problem (3) to account for the penalties for
non-selected jobs. So the objective function becomes:

min
x,z,∆,δ

∑
m∈M

cmf zm + ∆ +
∑
j∈J

λj(1−
∑
m∈M

xjm). (3a')

Finally, note that these modi�cations do not a�ect the adversarial problem, so we can still
use Algorithm 2 to solve it.

In practice, it is possible to use a dynamic rule to update the deferral costs λj over a
rolling horizon. We next present a brief sketch of this idea. We start with a pool of jobs J
that can be allocated to the �rst time period. After each planning period, non-selected jobs
are inserted in the pool of jobs for the next period, while their deferral costs λj are increased
by some factor, so as to penalize long waiting times. It is also possible to set a due-date for
job j, by setting λj to a very high value if j has not been selected until the due date.

5 Results for the application to allocation of ORs

This section presents numerical results for the application to OR management that motivated
this study. Our instances are based on real data from the department of general surgery of
the Charité university hospital in Berlin. The data is presented in the next subsection. Then,
we describe the di�erent solution methods to be compared in Section 5.2, and we de�ne some
performance metrics in Section 5.3; The in�uence of the expected �lling rate of the instance is
discussed in Section 5.4; The robust optimization approach of the present paper is compared
to the previous robust optimization model of [9] in Section 5.5; In order to evaluate the
price of robustness, we also provide a comparison to a stochastic programming approach in
Section 5.6. Finally, we present a simulation study with emergency cases in Section 4.1.
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5.1 Data and instances

We used maximum likelihood estimators to �t the parameters of a lognormal model for the
durations of N = 20.849 surgical procedures performed in the years 2011�2015, and for the
time required to prepare and clean-up the OR before and after each operation. Our model
is similar to [26], and relies on characteristics of the patient, operation, and surgical team.
This model �which will be the object of a future publication� was tested using 10-fold cross
validation.

We constructed instances of the OR allocation problem for several regular working days
(weekends and holidays excepted), by grouping all patients operated by the same surgeon
in a patient block. We used the method of moments to �t a lognormal distribution for the
total duration of each patient block, log dj ∼ N (µj , σ

2
j ). Note that the duration dj includes

both the total surgical duration for patients in block j and the turnover times, that is, the
amount of time needed to clean-up and prepare the room between the patients. We denote by
d̄j = exp (µj + 1

2σ
2
j ) the expected duration of patient block j, and by d̂j its true (observed)

duration. We further de�ne the expected �lling rate of an instance as

ρ =

∑
j∈J d̄j∑
m∈M Tm

,

which is a simple measure of how likely overtime will occur. Indeed, whenever ρ ≥ 1 the
expected time required to perform all the operations is longer than the regular opening time
of the ORs.

For all our instances we used cmf = 30 and cmo = 1 (∀m ∈ M). In other words, opening a
room yields the same cost as 30 minutes of overtime.

It is important to point out that both elective and emergency surgery is performed at the
Charité hospital in Berlin. In Sections 5.2 to 5.6 we focus on the basic problem of allocating
ORs to elective cases only, so in our instances we treated all emergency cases as elective ones,
that is, we did as if these cases could have been planned on the day prior to operation. In
Section 5.7 however, emergency cases are removed from the instance, and we use the approach
of Section 4.1 to reserve capacity for add-on cases.

5.2 Solution methods

We shall next present detailed results for N = 348 instances of the OR allocation problem.
For each instance, we compare the quality of three scheduling strategies listed below; the �rst
two solution methods also depend on a parameter α specifying the level of robustness.

• The LRS (lognormal robust schedule) is the approach proposed in the present paper.
It was obtained by using Algorithm 1 with a tolerance parameter of ε = 0.01; the
adversarial subproblems are solved by Algorithm 2, with a tolerance parameter ν =
10−6. This procedure approximates the solution of the robust optimization problem (2)
for an uncertainty set of the form D

LRS
= {d ∈ Rn+ :

∑n
j=1 σ−2

j (log dj −µj)2 ≤ r2}. The
parameter r was set by solving the equation Pn(r) = 1− α, cf. (8).
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Figure 2: Comparison of the uncertainty sets D
LRS
(red) and D

MRORA
(blue), for durations log d1 ∼

N (4, 0.252), log d2 ∼ N (5, 0.352) at a robustness level 1− α = 0.9.

• We have implemented the robust MIP called MRORA in [9]. This MIP solves Problem (2)
for the uncertainty set D

MRORA
de�ned in Equation (1). We followed the rule suggested

in [9] to set the value of the parameters `j , uj and τ de�ning D
MRORA

, as follows: For each
j ∈ J , we set `j and uj to the α

2 - and (1− α
2 )-percentile of dj , respectively, so [`j , uj ] is

a (1−α)−con�dence interval for dj . Then, τ is set using the newsvendor rule described
in [9, Section 6.1].

• As a reference, we also used the solution provided by the longest processing time (LPT)
heuristic for the nominal scenario d̄. It basically consists in sorting all cases by decreas-
ing order of (expected) duration. Then, each case is allocated to one OR in a greedy
fashion, by choosing the OR that causes the least increase in overtime; see [9] for a more
detailed description. This solution is known to give excellent results when the goal is
to minimize the expected value of F (x, z;d) [9], and has an approximation guarantee
of 13

12 in the deterministic case [7].

• Finally, to study the tradeo� between stochastic programming and robust optimization,
we have computed a solution by using the sample average approximation to stochastic
programming (SAA), cf. Section 5.6.

Note that the solutions MRORA and LRS only di�er by the underlying uncertainty set.
Figure 2 illustrates DLRS and DMRORA for an example in two dimensions.
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5.3 Evaluation of solution quality

The quality of a solution (x, z) is evaluated by di�erent statistics of the random vari-
able F (x, z;d), such as its mean or upper percentiles. We evaluated these statistics by
means of Monte-Carlo simulations with N = 106 runs. In what follows, we denote by
MEAN(SOL) the mean of F (x, z;d), where (x, z) is the solution returned by the procedure
SOL ∈ {LRS, MRORA, LPT, SAA}. Similarly Pq(SOL) is the qth percentile of F (x, z;d). In order
to compare two solutions called SOL and REF, we also introduce the notation

MEAN(SOL|REF) :=
MEAN(SOL)

MEAN(REF)
,

Pq(SOL|REF) :=
Pq(SOL)

Pq(REF)
.

For example if P90(LRS|LPT) < 1 for some instance, then the 90th percentile of F (x, z;d) is
lower for LRS than for the reference solution LPT.

5.4 Robustness vs. expected �lling rate

We have plotted in Figure 3 the ratio of P90(LRS) to P90(LPT), where the LRS solution was
computed at the robustness level 1− α = 0.90. The plot indicates the value of this ratio for
the N = 348 instances, plotted against the expected �lling rate ρ. Since the goal of robust
optimization is to protect against extreme scenarios, we expect the 90th percentile of the cost
function to be lower for LRS than for LPT. The plot shows this trend indeed, for instances
where ρ is small. When the expected �lling rate is large however (ρ ≥ 1.1), we observe that
the LRS and LPT have a similar quality (with respect to 90th percentiles).

One explanation is that for �over�lled� instances, both solutions tend to open all ORs,
and balance the overtime between all rooms (because we have ∀m ∈ M, cmo = 1). As a
result, when ρ is large it is likely that all rooms are in overtime, in which case the cost equals
F̂ (d) :=

∑
m c

m
f + (

∑
j dj −

∑
m Tm). So both P90(LRS) and P90(LPT) are very close to the

90th percentile of F̂ (d). In other words, it is not possible to be protected against extreme
scenarios in instances with large values of ρ. In the next two sections, we will therefore restrict
our attention to instances satisfying ρ ≤ 1.1.

5.5 Case study for 30 instances solved with LRS and MRORA

Table 1 presents results for the 30 instances of March and April 2013 with ρ ≤ 1.1. Besides
the size of the instance (n patient blocks and p ORs), we display the number of iterations
that Algorithm 1 required to reach the tolerance ε. The next columns indicate the ratios
MEAN(SOL|LPT), P90(SOL|LPT) and P98(SOL|LPT) for SOL ∈ {LRS, MRORA} at a robustness
level 1− α = 0.9.

The table evidences that LRS is more robust than MRORA. On average, P90(LRS) is 6.4%
lower than P90(LPT), while P90(MRORA) is only 1.2% lower than for the reference solution.
Moreover, the expected value of LRS is almost always better than the expected value of
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Figure 3: Value of the ratio P90(LRS|LPT) for N = 348 instances, plotted against the expected �lling
rate ρ of each instance.

MRORA, and even signi�cantly for certain instances. On average, LRS does a bit better than
the reference solution (99.1%), while MRORA yields an increase of the expected cost of 8.9%.

Concerning the computing time, we point out that all MIPs were solved using
CPLEX 12.6 [6] on a PC with 8 cores at 3.60 GHz. We observe that LRS requires a time
similar to MRORA for most instances. However, some instances require many iterations to reach
the desired tolerance, which a�ects the computing time. In practice, setting a limit on the
number of iterations could help to keep the computing time within a few seconds, without
impacting too much the quality of the returned solution.

5.6 Price of Robustness

It is also natural to compare the proposed robust optimization approach to stochastic pro-
gramming, in which the expected value of the cost is minimized:

min
(x,z)∈X

Ed[F (x, z;d)] (11)

The authors of [9] have implemented the multicut L-shaped algorithm of Birge and Lou-
veaux [5] to solve Problem (11). However, in our situation generating optimality cuts requires
to evaluate Ed[F (x∗, z∗;d)] and its subgradient, which is a costly process when durations dj
are lognormally distributed. To avoid this computational burden, we use the sample average

approximation (SAA) method to approximate Problem (11). This approximation method has
already been used in the context of OR management. This is the case, e.g. in [16], where the
authors use it to set the starting time of surgical cases in a single OR. Theoretical convergence
results for the SAA method were studied in [15], and are illustrated for a resource allocation
problem presenting some similarities with Problem (11).
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CPU(s) MEAN(SOL|LPT) P90(SOL|LPT) P98(SOL|LPT)
Ins. n p #it. LRS MRORA LRS MRORA LRS MRORA LRS MRORA

I1 9 5 13 0.85 0.32 0.951 0.894 0.805 0.698 0.761 0.732
I2 10 5 20 5.31 0.38 0.989 1.169 0.987 1.098 0.985 1.049
I3 11 5 15 1.72 0.35 0.951 1.007 0.937 0.983 0.948 0.977
I4 11 5 2 0.07 0.38 0.981 1.360 0.973 1.148 0.975 1.050
I5 12 5 38 14.78 3.14 0.951 1.006 0.935 0.967 0.943 0.952
I6 10 4 2 0.06 0.14 0.978 1.110 0.975 1.060 0.978 1.026
I7 11 5 2 0.08 0.49 0.969 1.420 0.966 1.176 0.966 1.043
I8 12 5 15 5.67 0.51 1.027 0.999 0.993 0.968 0.940 0.937
I9 11 5 2 0.06 1.10 0.968 1.142 0.967 1.047 0.980 1.026
I10 12 5 39 7.01 5.34 1.030 1.034 0.717 0.732 0.733 0.750
I11 12 5 34 3.59 4.11 1.002 0.937 0.838 0.723 0.704 0.693
I12 11 5 2 0.07 1.08 0.973 1.003 0.976 0.998 0.981 0.997
I13 12 5 42 61.52 0.47 0.979 0.999 0.976 0.994 0.980 0.994
I14 9 5 3 0.12 0.15 0.996 1.929 0.995 1.675 0.994 1.531
I15 12 5 7 0.31 1.18 1.032 1.061 1.025 1.049 0.995 1.023
I16 11 5 2 0.07 0.43 0.968 1.006 0.976 0.999 0.984 0.998
I17 12 5 12 1.58 0.31 1.032 1.132 1.005 1.064 0.983 1.008
I18 11 5 2 0.05 0.44 0.969 1.046 0.987 1.024 0.996 1.010
I19 9 5 6 1.65 0.28 1.025 1.076 0.973 1.013 0.962 0.981
I20 12 5 41 8.80 3.02 0.754 0.740 0.655 0.629 0.665 0.646
I21 11 5 2 0.08 0.26 0.985 1.002 0.993 0.995 0.990 0.994
I22 12 5 27 8.13 0.86 0.969 1.087 0.940 1.022 0.931 0.977
I23 12 5 2 0.05 0.48 1.005 1.006 1.003 1.009 1.002 1.008
I24 12 5 2 0.11 0.45 0.970 1.066 0.973 1.026 0.978 1.010
I25 11 5 9 0.54 0.30 0.997 1.016 0.961 0.992 0.940 0.968
I26 9 5 2 0.06 0.22 0.977 1.114 0.993 1.064 0.998 1.041
I27 11 5 3 0.12 2.26 0.978 0.961 0.961 0.929 0.961 0.933
I28 12 5 2 0.04 0.25 0.975 1.145 0.986 1.057 0.989 1.019
I29 10 5 5 0.25 0.21 1.109 1.125 0.859 0.859 0.556 0.685
I30 9 4 22 0.77 0.14 1.055 1.061 0.652 0.652 0.511 0.547
mean - - 13.56 4.11 0.96 0.991 1.089 0.936 0.988 0.911 0.954

std. dev. - - 14.21 11.21 1.27 0.055 0.197 0.097 0.187 0.135 0.174

Table 1: Comparison of the expected value (resp. 90th, 98th percentile) of F (x∗, z∗;d), where
(x∗, z∗) is the LRS or MRORA solution at robustness level 1 − α = 0.90, measured as a ratio to the
expected value (resp. 90th, 98th percentile) for the reference solution (LPT).

We sample NS duration scenarios d(1), . . . ,d(NS) and solve the following MIP, which is
a small variation of (3), except that we minimize the average overtime instead of the worst
case overtime.

min
x,z,∆,δ

∑
m∈M

cmf zm +
1

NS

NS∑
i=1

∆i (12a)

s.t. δim ≥
∑
j∈J

xjmd
(i)
j − zmTm, ∀i ∈ {1, . . . , NS},∀m ∈M, (12b)

δim ≥ 0, ∀i ∈ {1, . . . , NS},∀m ∈M, (12c)

∆i ≥
∑

m∈M
cmo δim, ∀i ∈ {1, . . . , NS}, (12d)

(x, z) ∈ X (12e)

For each instance, we have computed a SAA solution for N = 100 samples of duration
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Figure 4: Mean value of the ratios MEAN(SOL|SAA), P90(SOL|SAA) and P98(SOL|SAA) over N = 241
instances with an expected �lling rate ρ ≤ 1.1, as a function of the robustness parameter α, for
SOL = LRS and SOL = MRORA.

scenarios. Figure 4 shows results for the 241 instances satisfying ρ ≤ 1.1. The sensibility of
LRS and MRORA to the robustness parameter α is shown on the x−axis (On the left-hand side
of the �gure, α is small and we protect ourselves against very unlikely scenarios, while on
the right-hand side, α → 1 so we basically consider the nominal scenario only). The y−axis
shows the mean value (over the 241 instances) of the ratios MEAN(SOL|SAA), P90(SOL|SAA)
and P98(SOL|SAA) for SOL ∈ {LRS, MRORA}.

On this plot, we observe that the LRS solution is better than MRORA in terms of upper
percentiles, for all values of α ∈ [0, 1], and it is also better in terms of mean for most values
of α. As expected, SAA is always better than both robust solutions (LRS and MRORA) in terms
of mean (the goal of stochastic programming is to minimize the expected value of the cost),
but for some values of α, the robust solutions are better in terms of upper percentiles, so they
protect against extreme scenarios indeed. Nevertheless this gain seems to be rather marginal:
for example, at α = 0.5 the LRS solution is, on average, 1.2% better than SAA in terms of 90th
percentile, at the price of an increase of 1.6% for the expected cost. As α approaches zero,
the robust solutions tend to focus on very unlikely scenarios. This improves on SAA for very
high percentiles, but yields a large increase of the mean cost, especially for MRORA.
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Priority level Time window for operation
N0 Immediate intervention required, operation in next available OR
N1 Operation within 1h
N2 Operation within 6h
N3 Operation within 12h
N4 Operation within 24h
N5 Elective operation

Table 2: Priority scale for emergency patients used at the Charité hospital.

5.7 Simulation study with emergency arrivals

In this section, we evaluate the approach of Section 4.1 to handle add-on cases. For each of the
instances considered above, we constructed a new modi�ed instance, by removing the cases
that were labelled as emergencies in our database. We will compare several solutions that
were computed prior to the day of intervention, without knowing the number of emergency
patients or their check-in times. To evaluate these solutions, we use a simulation procedure
that uses simple rules to insert the add-on cases into the schedule after their arrival.

Empirical frequencies based on historical data led us to consider the following probabilities
of arrival in the department of general surgery: p0 = 0.32, p1 = 0.33, p2 = 0.23, p3 =
0.08, p4 = 0.04. In fact there is a small nonzero probability to observe NA > 4 arrivals, but
we neglected this fact and normalized the above probabilities so

∑4
i=0 pi = 1. There is an

average of N̄A = 1.19 emergency cases per day. We can thus rede�ne the expected �lling rate

as

ρ =

∑
j∈J d̄j + N̄Ad̄0∑

m∈M Tm
,

where d̄0 = exp(µ0 + 1
2σ

2
0) is the expected duration of an emergency case.

For each instance, we computed:

• the lognormal robust schedule (LRS), which allocates ORs to elective cases only;

• the lognormal robust schedule with capacity for add-on cases (LRS_AO) described in
Section 4.1 at robustness level 1− α = 70%

• a sample average approximation for a stochastic program that reserves capacity for add-
on cases (SAA_AO) based on a slight variant of Problem (12). This procedure is detailed
is Appendix B.

In addition, we used as a baseline (BAS) the true OR allocation that was used on the day of
operation for elective patient blocks.

When an emergency occurs, the priority of the operation is evaluated based on the severity
of the patient's condition. Our database indicates both the time of arrival of the patients and
their priority, on a scale ranging from N0 (vital emergency) to N5 (elective case), each level
being associated with a permitted time window for the operation; see Table 2.
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To evaluate the quality of the di�erent solutions, we used a simpli�ed simulation procedure
which ignores the availability of other resources (such as anesthesiologists or recovery beds).
First, the elective patient blocks are inserted one after the other in the OR where they were
allocated. Then, for k = 1, . . . , NA, the kth emergency patient is inserted in the schedule.
Note that it is possible to know whether an OR will be free at time t somewhat ahead of t,
because the room �rst needs to be cleaned up (recall that the clean-up time is included in the
duration dj of all patient blocks). Our simulation simply assumes that we know at time t− t0
whether an insertion is possible in some OR at time t, where t0 was set to 30 minutes. Denote
by τk the check-in time of the kth emergency patient, and by `k the length of the permitted
time window for this patient (as from Table 2, and `k was set to 5 minutes for patients of
priority N0). To insert the kth emergency patient in the schedule, we �rst determine its
preferred OR rk:

(i) For LRS and SAA, we store a queue Q of ORs with foreseen capacity for emergency
arrivals, as speci�ed by the variables xkm(k ∈ K,m ∈ M). Whenever Q is not empty,
the preferred room rk is popped from Q; otherwise we use the rule (ii).

(ii) For LPT and BAS, or when Q is empty, we evaluate the expected increase in cost associ-
ated with an insertion in room r, given that the durations of all operations performed
until τk are known. Then, rk is set to the OR with the least expected cost.

If rk becomes free before τk + `k, then the kth emergency patient is inserted after the end
of the current operation in room rk. Otherwise, we operate the patient in the �rst OR that
becomes available after time max(τk, τk + `k− t0), i.e., after the moment where we know that
the patient cannot be operated in OR rk, but not earlier than its arrival.

Table 3 shows some performance indicators for the solutions LRS, LRS_AO, SAA_AO, com-
puted for the N=334 instances of this study for which the baseline solution BAS was available.
The results are split for three subgroups of instances, corresponding to expected �lling rates
ρ < 0.95, 0.95 ≤ ρ < 1.05, and ρ ≥ 1.05. These three groups respectively contain 162, 91 and
81 instances. The last two rows of the table show the fraction of all add-on cases that were
allocated to the preferred OR rk (according to the simulation procedure detailed above), as
well as the fraction of emergency cases operated in time (before τk + `k). Observe that in the
vast majority of the cases, it is possible to insert the emergency cases in the foreseen room.
This justi�es our approach that reserves capacity for eventual emergency arrivals with the
help of variables xkm.

The table also indicates the mean cost for each subgroup of instances, as well as the
frequency at which the overtime exceeds a certain threshold. Since all instances do not have
the same number n of available rooms (which varies from 4 to 6), we standardize the overtime
by number of rooms. More precisely, for an instance with n available ORs and a solution that
yields a cost F , the standardized overtime is de�ned by

OV Tst =
1

n

(
F −

∑
m∈M

cfm

)
.
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Note that this formula actually subtracts the �xed cost cfm from the overtime for each room
m that is not used. In 97% of all instances however, all available ORs have been allocated to
at least one surgery. In this situation, a value of OV Tst = 60 means that the average overtime
is of one hour over the n ORs.

Concerning the mean cost, the table clearly shows that LRS_AO and SAA_AO beat the other
two solutions for instances with a low or medium expected �lling rate. For instances with a
low expected �lling rate (ρ < 0.95), LRS_AO and SAA_AO exhibit a similar mean cost; compared
to the baseline solution BAS, the cost is reduced by a value corresponding to approximately
27 minutes per day. For instances with a large expected �lling rate however, SAA_AO is the
clear winner. Note also that LRS_AO is always better than LRS, which shows the importance
of reserving capacity for emergency arrivals.

In terms of robustness against extreme scenarios, we observe the same trend: LRS_AO and
SAA_AO perform better than LRS and BAS for small and medium values of ρ, and SAA_AO is the
clear winner for larger values of ρ. For instances with a low expected �lling rate (ρ < 0.95),
LRS_AO seems to be a bit more robust than SAA_AO, while both solutions have the same mean
cost. Indeed, the number of instances with an average overtime per room of 90 minutes or
more (105, 120) is reduced by 18% (30%, 50%).

It is also noteworthy that the baseline solution can be regarded as a reactive strategy
(i.e., BAS includes elements of real-time decision making because the allocation may have
changed during the day of operation, after the planners observed that some cases took longer
than expected), while LRS_AO and SAA_AO have been computed before the day of operation.
Nevertheless, LRS_AO and SAA_AO beat the baseline, which shows the importance of using
mathematical optimization for OR management.

6 Conclusion

This study was motivated by an application to OR management, in which a job shop schedul-
ing problem with lognormally distributed durations must be solved. We presented a cutting
plane approach to solve the robust counterpart of this problem. The main result of this
article allows one to e�ciently solve the subproblem that generates cut inequalities, when
the uncertainty set consists of duration scenarios in a con�dence region of the lognormal
distribution.

We evaluated our approach on instances based on real data from the application to OR
scheduling. Our results show that it is important to use uncertainty sets that rely on the log-
normal assumption for robust OR allocation. Compared to the previous model of uncertainty
of the MRORA approach [9], we obtained solutions that are better both in terms of expected
value and robustness.

We also observed that the robust optimization approach only works well for instances with
a low expected �lling rate, that is, instances for which it is likely that the total duration of
all cases does not exceed the total time available in all operating rooms. For such instances,
we observed that robust optimization is slightly better �in terms of upper percentiles� than
a stochastic programming approach based on the sample average approximation (SAA), at a
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Exp. �lling rate LRS_AO SAA_AO LRS BAS

ρ < 0.95 346.0 346.3 365.4 373.2
Mean cost 0.95 ≤ ρ < 1.05 414.6 403.6 437.4 453.0

1.05 ≤ ρ 548.6 507.9 554.0 574.8
ρ < 0.95 22.8% 22.2% 27.8% 25.9%

Frequency OV Tst ≥ 60 0.95 ≤ ρ < 1.05 31.9% 29.7% 36.3% 34.1%
1.05 ≤ ρ 58.0% 50.6% 59.3% 65.4%
ρ < 0.95 14.8% 17.9% 19.8% 15.4%

Frequency OV Tst ≥ 75 0.95 ≤ ρ < 1.05 19.8% 20.9% 26.4% 28.6%
1.05 ≤ ρ 40.7% 38.3% 45.7% 53.1%
ρ < 0.95 8.6% 10.5% 16.0% 11.1%

Frequency OV Tst ≥ 90 0.95 ≤ ρ < 1.05 12.1% 13.2% 14.3% 20.9%
1.05 ≤ ρ 30.9% 23.5% 32.1% 39.5%
ρ < 0.95 4.3% 6.2% 11.1% 8.0%

Frequency OV Tst ≥ 105 0.95 ≤ ρ < 1.05 8.8% 7.7% 9.9% 12.1%
1.05 ≤ ρ 18.5% 12.3% 23.5% 23.5%
ρ < 0.95 1.9% 3.7% 6.8% 4.9%

Frequency OV Tst ≥ 120 0.95 ≤ ρ < 1.05 5.5% 4.4% 7.7% 9.9%
1.05 ≤ ρ 13.6% 6.2% 13.6% 12.3%

Fraction of emergency cases allocated to rk 92.4% 92.6% 94.6% 93.9%
Fraction of emergency operations started before τk + `k 99.0% 99.0% 98.7% 99.2%

Table 3: Performance of 4 solution methods for the N = 334 instances of the simulation study with
emergency arrivals, computed with respect to the true (observed) durations d̂j , grouped by expected
�lling rate.

small cost in terms of expected value. Nevertheless the gain in terms of robustness is rather
small, which shows that the SAA approach already provides quite robust solutions.

Our approach can also be extended to deal with emergency cases, thanks to additional
variables that allow one to reserve capacity for add-on patients. A simulation study relying
on real surgical durations and emergency arrivals evidenced similar conclusions as in the
situation with elective cases only: the robust optimization approach gives very good solutions
for instances with a low expected �lling rate. For other instances, we rather recommend to
use a solution based on a SAA approach.

Finally, we recall that the allocation of ORs to patient blocks is just one of many steps
involved in the the management of the operation theater. For future research, it would
be necessary to evaluate the performance of the proposed method in a more complex and
realistic environment that simulates, e.g., the availability of recovery beds and allocation of
anesthesiologists.

Another direction of research is to allow operations performed by the same surgeon to take
place in di�erent rooms. This makes the model much more complicated, since we must make
sure that no surgeon operates simultaneously in two ORs. As stated in the introduction, this
is a resource-constrained scheduling problem, that is already very hard in the deterministic
case. Nevertheless, we think that the solution proposed in the present article could serve as a
good starting solution for variable neighborhood search metaheuristics, but this will require
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new methods to quickly evaluate the delay propagation in activity graphs with lognormal
durations; we intend to pursue this line of research in future work.
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A Proof of Theorem 3.1

We start to give a general result about the Lipschitz constant of a function over
K(2) := {x ∈ Rn : x > 0,

∑n
i=1 x

2
i = 1} with respect to dH . The proof of this result relies

on the following property of Hilbert's projective metric, see [21]:

∀x,y ∈ K, dH(x,y) = inf
ϕ

∫ 1

t=0
ωϕ(t)(ϕ

′(t)) dt, (13)

where the in�mum is taken over all piecewise C1-paths ϕ such that for all t ∈ [0, 1], ϕ(t) ∈
K, ϕ(0) = x, ϕ(1) = y, and ωu(h) is the oscillation of h and u, de�ned by ωu(h) :=
maxi(hi/ui) − minj(hj/uj). The proof of the theorem mimics that of [21, Theorem 2.4],
where a similar result is proved for K(1) := {x ∈ Rn : x > 0,

∑n
i=1 xi = 1}, but we integrate

over a di�erent geodesic curve from x to y. A related result is also proved in [11], but for
functions f preserving the rays of K.

Theorem A.1. Let f be a function of class C1, mapping a geodesically convex set G ⊆ K(2)

to the cone K := {x ∈ Rn : x > 0}. For all x ∈ G, de�ne

λ(x) := sup
{v:vTx=0,v 6=0}

ωf(x)

(
f ′(x)(v)

)
ωx(v)

∈ R ∪ {+∞}.

De�ne further λ0 := sup{λ(x); x ∈ G}. Then, we have

∀x,y ∈ G, dH(f(x), f(y)) ≤ λ0 dH(x,y).

Proof. Observe that λ(x) is well de�ned for all x ∈ G. Indeed, vTx = 0,v 6= 0 implies that
v has at least one positive element, and at least one negative element, so ωx(v) > 0.

Let x,y ∈ G. It is well known that the path ϕ(t) = (1 − t)x + ty is a geodesic curve
from x to y for the Hilbert's projective metric (i.e., ϕ is a minimizer of expression (13)),
see [21, Theorem 2.1]. It follows that for all functions α : [0, 1]→ (0,∞) of class C1 satisfying
α(0) = α(1) = 1, the path ψ(t) := α(t)ϕ(t) is also a geodesic. Indeed, for all t ∈ [0, 1],

ωψ(t)(ψ
′(t)) = max

i

α′(t)

α(t)
+
ϕ′(t)i
ϕ(t)i

−min
i

α′(t)

α(t)
+
ϕ′(t)i
ϕ(t)i

= ωϕ(t)(ϕ
′(t)).

In particular, the path from x to y following the great circle, ϕC(t) := ϕ(t)/‖ϕ(t)‖ is a
geodesic curve from x to y in the Hilbert's projective metric.

We can now use expression (13) with the path t 7→ f(ϕC(t)) to obtain a bound of
dH(f(x), f(y)):

dH(f(x), f(y)) ≤
∫ 1

t=0
ωf(ϕC(t))

(
f ′(ϕC(t))(ϕ′C(t))

)
dt.

The vectors ϕC(t) and ϕ′C(t) are orthogonal for all t ∈ [0, 1], so by de�nition of λ0,

dH(f(x), f(y)) ≤
∫ 1

t=0
λ0 ωϕC(t)(ϕ

′
C(t)) dt = λ0 dH(x,y),

where the last expression follows from the fact that ϕC is a geodesic from x to y.
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We are now ready to prove Theorem 3.1. By Theorem (A.1), the Lispschitz constant of
the restriction of x 7→ expx to K(2) (with respect to dH) is bounded from above by

λ0 = sup
x∈K(2)

sup
{v 6=0:vTx=0}

ωexp(x)

(
Diag(ex)v

)
ωx(v)

= sup
x∈K(2)

sup
{v 6=0:vTx=0}

maxi vi −mini vi
maxi

vi
xi
−mini

vi
xi

.

For a �xed vector v, we start by minimizing the denominator of the above expression over
the set {x ∈ K(2) : xTv = 0}. Let I+, I−, I0 be the set of indices i ∈ [n] such that vi > 0,
vi < 0, and vi = 0, respectively. Note that v 6= 0 and xTv = 0 for some x > 0 implies that
I+ and I− are nonempty. The optimization problem with respect to x can be reformulated
as

inf
{x∈K(2):xT v=0}

max
i∈I+

vi
xi

+ max
i∈I−

(−vi)
xi

.

Now, assume for simplicity that I0 = ∅ (the result for the case I0 6= ∅ can be obtained
by continuity). It is not hard to see that at the optimum, there must exist some constants
α > 0 and β > 0 such that vi/xi = α for all i ∈ I+ and −vi/xi = β for all i ∈ I−. Let
a = (

∑
i∈I+ v

2
i )

1/2 and b = (
∑

i∈I− v
2
i )

1/2. The values of α and β are obtained by solving the
system of equations {

a2

α2
+
b2

β2
= 1,

a2

α
− b2

β
= 0

}
,

where the �rst equation follows from ‖x‖ = 1 and the second one from vTx = 0. We �nd
α = b/a‖v‖2 and β = a/b‖v‖2, and so the value of the in�mum is α+ β = (ab)−1‖v‖32.

Finally, we consider the maximization problem with respect to v to �nd the value of λ0.
Observe that we can assume without loss of generality that ‖v‖2 = 1, because multiplying
v by a constant does not change the value of the ratio to maximize. The numerator is
maxi vi−mini vi = maxi∈I+ vi+maxi∈I−(−vi) ≤ a+ b, where the inequality follows from the
inequality between the `2-norm and the `∞−norm, and a and b satisfy a2 + b2 = ‖v‖22 = 1.
We have shown above that the denominator is equal to (ab)−1‖v‖32 = (ab)−1. Hence,

λ0 ≤ sup{(a+ b)ab; a > 0, b > 0, a2 + b2 = 1} =
1√
2
.

B An SAA Formulation with capacity for add-on jobs

As for the situation with elective cases only, we obtain an SAA formulation for the stochastic
program

min
(x,z)∈X

E(d,δ)[F (x, z;d, δ)] (14)

by samplingNS duration scenarios (d(1), δ(1)), . . . , (d(NS), δ(NS)). To do this, for each scenario
i ∈ S := {1, . . . , NS} we �rst sample the number k(i) of add-on cases according to the

probabilities pk. Then, we sample independent durations following log d
(i)
j ∼ N (µj , σ

2
j ) for
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the elective patient blocks (j ∈ J ), and log δ
(i)
k ∼ N (µ0, σ

2
0) for the emergency cases (k =

1, . . . , k(i)). Then, the MIP to solve is similar to (10), but we minimize the average cost
instead of the worst-case cost:

min
x,z,o

1

NS

NS∑
i=0

( ∑
m∈M

cmf zk(i)m + cmo oim

)
(15a)

s.t. oim ≥
∑
j∈J

xjmd
(i)
j +

k(i)∑
k=1

xkmδ
(i)
k − zk(i)mTm, ∀i ∈ S,∀m ∈M, (15b)

oim ≥ 0, ∀i ∈ S,∀m ∈M, (15c)

(x, z) ∈ X̂ . (15d)
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