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Towards Local Confluence Analysis
for Amalgamated Graph Transformation ∗

– Long Version –

Gabriele Taentzer1 and Ulrike Golas2

1 Philipps-Universität Marburg, Germany
taentzer@informatik.uni-marburg.de

2 Humboldt-Universität zu Berlin & Zuse Institut Berlin, Germany
ulrike.golas@hu-berlin.de / golas@zib.de

Abstract. Amalgamated graph transformation allows to define schemes of rules
coinciding in common core activities and differing over additional parallel in-
dependent activities. Consequently, a rule scheme is specified by a kernel rule
and a set of extending multi-rules forming an interaction scheme. Amalgamated
transformations have been increasingly used in various modeling contexts.
Critical Pair Analysis (CPA) can be used to show local confluence of graph trans-
formation systems. It is an open challenge to lift the CPA to amalgamated graph
transformation systems, especially since infinite many pairs of amalgamated rules
occur in general. As a first step towards an efficient local confluence analysis of
amalgamated graph transformation systems, we show that the analysis of a finite
set of critical pairs suffices to prove local confluence.

Keywords: Amalgamated graph transformation, parallel independence, critical
pair analysis

1 Introduction

In model-based software development, models play a primary role w.r.t. requirements
elicitation, software design and software validation. Model changes can be well speci-
fied as model transformations. Algebraic graph transformation has been shown to be a
suitable underlying formal framework of model transformations, especially of in-place
transformations [4]. If several developers work on the same model concurrently, they
may run into conflicts that have to be resolved. To analyze such conflicts as early as pos-
sible, critical pair analysis has been used to check transformation rules at specification
time, i.e., before run time.

While simple model changes can be well specified by the application of simple
rules, this is usually not sufficient for more complex model changes. Amalgamated
graph transformation has been used to specify core activities equipped with a number
of optional or context-dependent activities (see, e.g., [2, 3, 8, 13]). A typical example
of such complex model changes are model refactorings where, e.g., equal attributes
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Initiative by the German federal and state governments.



in subclasses are pulled up to one attribute in their super class. Concurrently work-
ing developers aim to understand when model changes can be applied in parallel and
when they are a potential source for conflicts. Being in conflict, it would be interesting
to analyze if and how these conflicts can be resolved. Hence, the notions of parallel
independence, conflict and conflict resolution have to be lifted to amalgamated graph
transformation.

An amalgamated graph transformation is specified by a so-called interaction scheme
containing a kernel rule and a set of extending multi-rules. While the kernel rule is in-
tended to be matched exactly once, each multi-rule may be matched arbitrarily often.
An amalgamated rule over an interaction scheme contains at least the kernel rule and ar-
bitrary many copies of multi-rules overlapping at the kernel rule. Hence, an interaction
scheme specifies infinitely many amalgamated rules in general.

While the check for parallel independence of rules and transformations is well-
known and used to support parallel model changes, parallel independence of amalga-
mated rules and transformations has hardly been investigated. In [9, 10], the parallel in-
dependence of amalgamated graph transformations has been characterized as transfor-
mations that can be executed sequentially in either order. This semantic characterization
cannot be checked at specification time, i.e., on the level of rule schemes. An easy-to-
check criterion for the parallel independence on the basis of interaction schemes is the
first contribution of this paper: If two interaction schemes are parallel and sequentially
independent, all their induced amalgamated transformations are parallel independent
and can be sequentialized in any order. We assume that the occurring matches are max-
imal, i.e, that always the largest possible amalgamated rules are applied.

The second contribution of this paper is concerned with the analysis and resolution
of conflicts between rule schemes. It is based on the well-known critical pair analy-
sis [14, 6]: If a critical pair can be restricted to a smaller one showing the same kind of
conflict and resolving it in the same way, then this pair does not have to be considered
during conflict analysis. We show that only finitely many critical pairs cannot be further
restricted. Thus, the usually infinite set of critical pairs for rule schemes can be reduced
to a finite set being enough to show local confluence of the transformation system.

The paper is organized as follows: Section 2 presents the necessary basic notions
on amalgamated graph transformation. Most of them are recalled from or similar to [9,
10]. Parallel independence is considered in Section 3 while the conflict analysis of rule
schemes is presented in Section 4. The paper is concluded in Section 5.

2 Amalgamated Graph Transformation

In this section, we review the formal foundations of amalgamated graph transforma-
tion based on the well-known double-pushout approach. We assume the reader to be
familiar with this approach (see, e.g., [6] for an introduction and a large number of the-
oretical results). We concentrate on the presentation of only those concepts and results
needed for the confluence analysis. For simplicity, here we present the theory without
application conditions and attributes. In fact, the theory in [9, 10] is presented in the
categorical framework of M-adhesive transformation systems for rules with nested ap-
plication conditions in the sense of [12]. In particular, this means that in the following
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the graphs and morphisms can be any objects from M-adhesive categories, e.g., any
kinds of (labeled, typed, attributed) graphs.

Formally, a kernel morphism describes how the kernel rule is embedded into a multi-
rule (recall the definition of [10]).

Definition 2.1 (Rule and kernel morphism). Given rules p0 = (L0
l0
←− K0

r0
−→ R0)

and p1 = (L1
l1
←− K1

r1
−→ R1) with injective morphisms li, ri for i ∈ {0, 1}, a rule

morphism s : p0 → p1, s = (sL, sK , sR) consists of injective morphisms sL : L0 → L1,
sK : K0 → K1, and sR : R0 → R1 such that in the following diagram (1) and (2)

L0 K0 R0

L1 K1 R1

p0 :

p1 :

l0 r0

l1 r1

sL sK sRs (1) (2)

commute. s is an isomorphism, if sL, sK , and
sR are isomorphisms. A rule is finite, if all
occurring objects are finite.

If (1) and (2) are pullbacks and (1) has
a pushout (PO) complement for sL ◦ l0, s is
called kernel morphism. Then p0 is called
kernel rule and p1 multi-rule.

The technical preconditions ensure that the multi-rule is consistent w.r.t. the kernel
rule: The requirement of (1) and (2) being pullbacks ensures that the multi-rule deletes
and creates the elements matched by the kernel rule in the same way. The existence of
the PO complement of (1) makes sure that p0 can be applied to L1. This condition is
needed to construct the complement rule later.

Example 2.2 (Specification of refactoring "Push Down Attribute"). As running exam-
ple, we consider a graph representation of simple class models and some refactorings
to improve their structure. Our class models contain classes (typed by “C”), attributes
(typed by “A”), a generalization relation between classes (typed by “G”), and references
between classes (typed by “R”).

In Figure 1, we show the kernel and a multi-rule for the refactoring “Push Down
Attribute”. The kernel rule takes an attribute in a super class (being target of a general-
ization) and pushes it down to one of its subclasses (being source of the connecting gen-
eralization). The multi-rule specifies that the attribute in the super class is also pushed
down to any other subclass. This refactoring is useful if a common attribute shall be
individually changed in the subclasses. Note that the intermediate graph K of each de-
picted rule can be deduced from the graphical notation by considering the overlapping
graph of the left- and right-hand sides. The overlapping graph is exactly that subgraph
which is enhanced by numbers occurring in both sides. These numbers specify the mor-
phisms going to the left- and right-hand sides as well as the kernel morphisms. Note
that we only number those elements that are actually mapped.

This rule morphism satisfies the additional conditions for a kernel morphism: The
relation between kernel and multi-rules is characterized by two pullbacks which means
that all kernel actions are reflected in the multi-rule. Moreover, the required PO com-
plement exists being the left-hand side of the multi-rule without the A-node and its
adjacent edge. Although it is the intermediate graph of the multi-rule here, this is not
generally the case.
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1:C 2:G 3:C 4:A 5:A 1:C 2:G 3:C

1:C 2:G 3:C 4:A

6:C 7:G

5:A

:A

1:C 2:G 3:C

6:C 7:G

sL sR

Fig. 1. Kernel and multi-rules for refactoring “Push Down Attribute”

Inverting the kernel and multi-rules in Figure 1, we get a specification of the refac-
toring “Pull Up Attribute” assuming that all the attributes in the subclasses have the
same name and type (which is not specified here). In this simple example, we just check
if each subclass has an attribute. In that case, one attribute of each subclass is deleted
and a new one is created in their superclass. This refactoring is usually applied to lift
common attributes to superclasses and hence, to reduce redundancy.

To obtain a kernel morphism also for these rules, we have to check that the right-
hand side has a PO complement as well. Actually, this is the case using the right-hand
side of the multi-rule without the upper attribute. Note that this graph is not the inter-
mediate one of the multi-rule.

For a given kernel morphism, the complement rule is the remainder of the multi-rule
after the application of the kernel rule, i.e. it describes what the multi-rule does in addi-
tion to the kernel rule. Intuitively, the complement rule is the smallest rule that extends
K0 such that it creates and deletes all those elements handled by the multi- but not by
the kernel rule. It is important to decompose amalgamated transformations into kernel
and multi-rule applications. There is a canonical way to construct the complement rule
for a given kernel morphism; due to its complex construction, we only give an example
here and refer to [9, 10].

Example 2.3 (Complement rule). Figure 2 shows the complement rule of the kernel
and multi-rules in Figure 1. Note that the general attribute is deleted by the kernel rule,
which also inserts an attribute into one subclass. All other subclasses can be equipped
by a new attribute applying the complement rule thereafter.

1:C 2:G 3:C

6:C 7:G

1:C 2:G 3:C

6:C 7:G:A

Fig. 2. Complement rule for refactoring “Push Down Attribute”

A bundle of kernel morphisms over a common kernel rule forms an interaction
scheme. An interaction scheme instance contains copies of kernel morphisms for dif-
ferent matches of multi-rules of a chosen interaction scheme.

Definition 2.4 (Interaction scheme (instance)). Given a rule set Basic = {pi =

(Li
li
←− Ki

ri
−→ Ri), i = 0, . . . , n}, an interaction scheme s over Basic is a bundle of

kernel morphisms s = (si : p0 → pi)i=0,...,n with s0 = idp0 . For n = 0, s consists of
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the rule p0 only. An interaction scheme instance sinst over s is an interaction scheme
where each kernel morphism of sinst is isomorphic to some kernel morphism of s. An
interaction scheme s′ = (s′i : p′0 → p′i)i=0,...,n is more parallel than s if p′0 is a subrule of
p0 with inclusion i0 : p′0 → p0, p′i = pi for i > 0, and s′i = si ◦ i0 for all i = 0, . . . , n.

Example 2.5 (Interaction schemes for refactorings). In Figure 3, an interaction scheme
for replacing an inheritance relation with a delegation is shown. This classical refac-
toring is defined for all attributes of a super class being copied to its subclass as soon
as the generalization relation between these classes is replaced by a reference. This is
necessary since after the refactoring the class is not a subclass anymore. Note that the
conditions for kernel morphisms are also satisfied here.

1:C 2:G 3:C
1:C 3:C

4:R

1:C 2:G 3:C 5:A
1:C 3:C

4:R

5:A:A

sL sR

Fig. 3. Interaction scheme for refactoring “Replace Inheritance With Delegation”

Figure 4 shows the specification of refactoring “Remove All Inheritances” which
detaches all subclasses from their super class. The refactoring shall only be applied if
the superclass is empty, i.e., does not have any references or attributes.

3:C 3:C

1:C 2:G 3:C 1:C 3:C

sL sR

Fig. 4. Interaction scheme for refactoring “Remove All Inheritances”

Figure 5 shows a simple rule which deletes a class. It can be considered as an inter-
action scheme over n = 0. Combining this rule with the interaction scheme “Remove
all inheritances” would be an approach to specify the refactoring “Delete Super Class”.
Imagine similar rules as in Figure 4 but without Class 1:C on the right-hand side. Unfor-
tunately, they would not form an interaction scheme since there is no PO complement
on the left. The problem is that, once the super class is deleted, we do not find a com-
plement rule deleting all inheritance relations. It follows that these have to be deleted
first. Hence, two steps are required to delete a super class with all incoming inheritance
relations.

:C

Fig. 5. Interaction scheme for refactoring “Delete Class”
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Fig. 6. Construction of an amalgamated rule

Given an interaction scheme s which describes the basic actions in its kernel rule
and a set of multi-rules, we need to construct an interaction scheme instance over s for
a given graph and kernel rule match. This interaction scheme instance contains a certain
number of multi-rule copies for each multi-rule of the basic scheme. To do so, we search
for all different multi-rule matches which overlap in the kernel match only. The number
of different multi-rule matches determines how many copies are included in the graph-
specific interaction scheme instance which is the starting point for the amalgamated
rule construction defined in Def. 2.7.

Example 2.6 (Construction of amalgamated rule). To illustrate the construction of an
amalgamated rule consider Fig. 6 as an example. The basic interaction scheme is given
on the left. It consists of a kernel rule r0 which adds a loop. Moreover, it contains one
multi-rule r1 modeling that object 2 being connected to object 1 is deleted and a new
object is created and connected to object 1 which has a loop now. Note that the left-hand
part of this kernel morphism has a PO complement (not being depicted). Given graph
G, there are obviously three different matches of the multi-rule r1 to G which overlap
in the match of the kernel rule to G. Hence, the multi-rule can be applied three times.
Thus, we need three copies of the multi-rule in the interaction scheme instance, all with
kernel morphisms from kernel rule r0. In our example, the interaction scheme instance
is shown on the right. Gluing all its multi-rules at their common kernel rule, we get the
amalgamated rule with respect to G, shown at the bottom of Fig. 6.

In the following definition, we clarify how to construct an amalgamated rule from a
given interaction scheme.

Definition 2.7 (Amalgamated rule). Given an interaction scheme s and an in-
teraction scheme instance sinst = (si : p0 → pi)i=0,...,n over s with rules
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L0 K0 R0

Li Ki Ri

L̃ K̃ R̃

p0 :

pi :

p(n)sinst :

l0 r0

li ri

si,L si,K si,R

l̃ r̃

ti,L ti,K ti,R

si

ti

(1) (2)

(3) (4)

pi = (Li
li
←− Ki

ri
−→ Ri) for i = 0, . . . , n,

then the amalgamated rule p(n)sinst =

(L̃
l̃
←− K̃

r̃
−→ R̃) is the colimit over

the kernel morphisms of sinst being con-
structed as stepwise pushouts over i ≥ 1.

For an interaction scheme s, Amalg(s)
denotes the set of all amalgamated rules
over all interaction scheme instances over
s. Given two amalgamated rules p, p′ ∈
Amalg(s), p is smaller than p′, written
p <h p′, if there is a non-isomorphic rule morphism h : p → p′. We write p ≤h p′

if there is a rule morphism h : p→ p′.

We sketch the idea how to construct the stepwise pushout for n = 3 for the L-
component given morphisms s1,L–s3,L:

L0 L1

L2 L2

L0 L2

L3 L3

s1,L

s2,L

s2

s1

s1◦s1,L

s3,L(1a) (1b)

1. Construct the pushout (1a) of s1,L and
s2,L.

2. Construct the pushout (1b) of s1 ◦ s1,L
and s3,L.

3. L3 is the resulting left-hand side L̃ for
the amalgamated rule.

This construction is unique, independent of the order of i, and can be done similarly for
the K- and R-components. By pushout properties (see [6]), we obtain unique morphisms
l̃ and r̃.

Example 2.8 (Amalgamated rule for pushing down an attribute to 3 subclasses). Fig-
ure 7 shows an amalgamated rule built up over the interaction scheme consisting of the
kernel morphism in Figure 1 and two copies of the multi-rule. It specifies the push down
of an attribute to three subclasses.

1:C 2:G 3:C :A

4:C 5:G

4:C 5:G

1:C:A 2:G 3:C

4:C 5:G:A

4:C 5:G:A

Fig. 7. Amalgamated rule for refactoring “Push Down Attribute”

Definition 2.9 (Transformation). Given a rule p = (L
l
←− K

r
−→ R) and a match m :

L K R

G D H

l r

g h

m d m(1) (2)

L → G of p to a graph G, a transformation
step t : G =

p,m
==⇒ H consists of the following di-

agram where (1) and (2) are pushouts, and m is
called co-match. If p is an amalgamated rule, t is
also called amalgamated transformation step. Let

der(t) = (G
g
←− D

h
−→ H) be the derivation of
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t. An amalgamated transformation t : G = G0 =
p1(k1),m1
======⇒ . . . =

pn(kn),mn
======⇒ Gn = H, short

t : G =
[pn]
==⇒∗ H, consists of n ≥ 0 transformation steps each of which may apply an amal-

gamated rule pi(ki). This means that [pn] is defined by a list of applied amalgamated
rules (p1(k1), . . . , pn(kn)) with n ≥ 0. Note that [p0] is the empty list.

When given an interaction scheme, we want to apply as many multi-rules as often
as possible over a certain kernel rule match. This is ensured by maximal matches.

Definition 2.10 (Maximal match). Given an interaction scheme s, an amalgamated

rule p = (L
l
←− K

r
−→ R) over s and a graph G, a morphism m : L → G of p to G is

called match if there is a PO complement of p and m. A match m is called maximal if

there is no amalgamated rule p′ = (L′
l′
←− K′

r′
−→ R′) over s with a match m′ : L′ → G

such that p <t p′ with m′ ◦ tL = m for t : p→ p′.

The derivation of a transformation sequence t is defined by the derived span as in,
e.g., [6]. Note that in general, the match of an amalgamated rule does not have to be
maximal. However, this match strategy is often intended.

Definition 2.11 (Maximized transformation). Given a set of interaction schemes S

and a transformation sequence t : G =
[pn]
==⇒∗ H with [pn] being a list of applied amal-

gamated rules (p1(k1), . . . , pn(kn)), n ≥ 0. The maximized transformation max(t) :

G =
max([pn])
======⇒∗ H′ applies max([pn]) being the list (p1(k′1), . . . , pn(k′n)) of amalgamated

rules with maximal matches only. Hence, px(k′x) = px(kx) if px(kx) has already a maxi-
mal match or px(k′x) > px(kx) with px(k′x) having a maximal match, for all 1 ≤ x ≤ n.

If we have a bundle of direct transformations of a graph G, where for each trans-
formation one of the multi-rules is applied, we want to analyze if the amalgamated rule
is applicable to G combining all the single transformation steps. These transformations
are compatible, i.e. multi-amalgamable, if the matches agree on the kernel match, and
are independent outside.

Definition 2.12 (Multi-amalgamable). Given an interaction scheme s = (si : p0 →

pi)i=0,...,n, a bundle of direct transformations steps (G =
pi,mi
===⇒ Gi)i=1,...n is multi-

amalgamable over s, if

L0

LiKi L j K j

G

si,L s j,L

mi m j

m0
li l j

– it has consistent matches, i.e.,
mi ◦ si,L = m j ◦ s j,L =: m0 for
all i, j = 1, . . . , n and

– it has weakly independent
matches, i.e., mi(Li) ∩ m j(L j) ⊆
m0(L0)∪ (mi(li(Ki))∩m j(l j(K j)))
for all 1 ≤ i , j ≤ n which
means that the elements in the intersection of the matches mi and m j are either
preserved by both transformations, or are also matched by m0.

If a bundle of direct transformations of a graph G is multi-amalgamable then we
can apply the amalgamated rule directly to G leading to a parallel execution of all

8



the changes performed also by the single transformation steps. This is stated by the
Multi-Amalgamation Theorem in [9, 10]. This theorem can also be used to decompose
an amalgamated rule into a smaller amalgamated transformation and the complement
transformation containing all complement rules not yet applied. The following corollary
states this result; its proof is given in the appendix.

Corollary 2.13 (Multi-Amalgamation). Given a bundle of multi-amalgamable trans-
formations (G =

pi,mi
===⇒ Gi)i=1,...,n over an interaction scheme s and a sub-bundle s′ for

i = 1, . . . , k < n, then there is a transformation G =
ps′ ,m̃′
====⇒ H amalgamating the sub-

bundle and a transformation H =
q
⇒ H over some rule q such that G =

ps′ ,m̃′
====⇒ H =

q
⇒ H is

a decomposition of G =
ps,m̃
===⇒ H.

Note that q is constructed as a gluing of the complement rules of pk+1, . . . , pn.

3 Parallel Independence of Rule Schemes

Two graph transformation steps are parallel independent if one transformation step does
not delete any graph item being used by the other one. In this case, both transformation
steps can be executed in either order. This is stated by the well-known Church–Rosser-
Property [6]. Even if both transformation steps intend to delete a common graph item,
this is considered as a dependency since one transformation step cannot be executed
anymore after the other has been executed and has deleted that item.

Parallel independent amalgamated graph transformations have already been con-
sidered in [9] in the context of bundles of amalgamable transformations, but without
maximal matches. In the following, we characterize the parallel and sequential inde-
pendence of amalgamated transformation steps on the level of interaction schemes.

Definition 3.1 (Parallel independence). Two transformation steps G =
p,m
==⇒ H and

G =
p′,m′
===⇒ H′ with derivations (G

g
←− D

h
−→ H) and (G

g′
←− D′

h′
−→ H′) are paral-

lel independent iff there exist morphisms ld : L → D′ and ld′ : L′ → D such that
g′ ◦ ld = m and g ◦ ld′ = m′.

Two rules p and p′ are parallel independent if all pairs of transformation steps over
p and p′ are parallel independent.

Two interaction schemes s = (si : p0 → pi)i=0,...,n and s′ = (s′j : p′0 → p′j) j=0,...,n′

are parallel independent if pi and p′j are parallel independent for all pairs (i, j) with
0 ≤ i ≤ n and 0 ≤ j ≤ n′.

Example 3.2 (Parallel independent interaction schemes). Considering the interaction
schemes in Section 2, they are all parallel independent from the interaction scheme
“Delete Class” which just consists of the kernel rule. This rule can only be applied to
classes being disconnected from others, hence they cannot be in the match of any other
refactoring rule. Any other two interaction schemes, however, can be applied such that
they are not parallel independent.
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Definition 3.3 (Sequential independence). Two transformation steps G =
p,m
==⇒ H and

H =
p′,m′
===⇒ X with derivations (G

g
←− D

h
−→ H) and (H

h′
←− D′

x
−→ X) are sequentially

independent iff there exist morphisms rd : R→ D′ and ld′ : L′ → D such that h′ ◦ rd =

m and h ◦ ld′ = m′ with m bein the co-match of m.
Two rules p and p′ are sequentially independent if all pairs of transformation steps

over p and p′ are sequentially independent.
Two interaction schemes s = (si : p0 → pi)i=0,...,n and s′ = (s′j : p′0 → p′j) j=0,...,n′

are sequentially independent if pi and p′j are sequentially independent for all pairs (i, j)
with 0 ≤ i ≤ n and 0 ≤ j ≤ n′.

Theorem 3.4 (Independence of interaction schemes). Two interaction schemes s =

(si : p0 → pi)i=0,...,n and s′ = (s′j : p′0 → p′j) j=0,...,n′ are parallel (sequentially) indepen-
dent iff p and p′ are parallel (sequentially) independent for all pairs of amalgamated
rules p over s and p′ over s′.

This result allows us to formulate the Local Church–Rosser property not only for
arbitrary, but also for maximal matches of amalgamated transformations. Intuitively,
this means that in case of both parallel and sequential independence, the application of
one transformation step does not lead to new matches of the other interaction scheme.

Theorem 3.5 (Church–Rosser property for interaction schemes). Given two inter-
action schemes s = (si : p0 → pi)i=0,...,n and s′ = (s′j : p′0 → p′j) j=0,...,n′ , the following
statements hold:

1. If s and s′ are parallel independent, then any two amalgamated transformations

G =
p,m
==⇒ H and G =

p′,m′
===⇒ H′ applying amalgamated rules p over s and p′ over s′

can be completed by amalgamated transformations H =
p′,m̄′
===⇒ X and H′ =

p,m̄
==⇒ X.

2. If s and s′ are parallel and sequentially independent, then any two amalgamated

transformations G =
p,m
==⇒ H and G =

p′,m′
===⇒ H′ applying amalgamated rules p over s

and p′ over s′ at maximal matches m and m′ can be completed by amalgamated

transformations H =
p′,m̄′
===⇒ X and H′ =

p,m̄
==⇒ X at maximal matches m̄ and m̄′.

The proofs of both theorems can be found in the appendix.

4 Conflict Analysis for Rule Schemes

The critical pair analysis (CPA) is a well-known technique to analyze potential con-
flicts and dependencies of transformation systems. It has first been introduced for term
rewriting and later generalized to graph transformation [14, 6]. A critical pair describes
a minimal conflicting situation that may occur in the transformation system. It is well-
known that if all critical pairs can be shown to be strictly confluent, the transformation
system is locally confluent. A transformation system is locally confluent if each pair of
direct transformation steps can be resolved by arbitrary many steps to a common graph.
The notion of strict confluence means that the jointly preserved part of a critical pair is
also preserved by its resolution [15]. Up to now, this theory has been shown for simple
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rules. In the following, we extend it to interaction schemes such that the CPA can also
be used for amalgamated rules. The main problem we have to deal with is that, in gen-
eral, there is an infinite set of critical pairs for all amalgamated rules over an interaction
scheme.

Definition 4.1 (Critical pair). A critical pair, short CP, consists of two transforma-

tion steps ti : G =
pi,mi
===⇒ Hi applying rules pi = (Li

li
←− Ki

ri
−→ Ri) at matches mi

for i ∈ {1, 2} such that G is minimal, i.e., m1 and m2 are jointly surjective. Given two
interaction schemes s1 and s2, CP(s1, s2) denotes the set of all critical pairs over trans-
formation steps t1 and t2 as above, applying amalgamated rules p1 ∈ Amalg(s1) and
p2 ∈ Amalg(s2). Given a set S of interaction schemes, CP(S ) =

⋃
s1,s2∈S CP(s1, s2).

Example 4.2 (Critical pair). Figure 8 shows a critical pair applying the kernel rule
PDA(0) of the refactoring “Push down Attribute” and the multi-rule RIWD(1) of the
refactoring “Replace Inheritance With Delegation”. Since PDA(0) deletes attribute 4:A
while RIWD(1) is reading and preserving it, this critical pair reports a delete-use-
conflict. It can be resolved by applying the refactoring “Pull Up Attribute” taking back
the previous refactoring and then applying RIWD(1) as on the right. Hence, the com-
mon graph will be isomorphic to H2.

G
1:C 2:G 3:C 4:A

H1
1:C 2:G 3:C:A

H2
1:C 2:G 3:C 4:A:A

PDA(0) RIWD(1)

PUA(0);RIWD(1)

Fig. 8. Critical pair between “Push Down Attribute” and “Replace Inheritance With Delegation”

Corollary 4.3 (Confluence of interaction schemes). A set S of interaction schemes is
locally confluent if, for all s, s′ ∈ S and for all rule pairs (al, ar) with al ∈ Amalg(s)
and ar ∈ Amalg(s′), all critical pairs over (al, ar) are strictly confluent.

This corollary directly follows from the Local Confluence Theorem and Critical Pair
Lemma (see, e.g., Theorem 3.34 in [6]) since we can consider amalgamated rules as
normal rules.

Although this corollary yields a result on the confluence of interaction schemes,
it can hardly be used to check confluence since the set of amalgamated rules over an
interaction scheme is infinite in general. Hence, infinite many critical pairs have to be
checked in general. The key idea for reducing the set of critical pairs is to take out those
critical pairs that do not specify any new conflicting situation. We continue to develop
a characterization for critical pairs being redundant in that sense.

Definition 4.4 (Extraction of critical pairs). Given a set CP(sl, sr) of critical pairs

with cp1 = (G1 =
p1l,m1l
=====⇒ H1l,G1 =

p1r ,m1r
=====⇒ H1r) and cp2 = (G2 =

p2l,m2l
=====⇒ H2l,G2 =

p2r ,m2r
=====⇒

11



H2r) ∈ CP(sl, sr) being two critical pairs with p1l, p2l ∈ Amalg(sl), p1r, p2r ∈

Amalg(sr), p2l ≥ p1l, and p2r ≥ p1r. The critical pair cp2 is larger than cp1, short
cp2 > cp1, if there are injective graph morphisms g : G1 → G2, dl : D1l →

D2l, hl : H1l → H2l, dr : D1r → D2r, and hr : H1r → H2r such that correspond-
ing diagrams commute and cp2 is a proper extension of cp1, i.e., at least one of mor-
phisms g, hl and hr is not surjective. We can also say that cp1 is smaller than cp2. If
g(m1l(L1l− l1l(K1l))∪m1r(L1r− l1r(K1r))) ⊆ m2l(L2l− l2l(K2l))∪m2r(L2r− l2r(K2r))
holds in addition, cp1 is called an extraction of cp2.

In the following, we characterize under which conditions a critical pair cp1 is con-
sidered to be restricted w.r.t. another critical pair cp2. Note that the restriction of criti-
cal pairs is more than cutting away unnecessary context. In general, both critical pairs
coincide w.r.t. the interaction schemes applied but differ in the size of the actual amal-
gamated rules. This applies to the resolving interaction schemes as well.

Definition 4.5 (Restricted critical pair). Consider a set of interaction schemes S and

critical pairs cp1 = (G1 =
p1l,m1l
=====⇒ H1l,G1 =

p1r ,m1r
=====⇒ H1r) and cp2 = (G2 =

p2l,m2l
=====⇒

H2l,G2 =
p2r ,m2r
=====⇒ H2r) applying rules of Amalg(S ) such that cp1 is an extraction of

G2

G1

H1l H1rH2l H2r

X1

X2

p1l pr1

[rn] [sm]

p2l p2r

max([rn]) max([sm])

g

hl hr

x

cp2 and cp1 is strictly confluent; this means
(among others) that there are transformations t1l :

H1l =
[rn]
==⇒ X1 and t1r : H1r =

[sm]
==⇒ X1. The crit-

ical pair cp1 is more restricted than cp2 if there

are transformations tl : H2l =
max([rn])
======⇒ X2 and

tr : H2r =
max([sm])
======⇒ X2 and an injective morphism

x : X1 → X2 compatible with the derivations of
tl and tr. We also say that cp2 is redundant wrt.
cp1. Given the set CP of critical pairs over S ,
Res(CP) ⊆ CP contains all critical pairs not be-
ing redundant of another one of CP.

Example 4.6 (Restricted critical pairs). Figures 9 and 10 show two critical pairs cp2
and cp3 both being strictly confluent. We will consider these critical pairs first and then
argue why cp2 is more restricted than cp3.

In Figure 9, the multi-rules of the refactorings “Push Down Attribute” and “Replace
Inheritance With Delegation” are applied such that they overlap in conflicting elements:
The attribute 4:A is deleted by PDA(1) and preserved by RIWD(1), and the generaliza-
tion 6:G is preserved by PDA(1) and deleted by RIWD(1). Both refactorings can be
applied one after the other such that these conflicts can be resolved. This critical pair is
called cp2.

Figure 10 shows a similar critical pair cp3 where the same multi-rule PDA(1) is
applied on the left but a slightly larger rule on the right. It is an amalgamated rule
applying the multi-rule of the refactoring “Replace Inheritance With Delegation” twice.
The same kinds of conflicts are reported here but this time two attributes are in the
super class 3:C. The resolution of this critical pairs resembles very much the one in
cp2. The only difference is that the multi-rule RIWD(1) is applied on the left, instead of
the kernel rule RIWD(0).

12



G2
1:C 2:G 3:C 4:A

5:C 6:G

H2l

1:C8:A 2:G 3:C

5:C 6:G9:A

H2r

1:C 2:G 3:C 4:A

5:C 10:R9:A

X2
1:C 2:G 3:C8:A

5:C 10:R9:A

PDA(1) RIWD(1)

RIWD(0) PDA(0)

Fig. 9. Critical pair between “Push Down Attribute” and “Replace Inheritance With Delegation”

G3
1:C 2:G 3:C 4:A

7:A5:C 6:G

H3l

1:C8:A 2:G 3:C

5:C 6:G9:A 7:A

H3r

1:C 2:G 3:C 4:A

7:A5:C 10:R9:A

8:A

:A

X3
1:C 2:G 3:C8:A

7:A5:C 10:R9:A

:A

PDA(1) RIWD(2)

RIWD(1)
PDA(0)

Fig. 10. Another critical pair between “Push Down Attribute” and “Replace Inheritance With
Delegation”

The critical pair cp2 is an extraction of cp3 since cp3 has larger graphs with com-
patible embeddings of corresponding graphs G2 and G3, H2l and H2r, and H3l and
H3r as well as RIWD(1) < RIWD(2). Moreover, all elements being deleted from G2
have corresponding elements that are deleted from G3. Considering the conflict resolu-
tions in both critical pairs, the one in cp3 is the maximized version of the one in cp2.
Furthermore, there is an injective morphism from X2 to X3 being compatible with the
corresponding derivations. Hence, cp2 is more restricted than cp3. It is straight forward
to show for all critical pairs cp′ distinguishing from cp2 just by the number of attributes
at super class 3:C that cp2 is more restricted than cp′.
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In the following, we show that the reduction of critical pair sets is sound, i.e., that
strict confluence of the reduced set of critical pairs still induces strict confluence of the
whole set.

Theorem 4.7 (Reduction of CP set). Given a set S of interaction schemes and two
critical pairs cp1, cp2 ∈ CP(S ) such that cp1 is more restricted than cp2, the following
holds: If all critical pairs of CP(S ) − {cp2} are strictly confluent then all critical pairs
of CP(S ) are strictly confluent.

Proof idea: Since cp1 is confluent and more restricted than cp2, it is straight forward to
show that cp2 is confluent. Let H1l be the embedded result graph after applying pl1 (see
diagram in Definition 4.5). Since the match of the complement rule pl2 is allowed to
overlap with the embedding hl : H1l → H2l in preserved items only, strict confluence
of cp2 can be shown based on the strict confluence of cp1 as well as using pushout and
pullback properties.

Proposition 4.8 (Transitive restriction of critical pairs). Given a set CP(S ) of criti-
cal pairs it holds: If cp1 ∈ CP(S ) is more restricted than cp2 ∈ CP(S ) and cp2 is more
restricted than cp3 ∈ CP(S ) then cp1 is more restricted than cp3 as well.

The proof is straight forward along the definition of restricted critical pairs.

The following example shows that conflict resolutions for smaller rules over two
selected interaction schemes cannot always be transfered to larger rules of the same
schemes, even if the same conflicts are reported. The resolution is dependent on the
available context. In some cases, the context is too large to apply a rule (violating the
dangling condition) and in other cases, the context is not large enough to apply rules.

Example 4.9 (Non-redundant critical pairs). In Figure 11, a critical pair between the
multi-rules of “Remove All Inheritances” and “Replace Inheritance With Delegation”
is depicted. Both delete the only generalization relation. This conflict is resolved by
deleting the isolated class on the left while on the right, the separate class is inlined into
the referred class (taking back the previous refactoring). This resolution works here
since class 1:C is the only subclass.

G
1:C :G 3:C 4:A

H1
1:C 3:C 4:A

H2
1:C :R 3:C 4:A:A

X
3:C 4:A

RAI(1) RIWD(1)

DC IC(1)

Fig. 11. Critical pair between “Remove All Inheritances” and “Replace Inheritance With Delega-
tion”

Figure 12 shows a different critical pair between an amalgamated rule of “Remove
All Inheritances” and the multi-rule of “Replace Inheritance With Delegation”. Since
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graphs H1 and H2 of this critical pair have more context than in the previous example,
the reported conflict cannot be resolved as before. While “Delete Class” has to be ap-
plied twice on the left, “Inline Class” is again applied on the right, together with “Delete
Empty Subclass”. This interaction scheme is not applicable in a too small context (as in
the critical pair above).

G
1:C 2:G 3:C 4:A

5:C :G

H1
1:C 3:C 4:A

5:C

H2
1:C 2:G 3:C 4:A

5:C:A :R

X
3:C 4:A

RAI(2) RIWD(1)

DC;DC IC(1);DES(1)

Fig. 12. Critical pair between “Remove All Inheritances” and “Replace Inheritance With Delega-
tion”

This example points to a general problem that can occur in conflict resolution: The
rule DC is applied dependent on how many subclasses are considered, i.e., the resolution
is performed sequentially and larger critical pairs cannot become redundant. If DC were
an interaction scheme with an empty kernel rule and the original rule as multi-rule, i.e.,
a more parallel interaction scheme, this problem can be solved.

The example shows that it is not enough to consider critical pairs over kernel and
multi-rules, but smaller amalgamated rules have to be considered as well. Larger amal-
gamated rules, however, have recurring parts (multi-rule copies) that do not lead to new
kinds of resolutions, i.e., lead to redundant critical pairs. The following theorem states
that the set of non-redundant critical pairs is in fact finite. It may happen that conflict
resolutions result in applying interaction schemes in loops. In those cases, we consider
more parallel interaction schemes where resolutions are performed in parallel.

Theorem 4.10 (Finite set of restricted critical pairs). Given a finite set S of interac-
tion schemes consisting of finite rules only. Then the set Res(CP) ⊆ CP(S par) is finite
for an interaction scheme S par being more parallel than S (see Definition 2.4).

Proof idea: We consider a pair of interaction schemes s, s′ ∈ S and the set CP(s, s′) of
all their critical pairs. We show that the set Res(CP(s, s′)) of all critical pairs without
redundant ones is finite. The main idea is that there are numbers c and d such that the
following condition holds: Let R be the set of all kernel and multi-rules of all interaction
schemes in S . Consider the set M of all partial matches of all rules in R w.r.t. all critical
pairs (t1, t2) over amalgamated rules with at most c and d multi-rule instantiations for
t1 and t2, respectively. Then there is no critical pair that leads to a match being non-
equivalent to any match in M. c and d exist since copies of complement rules are applied
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parallel independently and hence, derive isomorphic graph parts in H2l and H2r. We
have to change to S par if S contains interaction schemes that are applied in loops to
resolve critical pairs, but still obtain the same result.

Full proofs of all the theorems above can be found in the appendix.

5 Related Work and Conclusion

Multi-objects and other variants of matching graph parts as often as possible have been
considered in several graph transformation approaches, in tool environments such as
PROGRES [16] and Fujaba [1] as well as in conceptual approaches by Grönmo [11] and
Drewes et.al. [5]. Amalgamated graph transformation has been used to specify activities
with some variabilities [2, 3, 8, 13]. Although being applied in different contexts and
formalized in [9, 10], the critical pair analysis has not yet been extended to this kind of
graph transformation. It turns out that the CPA can be reused by considering only a finite
set of critical pairs of smaller amalgamated rules to decide the local confluence of the
whole transformation system. Future work is needed to develop an efficient algorithm
for enumerating all non-redundant critical pairs and for evaluating the extended CPA
in practice. Furthermore, the extension to a more sophisticated graph transformation
approach with types, attributes, and application conditions is worthwhile to consider.

Acknowledgment: We thank Yngve Lamo and Kristopher Born for their valuable com-
ments to this paper.
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6 Appendix

This appendix contains the proofs of all new results of this paper.

Proof (of Corollary 2.13).
If the bundle (G =

pi,mi
===⇒ Gi)i=1,...,n is multi-amalgamable, so is (G =

pi,mi
===⇒ Gi)i=1,...,k for

k < n. For both the full bundle and the subbundle the Amalgamation Theorem states that

there are amalgamated transformations G =
p̃(n),m̃
====⇒ H and G =

p̃′(k),m̃′
=====⇒ H′, respectively.

Due to the construction of amalgamated rules, p̃(n) can be constructed as the colimit
of p̃′(k) and (pi)i=k+1,...,n. Thus we can apply again the Amalgamation Theorem for the

interaction scheme p0 → p̃′(k) and obtain the decomposition G =
p̃′(k),m̃′
=====⇒ H′ =

q
⇒ H of

G =
p̃(n),m̃
====⇒ H.

Proof (of Theorem 3.4). "=⇒": We assume that there is a pair of amalgamated rules
p ∈ Amalg(s) and p′ ∈ Amalag(s′) not being parallel independent, i.e. there are amal-

gamated transformation steps G =
p,m
==⇒ H and G =

p′,m′
===⇒ H′ such that at least one of the

morphisms ld : L→ D′ and ld′ : L′ → D with g′◦ld = m and g◦ld′ = m′ does not exist.
This is the case if m and m′ overlap in at least one graph item to be deleted by one of the
rules. W.l.o.g. there is an x ∈ m(L) ∩m′(L′) and x < m(l(K)). Hence, there are an i with
0 ≤ i ≤ n and a j with 0 ≤ j ≤ n′ such that x ∈ mi(Li) ∧ x < mi(li(Ki)) and x ∈ m′j(L

′
j).

This means that there are transformation steps G =
pi,mi
===⇒ Hi and G =

p′j,m
′
j

===⇒ H′j not being
parallel independent. Hence, pi and p′j are not parallel independent and therefore, s and
s′ are not parallel independent. This is a contradiction to the assumption.

"⇐=": Consider the following special cases: For all 0 ≤ i ≤ n and 0 ≤ j ≤ n′, we
choose p = pi and p′ = p′j. Then, the pair (pi, p′j) is parallel independent by assumption.
Hence, all pairs (pi, p′j) with 0 ≤ i ≤ n and 0 ≤ j ≤ n′ are parallel independent and
therefore, s and s′ are parallel independent.

Similarly, this can be shown for sequential independence.
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Proof (of Theorem 3.5). We have to show that there are amalgamated transformation

steps H =
p′,m̄′
===⇒ X and H′ =

p,m̄
==⇒ X at maximal matches, i.e.:

1. There are amalgamated transformation steps H =
p′,m̄′
===⇒ X and H′ =

p,m̄
==⇒ X.

2. Matches m̄′ and m̄ are maximal.

1. This follows directly from Thm. 3.4 and the Local Church-Rosser Theorem applied
to the amalgamated rules.

2. We obtain the same amalgamated transformation steps, but assume w.l.o.g. that
match m′ is not maximal. This means that there is an amalgamated rule p′′ > p′

leading to a transformation H =
p′′,m′′
====⇒ X′. This cannot happen since all (pi, p′j) are

sequentially independent.

Proof (of Theorem 4.7). We have to show that cp2 = (G2 =
al2,mal2
=====⇒ H2l,G2 =

ar2,mar2
=====⇒

H2r) is strictly confluent if all critical pairs in CP − {cp2} are strictly confluent. Espe-

cially, we know that cp1 = (G1 =
al1,mal1
=====⇒ H1l,G1 =

ar1,mar1
=====⇒ H1r) is strictly confluent.

Since cp1 is strictly confluent, we can assume that there are transformations

H1l =
[rn]
==⇒ X1 and H1r =

[sm]
==⇒ X1 with derivations (H1l

n1l
←− N1l

n1′l
−→ X1) and

(H1r
n1r
←− N1r

n1′r
−→ X1). With cp1 being more restricted than cp2, the confluence

of cp2 via maximal matches follows directly from Definition 4.5 yielding transfor-

mations t′l : H2l =
max([rn])
======⇒ X2 and t′r : H2r =

max([s′m])
======⇒ X2 with resulting derivations

(H2l
n2l
←− N2l

x2l
−→ X2) and (H2r

n2r
←− N2r

x2r
−→ X2). Hence, cp2 is confluent.

G2

G1

H1l H1rH2l H2r

X1

X2

al1 ar1

[rn] [sm]

al2 ar2

max([rn]) max([sm])

g

hl hr

x

Strictness: For strictness, we need to obtain the proper morphisms showing that those
elements preserved by al2 and ar2 are still present in X2.

Due to construction, it is possible to apply al1 at g◦mal1 and ar1 at g◦mar1 yielding

graphs H2l and H2r, respectively. We perform transformations tl : H2l =
[rn]
==⇒ X2′ and

tr : H2r =
[sm]
==⇒ X2′ which is possible due to the Critical Pair Lemma (see [6]). Moreover,

there is an injective morphism x1 : X1→ X2′ compatible with tl and tr. Note that these
rule applications are not necessarily maximal.
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Now we consider the following figure where we show that pair G2 =
al1
=⇒

H1l,G2 =
ar1
==⇒ H1r with tl and tr is strictly confluent. Due to the strict confluence of

cp1, the lower layer of commuting squares exists and (D1l
d1l
←− D1

d1r
−→ D1r) is the

pullback of (D1l
g1l
−→ G1

g1r
←− D1r). Note that in the following, we refer to commuting

triangles and squares by listing their graphs only. The participating morphisms can be
unambiguously deduced.

The upper layer of the figure below is given by its outer morphisms only. D2 and all
outgoing morphisms have to be determined. Moreover, all layer-connecting morphisms
are given, except of D1 → D2. All outer squares commute. First, we construct the
pullback (D2,D2l,D2r,G2). Due to its pullback properties, there is a unique morphism
D1→ D2 such that (D1,D1l,D2,D2l) and (D1,D2,D1r,D2r) commute.

X2′

N2l

N2r

D2

H2l

D2l H2r

D2r

G2

g2l

h2l

d2l

g2r

h2r

d2r

dn2l

n2l

x2l

dn2r

n2r

x2r

X1

N1l

N1r

D1

H1l

D1l H1r

D1r

G1

g1l

h1l

d1l

g1r

h1r

d1r

dn1l

n1l

x1l

dn1r

n1r

x1r

Note that this strictness can be easily shown since all outer squares are
pushouts. Due to the Cube-Pushout-Pullback lemma in [6], also (D1,D2,D1l,D2l)
and (D1,D2,D1r,D2r) are pushouts. Since the composition of (D1,D2,D1l,D2l)
and (D1l,D2l,H1l,H2l) as well as (N1l,N2l,H2l,H1l) are pushouts, there is a mor-
phism dn2l : D2 → N2l such that (D1,D2,N1l,N2l) becomes a pushout and
(D2,D2l,N2l,H2l) commutes, due to a special pushout decomposition property (shown
e.g. in A.12 in [7]). Analogously, we get a morphism dn2r : D2 → N2r such that
(D1,D2,N1r,N2r) becomes a pushout and (D2,D2r,N2r,H2r) commutes. Since all
vertical squares are pushouts now, (D2,N2l,N2r, X2) commutes, due to pushout prop-
erties. Hence, the upper transformations are strictly confluent.

We have to extend this argumentation to amalgamated transformations now where

the outer squares commute but are not necessarily pushouts. We have G2 =
al1
=⇒ H2l =

al2
=⇒
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H2l = G2 =
al2
=⇒ H2l, therefore we obtain the following diagram of derivations where

D1l → D2l and H1l → H2l exist because cp1 is an extraction of cp2. Since m(al2)
is allowed to overlap with h1l(H1l) in preserved items only, there is a morphism
H1l → DH2l with commuting triangles. Due to pushout-pullback properties and proper
injective morphisms, the squares (D1l,H1l,D2l,DH2l) and (D2l,DH2l,D2l,H2l) are
pushouts.

G1 D1l H1l

G2 D2l H2l DH2l H2l

D2lG2l

(PO) (PO)

(PB)

X2′

N2l

N2r

D2

H2l

D2l H2r

D2r

G2

X2

N2′l

N2′r

D2

DH2l

D2l DH2r

D2r

G2

X1

N1l

N1r

D1

H1l

D1l H1r

D1r

G1

For the next steps, please consider the diagram above: From the embedding of cp1
into G2 we obtain the pullback (D2,D2l,D2r,G2) and pushouts (D1,D2,D1l,D2l)
and (D1,D2,D1r,D2r). Constructing the pullback (D2,D2l,D2,D2l), we obtain
the morphism D1 → D2. By pushout-pullback decomposition, this square as
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well as (D1,D2,D1l,D2l) become pushouts. Now, we can construct the pullback
(D2r,G2,D2r,G2) and get the morphism D1r → D2r. Again by pushout-pullback
decomposition, this square and (D1r,D2r,G1,G2) are pushouts. Moreover, we ob-
tain a morphism D2 → D2r. By composition and decomposition of pushouts, also
(D1,D2,D1r,D2r) and (D2,D2r,D2,D2r) are pushouts. Now, we can apply the cube-
pushout-pullback decomposition such that (D2,D2l,D2r,G2) becomes a pullback.
Building the pushout (D1r,D2r,H1r,DH2r), we obtain a transformation G2 =⇒ DH2r

where G1 =⇒ H1r embeds into. In the same way, we obtain a transformation G2 =⇒
DH2l where G1 =⇒ H1l embeds into.

Similarly, we can construct corresponding graphs and morphisms for H2l =⇒ X2
and H2r =⇒ X2 using H2l =⇒ X2′ and H2r =⇒ X2′ and the embedding of H1l =⇒ X1 and
H1r =⇒ X1 into the latter. This results in the multi-cube above where all vertical squares
are pushouts while this holds for the multi-cube below only for the lower part.

X2

N2l

N2rH2l

D2′l H2r

D2′r

G2

X2

N2′l

N2′r

D2

DH2l

D2l DH2r

D2r

G2

X1

N1l

N1r

D1

H1l

D1l H1r

D1r

G1

Intuitively, this means that we can embed cp1 not only into G2 =⇒ H2l and
G2 =⇒ H2r but also into G2 =⇒ DH2l and G2 =⇒ DH2r with corresponding morphisms
ensuring strictness.

Since pushouts and pullbacks preserve injectivity, G2→ G2 is injective. Then, also
(D2,D2l,D2r,G2) is a pullback and we obtain the required morphisms D2 → N2l and
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D2→ N2r and diagrams with D2→ N2l → X2 = D2→ N2r → X2. This finalizes the
proof of strictness for cp2.

Proof (of Proposition 4.8). It is straight forward to show that cp1 is an extraction of
cp3 since this leads back to the transitive closure of injective morphisms, commuting

squares and equality. Moreover, it is obvious that the transformation G3 =
p3l,m3l
=====⇒ H3l

can be decomposed into transformations G3 =
p1l
==⇒ H3l =

p3′l
==⇒ H3l and further decom-

posed into G3 =
p1l
==⇒ H3′l =

p2l
==⇒ H3l =

p3l
==⇒ H3l with morphisms H1l → H2l → H3l, due

to parallel independence of complement rules. Analogously, we get G3 =
p1r
==⇒ H3r =

p2r
==⇒

H3r =
p3r
==⇒ H3r with morphisms H1r → H2r → H3r.

Due to the assumption, there is an injective morphism X1 → X2 compatible with

the derivations of t2l : H2l =
max([rn])
======⇒ X2 and t2r : H2r =

max([sm])
======⇒ X2 being extensions

of transformations t1l : H1l =
[rn]
==⇒ X1 and t1r : H1r =

[sm]
==⇒ X1. Moreover, there is an

injective morphism X2→ X3 compatible with the derivations of t3l : H3l =
max(max([rn])]
==========⇒

X3 and tr : H3r =
max(max([sm]))
==========⇒ X3 being extensions of t2l and t2r. Hence, there is an

injective morphism X1→ X3 compatible with the derivations of t3l : H3l =
max(max([rn])]
==========⇒

X3 and tr : H3r =
max(max([sm]))
==========⇒ X3 being extensions of t2l and t2r and moreover, being

extensions of t1l and t1r.

Definition 6.1 (Equivalent partial matches). Given a rule p = (L
l
←− K

r
−→ R) and

a transformation t : G =⇒ H with derivation (G
g
←− D

h
−→ H) a partial match of p to H

is a partial morphism L→ H. Two partial matches m1 and m2 of p to H are equivalent
wrt. t if (1) m1 is isomorphic to m2, i.e., Dom(m1) = Dom(m2) and Ran(m1) � Ran(m2)
and (2) ∀ x ∈ L: m1(x) ∈ h(D)⇔ m2(x) ∈ h(D).

Proof (of Theorem 4.10). We consider a pair (s, r) of interaction schemes from S and
the set CP of all their critical pairs and show that the set Res(CP(s, r)) of all critical
pairs over all amalgamated rules over (s, r) without redundant ones, is finite.

The smallest amalgamated rules in s and r are the kernel rules p0 and q0.
Res(CP(s, r)) contains all critical pairs over p = p0 and q = q0 which are finitely
many since the rules are finite and therefore also the number of possible overlappings.
For successively larger amalgamated rules p and q, there are interaction scheme in-
stances sn = (si : p0 → pi)i=0,...,n over s and rm = (r j : q0 → q j) j=0,...,m over r yielding
amalgamated rulesp(n) and q(m).

Now consider a critical pair cp1 = (G1 =
p(k)
==⇒ H1l,G1 =

q(l)
==⇒ H1r) and w.l.o.g. a

second critical pair cp2 = (G2 =
p(k+1)
====⇒ H2l,G2 =

q(l)
==⇒ H2r) with an injective g : G1 →

G2 (not being surjective). Obviously, we have p(k) < p(k + 1). Due to Corollary 2.13
and the matches of critical pairs being jointly surjective, we get a morphism H1l → H2l

(not being surjective) and H1r � H2r. Due to the Critical Pair Lemma and the parallel
independence of complement rule applications, all deletions by rules p(k) and q(l) in
cp1 are mapped to corresponding deletions in cp2. Hence, cp1 is an extraction of cp2. It

22



is straight forward to proof the extraction relation for critical pairs where q(l) is enlarged
to q(l+1) and p(k) is kept or both rules are enlarged by one more multi-rule application.
Considering k > size(s) and l > size(r), there is a critical pair cp1 for each cp2 such that
cp1 is an extraction of cp2. This is due to the case that all kinds of overlappings occur
already in smaller critical pairs since larger critical pairs just contain copies of multi-
rule matches and do not overlap in a completely new way. Let Extract(CP) ⊆ CP be the
set of all critical pairs that do not have any extraction. Due to the above argumentation,
this set is finite.

Next, we take any cp2 ∈ CP for which there is a cp1 ∈ Extract(CP) being its
extraction. Given the set R of all kernel and multi-rules of all interaction schemes in S ,
we want to show that there are only finitely many critical pairs cp2 ∈ CP−Extract(CP)

with non-equivalent matches of rules in R w.r.t. G2 =
p(k)
==⇒ H2l and w.r.t. G2 =

q(l)
==⇒ H2r.

Let c and d be two finite numbers of multi-rule copies needed to derive graphs H2l and
H2r such that the following condition holds: Given the set M of all partial matches of all
rules in R w.r.t. all critical pairs over amalgamated rules smaller than p(c) or q(d), there
is no critical pair over p(c) and q(d) that leads to a match being non-equivalent to any of
M (that can be embedded into H2l or H2r, resp.). Such finite numbers c and d exist since
copies of complement rules are applied parallel independently hence derive isomorphic
graph parts in H2l and H2r. Let NonEquiv(CP) ⊆ CP be the finite set of all critical pairs
that fulfill the condition stated above. It is obvious that Extract(CP) ⊆ NonEquiv(CP).

It remains to show that all critical pairs in CP − NonEquiv(CP) have more re-
stricted critical pairs. Moreover, for all non-strictly confluent critical pairs cp2 ∈

CP−NonEquiv(CP) there is a non-strictly confluent critical pair cp1 ∈ NonEquiv(CP)
being an extraction of cp2.

Taking a critical pair cp2 ∈ CP − NonEquiv(CP), it is obvious that there is a pair
cp1 ∈ NonEquiv(CP) being an extraction of cp2. At least as many multi-rule applica-
tions are removed from the left or right transformation as needed to erase all equivalent
matches. We assume that cp1 applies p(x1) and q(y1) while cp2 applies p(x2) and q(y2)
with x1 < y1 or x2 < y2.

For the rest of the proof we assume that there is no interaction scheme applied
in loops to resolve a critical pair. If so, the corresponding interaction scheme is re-
placed by a more parallel one where application in loops is not needed anymore. If

cp2 is resolved by transformations t2l : H2l =
[rn]
==⇒ X2 and t2r : H2r =

[sm]
==⇒ X2, there

is a cp1 ∈ NonEquiv(CP) being resolved by transformations t1l : H1l =
[r′n]
==⇒ X1 and

t1r : H1r =
[s′m]
==⇒ X1 with [r′n] being a list of subrules of [rn] and [s′m] being a list of

subrules of [sm]. Since their complement rules do not destroy the resolving transforma-
tions of cp1, the Embedding Theorem (in, e.g., [6]) can be applied to t1l yielding t2L

and to t1r yielding t2r. Hence, there is a compatible morphism X1 → X2. Hence, cp1
is more restricted than cp2. This completes the proof that Res(CP) ⊆ NonEquiv(CP),
and therefore Res(CP) is finite.
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