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Enhancing MIP branching decisions by using
the sample variance of pseudo-costs

Gregor Hendel

November 26, 2014

Abstract

The selection of a good branching variable is crucial for small search
trees in Mixed Integer Programming. Most modern solvers employ a
strategy guided by history information, mainly the variable pseudo-costs,
which are used to estimate the objective gain. At the beginning of the
search, such information is usually collected via an expensive look-ahead
strategy called strong-branching until variables are considered reliable.

The reliability notion is thereby mostly based on fixed-number thresh-
olds, which may lead to ineffective branching decisions on problems with
highly varying objective gains.

We suggest two new notions of reliability motivated by mathematical
statistics that take into account the sample variance of the past obser-
vations on each variable individually. The first method prioritizes addi-
tional strong-branching look-aheads on variables whose pseudo-costs show
a large variance by measuring the relative error of a pseudo-cost confidence
interval. The second method performs a two-sample Student-t test for fil-
tering branching candidates with a high probability to be better than the
best history candidate.

Both methods were implemented in the MIP-solver SCIP and compu-
tational results on standard MIP test sets are presented.

1 Introduction
A Mixed Integer Program (MIP) denotes a minimization problem of a linear
objective function under linear inequalities and integrality restrictions for a
subset of the variables, or to prove that no solution exists. We use the term
"mixed" to refer to the occurence of two variable types, continuous and integral
variables, in the problem formulation.

Most modern solvers for MIP [CBC, CPL, XPR, GUR, SCI] apply a branch-
and-bound procedure [Dak65, LD60], which creates a search tree for a MIP P by
a successive problem division based on the LP-relaxation information at a node.
In the most common scheme of variable-based branching, it is crucial to select
good branching variables in order to quickly reach terminal nodes and thus keep
the required search tree small. A branching rule is a scoring mechanism to guide
the selection of a branching variable at each inner node of the search tree.

Branching rules [AB09, BGG+71] using variable history information of prior
branching decisions have been shown to perform well at later stages of the
search, see also [LS99]. The initial lack of information can be overcome by
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a computationally expensive strong-branching-initialization [ABCC95], which
virtually performs a 1-level look-ahead by solving the child node LP-relaxations
for a subset of the fractional variables and then selects the best candidate.

The current state-of-the-art branching rule for balancing between strong-
branching and estimation, reliability-branching [AKM04], uses a fixed number
of branching decisions after which the variable information is considered reli-
able. This approach has the disadvantage that it uses the same fixed reliability
threshold for all variables. In practice, however, it appears natural that variables
that are structurally different inside a MIP model also have different reliability
requirements. Another disadvantage of a fixed parameter is that it might not
scale well with increasing problem size.

The aim of the present paper is to introduce different notions of reliability by
exploiting more statistical information during the process of (strong-)branching.
Using the sample variance of past observations, we formulate two criteria for
switching between strong-branching and estimation that take into account each
variable history individually. We perform computational experiments on stan-
dard MIP test sets to evaluate the impact of our approach.

The remainder of this article is organized as follows: First, we summarize
past and recent related work by other authors from the literature in Section 2.
Section 3 introduces the necessary notation and presents the reliability branch-
ing rule in more detail. Afterwards, we introduce new notions of reliability in
Section 4, and present computational results, which were obtained with an im-
plementation in the Constraint Integer Programming framework Scip [SCI] in
Section 5. We finish with some concluding remarks in Section 6. The appendix
contains an instance-wise summary of our computational experiments.

2 Related Work
Research on branching rules for Mixed Integer Programming has been a fo-
cus of interest since the advent of the Branch-and-Bound procedure in the
1960’s [Dak65, LD60]. Note that in this paper, we only consider variable-based
branching. This concept is generalizable by incorporating branching on general
disjunctions, which was introduced in [RF81].

Pseudo-costs, which measure the average objective gain for every integer
variable, and their use for branching first appeared in [BGG+71]. The use of
degradation bounds for the pseudo-cost initialization was suggested in [GR77].
Equipped with more computational power, strong-branching was first applied in
the context of the Traveling Salesman Problem [ABCC95], whereas its first use
for general MIP solving is attributed to the commercial MIP solver Cplex [CPL].
An important computational study for these techniques, also in the context of
node selection, can be found in [LS99].

Recently, Gamrath [Gam13] improved the strong-branching procedure by
also applying domain propagation techniques at each sub-node during strong-
branching. Furthermore, Berthold et al. [BGS14] proposed cloud branching
to overcome the degeneracy of LP-relaxation solutions by considering variable
fractionalities as intervals rather than points. The computational complexity for
this approach is comparable to the effort of strong-branching because 2 sub-LP-
relaxations have to be solved for every variable. In another recent work [FM12],
Fischetti and Monaci observe unnecessary strong-branching effort at the pres-
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ence of chimerical variables, i.e. fractional variables with little or no effect on
the objective of the LP solutions. They exploit this fact to safely ignore such
candidates for the strong-branching procedure.

The pseudo-cost branching rule is an effective replacement of the strong-
branching rule at later stages of the search but lacks information at the be-
ginning. For that reason, combinations of pseudo-cost branching and strong-
branching have been developed that either use a single strong-branching initial-
ization on uninitialized variables, and pseudo-costs for every initialized candi-
date, or strong-branching at the topmost d levels of the tree, and pseudo-cost
branching at deeper levels. The state-of-the-art branching scheme, which is ap-
plied by most modern MIP solvers albeit the concrete implementation might
vary, is reliability branching [AKM04], see also Section 3. A threshold number
is dynamically adjusted at every node depending on the proportion of LP itera-
tions during strong-branching and the total number of Simplex iterations spent
during solving regular nodes, see also [Ach07] for further details. Other forms of
history information such as inference or cutoff histories have been adopted for
general MIP in [Ach09]. Hybrid reliability branching [AB09] combines pseudo-
costs and deduction-based history information into a single score.

For recent variable branching methods that use other techniques than his-
tory information, see, e.g., [GS11, KKNS09]. In [PC11], Pryor and Chinneck
presented a branching strategy for quickly finding feasible solutions that ap-
proximates solution densities by means of normal distributions. Although their
approach is quite different from the one presented here, their work has indeed
been a motivation to further study links between statistics and optimization.
Fischetti and Monaci [FM11] recently presented a method for restricting the set
of branching candidates by calculating so-called backdoor sets in advance.

The approach presented here uses variations of past branching information
for the decision if strong-branching should be continued on a variable or not.
It extends the idea of reliability branching by taking into account each variable
individually. In the present paper, we further concentrate only on pseudo-
costs and do not consider other history information. We do not collect any
information prior to the actual search as in [KKNS09, FM11]. Finally, it should
be noted that in general there is no containment relation between the variable
subsets considered by reliability branching with fixed number thresholds and
our approach, i.e. neither is a strict subset of the other.

3 Reliability Branching with fixed-number thresh-
olds

We call an optimization problem of the form

copt := inf
{
ctx : Ax ≤ b, l ≤ x ≤ u, x ∈ Rn, xj ∈ Z for all j ∈ I

}
, (MIP)

Mixed Integer Program (MIP) and denote by copt the optimal objective value of
a MIP. Furthermore, c ∈ Rn is called cost vector, and A ∈ Rm,n and b ∈ Rm
represent the set of linear inequalities of a given MIP. By l, u ∈ Rn∞, we denote
bound requirements for the variables, and use a subset I ⊆ {1, . . . , n} of the
variables index set to formulate integrality restrictions and call variables indexed
by j ∈ I integral variables. If the set of integrality restrictions is empty, we call
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(MIP) a Linear Program (LP). An LP P̃ is called the LP-relaxation of a MIP
P if it is derived from P by dropping the integrality restrictions of P . Since
the solution space of P̃ is a superset of the solution space of P , its holds that
copt
P̃
≤ copt

P .
The branch-and-bound procedure [Dak65, LD60] creates a search tree for

a MIP P =: P (0) by a successive problem division called branching based on
the LP-relaxation information at a node. Let P (l) be a feasible (sub-)problem
currently processed. We solve the LP-relaxation of P (l) and obtain an LP-
solution ỹ with objective value ctỹ = c̃P (l) . If ỹ violates some of the integrality
restrictions F ⊆ I, branching creates two child problems P (l)

− , P
(l)
+ by selecting a

fractional variable j ∈ F and locally restricting the lower and upper bound of j
in the child problems to uj ← bỹjc in P (l)

− and lj ← dỹje for P (l)
+ , respectively.

Either restrictions renders ỹ infeasible. The created problems are then enqueued
in a list of open subproblems. The procedure terminates when there is no open
subproblem left.

For a fractional variable j ∈ F we define its up-fractionality and down-
fractionality as

f+j := dỹje − ỹj and f−j := ỹj − bỹjc,

respectively. The decision on which fractional variable to branch is crucial for
the success of the branch-and-bound search. A branching rule is characterized
by its score function ϑ : F → R. It selects as branching variable some j∗ ∈ F
with ϑ (j∗) ≥ ϑ (j) for all j ∈ F . In this paper, branching scores ϑ− (j) and
ϑ+ (j) are calculated separately for the two branching directions and combined
afterwards by taking their product score

ϑ (j) := max{ϑ+ (j) , ε} ·max{ϑ− (j) , ε} (1)

with a small ε = 10−6. The use of the product was proposed in [AKM04] in
order to find a good balance between the sizes of the resulting subtrees.

Throughout this paper, we will give definitions and explanations only for the
down-branch. The according formula and argumentation for the up-direction
can be derived analogously.

Let P−(j) denote the MIP obtained by branching down on j ∈ FP . In this
paper, we focus on the gain in the objective function

ϑ− (j) = c̃P−(j) − c̃P (2)

in the child node LP-relaxation objectives w.r.t. their parent as branching
score.

Since this information is unknown by the time a candidate needs to be se-
lected, the strong-branching rule determines ϑ−str (j) and ϑ+str (j) by virtually
solving 2 · |F| child node relaxations and evaluating the gains (2). Although
strong-branching is guaranteed to select the locally best candidate regarding
the objective gain, the exhaustive solving of child nodes often makes the com-
putational cost of this procedure prohibitive. However, it is well suited as an
initialization method for pseudo-costs.

The pseudo-costs [BGG+71] of a variable are a typical measure to estimate
its impact on the children objective gain. Consider a node P with LP solution
value c̃P and a fractional variable j ∈ FP . Let P (j)

− be the down-child of P whose
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LP-relaxation was solved to optimality. The normalization of the objective gain
between P (j)

− and P ,

ς−j (P ) :=
c̃P− − c̃P

f−j

by the fractionality of j in ỹP is called unit gain. The pseudo-costs of a variable
are the average over all such unit gains,

Ψ−j :=


γ−
j

η−j
, if η−j > 0,

0, else,
(3)

where η−j denotes the number of problems Q for which j was selected as branch-
ing variable and the child node Q(j)

− has been solved and was feasible, and γ−j
the sum of obtained unit gains over all these problems. If η−j is 0, we call j unini-
tialized in this direction. The pseudo-cost score function uses the pseudo-cost
information

ϑ−ps (j) := Ψ−j · f
−
j

to estimate the objective gain in the child obtained by branching on j.
We give a definition of reliability branching that is more general than the

original definition by Achterberg et al. [AKM04]:

Definition 1 (General Reliability branching) Let P be a MIP with non-
empty set of fractionals F . Given a subdivision F = Frel∪̇Furl of the fractionals
into reliable and unreliable candidates, we define the general reliability branch-
ing score function of j ∈ F as

ϑ−rel (j) :=

{
ϑ−str (j) , if j ∈ Furl,
ϑ−ps (j) , if j ∈ Frel.

(4)

General reliability branching performs strong-branching on the set of unreliable
candidates Furl to determine their exact gains (2).

A reliability branching rule is characterized by its notion of (un-)reliability.
We refer to the notion of reliability by Achterberg et al. [AKM04], as fixed-
number threshold reliability :

Definition 2 (Fixed-number threshold reliability) Given a reliability pa-
rameter η > 0, fixed-number threshold (fnt)-reliability splits the fractionals
according to

Furl
fnt (η) := {j ∈ F : min{η−j , η

+
j } < η} (5)

We call a variable j ∈ F \ Furl
fnt (η) (fnt)-reliable.

Using the term "fixed-number", we emphasize that (fnt)-reliability of a variable
solely depends on the number of previous branching observations. Achterberg
et al. [AKM04] suggested to use 8 as threshold, currently, Scip uses 5. In the
next section, we introduce novel notions of reliability.
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4 Relative-error- and hypothesis-reliability
The drawback of (fnt)-reliability is that a fixed threshold is supposed to measure
the reliability of all variables of the problem equally well. Intuitively, it seems
desirable to have a more individual look at the pseudo-cost information of every
variable and to continue strong-branching on those candidates whose pseudo-
costs fail to converge. In the following, we extend the statistical model for
pseudo-costs by including the sample variance, which allows for the construction
of confidence intervals and testing of hypotheses. There are many textbooks that
cover these topics in more detail, see, e.g. [Rou14].

We model the unit gains of a variable j ∈ I as samples of a normally dis-
tributed random variable Cj,− ∼ N (µj,−, σ

2
j,−) with unknown mean µj,− and

variance σ2
j,−. The pseudo-costs represent an estimate for µj,−. By using the

corrected sample variance, we obtain an estimate for the variance, as well:

Definition 3 Let X1, . . . , Xn be independent, identically distributed samples.
The corrected sample variance about the sample mean X̄ is given by

s2 =
1

n− 1

n∑
i=1

(
Xi − X̄

)2
=

1

n− 1

n∑
i=1

X2
i −

1

n(n− 1)

(
n∑
i=1

Xi

)2

(6)

The corrected sample variance is an unbiased estimate of the variance of the
underlying distribution of the Xi. The right term of Equation (6) allows for
constant-time updates of s2 every time a new sample X is observed.

With increasing n, we can expect X̄ to approach the mean of the distribu-
tion from the law of large numbers. Under the assumption that the samples
X1, . . . , Xn are drawn from a normal distribution with unknown mean µ and
variance σ2, the random variable

T :=
X̄ − µ
s/
√
n

is distributed along a Student’s t-distribution with n − 1 degrees of freedom.
This relation can be used to construct a a confidence interval I, which contains
the true value of µ with a probability of 1− α for any error rate 0 < α < 1:

I =

[
X̄ − tα,n−1

s√
n
, X̄ + tα,n−1

s√
n

]
,

denoting by tα,n−1 > 0 the α-percentile of the distribution of T . The distance
of the endpoints of I relative to its center X̄ 6= 0,

εrel = tα,n−1 ·
s√
n|X̄|

, (7)

is called the relative error of the estimation.

4.1 Relative-error-reliability
Applied to pseudo-costs, we determine the relative error for the pseudo-costs
associated with each variable. Whenever a new unit gain for variable j ∈ F in
the down-branching direction at a node P was observed, we increase the counter
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η−j by 1 and update the sum of unit gains γ−j . In addition, we keep track of the
sum of squared unit gains (ς−j (P ))2. This enables us to calculate the sample

variance
(
s−j
)2 whenever η−j ≥ 2. At a node Q, we calculate the relative error

ε−j of the current pseudo-costs Ψ−j as

ε−j := 1.96 ·
s−j√
η−j Ψ−j

. (8)

In (8), we substitute tα,n−1 from (7) by the constant 1.96, which represents the
limit α-percentile limη−j →∞

tα,η−j −1
for α = 0.05. Thus, we slightly underesti-

mate the relative error of the pseudo-cost at a confidence level of 95%. Recall
that pseudo-costs are always non-negative. Hence, we can omit the absolute
in the denominator of (7). Furthermore, if the upwards pseudo-costs of j are
equal to zero, this also holds for the sample variance

(
s−j
)2. We therefore set

the relative error to zero in this case.

Definition 4 (Relative-error-reliability) For η > 0, relative-error (rer)-
reliability splits the fractionals according to

Furl
rer (η) := {j ∈ F : max{ε+j , ε

−
j } ≥ η}. (9)

We call a variable j ∈ F \ Furl
rer (η) (rer)-reliable.

The rationale of (rer)-reliability is to continue strong-branching on the subset of
variables with highly varying objective gains, whereas variables with constant
gains are early considered (rer)-reliable. In order to obtain relative errors for the
branching directions, we need at least η−j , η

+
j ≥ 2 observations in each direction.

Note that a variable, which has already been (rer)-reliable, can become (rer)-
unreliable again when the relative error rerises above the threshold after new
information becomes available. In Section 5, we test an implementation of (rer)-
reliability branching.

4.2 Hypothesis-reliability
The disadvantage of (rer)-reliability is that it is likely to spend much strong-
branching effort on variables with overall low objective gains, but high relative
error. In order to overcome this, it is possible to restrict the variables that are
selected for strong-branching evaluation to only candidates with a probability to
be actually better than the best candidate jps according to pseudo-cost branch-
ing. Roughly speaking, we want to ensure that there is little probability that
f−j µ

−
j > f−jpsµ

−
jps .

Therefore, we test against the hypothesis that a fractional j ∈ F has an
objective gain at least as high as jps, i.e., f−j µj,− ≥ f

−
jpsµjps,−. For two variables

i, j ∈ F with fractionalities f−i and f−j , we use the pooled variance

S−i,j :=
(η−i − 1)(f−i )2

(
s−i
)2

+ (η−j − 1)(f−j )2
(
s−j
)2

η−i + η−j − 2
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to calculate a 2-sample t-value for i and j,

T−i,j :=

√√√√ η−i η
−
j

η−i + η−j

f−i Ψ−i − f
−
j Ψ−j

S−i,j
.

Under the hypothesis, T−jps,j follows a Student-t distribution with η−jps + η−j −
2 degrees of freedom. If, for a given threshold 0 < α < 1, T−jps,j exceeds
t−α,jps,j := tα,η−

jps+η
−
i −2

, we can reject the hypothesis with an error probability
of at most α/2. The division by two is justified because the hypothesis is one-
sided. Conversely, if the hypothesis cannot be safely rejected, it is safer to
perform strong-branching on the two candidates.

The second novel notion of reliability in the present paper rules out frac-
tional variables with little probability to be better than the best pseudo-score
candidate:

Definition 5 (Hypothesis-reliability) Let jps ∈ F be the best pseudo-cost
fractional candidate for branching, and let 0 < α < 1 be a rejection probability.
The unreliable fractional set for hypothesis-reliability is

Furl
hyp(α) :=

{
j ∈ F : T−jps,j < t−α,jps,j and T+

jps,j < t+α,jps,j
}
. (10)

Variables j ∈ F \ Furl
hyp(α) are called (hyp)-reliable.

For practical reasons, we also include variables j with min{η−j , η
+
j } ≤ 1. It

should be noted that the best pseudo-cost candidate jps is never (hyp)-reliable
because T−jps,jps = T+

jps,jps = 0. If no other candidate than jps is (hyp)-unreliable,
this means that no other fractional variable has an estimated objective gain
nearly as good as jps. In this case, we immediately branch on jps without
strong-branching. In the experiments in the following section, we tested an
error probability of α = 0.2, i.e. the error probability for ruling out a better
candidate based on the current branching history is α/2 = 10 %.

5 Computational results with Scip

We implemented the new reliability notions from Section 4 into the existing re-
liability branching rule of a development version of the Constraint Integer Pro-
gramming framework Scip [SCI] version 3.1.0.2, which we compiled with a gcc
compiler version 4.8.2. As underlying LP-solver, we used SoPlex [SOP] version
2.0. We used Scip with default settings except for the following changes. For us-
ing a pure objective-based branching score function as in Section 3, tie-breakers
such as, e.g., inference scores were deactivated by setting their corresponding
weight to 0. Furthermore, we set the known optimal solution values – in case
they exist – minus a small threshold 10−9 as objective cutoffs, so that only a
proof for the optimality/infeasibility of a problem needed to be found. We also
disabled all primal heuristics and activated depth-first search node selection
as an attempt to minimize performance variability [Dan08, KAA+11] due to
other factors than the tested branching rules. Finally, the child node selection
was changed to use solely pseudo-costs, where Scip with default settings uses a
hybrid approach together with inference scores.
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The test bed for our comparison of the different approaches consists of a sub-
set of instances from the three publicly available libraries Miplib 3.0 [BCMS98],
Miplib 2003 [AKM06], and Miplib 2010 [KAA+11], from which we omitted
four instances for which an optimal objective value is not known by the time
of this writing. Since we are mainly interested in reducing the search tree size,
we further dropped all 29 instances that could be solved before or during the
processing of the root node. Our final test bed thus contains 135 MIP instances.

The computations were performed on a cluster of 32 computers, each of
which runs with a 64bit Intel Xeon X5672 CPUs at 3.20GHz with 12MB cache
and 48GB main memory. The operating system was Ubuntu 14.4. Hyper-
threading and Turboboost were disabled. We ran only one job per computer in
order to minimize the random noise in the measured running time that might be
caused by cache-misses if multiple processes share common resources. Finally,
all experiments were run with a time limit of 2h and a 40GB memory limit.

The newly proposed notions of reliability from Section 4 are represented by
four different settings: (hyp) renders candidates (hyp)-unreliable according to
the rule (5), whereas (rer)-0.01, (fnt)-5, and (rer)-0.1 use (rer)-reliability
regarding relative errors in pseudo-cost confidence intervals at three different
threshold levels 1%, 5%, and 10%. We compare them to (fnt)-reliability at
a fixed threshold of 5, denoted by (fnt)-5. The latter setting constitutes the
default of Scip except that we disabled the threshold to be dynamically adjusted
during the search.

In this section, we only present compressed results of our experiments. For
an instance-wise outcome, please refer to Tables 5 and 6 in the Appendix. The
first three tables show the aggregated results regarding the solving time t (sec)
and the number of explored search tree nodes n for all instances and for only
those which could be solved within the time limit by all settings. We consider
node results incomparable between settings where the solution status differs
and thus only show time results for all instances. We report shifted geometric
means with a shift of 10 seconds and 100 nodes, respectively. The column "%"
shows the percentage deviation from the result for the reference setting (fnt)-5;
values below 100 represent an improvement in this respect.

In Table 1, we compare the results over all instances from the test bed. 98
instances could be solved by all settings within the time limit of 2h, for which the
reference run was fastest regarding the solving time, but also required the most
branch-and-bound nodes on average. The highest node reduction of 19.5% was
obtained with the setting (rer)-0.01. For our novel notion of (rer)-reliability,
the different thresholds influence the node reduction as one might have expected:
increasing the tolerance level causes a larger number of nodes. By using (hyp)-
reliability, we obtained a node reduction of 17.6%, which is better than for all
other settings except for (rer)-0.01. The latter setting also shows an increase
in the running time of 6% compared to the reference run, whereas the setting
(hyp) was almost performance neutral regarding the running time.

Table 2 contains only instances for which at least one of the settings needed
more than 1000 nodes before termination. With (hyp)-reliability, we could
improve the performance of Scip w.r.t. the reference run by 28.6% nodes and
also obtain a slight time reduction in total, whereas the time on instances in the
left group increased by 1.7%. With (hyp)-reliability, we obtain a better node
reduction than with any other setting. Among the (rer)-settings, (rer)-0.1 is
fastest regarding the solving time, but is still 6.7% slower on average than the
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Table 1: All instances

98 instances solved by all 135 total
t (sec) % n % t (sec) %

Settings
(fnt)-5 81.9 100.0 3402.3 100.0 290.3 100.0
(rer)-0.01 86.9 106.1 2740.0 80.5 302.4 104.1
(rer)-0.1 85.5 104.4 3037.3 89.3 296.4 102.1
(rer)-0.05 86.7 105.9 2886.8 84.8 300.1 103.4
(hyp) 83.1 101.5 2804.4 82.4 290.5 100.1

Table 2: Large Trees: n > 1000 with at least one setting.

53 instances solved by all 89 total
t (sec) % n % t (sec) %

Settings
(fnt)-5 216.1 100.0 46181.2 100.0 892.0 100.0
(rer)-0.01 236.1 109.2 33277.9 72.1 939.7 105.3
(rer)-0.1 230.5 106.6 38075.1 82.4 914.0 102.5
(rer)-0.05 236.2 109.3 35863.3 77.7 931.3 104.4
(hyp) 219.9 101.7 33502.6 72.5 888.6 99.6

reference setting.
The discrepancy between a reduction of the tree size and at the cost of more

solving time per node is the result of a more aggressive use of strong-branching
by the novel notions of reliability. The notion of (hyp)-reliability hereby appears
to be more effective than relative-error reliability for guiding strong-branching
effort because it focusses on resolving cases among the top pseudo-cost score
branching candidates where the estimation alone may lead to inferior branching
decisions.

For the sake of completeness, we also present the remaining instances, for
which no solver took more than 1000 branch-and-bound nodes before termina-
tion, in Table 3. Out of the 46 instances in this group, there is only one, namely
stp-3d, that could not be solved by any of the settings. All novel notions of
reliability reduce the search tree size, although the effect is less striking than on
the instances that required larger search trees. Note that the node reduction ob-
tained with (rer)-0.01 and even (rer)-0.05 is now considerably better than
the reduction obtained with (hyp)-reliability.

For those 37 instances for which optimality could not be proven within the
time limit by at least one of our settings, we computed integrals of the dual-gap
as a function of time. This measure, which was suggested in [ABH12, Ber13],
attempts to compare the convergence of the dual gap towards zero. Table 4
shows the shifted geometric mean integral for all settings using a shift of 1000.
All novel notions of reliability decrease the dual integral of the reference run,
where the decrease is best with (hyp) yielding a reduction of more than 15%. A
similar result is obtained with (rer)-0.1, which outperforms other thresholds
for (rer)-reliability in this respect.
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6 Conclusions and future work
We introduced two novel notions of reliability: the (rer)-reliability based on
pseudo-cost confidence intervals, and (hyp)-reliability implementing a variant of
a 2-sample Student-t test. First experimental results with our implementation
in Scip show that these methods are promising for effectively reducing the
size of branch-and-bound-trees compared to the current state-of-the-art fixed
number threshold, especially for large trees. Our first implementation only
considers pseudo-cost information, but can be readily applied to different history
information such as, e.g., the inference history of a variable, as well.

In the computational study presented, we collected very little history infor-
mation before using the statistical methods. Combining them with traditional
fixed number threshold reliability might increase the power of the hypothesis
and relative error thresholds significantly.

Note that for our computational experiments, we did not allow a dynamic
adaption of the fixed number thresholds depending on the computational ex-
penses on strong-branching during the search. Fixed number thresholds, how-
ever, show a superior performance if they are dynamically adjusted during the
search, so that the overall strong-branching effort is kept reasonably small. For
making a more effective use of the suggested approaches, it is necessary to let
also the novel approaches dynamically adjust to problems for which strong-
branching is very expensive. Note also that the variant of a 2-sample-t-test that
we use for (hyp)-reliability is, in theory, only applicable when the two variables
can be assumed to have equal variances. In practice, it would be possible to test
for equal variances using an F -test and resort to the Welch-test if the variances
are significantly unequal.
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Table 3: Small trees: All solvers needed n ≤ 1000 nodes.

45 instances solved by all 46 total
t (sec) % n % t (sec) %

Settings
(fnt)-5 21.8 100.0 67.5 100.0 25.8 100.0
(rer)-0.01 22.3 102.3 55.9 82.9 26.3 102.2
(rer)-0.1 22.2 101.7 65.4 96.8 26.2 101.6
(rer)-0.05 22.2 101.7 59.4 88.0 26.2 101.6
(hyp) 22.1 101.4 62.4 92.5 26.1 101.3
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Table 4: Shifted geom. mean dual integral for 37 time limit instances.

Γ∗(T ) %

Settings
(fnt)-5 73867.8 100.0
(rer)-0.01 71797.4 97.2
(rer)-0.1 62875.1 85.1
(rer)-0.05 70453.6 95.4
(hyp) 62747.0 84.9
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Appendix
This appendix contains an instance-wise outcome of our computational exper-
iments described in Section 5. For each of the five settings, we present three
columns; the measured dual integral Γ∗(T ), the number of nodes n, and the
solving time in seconds t (sec). Table 5 shows the results for instances which we
classified as small tree instances, and Table 6 contains the remaining instances,
cf. Tables 3 and 2, respectively.
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Table 5: Instance-wise experimental outcome for instances requiring at most
1000 nodes to solve.

Settings (fnt)-5 (rer)-0.01 (rer)-0.1 (rer)-0.05 (hyp)
Γ∗(T ) n t (sec) Γ∗(T ) n t (sec) Γ∗(T ) n t (sec) Γ∗(T ) n t (sec) Γ∗(T ) n t (sec)

Problem
30n20b8 12756.5 18 196.3 14032.8 72 214.1 12854.5 11 198.6 12818.7 14 198.2 16010.0 97 239.4
air04 1862.4 8 37.9 1837.2 8 37.5 1827.1 8 37.3 1852.4 8 37.8 1726.3 8 35.3
air05 1270.2 62 25.6 1260.0 52 25.4 1285.2 74 25.8 1260.0 50 25.4 1295.5 94 26.1
app1-2 55296.9 41 875.6 108759.2 19 1736.2 108468.2 19 1731.6 108644.5 19 1734.5 50432.6 21 797.2
ash608gpia-3col 2000.0 7 20.0 2070.0 9 20.7 2070.0 9 20.7 2140.0 9 21.4 1990.0 7 19.9
blend2 23.4 240 0.6 34.2 126 0.8 24.2 275 0.7 28.8 190 0.7 18.8 220 0.6
dcmulti 0.3 8 0.8 0.4 14 1.0 5.5 14 1.2 0.3 14 0.8 0.5 12 1.0
fast0507 4444.4 630 147.8 1672.5 840 156.5 4273.6 588 140.2 975.8 648 147.6 6210.8 570 141.2
fiber 4.1 4 1.0 3.4 4 0.9 0.0 4 0.8 0.0 4 0.8 2.2 4 1.1
fixnet6 11.5 10 1.9 11.5 10 1.9 11.5 10 1.9 19.0 10 2.1 18.2 20 2.1
gesa2 5.0 3 0.4 0.1 3 0.6 5.0 3 0.3 5.0 3 0.4 5.0 3 0.5
gesa2-o 5.1 2 0.9 5.3 2 1.1 5.1 2 0.7 0.1 2 0.9 5.2 2 1.1
gesa3 5.1 7 1.0 5.1 7 1.2 5.2 9 1.3 5.1 9 1.0 5.2 9 1.2
gesa3_o 0.1 7 0.9 5.1 7 1.0 0.1 7 1.2 10.1 7 1.0 10.2 7 1.4
khb05250 0.2 4 0.5 0.2 4 0.5 0.2 4 0.5 0.2 4 0.5 0.2 4 0.5
l152lav 40.9 19 1.1 46.4 19 1.5 40.9 19 1.1 45.9 19 1.1 36.4 17 1.4
lseu 5.9 191 0.2 5.9 64 0.2 11.2 64 0.3 11.2 64 0.3 21.8 60 0.5
map18 15510.6 285 297.8 15805.5 275 303.3 16614.4 325 318.3 16787.0 325 321.6 15505.1 331 297.7
map20 12353.0 281 236.3 12752.0 307 243.8 12231.3 329 234.1 12561.2 307 240.3 11975.3 263 229.2
misc03 24.1 80 0.8 32.9 23 1.0 27.3 51 0.9 30.3 23 1.0 34.8 53 1.1
misc06 5.0 4 0.5 5.0 4 0.4 5.0 4 0.6 5.0 4 0.5 0.0 4 0.5
mod008 2.3 7 0.8 0.0 7 1.0 2.3 7 0.8 1.6 7 0.6 2.2 7 0.8
mod010 5.1 2 0.5 5.1 2 0.5 5.1 2 0.5 0.0 2 0.2 5.0 2 0.3
mod011 333.0 855 116.3 332.7 671 110.7 341.2 873 118.5 325.7 833 114.3 330.4 743 108.6
modglob 0.1 25 0.5 5.1 21 0.3 0.1 31 0.3 5.1 27 0.4 10.0 19 0.4
mspp16 98434.8 31 1856.2 93115.9 29 1755.9 92097.7 29 1736.7 92373.5 29 1741.9 132241.7 71 2493.7
mzzv42z 5458.9 110 155.5 5044.6 96 146.6 5070.4 210 147.2 5014.2 96 146.2 5135.8 155 148.0
neos-476283 1971.2 110 70.6 1976.2 107 67.9 1976.2 432 72.8 1971.2 379 71.6 1986.3 141 77.4
neos13 897.8 8 32.1 868.1 8 30.8 884.8 8 31.5 864.3 8 30.8 845.5 6 30.6
nw04 496.4 8 20.7 479.9 8 20.1 480.8 8 20.4 474.8 8 20.0 474.8 8 20.0
p0201 32.6 9 1.1 42.9 9 1.3 37.8 9 1.2 17.6 9 0.9 38.2 11 1.3
p0282 0.0 3 0.3 0.2 3 0.2 0.5 3 0.5 0.5 3 0.5 0.5 3 0.5
p2756 5.1 3 0.7 6.7 3 1.0 0.2 3 1.0 10.8 3 1.0 1.7 3 0.9
pp08a 21.2 161 0.7 26.5 51 0.9 26.2 51 0.8 31.5 51 1.0 18.4 57 1.2
pp08aCUTS 1.5 153 0.8 21.5 51 1.0 17.0 49 1.1 21.7 51 1.1 3.1 59 1.4
qnet1 10.2 3 2.0 12.0 3 2.1 9.8 3 1.8 9.6 3 1.8 10.5 3 2.0
qnet1_o 0.0 4 1.3 0.0 4 1.5 0.0 4 1.1 2.1 4 1.2 0.0 4 1.3
rail507 529.0 644 147.1 684.5 546 137.3 570.5 530 137.0 884.9 612 145.2 791.6 488 135.5
rentacar 80.6 4 3.4 91.3 4 3.6 66.6 4 3.2 71.6 4 3.3 91.2 4 3.6
rmatr100-p10 6821.8 709 120.1 7118.5 793 125.3 7027.2 791 123.7 7005.8 793 123.4 7118.4 731 125.3
rmatr100-p5 14256.9 349 235.6 15283.4 367 252.5 15198.3 373 251.1 15368.5 337 253.9 14396.6 319 237.9
set1ch 0.0 3 0.6 0.0 3 0.6 1.2 3 0.5 0.0 3 0.7 1.2 3 0.6
stp3d 145433.0 14 7200.0 145530.6 14 7200.0 145823.5 13 7200.0 145530.6 14 7200.0 145791.6 17 7200.0
tanglegram1 99072.9 33 991.9 77887.9 27 779.8 78127.7 29 782.2 78607.1 27 787.0 90433.1 31 905.4
tanglegram2 793.1 3 8.0 822.8 3 8.3 842.7 3 8.5 783.1 3 7.9 793.1 3 8.0
vpm2 19.6 272 1.0 24.8 50 1.1 24.8 186 1.1 24.2 72 1.0 14.3 160 0.9
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Table 6: Instance-wise experimental outcome for instances for which one setting
required more 1000 nodes.

Settings (fnt)-5 (rer)-0.01 (rer)-0.1 (rer)-0.05 (hyp)
Γ∗(T ) n t (sec) Γ∗(T ) n t (sec) Γ∗(T ) n t (sec) Γ∗(T ) n t (sec) Γ∗(T ) n t (sec)

Problem
a1c1s1 259863.8 2070335 7200.0 259882.0 1294388 7200.0 259875.0 2081884 7200.0 259875.3 1668708 7200.0 259875.2 1240319 7200.0
aflow30a 377.5 1246 10.1 511.8 1908 12.4 503.4 1758 12.5 498.1 1690 12.4 486.4 1366 12.0
aflow40b 16390.8 143682 536.0 32073.3 183576 905.9 29016.8 148296 819.2 29786.2 167692 872.2 23662.9 119722 659.3
arki001 105.7 365939 7200.0 110.7 616240 7200.0 105.7 407503 7200.0 90.7 325090 7200.0 105.7 778086 7200.0
atlanta-ip 70469.7 8529 7200.0 70460.7 10011 7200.0 70455.8 12637 7200.0 70465.1 10872 7200.0 70456.2 8181 7200.0
bab5 6632.3 96735 7200.0 6624.1 110967 7200.0 6644.8 113586 7200.0 6633.1 105996 7200.0 6706.7 110285 7200.0
beasleyC3 92907.7 2841834 7200.0 92897.0 1807660 7200.0 92900.9 2136808 7200.0 92901.6 1465523 7200.0 94245.3 1511264 7200.0
bell3a 16.3 22611 2.8 -4.0 20027 2.9 6.4 21353 3.0 1.3 20261 3.1 1.2 20047 3.3
bell5 10.0 1152 0.3 10.0 956 0.2 10.0 968 0.3 10.0 956 0.3 10.0 1025 0.3
biella1 33983.5 6883 678.8 35540.9 8195 709.9 24774.0 5013 494.9 29386.2 6903 587.0 46142.6 9683 921.6
bienst2 29985.7 309529 561.7 10698.3 101007 427.5 15980.8 113088 463.9 10689.9 101007 427.2 12885.1 79381 336.6
binkar10_1 175.9 142580 139.1 625.5 107739 162.9 175.9 101180 159.9 2049.7 106491 163.5 510.4 85524 145.7
cap6000 30.0 1801 1.5 25.0 738 1.6 20.0 738 1.6 15.0 738 1.5 25.0 1031 1.9
cov1075 265179.6 2274377 4821.6 259198.5 2122029 4712.7 251729.5 2162377 4576.9 267102.0 2248711 4856.4 247810.6 1743871 4505.8
csched010 84082.4 1035664 7200.0 84128.2 603676 7200.0 84015.8 568709 7200.0 84075.1 572630 7200.0 127721.8 455625 6224.6
danoint 20001.8 1102583 4476.0 32307.8 1083111 7200.0 30548.3 1611094 6832.5 32248.8 1635143 7200.0 31991.8 1310682 7127.9
dfn-gwin-UUM 1333.5 68085 93.1 1080.5 54829 134.2 2312.0 57135 151.2 1090.5 54813 136.3 2415.4 53901 133.3
ds 273445.3 7413 7200.0 273436.1 8487 7200.0 274261.5 9598 7200.0 273432.0 6367 7200.0 273466.0 6133 7200.0
eil33-2 1351.2 340 30.3 1160.5 1330 38.8 717.9 1530 34.9 732.5 1488 39.2 1865.1 1282 35.7
eilB101 12660.3 6284 265.1 3198.6 5724 237.1 14742.9 8236 300.0 12306.0 6848 255.5 12453.5 6956 241.9
enlight13 13838.2 522384 158.9 1247.5 19169 13.6 4636.2 100856 49.3 13410.4 307626 143.0 4738.9 95831 49.5
glass4 240002.3 12763342 7200.0 52685.8 3004703 2525.4 15976.8 1492813 950.2 17036.8 1312334 1013.7 9243.4 853465 544.7
gmu-35-40 60.0 32198403 7200.0 65.0 19990677 7200.0 65.0 20646471 7200.0 65.0 20679476 7200.0 65.0 22444647 7200.0
harp2 233.9 448438 160.7 65.2 200954 142.5 440.4 211217 146.0 384.4 240647 158.7 43.7 160188 106.1
iis-100-0-cov 24816.6 76155 523.3 26388.9 63349 691.4 24227.7 65763 563.8 30571.0 68587 739.9 21187.0 71295 571.7
iis-bupa-cov 58125.2 181441 2500.9 125061.4 146447 3239.1 58533.6 180635 2555.8 64676.0 151591 2824.4 61793.2 152075 2590.1
iis-pima-cov 13735.8 5869 248.4 13223.7 5821 239.6 15055.9 6829 270.8 14064.2 6231 253.9 17366.9 6911 307.7
macrophage 294851.0 2875395 7200.0 294856.2 1758872 7200.0 294850.5 2618474 7200.0 294854.0 2331049 7200.0 294856.6 1671290 7200.0
markshare1 720000.0 102171542 7200.0 720000.0 101365477 7200.0 720000.0 100587986 7200.0 720000.0 101315675 7200.0 720000.0 99735165 7200.0
markshare2 720000.0 88721939 7200.0 720000.0 86287896 7200.0 720000.0 87139578 7200.0 720000.0 87388660 7200.0 720000.0 88582090 7200.0
mas74 3306.0 2752472 342.5 3875.7 2112420 404.1 2801.8 2191551 294.1 3391.2 2476385 352.7 4110.5 2147147 424.3
mas76 244.8 547767 51.4 143.4 381797 55.2 257.9 412299 46.0 307.1 394475 54.2 326.2 175794 28.3
mcsched 26190.3 46543 603.9 65737.5 108389 1334.1 40368.9 67915 862.8 55540.1 89133 1145.4 88612.8 135383 1760.7
mik-250-1-100-1 5995.2 6996847 1372.3 2386.9 1481627 565.6 1567.0 1490147 367.1 1531.9 773126 340.1 1464.3 814873 336.7
mine-166-5 1250.2 2038 23.1 1333.9 328 24.5 1403.7 366 25.8 1355.8 328 25.0 1728.8 1268 31.1
mine-90-10 20332.3 197329 428.7 10188.4 75221 244.1 12635.2 94094 293.4 12630.8 95405 293.9 3224.5 31458 106.5
misc07 1201.8 47624 26.3 1172.1 32697 27.5 1888.5 28048 25.3 1135.2 32087 26.7 2072.6 33089 27.8
mkc 5504.2 2175182 7200.0 5493.4 1388742 7200.0 5498.5 1988218 7200.0 5493.1 2248552 7200.0 5504.3 1923042 7200.0
momentum1 85140.1 519796 7200.0 85139.7 394564 7200.0 85138.6 231117 7200.0 85138.3 225837 7200.0 85137.9 186601 7200.0
momentum2 226569.4 183471 4366.0 202624.3 237101 7200.0 232489.8 107062 4144.7 202624.1 206582 7200.0 202628.3 150449 7200.0
msc98-ip 5191.4 58884 7200.0 5196.4 9653 7200.0 5191.4 103812 7200.0 5191.3 16542 7200.0 5191.4 15535 7200.0
mzzv11 10185.3 2014 324.5 9704.5 1857 317.8 9566.5 1939 316.2 9638.8 1857 316.8 10181.3 1504 325.4
n3div36 52928.9 513914 7200.0 54503.2 321848 7200.0 54508.1 363298 7200.0 54509.2 349172 7200.0 54518.7 339407 7200.0
n3seq24 4815.7 8601 7200.0 4805.7 10461 7200.0 4825.7 9340 7200.0 4815.7 10104 7200.0 4820.7 9912 7200.0
n4-3 9826.5 46719 557.0 47258.8 44277 855.3 13487.6 43883 903.8 8737.2 41077 802.0 42477.9 39805 769.4
neos-1109824 1674.8 17347 84.2 2735.5 7488 50.9 409.6 10240 59.4 3544.4 11154 65.8 4781.5 16561 88.6
neos-1337307 2841.1 714364 7200.0 2841.1 501390 7200.0 2846.2 458694 7200.0 2856.3 476398 7200.0 2856.4 484765 7200.0
neos-1396125 37201.4 88307 836.4 113591.1 58386 2698.6 69995.0 64241 1819.8 90164.5 56132 2120.4 31976.2 50484 897.9
neos-686190 2705.3 1865 44.5 2672.3 2263 43.9 2678.4 2263 44.0 2707.6 2263 44.6 2653.9 2135 43.6
neos-916792 117042.3 2065470 7200.0 115048.4 1119717 7200.0 119270.2 2018719 7200.0 117825.1 1857375 7200.0 124350.3 1258952 7200.0
neos18 2054.8 59329 79.2 4839.4 93832 175.7 3193.1 96694 125.7 2389.0 65632 103.9 5294.7 78624 158.0
net12 231010.4 3139 2842.7 289377.8 3642 3560.4 209691.2 2471 2580.6 201824.1 2689 2483.8 248412.3 3519 3056.7
netdiversion 59752.9 2430 7200.8 59557.6 2439 7200.5 59410.5 2442 7200.3 59949.6 2441 7200.8 59459.5 1215 7200.3
newdano 166449.7 3194194 3936.2 201008.7 2050673 4502.9 120312.9 2069380 2634.5 159163.1 2032092 3606.1 134323.4 1817997 3238.2
noswot 16508.7 1607445 315.5 8445.3 579588 161.4 11830.8 1197750 226.1 7958.7 564187 152.1 9334.9 603130 178.4
ns1208400 49760.0 881 497.6 52960.0 860 529.6 52940.0 860 529.4 52900.0 860 529.0 49460.0 1448 494.6
ns1688347 690.6 1088 12.4 702.0 311 12.6 748.0 877 13.4 770.9 1215 13.8 598.7 184 10.8
ns1766074 237360.0 848597 2373.6 355190.0 750095 3551.9 269760.0 774224 2697.6 340590.0 718315 3405.9 372800.0 741809 3728.0
ns1830653 9767.1 22244 219.9 30774.9 44597 429.1 27173.7 44991 379.0 30621.1 44597 427.0 15492.2 37047 319.8
nsrand-ipx 10543.7 3978440 6502.4 11113.6 2418018 7200.0 11109.1 5071964 7200.0 14255.2 4148300 6990.6 11560.5 2917724 7200.0
opm2-z7-s2 46319.1 1283 770.8 45760.2 1421 761.5 48536.5 1469 807.7 47454.8 1461 789.7 54671.9 1569 909.8
pg5_34 1535.8 136710 713.1 35581.2 94226 828.6 1910.0 64430 757.4 33633.6 71942 794.7 4927.1 69658 787.6
pigeon-10 72000.0 3010254 7200.0 72000.0 2360046 7200.0 72000.0 3252076 7200.0 72000.0 3278150 7200.0 72000.0 10018235 7200.0
pk1 7282.0 393967 74.0 8180.0 255785 81.8 6175.0 341483 74.5 8180.0 314013 81.8 9759.2 305553 99.2
protfold 169388.3 6014 7200.0 169376.0 3610 7200.0 169391.8 3651 7200.0 169372.2 4933 7200.0 169372.2 4653 7200.0
pw-myciel4 432085.2 3293759 7200.0 432083.2 2898912 7200.0 432079.2 1813613 7200.0 432080.8 4477059 7200.0 432080.8 1035796 7200.0
qiu 4489.9 9557 48.7 5801.3 8355 68.7 6397.8 8383 69.4 5790.1 8355 68.6 6017.2 8477 71.0
ran16x16 1222.1 284383 177.9 1838.2 255537 249.9 1614.4 242583 247.3 1670.8 261092 257.7 2517.7 298805 304.6
rd-rplusc-21 719565.9 563331 7200.0 719565.9 179321 7200.0 719565.9 239970 7200.0 719565.9 334989 7200.0 719565.9 413155 7200.0
reblock67 789.7 49872 75.6 644.9 34120 73.7 576.9 32718 77.0 641.6 33970 74.0 2556.8 48376 90.3
rmine6 28254.0 367462 608.8 1152.5 273034 811.0 36713.5 499955 787.2 29021.5 319661 639.5 643.2 260116 712.0
rocII-4-11 219386.9 140524 6949.1 182328.2 11390 2765.6 194016.7 43812 5435.6 131867.9 21426 3746.1 93852.9 6597 1428.5
rococoC10-001000 78134.2 2225139 7200.0 78139.8 1039332 7200.0 78123.2 1282843 7200.0 78140.9 1222227 7200.0 78127.7 960482 7200.0
roll3000 30528.9 2722022 7200.0 30535.5 1817076 7200.0 30528.6 1690055 7200.0 30528.0 1596804 7200.0 30534.2 1756241 7200.0
rout 528.1 19618 22.0 1259.0 24804 39.0 457.0 41362 48.7 410.5 30728 44.0 1331.4 25720 40.0
satellites1-25 149555.0 5749 1709.2 215223.8 6168 2459.7 215346.2 6168 2461.1 215923.8 6168 2467.7 205954.9 11257 2731.7
seymour 22808.8 438631 7200.0 22808.8 265347 7200.0 22809.0 368251 7200.0 22818.7 304376 7200.0 22818.6 256077 7200.0
sp97ar 715182.9 2862 7200.1 715183.0 2861 7200.1 715183.0 2860 7200.0 715182.9 2864 7200.1 715182.9 2862 7200.1
sp98ic 642833.8 33432 7200.0 644543.1 24268 7200.1 645061.6 22414 7200.1 642711.1 23907 7200.0 644419.0 22865 7200.1
sp98ir 1661.9 2582 37.1 1550.4 2928 34.8 1571.2 2898 35.6 1570.6 3075 35.2 1651.7 2972 36.8
stein27 38.3 4073 0.6 108.6 933 1.7 83.1 1471 1.3 95.8 903 1.5 57.5 2255 0.9
stein45 430.7 49451 6.8 263.7 41231 10.4 658.7 48083 10.4 690.3 41669 10.9 677.7 34893 10.7
swath 131547.9 1526206 7200.0 131194.0 1063757 7200.0 132446.5 772490 7200.0 132446.7 1029791 7200.0 132805.6 939871 7200.0
timtab1 10270.7 826333 292.0 17020.1 945269 517.0 15603.8 785223 451.0 14122.2 670753 401.2 10924.0 690625 396.1
timtab2 323566.6 13961074 7200.0 323565.2 8315730 7200.0 323563.5 11616959 7200.0 323567.6 8763724 7200.0 323566.2 6315656 7200.0
tr12-30 437.4 1072845 1082.6 710.8 1362243 2120.5 817.2 1783399 2388.3 2355.5 1278417 2070.5 719.9 814811 1264.4
unitcal_7 205323.5 112703 4696.1 216041.2 78003 5031.6 3766.4 116463 7200.0 250737.6 92119 5725.5 3791.0 181281 7200.0
vpphard 720000.0 58045 7200.0 720000.0 45240 7200.0 720000.0 29866 7200.0 720000.0 31949 7200.0 720000.0 12657 7200.0
zib54-UUE 66689.8 347875 2336.9 91141.3 294299 3270.2 104695.5 544214 3835.0 95583.3 288932 3337.3 79035.2 278909 3218.6
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