
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

AMAL ABOULHASSAN, DANIEL BAUM , OLGA WODO,
BASKAR GANAPATHYSUBRAMANIAN , ARAM AMASSIAN,

MARKUS HADWIGER

A Novel Framework for Visual
Detection and Exploration of

Performance Bottlenecks in Organic
Photovoltaic Solar Cell Materials

The manuscript will appear in a slightly revised version in a special issue of Computer Graphics Forum.

ZIB Report 15-20 (April 2015)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782
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Exploration of Performance Bottlenecks in
Organic Photovoltaic Solar Cell Materials

Amal Aboulhassan, Daniel Baum, Olga Wodo,
Baskar Ganapathysubramanian, Aram Amassian, Markus Hadwiger

Abstract

Current characterization methods of the so-called Bulk Heterojunction (BHJ),
which is the main material of Organic Photovoltaic (OPV) solar cells, are limited
to the analysis of global fabrication parameters. This reduces the ef�ciency of
the BHJ design process, since it misses critical information about the local perfor-
mance bottlenecks in the morphology of the material. In this paper, we propose a
novel framework that �lls this gap through visual characterization and exploration
of local structure-performance correlations. We also propose a formula that cor-
relates the structural features with the performance bottlenecks. Since research
into BHJ materials is highly multidisciplinary, our framework enables a visual
feedback strategy that allows scientists to build intuition about the best choices of
fabrication parameters. We evaluate the usefulness of our proposed system by ob-
taining new BHJ characterizations. Furthermore, we show that our approach could
substantially reduce the turnaround time.

1 Introduction

Organic photovoltaic solar cells (OPV) represent a promising low-cost, low-weight,
and �exible alternative for harnessing solar energy. An OPV is a device composed of
three main parts: the anode, the cathode, and the so-called Bulk Heterojunction (BHJ)
that is sandwiched in between the electrodes (anode and cathode) [24], as shown in
Fig. 1(a). The BHJ is a blend of two materials, called donor and acceptor, which are
separated by an “interface.” The BHJ has a very complex intermixed composition with
hierarchical structures spanning several spatial scales.

The photovoltaic process occurs in a sequence of stages: exciton generation, ex-
citon diffusion, charge separation, charge transport, and charge collection. This is il-
lustrated in Fig. 1(a). At each stage of the photovoltaic process, its performance is
critically affected by the morphology of the BHJ. The objective of the BHJ design
is to maximize the generated photoelectric current. This requires the charges (holes,
electrons) to reach the electrodes as fast as possible. To achieve this, the paths of the
charges should be as wide and as straight as possible. However, these design criteria
con�ict with another requirement: increasing the area of the interface surface. In order
to harvest more excitons by the interface, the neighboring parts of the interface need to
be as curly and as close to each other as possible, in order to increase the probability of
excitons reaching the interface.
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Figure 1: (a) A 2D illustration of the underlying physics of the photoelectric current
generation process. (b) A 2D illustration of the bottleneck computation steps (for
the donor part). The �gure illustrates the computation steps over one sample cross-
sectional area (S). We only refer to the donor in the current paper, since the acceptor
bottlenecks can be analogously extracted.

Even though OPV solar cells bear a great potential, before they will be able to
compete with other solar technologies, some challenges have to be addressed. The
most important of these are low ef�ciency and short life time. Several approaches
exist that have resulted in varying degrees of success. One promising approach is to
control the BHJ morphology during fabrication. Current BHJ exploration techniques
mainly depend on expensive and time-consuming lab tools. These traditional tools deal
with the morphologies as black boxes with no knowledge of the photoelectric current
within. Their work�ow therefore depends on trial-and-error and does not ef�ciently
characterize complex BHJ morphologies with respect to many critical local properties.
Accordingly, scientists in OPV research are still lacking a suf�cient understanding of
the best BHJ material design.

In this paper, we propose a novel framework for exploring one of the critical fea-
tures of OPV solar cells, called charge path bottlenecks. So far, scientists intuitively
refer to bottlenecks as the parts in the BHJ routes that cause contention of charges
and hence delay. However, they cannot detect and analyze these features since their
tools lack access to the geometric features underlying this phenomenon. Furthermore,
the detection of the design structures that reduce bottlenecks is complicated since it
involves con�icting design requirements. In our framework, we solve this problem
through the following contributions:

� A geometric model that formalizes a previously only intuitive bottleneck de�ni-
tion.

� The extraction of new structural features of the morphology that can be corre-
lated with the charge bottlenecks.

� The generation of an abstraction for the BHJ morphology – which we call the
BHJ backbone – that visualizes the topology of the structural features of interest.
In this way, visual clutter is removed, enabling spatial analysis of the BHJ mor-
phology. Moreover, this abstraction allows for multivariate analysis by sampling
the morphology into a minimal set of features that in�uences the correlation
analysis.

The main contribution of our work, however, we see in the description of the com-
plete framework for the analysis of the BHJ morphologies, which are given as three-
dimensional scalar �elds.

2



Preprocessing Interactive Visual Exploration

BHJ structural features
segmentation backbone

performance geometric features
(voxel to electrode shortest paths and 
extracted path densities and gradients) Storage

extracted area around 
each backbone point

original data

path 
features

compute bottleneck 
value at each 

backbone
cross-section S

ROI

scatter plot

backbonebackbone
features

GUI
charge paths view

�ltering 
charge paths

�ltered volume

selected point

Figure 2: An overview of our framework comprising preprocessing, storage, and in-
teractive visual exploration. The work�ow illustrates the dependency among different
system modules as well as typical steps performed by users for visual exploration.

We demonstrate the validity of our approach by showing how our framework gen-
erates new BHJ characterizations. In order to evaluate the results, we obtained user
feedback from domain experts. We also show that our proposed system has enabled
dramatic time savings in the exploration process of OPV data, which paves the way for
faster exploration of OPV materials in the future.

2 Related Work

This section discusses the most relevant related work grouped into three different cate-
gories.

2.1 Analysis of Charge Paths in Organic Photovoltaics

Domain scientists need to detect parts in the BHJ morphology with high charge den-
sities and understand the structural features that cause this problem. To support this
goal, scientists have designed a simulation of this phenomenon for sinusoidal struc-
tures [8], and have correlated the sine width to the charge density. This simulation is
suitable for regular structures but not random ones, such as the BHJ structures. Hence,
this simulation was later extended for BHJ [13]. However, it was still not possible to
correlate structural features with charge densities. As a result, domain scientists started
to move in the direction of studying the geometric features of charge paths rather than
the behavior of the charges themselves. For this purpose, scientists have developed an
approximation model [25] that extracts a representative set of charge paths that re�ects
the physical intuition. However, that work depends only on statistical analysis and is
therefore not suitable for exploring geometric features such as bottlenecks. Further-
more, it is unable to explore the interplay between con�icting design parameters. We
address these limitations in the current work.

2.2 Morphology Abstraction and Feature Extraction

Our bottleneck model requires the extraction of local domain features as well as the
measurement of local properties such as their size. A Voronoi-like decomposition of
the pore-space of porous materials has been proposed [10] to aid the determination of
the pore space skeleton. In our approach, we employ a hierarchical watershed algo-
rithm [4, 6] on the distance map [12] with persistence-based simpli�cation [7]. This
enables the decomposition of the BHJ morphology at potential bottlenecks. In addition,
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Figure 3: A 2D illustration of the invidivual steps of extracting the structural features
that are used for computing the bottleneck indicators and exciton diffusion probabili-
ties. Note that in our framework these steps are performed entirely in 3D.

we propose an abstract model that simpli�es the BHJ structure. This model is based
on a conventional thinning algorithm [21]. Examples of other techniques to achieve
simpli�ed representations include Reeb graphs [20], distance �eld-based methods [9],
extremum graphs [5], and other topological methods [3, 10]. Geometric path compu-
tation is also important to analyze molecular structures [15, 19], but these methods do
not apply to our application.

2.3 Geometric and Visual Path Analysis

In our work, we use graph-based models to enable knowledge-based exploration. Pre-
vious work applied knowledge-based visualization of charge paths to molecular data [2].
In this work, we exclusively focus on nanoscale data. One requirement for our method
is to visualize charge paths in relation to the surrounding geometry. Similar ideas have
been used before [11, 18], but employed vector �elds resulting from simulations. In
our work, we instead employ a set of representative paths that are extracted based on
the intuition of domain scientists. This enables knowledge-based visual exploration.
Prior to rendering, abstractions are often needed to focus on important features, es-
pecially for comparative and statistical analysis. Path abstraction models include the
ones proposed in [23, 17, 10]. These abstractions can be rendered using simple lines
or triangulated tubes, but also with more advanced rendering methods [16, 14].

3 Overview

This section provides an overview of our framework, describing the type of data we are
dealing with, the crucial abstraction of charge paths, and the overall work�ow.

3.1 BHJ Data

The BHJ morphologies that we are analyzing in this work result from computer simu-
lations (see Sec. 9 for details). Each morphology is given as discrete scalar �eld, where
each voxel is assigned an acceptor volume fraction value� . These fraction values are
between0 and1. By tracing the distribution of these variables, individual phases can
be identi�ed, i.e.,� = 0 corresponds to pure donor, while� = 1 corresponds to pure
acceptor, respectively. In the regions separating individual phases, the volume fraction
changes smoothly across the thin interface. By reconstructing the iso-contour corre-
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sponding to the iso-value� = 0 :5, the interface can be identi�ed. We use this interface
in our subsequent analysis.

3.2 Charge Path Approximation Model

A charge path is the trajectory of a charge from the point of its creation to the cor-
responding electrode (either anode or cathode). In this work, we study paths for two
types of charges: excitons and holes. Fig. 1(a) illustrates that (1) the path of an exciton
starts from the point of creation in the donor and ends at an interface, and (2) the path
of a hole starts from the point of creation on the interface and ends at some point on
the anode. Note that electrons can be handled in the same way as holes. The only
difference is that they travel through the acceptor to the cathode. We are interested in
the shape of the charge paths rather than tracking the charges themselves. For this pur-
pose, we use the set of shortest paths based on a model that has been proved to provide
suf�cient information about the geometry of the whole charge paths vector �eld [24].

3.3 Work�ow

We summarize the proposed system in Fig. 2. Our work�ow is divided into three main
parts:preprocessing, storage, andinteractive visual exploration.

In the preprocessing step, we compute the bottleneck indicator at certain points and
the geometric features of each charge path. The computation of the bottlenecks requires
extracting cross-sectional areas between neighboring parts of the interface. Before ex-
tracting these areas, we �rst simplify the morphology into its backbone, de�ned as the
medial axis of the morphology. The backbone provides a reduced view of the morphol-
ogy supporting correlation analysis as well as spatial exploration of the cluttered parts.
Then, we extract the areas around each voxel on the backbone only. Moreover, we
compute the set of shortest paths from the morphology as well as features of interest of
these paths.

In the storage step, we cache the data resulting from preprocessing to eliminate
unnecessary computations in the subsequent interactive visual exploration step.

For interactive visual exploration, we provide a variety of views: the backbone
view, the charge paths view, scatter plots, and volume rendering. The backbone visu-
alizes relevant information via user-de�ned color codings. Scatter plots visualize data
derived from the backbone. Users can explore multivariate correlations via the scatter
plots as well as �lter a volume with respect to a certain range of parameters. For spatial
analysis, users select one point in the �ltered volume, and retrieve the charge paths
around this point to explore their features. Users can select regions of interest from the
whole set of charge paths using simple GUI widgets.

4 Morphology Simpli�cation

In order to be able to analyze the BHJ morphology more effectively in terms of charge
paths, we �rst need to simplify it. For this, we �rst compute the backbone of the BHJ
morphology. We then compute cross-sections of the morphology, which is important
for the calculation of the charge path bottleneck indicator that we will introduce in
Section 5.1.

5



Figure 4: A 2D illustration of the cross-sectional area extraction guided by the 3D
segmentation and the backbone. The cross-sectional area at a backbone point is the
intersection between the plane perpendicular to the tangent at this point and the current
segment of the 3D segmentation. (a) illustrates how the plane of the cross-sectional
area is determined. (b) illustrates different examples of cross-sectional areas after in-
tersection with 3D segments. Note that we perform these computations entirely in 3D.

4.1 Backbone Computation

As a �rst step to analyze the morphology, we compute its backbone to provide a less
cluttered visual representation as well as to make the computations more ef�cient. The
backbone is de�ned as the medial axis of the morphology (see Fig. 3). To compute the
medial axis, we apply thinning [21] based on the Euclidean distance �eld of the donor
part with respect to the interface. The thinning is performed by removing voxel by
voxel from the segmented object until only a string of connected voxels (the skeleton)
remains. The voxel skeleton is then converted into a spatial graph that passes through
the medial axis of the donor. The Euclidean distance to the nearest boundary is stored at
every point in the spatial graph. This structure simpli�es the multivariate morphology
analysis as discussed in the subsequent sections. Furthermore, it allows us to compute
cross-sections of the morphology along the backbone.

4.2 Extraction of Cross-Sectional Areas

In order to identify potential bottlenecks in the BHJ morphology, we need to segment
the whole morphology into areas that re�ect the gradual change in the routes' thickness
from wide to narrow regions. To achieve this, we start with a 3D segmentation of the
whole morphology that decomposes the donor morphology at the constrictions (Fig. 3).

For this, we �rst compute the signed Euclidean distance map, starting from all
interface voxels, such that the distance map inside the donor has negative values. We
then apply a watershed algorithm [6] on the distance map and subsequently apply a
persistence-based [7] merging step to create larger regions. To do so, we compare the
scalar minima of two regions to be merged with the scalar value at the potential merge
point. If the difference between one of the minima and the scalar value at the merge
point is below a user-de�ned threshold, we merge the two regions. Otherwise, the
regions are not merged.

In the following steps, we are only interested in the cross-sectional areas around
the points on the morphology backbone. To determine these cross-sections, we com-
pute the directional vectors (tangents) of the backbone in each point of the backbone.
The point on the backbone together with its directional vector determine the plane of
the cross-section. Now, we can easily compute the 2D cross-sectional area around
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each backbone point from the 3D segmented volume. This is done by intersecting the
plane given by the backbone point and the directional vector with the 3D volume seg-
mentation, yielding a 2D cross-sectional area as shown in Fig. 4. The cross-sectional
area includes all voxels in the plane that belong to the same region as the point on the
backbone.

5 Intuitive Geometric Models for Performance

This section introduces two geometric indicators related to the performance of a given
BHJ material (morphology).

5.1 Geometric Indicators for Bottlenecks

Intuitively, if a charge paths at any point on the path does not overlap with any other
charge path, then the charge that travels along the paths will be able to travel at maxi-
mum speed. Conversely, the more paths share the same voxels, the larger the possibility
that charge contention happens and hence that the delay increases. Paths merge when
they move from a wider area into a narrower one, similar to an hour glass. Based on
this observation, we de�ne the bottleneck indicatorK (S) at each cross-sectional area
S inside the morphology as follows. Letj : R3 ! R be a scalar volume of path den-
sity. Considering a cross-sectional surfaceS (as illustrated in Fig. 1(b)), we obtain the
corresponding total bottleneck valueK (S) as the surface integral of the magnitude of
the path density gradients, normalized by the area A of S:

K (S) =
1
A

Z

S
kr j kdS: (1)

Areas with largeK (S) indicate the bottlenecks that the domain scientists are interested
in.

5.2 Geometric Indicators for Exciton Diffusion

Another important measure for the effectiveness of the BHJ is the probability of an
exciton actually reaching the interface. Thisexciton diffusion probabilitycan be com-
puted via the following equation [22, 26]:

W (d) = e� d=L d ; (2)

whered is the shortest distance from a point in the donor to the interface, andL d is
a material-speci�c constant: theexciton diffusion length. Thus, our geometric model
for exciton diffusion is simply the distance �eld that was computed inside the donor
with respect to the interface (see Fig. 3). Hence, we can directly use the value of the
distance �eld as parameterd in Eq. 2 to obtainW (d) at any desired point.

6 Feature Extraction

This section describes how the BHJ features required for subsequent analysis are ex-
tracted in our framework.
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Figure 5: An illustration of spatial exploration of the backbone: The backbone is color-
coded via a user-de�ned transfer function that highlights values of interest for the user
(K (S) = 20 in this example). The user can then move a point probe to regions with
a high bottleneck value (here: yellow regions), and explore the surrounding area to
ascertain its shape and size. This information can guide experts in enhancing the mor-
phology, e.g, by increasing the sizes of cross-sectional areas.

6.1 Size of the Cross-Sectional Areas

Our domain science collaborators want to explore the correlation of the sizes of cross-
sectional areas to the bottleneck indicator de�ned in Eq. 1. We compute this size as the
number of voxels intersecting the cross-section, since this is also the smallest unit used
for the features of charge paths.

6.2 Distance between the Interface and the Backbone

W (d) (Eq. 2) is an important measure for the domain scientists, because correlating it
with d allows them to estimate the effectiveness of the BHJ. We propose to compute
d at the backbone points only since they provide the worst case forW (d), i.e., the
farthest distance from the neighboring parts of the interface. Moreover, by extracting
the bottleneck at the same backbone point as shown in Figs. 3 and 4, we get an ef-
fective minimal set of indicators for the trade-off betweenW (d) andK (S). For the
computation ofW (d), in this paper we use an exciton diffusion length ofL d = 10 nm.

6.3 Charge Path Features

The bottleneck analysis discussed so far summarizes the behavior throughout the whole
morphology. However, scientists still need to explore the reasons behind this behav-
ior in detail. In order to support this, we allow scientists to visualize the charge paths
around each point on the backbone. Scientists can then explore details about the bot-
tleneck such as the corresponding path density (see Fig. 1).

One other feature of interest is thetortuosity. Bottlenecks are not the only source
of delay in the charge transport; the path length may also play an important role. We
allow scientists to explore this feature through the tortuosity indicator. This indicator
was also used by domain scientists in previous statistical contexts [25]. To compute the
tortuosity, we determine the lengthL of the shortest path from any point in the donor
to the electrode and relate it to the ideal path lengthC, i.e., the length of a straight line
between the ends of the path without constraints. The tortuosity� then is

� =
L
C

: (3)
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7 Visual Exploration

This section describes the capabilities for visualization and interactive exploration that
comprise the interactive visual exploration step of our framework, as illustrated in
Fig. 2.

7.1 Backbone Visualization

We visualize the topology of the backbone by rendering trace lines between all consec-
utive nodes (see Fig. 5).

Exploration of a variety of scalar attributes on the backbone is enabled via color-
coding (1D transfer functions). This is illustrated in Fig. 5. In order to facilitate the vi-
sualization of attributes, for each point on the backbone the preprocessing step has pre-
computed the bottleneck value, the area extracted by segmentation around this point,
and its shortest distance to the interface. From the latter we also compute and visualize
the exciton diffusion probability (Eq. 2).

7.2 Scatter Plots

We create scatter plots by mapping each point on the backbone to one point in the
scatter plot. The user can choose any two backbone attributes as x and y dimensions of
the scatter plot: bottleneck value, area size, distance to interface, and exciton diffusion
probability (see Fig. 6).

To re�ect the number of voxels that are mapped to a single pixel in the scatter
plot, we use a heat map; red represents a large number, black a small one. We further
enhance the visualization of the path density by binning.

Our scatter plots serve two main purposes: (1) exploring correlations between
structural and performance features, and (2) �ltering by brushing in the attribute do-
main.

Brushing in any scatter plot enables users to select regions according to attributes
to be investigated further using the spatial views, e.g., volume rendering. After a brush-
ing operation in a scatter plot, only voxels with values in the speci�ed range will be
displayed and rendered (see Fig. 6).

7.3 Charge Path Visualization

Charge paths are rendered as trace lines to allow for studying their topology. These
lines are color-coded according to scalar attributes, such as tortuosity (Fig. 7), or path
density.

Interaction. We allow users to select a spatial region of interest to reduce visual
clutter in the path visualization. In order to explore the paths around a speci�c location,
the user needs to select this location in the spatial domain.

For this interaction, we use a point probe: a ball attached to three orthogonal lines
parallel to the x, y, and z dimensions, respectively. The user can interactively move this
probe to any point of interest inside the bounding box of the morphology. Then, the
system retrieves all paths that pass through a region of interest around the ball.

We also support further �ltering via GUI widgets, such as the maximum size of
path bundles and the maximum path length in each bundle. This is illustrated in Fig. 7.
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Figure 6: A comparison between different time steps of thermal annealing of Morphol-
ogy A. Row 1 depicts the shape of the morphology at each time step. Row 2 illustrates
the corresponding backbone. Row 3 shows the correlation between the sizes of cross-
sectional areas and bottleneck valuesK (S) using scatter plots. The numbers indicate
the highest bottleneck value. Row 4 shows correlations between distancesd and exci-
ton diffusion probablitiesW (d). The green lines show the value atd = 10 nm, while
the blue rectangle shows the interactive selection of all the points withd < 10 (this is
displayed only for morphologies that exhibit a distance of 10). The numbers indicate
the lowest probability value. Row 5 illustrates histograms of the bottleneck value dis-
tributions of the morphologies after �ltering the corresponding backbone in Row 2 via
the blue rectangles in Row 4.

8 Implementation Details

To extract charge paths, we use the software GraSPI [25], which has been used success-
fully in previous OPV research. GraSPI is based on the Boost graph library. Details
can be found in [25]. We run the charge path computation process of�ine, generate
the corresponding topology, and store it in text �les. Then, we load these data into our
visualization software. Our visualization approach is implemented in the Avizo frame-
work with both computation and interaction modules. The ZIB version of Amira [1]
on the other hand is used for generating the segmentation. GraSPI uses an equivalence
between voxel-wise data and a graph to effectively characterize the morphology.

By translating the discrete morphology into a graph, GraSPI can use standard graph
algorithms to �nd the shortest paths and connected components. The graph is con-
structed by considering each voxel in the morphology as a node. Each node (voxel)
gets a label: black for donors, white for acceptors, green for interface voxels, red for
anode, and blue for cathode. An edge is created between each voxel and its 26 neigh-
bors. Each edge is given a weight according to the distance between the two corre-
sponding voxels (i.e., 1,

p
2,

p
3). GraSPI then uses the standard Dijkstra algorithm to

extract the set of shortest paths from this graph.
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9 Evaluation

As case studies, we employ two different simulated data sets that represent two main
BHJ lab synthesis techniques, which are calledSolvent-Based Fabrication[24], and
Thermal Annealing[25], respectively. The former is used to create morphologies with
different patterns and connectivity by manipulating physical parameters such as pres-
sure, donor/acceptor percentage, etc. The latter is used to enhance the morphology
performance by successively coarsening it. This is mainly achieved by exposing the
morphology to a certain temperature for a certain period of time. Scientists need to
make decisions for the parameters to use in these experiments.

The main analysis task performed by material scientists ischaracterization. Char-
acterization aims at �nding correlations between the structural features and perfor-
mance features in order to decide how to design the BHJ morphology. By using the
previous tools and work�ow for our case study, scientists characterize fractions of the
material with respect to a certain performance metric. For example, scientists need to
know which excitons (created in the donor) will possibly recombine before reaching
the interface. They already have knowledge that recombination will happen if the dis-
tance is longer thanL d = 10 nm [26]. Similarly, scientists need to study other features
such as the tortuosity that also should be less than a value of� = 1 :1 [25].

Accordingly, they need to know how thermal annealing in�uences these fractions
in order to learn their ideal values. Lab experiments cannot enable this type of char-
acterizations since they provide no access to this level of detail. A successful step
towards obtaining this characterization is through studying charge paths, as shown
in [24]. However, this earlier work only used standard statistical methods, which limits
it with respect to two major considerations: (1) It is unable to detect bottlenecks, and
(2) it can only study fractions as independent parameters without the critical interplay
between them. We show in our evaluation how our new proposed model succeeds in
removing these limitations.

The two data sets used in our evaluation are summarized in Table 1.

9.1 Feedback of Domain Experts

This section discusses feedback of our domain science collaborators on (1) producing
new BHJ characterizations, and (2) the value of the provided visual analysis capabili-
ties.

9.1.1 Producing New Characterizations

Fig. 6 demonstrates how our system enables scientists to extract novel BHJ character-
izations. These characterizations guide scientists to strategies of tailoring morphology

Data Set Time Steps
Morphology A 37
Morphology B 39
Dimensions 561� 141� 71voxels

Table 1: The data sets used in our evaluation. We have used two 3D morphologies,
each of which consists of several time steps (one volume each) computed via thermal
annealing.
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Figure 7: Charge path exploration for a sample morphology: Time step 21 of Morphol-
ogy A. Typically, visualizing all charge paths results in too cluttered visualizations.
Hence, the user needs to navigate to a region of interest for which the paths are then
displayed. In the right column, the backbone of the data set as well as a big subset of
the charge paths are shown to provide a feeling for their cluttered nature. In the middle,
a user-selected region in a scatter plot �lters the back bone down to only a few points.
Then, the user selects a region of interest (10 by 10 voxels), whose center is a point
interactively probed in the �ltered volume, using the GUI shown in the center. Finally,
the �nal selected paths are color-coded according to tortuosity.

structures (in the lab) that have fewer bottlenecks and better path quality. The results
show that the maximum value of the bottleneck indicator K(S) decreases as thermal
annealing proceeds, while the opposite happens for exciton probability diffusion W(d).
Domain experts have commented that these correlations match their intuition and their
simulation results. The experts then selected the distances less than 10 nm (similar
to [26]). The results show that - until time step 21 - W(d) is 100% optimal while K(S)
has the highest values. Using this incorporation of K(S) with the W(d) analysis, the sci-
entists could observe that the optimal structures do not necessarily exist at the coarsest
morphology but earlier than the last time step (37). The determination of optimal time
steps can be made by using the multi-view brushing feature of our system. The experts
increased the size of the blue rectangle such that it encloses all points with smaller dis-
tance than 10 nm (Fig. 6, fourth row). They then generated �ltered bottleneck volumes
at the backbone points corresponding to the brushed value. The histograms of the �l-
tered values are shown in the �fth row of Fig. 6. Scientists can conclude, for example,
that time step 24 is good, since the bottleneck values are in general not high while more
material fraction is distributed within the 10 nm distance.

Fig. 5 illustrates how spatial analysis is used to provide a detailed level of analysis.
The scientists explored if it is possible to make time step 21 match time step 24 more
closely by reducing the bottlenecks. First, they explored the whole backbone for points
with bottlenecks more thanK (S) = 20 (an adequate value for comparison). Then,
they displayed the area around each point to ascertain its shape and size and to explore
strategies for editing it.

Fig. 7 illustrates the usefulness of the charge path visualization. After �ltering the
volume to include only the useful material, the experts selected the lowest points, since
they have potential for higher tortuosity. In Fig. 7, they can see the charge paths with a
tortuosity higher than 1.1 and identify the route of these paths. The domain scientists
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Figure 8: A comparison between two different data sets (Morphology A, and Morphol-
ogy B). The backbone visualization reveals that almost all parts are well-connected
in Morphology A. However, Morphology B has many obvious islands (disconnected
parts) for all time steps of thermal annealing. The backbone helps with exploring this
feature even in the cluttered parts of the morphology. Scientists critically require this
information, because a higher number of islands leads to reduced charge transport.

have commented on this approach:“Having these regions identi�ed, it is possible to
explore various ways for removing or mitigating the effect of bottlenecks, e.g., by in-
creasing the local cross-sectional area. This step is particularly important considering
the multi-step nature of the photovoltaic in organic solar cells, as an improvement of
one performance indicator can result in the deterioration of others.”

9.1.2 Feedback on the Visual Analysis

Besides deriving the novel characterizations mentioned in the previous section, the
scientists have also commented on the visual analysis framework that we provide.

First, they have made the following general comment on the framework:“The tool
provides means to develop intuition regarding linking morphology with performance.
Ultimately, we envision this tool to enable design of fabrication that leads to desired
morphologies with improved properties. An understanding how to improve perfor-
mance by locally modifying morphology is a very crucial step.”

On the other hand, the scientists have requested the following additions. First, they
found it helpful to enrich the backbone visualization. They showed particular interest
in the branching vertices, since they could quickly infer the potential for bottlenecks
from them. Moreover, they commented on the great bene�t that the backbone provides,
besides the analysis introduced in this paper, since it reveals connectivity. It shows all
the routes from one point in the donor to the anode. Furthermore, it can instantaneously
detect islands as shown in Fig. 8. Connectivity is important because disconnected parts
(islands) will trap the charges rather than transport them. By a quick visual comparison,
scientists can see that Morphology B has a lot of disconnected parts vs. Morphology A
which indicates less charge transport. The scientists also showed interest in displaying
the segmentation as well, since similar conclusions can be made from the boundaries
between the segments.

One limitation of our framework pointed out by the domain scientists is the tor-
tuosity analysis. The current framework could visualize, for the �rst time, the local
tortuosity. However, it still depends on exploring each point in an exhaustive manner.
It would be useful to have a quick summary �rst, similar to the analysis in Fig. 6, which
requires creating a new model for this property.
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Action Avg. CPU Time [s]
Preprocessing 99
Stored Data Loading 6.83
Volume �ltering via scatter plots 0.56
Selected lines: 1713068 lines 27.47
Selected lines: 3800 lines 0.75

Table 2: Running times for all steps of our framework.

9.2 Performance Analysis

The GraSPI run time for a typical 3D morphology (with 5.5M voxels) is 15 min on
a typical work station (Intel Xeon Quad 2 GHz, 12 GB of RAM). The visualization
is run on Intel Xeon X5550, 2.67 GHz processors, 24 GB RAM. The morphology
generation is run for 20 hours on a 160-nodes cluster, each node with dual quad core
AMD Barcelona 2.2 GHz and with 8 GB RAM.

The visualization time taken by the main interaction tasks is illustrated in Table 2.
We display the average time taken for Morphology A, time step 6, since it includes the
largest interface surface and the most complex structure. We notice that the most time-
consuming step is the preprocessing. However, once the data are generated and stored,
the rest of the actions are quite interactive except in case of too many lines selected
for visualization. However, usually users avoid a too large number of lines, since the
corresponding visualizations become too cluttered.

These results show that the time required to perform analysis tasks in general are
dramatically reduced, since the lab experiments that comprised our collaborators' pre-
vious work�ow can take days to generate a single sample, and it can therefore take
months to reach conclusions.

10 Conclusions and Future Work

We have proposed the �rst framework for visual detection and analysis of performance
bottlenecks in OPV materials based on geometric features of charge paths. To visu-
alize the complex BHJ morphologies, we use a novel visual representation called the
backbone, which provides a suitable geometric abstraction. We have shown how this
abstraction enables ef�cient multivariate analysis. Our framework has helped domain
scientists to produce novel characterizations, while at the same time drastically reduc-
ing the analysis time.

In the near future, we plan to extend the analysis to include more variables. More-
over, we plan to develop tools for editing the BHJ morphology to further accelerate the
design of improved OPV materials.

Furthermore, our novel framework could pave the way for analyzing similar com-
plex material morphologies, such as porous media, critical to other �elds of science.
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