
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Rainer Roitzsch

KASKADE User's Manual

(Version 1.0)

Technical Report TR 89-4 (August 1989)

i

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbrunner Strasse 10
1000 Berlin 31
Verantwortlich: Dr. Klaus Andre
Umschlagsatz und Druck: Rabe KG Buch- und Offsetdruck Berlin

ISSN 0933-789X

n

Contents

1 In t roduct ion 3

1.1 Mathematical context 3

1.2 Software context 4

2 The command language 5

2.1 Overview 5

2.2 Commands of "Command" 7

2.2.1 Quit 7

2.2.2 Help [{commandName)] or ? 7

2.2.3 Do (fileName) 7

2.2.4 Time 7

2.2.5 CmdPrint [Namee][Settings] 7

2.2.6 MsgPrint 8

2.3 Commands of "Triangulation" 8

2.3.1 ReadTri (fileName) 8

2.3.2 WriteTri (fileName) [level [(levelNo)]] 9

2.3.3 InfTr i 10

2.3.4 SelTri (triangName) 10

2.3.5 DeleteTri [(triangName)] 11

2.3.6 CheckTri 11

2.3.7 Refine [al l | f i r s t l a s t] 11

2.4 Commands of "Assembling" 12

2.4.1 Se l ln teg (name) 12

2.4.2 In f ln t eg 12

2.4.3 Problem (name) 12

2.4.4 InfProblem 13

2.4.5 UpdProblem (constName) (value) 13

2.5 Commands of "Solve" 13

2.5.1 SetBreak (limitName) (value) 14

2.5.2 InfSolve 14

2.5.3 Solve [onestep] 15

2.5.4 Direct 15

1

2.5.5 Estimate 16

2.5.6 Refine 16

2.5.7 Iterate 16

2.6 Commands of "Graphic" 17

2.6.1 Graphic [clear] [{selectName)]
[cl ipping {rectangle)] [levels {number)] 17

2.6.2 InfGraphic 17

2.6.3 Show [PostScript] [noframe] [continue] 18

2.6.4 Pos tScr ip t [size {{size))] [or igin {{point))]
[font {fontName)] [f i l e (fileName)] 18

2.6.5 InfPS 18

2.6.6 Window [automatic] [top][bottom][left] [right]
[size {{size))] [origin {{point))] [font {fontName)]
[name {windowName)] 19

2.6.7 InfWindow 19

3 Definition of a new problem 20

4 An Example 21

References 23

2

1 Introduction

The Users' Manual contains the description of the user interface of the C-
KASKADE implementation. A corresponding Pascal implementation is done
by P. Leinen [5] at Dortmund. The purpose of this research code is to supply
a software environment for the development of adaptive finite element algo
rithms (2-D). The KASKADE implementation described in this manual is
the variant used to solve elliptic partial differential equations [3], other vari
ants are under development (see [4]). Thus efficiency of the code is sometimes
sacrificed for clearness or ease of implementation or for generality. Potential
users are numerical analysts in need for an environment to test new ideas in
the field of adaptive finite element methods.

To understand the internals of the program the user is refered to the Pro
grammer's Manual.

Errors, problem reports, or any comments should be forwarded to the author
at the Konrad-Zuse-Zentrum (ZIB), for an e-mail address see the Installa
tion Guide (README).

1.1 Mathematical context

The program KASKADE solves elliptic partial differential equations of the

= g in fi
= 7 on To C dft, / i \

= 0 on dft\ro .

Pi, p2) <?> >, a n a 7 are piecewise continuous real valued functions on Cl witw
P1P2 > 0 an<i ^ > 00 t CIR 2i a bounded polygonal domain. The program
implements the method described by DEUFLHARD, LEINEN, YSERENTANT
[3]. KASKADE implements this finite element method for linear elements
on triangles.

The user has to define a coarse triangulation to represent H and T0 (see
Section 2.3). The solution on this grid is found by a Cholesky decomposition
of the linear system

A{U{ = b{ (2)

which results from the weak formulation of (1):

/(u) = 2°(u,u) ~ G(i), u e H~fft)

type
- (Piux)x - {p2uy)y + qu

u
du

dn

3

where
a(u, v)= I \pxuxvx + p2uyVy + quv]d(x, y)

ja

and
G(v) = / gvd(x,y).

(The notation of [1] is used.)

The solution found by the direct solver is used as the initial level of the
cascade and as part of the preconditioner for the conjugate gradient solver
on the next cascade levels. (The coarse grid given by the user to define H
and T0 can be refined uniformly before being used as the initial level.)
These levels contain two phases, first the error estimator is called until a
predefined amount of new points is found and second equation (2) is solved
by an iterative method.

The error estimator gives information of the error on the edges of triangles
by solving a simplified quadratic approximation. If not enough triangles are
found to increase the number of points by a given factor (predefined 2.0)
the error estimator is called successively. During the refinement process the
solution on the new points is interpolated by the solutions at the end points
of the refined edge and by the quadratic correction estimated by the error
estimator.

The iterative solver (the conjugate gradient method) uses as preconditioner
the transformation S to the hierarchical basis and the decomposition from
the direct solution

where

Di-(2 J) - * = **<*>•
The iterative solver does not assemble any matrices in an explicit represen
tation, rather matrix vector multiplications are preformed elementwise. The
termination criteria for the iterative solver results from the estimated global
error multiplied by a safety factor (predefined 1/4). More information on the
algorithms implemented can be found in the Programmer's Manual [6].

1.2 Software context

This "batch" version of KASKADE is written in the language C and is devel
oped on a Macintosh II computer using the MPW compiler and environment.
No features for interactive graphics or menus are included, therefore "batch"
version. It is tested on Sun workstations (Unix).

4

The program KASKADE consists of the following modules

| Triangulation |

Command1 I Assembllng 1 |ystem I

1 Solve e

Graphic

The command to use these modules are described in Section 2.
KASKADE reads at the start a file s t a r t u p . k s k which contains a sequence
of commands and process them. If no qu i t is included, more commands
are requested from standard input. This allows batch processing and - to a
certain extend - interactive use.
A standard batch run should include commands to

• select the problem,

• read the geometric input data,

• set parameters for the solution method, and

• request output processing.

For further information on the implementation see the Programmer's Manual
[6].

2 The command language

2.1 Overview

The KASKADE command language has a simple syntactic structure. A
command is delimited by a newline or a command delimiting character. Pa
rameters are separated by white space (e.g. blanks or tabs), exceptions are
strings which are quoted by string delimiting characters.
The rest of an input line is ignored after a comment character (predefined

Capital letters are treated as small letters (exceptions are strings).

The basic command language module ("Command") contains commands
to

5

• quit the program,

• give some help,

• execute a command file,

• inform on the state of "Command" , and

• print time and memory used.

All other commands reflect the modularization of the KASKADE implemen
tation. These modules are

• "Triangulation"

- reading and writing a triangulation,

- informing on the state of "Triangulation" ,

- setting parameters, and

- explicit refinement.

• "Assemble"

- choosing parameters for numerical integration (points, weights),

- informing on the state of "Assembling" , and

- selecting and informing on the problem.

• "Solve"

- setting break conditions for the solution process,

- informing on the solution process,

- executing the solution process, and

- executing the direct solver, error estimator, and iterative solver
directly.

• "Graphic"

- setting of the graphic environment,

- informing on the state of "Graphic" ,

- selecting a driver, and

- producing graphic output.

The manual now follows this structure. Each command is described as the
external interface to its module.

6

•k.

2.2 Commands of "Command"

2.2.1 Quit

Quit stops the program. All files are closed.

2.2.2 Help [(commandName]] or ?

Help prints the list of command names, if used with a parameter, the short
description corresponding to (commandNam)) is printed. The list of prede
fined parameter keywords is printed too.
Example

Kaskade: help p o s t s c r i p t
Help: p o s t s c r i p t : ' s e t parameters fo r the p o s t s c r i p t d r i v e r ' ;

s i z e o r ig in font f i l e
Kaskade:

2.2.3 Do (fileName)

Do executes the commands in (fileName). At the start of KASKADE the file
s t a r t u p . k s k is executed.

Example

Do L-shape.ksk

2.2.4 Time

Time prints the time and memory used since the start of KASKADE .

Example

kaskade:Time
Time: 0.22 sees, since last call 0.03 sees, alloc, mem.: 8KB

kaskade:

2.2.5 CmdPrint [Names][Settings]

CmdPrint lists all command names of KASKADE defined at the moment of
execution and the actual setting of certain parameters. The names are read
from a file during the initialization of "Command" . This file has the name
kaskcmd.def. The printed information may be selected by the parameters
names and s e t t i n g s .

7

Example

kaskade:CmdPrint Settings

Cmd: current settings of the command interpreter

Prompt:'Kaskade: '

Maximal number of parameters: 10
Cases are ignored

Escape symbol: 'V

Comment symbol: '*/,'
kaskade:

2.2.6 MsgPrint

MsgPrint lists all messages of KASKADE defined at the moment of execu
tion. Messages are read from files during the initialization of the modules.
All these files have the postfix .msg.

2.3 Commands of "Triangulation"

2.3.1 ReadTri (fileName)

ReadTri reads the geometric input data from the file {fileName).

Example
kaskade:readtri kschlitz.geo

ReadTri: 6 points, 9 edges, 4 triangles read from kschlitz.geo

kaskade:

The file should contain the name of the triangulation in the first line. The
triangulation can be referenced by this name through the commands SelTr i
and DeleteTri . This line is followed by Dimension: and the number of
points, edges, triangles, and midpoints of arcs.

For each point the index, the coordinates and a letter to denote the type (D:
Dirichlet, N: Neumann, I : interior) should be given.

For each edge the index of the endpoints and the type (D, N, or I) of the
edges are needed.

Triangles are defined by their three edges, which should always be mathe
matically correctly oriented. If edges are arcs the coordinates of the midpoint
and the numbers of edges with a list of these edges is followed. Each of these
three (four) lists ends with an extra line containing END.

The elements of the list of points may be followed by an initial value for the
solution.

8

E x a m p l e
K r e i s S c h l i t z
D i m e n s i o n : (6 , 9 , 4 , 1)
0 : (1 . 0 , 0 . 0) ,D
1 : (0 . 0 , 1 . 0) ,D
2 : (- 1 . 0 , 0 . 0) ,D
3 : (0 . 0 , - 1. 0) ,D
4 : (0 . 0 , 0 . 0) ,D
5 : (1 . 0 , 0 . 0) , D
END
0 : (0 , 1) ,D
1 : (2 , 1) ,D
2 : (2 , 3) ,D
3 : (5 , 3) ,D
4 : (4 , 0) ,D
5 : (1 , 4) , I

6 : (4 , 2) , I
7 : (3 , 4) , I
8 : (4 , 5) ,D
END
0 : (0 , 5 , 4)
1 : (1 , 6 , 5)
2 : (2 , 7 , 6)
3 : (3 , 8 , 7)
END
(0 , 0) : 4

0
1
2
3
END

2.3.2 W r i t e T r i (fileNam)) [l e v e l [[/eve/TVo)]]

W r i t e T r i writes the actual triangulation da ta to the file (fileName). This
file can be used for future ReadTri calls. An older refinement level will be
selected by l e v e l (levelNo.. If (levelNo) is missing after the keyword l e v e l
level 0 is substituted.

E x a m p l e
Kaskade: write newquad.geo

9

Figure 1: Triangulation of the example

Wri teTri : 62 l i n e s wr i t t en t o 'newquad.geo' for l e v e l 0
Kaskade:

2.3.3 InfTr i

Inf Tr i lists some information about the current triangulation.

Example

k a s k a d e : i n f t r i
T r i : cur rent t r i a n g u l a t i o n ' K r e i s S c h l i t z ' from ^ s c h l i t z . g e o '

noOfPoints 6
noOfEdges 9
noOfTriangles 4
noOflnitPoints 6
noOflnitEdges 9
noOfInitTriangles 4
refLevel 0
maxDepth 0

kaskade:

2.3.4 SelTri ((riangName)

SelTri selects a triangulation given by its name (triangName) to be the
current one.

10

2.3.5 DeleteTri [(triangName)]

DeleteTri deletes a triangulation given by its name (triangName.. The
current triangulation is deleted if no parameters are given.

2.3.6 CheckTri

CheckTri checks the current triangulation for inconsistencies.

2.3.7 Refine [a l l | f i r s t l a s t]

Refine refines all triangles, the first or the last one. If no parameters are
given the grid is adaptively refined. In this case a call to the error estimator
is required.

Example

kaskade: ref ine a l l
T r i : 9 p o i n t s , 30 edges, 16 t r i a n g l e s generated
T r i : 0 edges, 0 t r i a n g l e s for green c losure
kaskade:

Figure 2: Triangulation after refinement

11

2.4 Commands of "Assembling"

2.4.1 Se l ln teg (name)

Sel ln teg selects a predefined set of integration points and weights. The
following sets are predefined and may be selected by their name: Axels son
from [1], Bank from [2], quadquad, and user.
Example

kaskade : se l in teg bank
kaskade : in f in teg
Assemble: #IP=1, #quadIP=3, #userIP=-l
Assemble: s tandard i n t e g r a t i o n po in t s

(0.3333, 0.3333) 0.5000
Assemble: s tandard quadra t ic i n t e g r a t i o n po in t s

(0.1667, 0.1667) 0.1667
(0.6667, 0.1667) 0.1667
(0.1667, 0.6667) 0.1667

kaskade:

2.4.2 In f ln teg

Inf In teg prints a list of the current setting of integration parameters.

2.4.3 Problem (name)

Problem is used to select a predefined problem. A problem, i.e. a set of
functions pi, p2, <?, §•> 7 from (1), may be selected by a name from Table 1.

Std pi, p2, q, g, 7 constant
BoundDisc uncontinuous boundary values
Bank problem from R.E. Bank [2]
Region uncontinuous p [3]
C i rc l e s L\U = - 4 , 7(3,y) = x -t y

Table 1: Predefined problems

Example

kaskade:Problem circles

kaskade:InfProblem

12

Problem: current problem is 'circles'

pXConst = 1.0000e+00

pYConst - 1.0000e+00

qConst = 0.0000e+00

gConst - -4.0000e+00

BValueConst = 0.0000e+00
kaskade:

2.4.4 InfProblem

Inf Problem lists the name of the current problem and the value of some
constants.

2.4.5 UpdProblem (constName) (value)

UpdProblem may be used to change some constants, see Table 2.

pXConst pi =const
pYConst p2 =const
qConst q =const
gConst g =const
BValueConst 7 =const

Table 2: Constants of UpdProblem

Example
kaskade:UpdProblem gConst -1.0
kaskade:InfProblem

Problem: current problem is 'circles'

pXConst - 1.0000e+00
pYConst = 1.0000e+00

qConst = 0.0000e+00

gConst = -1.0000e+00

BValueConst = 0.0000e+00

kaskade:

2.5 Commands of "Solve"

A solution process always starts with a direct solution of the system defined
by the actual triangulation and the given problem. A sequence of calls to the

13

error estimator and the iterative solver follow until a break condition holds.

2.5.1 SetBreak (UmitName) (value)

SetBreak defines certain limits for Solve . The limits with their defaults
are in Table 3.

depth maximum number of refinements of a triangle 10
l eve l maximum number of refinements 10
dimension maximum number of unknowns 1000
s teps maximum number of steps 11
globalError estimated global error 1.0E-4
maxlte maximum number of iteration steps 100
i t eFac to r iteration error factor 0.5
sFactor factor for number of new points 2.0
sigma factor for refinement process 0.95

Table 3: Limits of a solution process

The meaning of these limits and parameters are explained in the Program
mer's Manual.

2.5.2 InfSolve

Inf Solve prints the current limits and the corresponding actual values of
the solution process.

Example

Kaskade: SetBreak dimension 666
Kaskade: SetBreak level 4

Kaskade: InfSolve

Solve: State of solution process

level 0 - 4

depth 0 - 10

dimension 13 - 666
global error 1.000e+00 - 1.000e-04

max steps for Iterate: 100, last iteration error:0.000e+00

no direct solution available

no failures yet

Kaskade:

14

2.5.3 Solve [onestep]

Solve continues the solution process until a break condition holds. The
output is given in tabular form. The parameter onestep can be used to
process one step (direct solver, error estimator, and iterative solver) in the
predefined sequence.

Example

iteErr
Kaskade: Solve
step level depth. dim estiErr iter*

Direct 0 0 13
Estimate 1 1 41 4.196e-03
Iterate 1 1 41 1
Estimate 2 2 145 1.704e-03
Iterate 2 2 145 2
Estimate 3 3 545 6.717e-04
Iterate 3 3 545 3
Estimate 4 4 1961 2.013e-04
Iterate 4 4 1961 3
Kaskade: InfSolve
Solve: S t a t e of so lu t ion process

l eve l 4 - 4
depth 4 - 10
dimension L 1961 - 666
global e r r o r 2.013e-04 - 1.000e-04
max s teps for I t e r a t e : 100, l a s t i t e r a t i o n
d i r e c t so lu t ion for l eve l 0 ava i l ab l e
no f a i l u r e s yet

Kaskade:

5.109e-04

3.829e-04

1.431e-04

4.244e-05

er ror :4 .244e-05

2.5.4 Direct

Direct solves the selected problem on the current triangulation using a direct
solver. First the global stiffness matrix is assembled, then the resulting linear
system is solved (Cholesky).

Example

Kaskade: direct
Solve: start of direct cholesky, n=21
Solve: min/max(diag) 2.500e-01/1.000e+00 (ChkSol)
Solve: end of direct cholesky
Kaskade:

15

2.5.5 Estimate

Estimate calls the KASKADE error estimator. Values for the adaptive
refinement process and an estimate for the global error are computed.

Example
Kaskade: Estimate

Solve: estiErr=8.395e-02(2.897460e-01), mbar=6.408e-04
Kaskade:

estiErr is the estimated global error, the sum of the squares of the resid
uals in respect to the quadratic solution. The number in parenthesis is the
corresponding square root, mbar is the weighted sum. For more information
see the Programmer's Manual.

2.5.6 Refine

Refine (without parameters) invokes the KASKADE adaptive refinement
process.

Example
Kaskade: Refine

Solve: start adaptive refinement, sigma=0.95, s=2.0, 50 points

Tri: 31 points, 107 edges, 60 triangles generated

Tri: 27 edges, 54 triangles for green closure

Solve: estiErr=4.714e-02(2.171119e-01), mbar=2.024e-04

Tri: 142 points, 533 edges, 332 triangles generated
Tri: 42 edges, 84 triangles for green closure

Solve: end adaptive refinement, 173 new points, 2 level(s)

Kaskade:

In the first refinement step not enough new points are found. Therefore the
error estimator is called again to find more points. For the meaning of the
parameters sigma and s see the Programmer's Manual.

2.5.7 I t e r a t e

I t e r a t e calls the iterative solver (eg).

Example
Kaskade: Iterate
Solve: start of CG, n=223, eps=2.642e-03(5.140e-02) (precond.)

Solve: first CG step: res=8.507e-02(2.917e-01)

16

Solve: CG step 2: delta=3.234e-02(l.798e-0l)

Solve: CG step 3: delta=2.352e-02(l.534e-01)

Solve: CG step 4: delta=8.492e-03(9.215e-02)

Solve: CG step 5: delta=2.327e-03(4.824e-02)

Solve: after max 5 CG steps: res=2.327083e-03

Kaskade:

2.6 Commands of "Graphic"

2.6.1 Graphic [clear] [(selectName)]
[c l ipping {rectangle}] [levels {number}]

Graphic is used to set the graphic environment. With the parameters
{selectName) boundary, so lu t i on , t r i a n g u l a t i o n , index, po in t s parts
of the picture which is drawn by the next Show are selected. They are added
to the current graphics selection, c l ea r clears this selection. A parameter
c l ipp ing followed by coordinates of two points can be used to select a rect
angle to draw (zoom), so lu t ion requests the plotting of the solution by
its level lines. The number of level lines to be drawn is selected by l e v e l s
followed by a number.

2.6.2 InfGraphic

Inf Graphic prints a list of the current setting of the parameters given in
Table 4.

boundary plot boundary
so lu t ion plot level lines
t r i a n g u l a t i o n plot triangulation
index plot index of points
po in t s plot points
c l ea r plot nothing
c l ipp ing select a rectangle to plot
l e v e l s set number of level lines

Table 4: Parameters of Graphic

Example

kaskade:graphic clipping (-0.1,0.1,0.1,-0.1) solution

17

kaskade:infgraphic

Graph: graphic settings:

Graph: triangulation rectangle (-00.500-0.500,0.500,0.500)

Graph: clipping (-00.100,0100,0.100,-0.100)

Graph: to draw level lines
Graph: 7 levels

kaskade:

2.6.3 Show [PostScript] [noframe] [continue]

Show draws a picture corresponding to the current setting of Graphic and
the current driver. (Up to now only a PostScript driver is available.) A driver
might be selected by a parameter (see Table 5).

Pos tScr ip t select PostScript driver
continue hold output (no showpage)
noframe plot no frame

Table 5: Parameters of Show

Example

Kaskade: show noframe

Graph: computed level lines (-3.005e-02 - 0.000e+00)3.756e-03

PS: 454 lines written to PSKaskadeO

Kaskade:

2.6.4 Pos tScr ip t [size ((size))] [or igin ((point))]
[font (fontName)] [f i l e (fileName)]

PostScr ip t sets the environment for the PostScript driver. The size of the
picture and the place on the page might be selected by the parameters s i ze
and or ig in . The values are in units of centimetres. For other parameters
see Table 6.

2.6.5 InfPS

Inf PS prints a list of the current setting of the parameters of the PostScript
driver.

18

s i ze set size of picture
o r ig in set place of picture
font use font name
f i l e write to file

Table 6: Parameters of Pos tScr ip t

Example

kaskade:PostScript file pic.ps
kaskade:InfPS
PS: PostScript settings
PS: picture size (20.93cm,29.65cm) at (0.00cm,0.00cm)
PS: pagesize (20.93cm,29.65cm)
PS: pixelsize 1.312333e-03
PS: font 'Palatino-Roman*
PS: file 'pic.ps'
kaskade:

2.6.6 Window [automatic] [top][bottom][left] [r ight]
[s ize ((size))] [or igin ((point))] [font (fontName)]
[name (windowName)]

Window opens a window as a graphic output device. The size and place of
the picture can be selected by the s i ze and o r i g i n parameters. The values
are given in centimetres. Preselected positions and sizes are top,bottom,
l e f t , and r i g h t allowing four windows on the screen. The current graphic
selection (that is what to draw) is saved by using automatic. In this case
the picture is redrawn automatically, whenever necessary.

2.6.7 InfWindow

Inf Window prints a list of the current setting of the parameters of the window
driver.

Example

kaskade:window top right
kaskade:InfWindow
Window: current driver (window) settings
Window: picture size (18.24cm,12.13cm) at (18.24cm,13.43cm)

19

Window: pagesize (36.47cm,27.57cm)

Window: resolution 1.000000e+00

Window: font * Courier'

Window: (file)name 'Kaskade Graphic*

kaskade:

3 Definition of a new problem

To use other functions p1? p2, <?, and 7 than the predefined ones, a change in
the KASKADE sources and a recompilation is necessary. Here only a simple
recipe is given, for more information see the Programmer's Manual.

The source file problem. c contains the functions of some standard problems.
The name of the functions with their parameter lists are given in Table 7.

REAL StdpX(x, y) px
REAL StdpY(x, y) p2
REAL Stdq(x, y) q
REAL Stdg(x, y) g
REAL StdBValue(x, y) 7

Table 7: Functions to define the problem

The standard functions are

static REAL StdpX(x, y)

REAL x, y;

{ return actProblem->pXConst; }

static REAL StdpY(x, y)
REAL x, y;

{ return actProblem->pYConst; }

static REAL Stdq(x, y)

REAL x, y;

•(return actProblem->qConst; }

static REAL Stdg(x, y)

REAL x, y;

{ return actProblem->gConst;)•

static REAL StdBValue(x, y)

REAL x, y;
{ return actProblem->BValueConst;)•

20

4 An Example

In the following example the Laplace equation is solved on a L-shaped do
main. At the end a PostScript picture with the triangulation and the level
lines is produced.

The file L-shape.ksk contains the following commands.

ReadTri L-shape.geo '/, reading the t r i a n g u l a t i o n
Refine a l l % r e f i n i n g uniformly
SetBreak g loba lError 1.0e-2 5C should s top , i f est imated

*/, e r ro r 1.0e-2 i s reached
SetBreak dimension 4000 % should s top , i f more than

*/. 4000 po in t s
InfSolve X checking break condi t ions
Solve */t solve u n t i l a break condi t ion

*/» holds
% selecting wwha tt oraww :he eriangulation

Graphic boundary triangulation

'/, definnig wwerr et odaww :o nhe eeff tottom

PostScript file L-shape.ps size (6.0,6.0) origin (0.0,0.0)

'/, ddawinn gwthhou tewpagg

Show continue noframe

X selecttig wwha tt odaww :he eolution

Graphic clear boundary solution

*/t defining where to draw: right beside the triangulation

PostScript origin (6.5,0.0)

'/, ddawing with hewpagg

Show continue noframe

Then K A S K A D E will produce the folllwing output.

(7)%kkskade

Start of Kaskade 1.0, 22. Feb. 1989

Graph: no triangulation - no graphic

Kaskade: do L-shape.ksk
ReadTri: 8 points, 13 edges, 6 triangles read from L-shape.geo

Solve: state of solution process

level 1 - 10

depth 1 - 10

dimension 21 - 4000
global error 1.000e+00 - 1.000e-02

21

fc

max steps for Iterate: 100, last iteration error:0.000e+00
no direct solution available
no failures yet
step level depth dim estiErr iter# iteErr

Direct 1 1 21
Estimate 2 2 59 5.762e-02
Iterate 2 2 59 3 6.511e-03
Estimate 3 3 198 3.913e-02
Iterate 3 3 198 3 8.059e-03
Estimate 4 4 555 2.426e-02
Iterate 4 4 555 3 6.633e-03
Estimate 5 5 1580 1.540e-02
Iterate 5 5 1580 4 2.857e-03
Estimate 6 6 4371 8.939e-03
Iterate 6 6 4371 3 2.642e-03
BreakReason: global (estimated) error reached

Graph: computed level lines (-3.718e-02 - 0.000e+00)4.647e-03

Kaskade:

The file L-shape.ps contains the Figure 3.

Figure 3: PostScript file L-shape.ps

22

Acknowledgments

The author thanks P. Leinen for the helpful discussions during the develop
ment of the program and R. Kornhuber for being the first user with many
new requirements.

References

[1] 0 . Axelsson, V.A. Barker: Finite Element Solution of Boundary Value
Problems: Theory and Computation. New York: Academic Press (1984)

[2] R.E. Bank: PLTMG Users' Guide, Edition 5.0. Technical Report, De
partment of Mathematics, University of California at San Diego (1988)

[3] P. Deuflhard, P. Leinen, H. Yserentant: Concept of an Adaptive Hier
archical Finite Element Code. IMPACT of Computing in Science and
Engineering, I, 3-35 (1989)

[4] R. Kornhuber, R. Roitzsch: On Adaptive Grid Refinement in the Pres
ence of Internal or Boundary Layers. Preprint, ZIB SC 89-5 (1989)

[5] P. Leinen: Work done in preparation of a dissertation. (1989)

[6] R. Roitzsch: Kaskade Programmer's Manual. Technical Report, ZIB TR
89-5, Berlin (1989)

23

zu

Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin
Preprints August 1989

SC 86-1. P. Deuflhard; U. Nowak. Efficient Numerical Simulation and Identification of Large
Chemical Reaction Systems.
SC 86-2. H. Melenk; W. Neun. Portable Standard LISP for CRAY X-MP Computers.

SC 87-1. J. Anderson; W. Galway; R. Kessler; H. Melenk; W. Neun. The Implementation and
Optimization of Portable Standard LISP for the CRAY.
SC 87-2. Randolph E. Bank; Todd F. Dupont; Harry Yserentant. The Hierarchical Basis
Multigrid Method, (vergriffen) In: "Numerische Mathematik" Nr. 52, 1988, 427-458.
SC 87-3. Peter Deuflhard. Uniqueness Theorems for Stiff ODE Initial Value Problems.
SC 87-4. Rainer Buhtz. CGM-Concepts and their Realizations.
SC 87-5. P. Deuflhard. A Note on Extrapolation Methods for Second Order ODE Systems.
SC 87-6. Harry Yserentant. Preconditioning Indefinite Discretizaiion Matrices.

SC 88-1. Winfried Neun; Herbert Melenk. Implementation of the LISP-Arbitrary Precision
Arithmetic for a Vector Processor.
SC 88-2. H. Melenk; H. M. Möller; W. Neun. On Grobner Bases Computation on a
Supercomputer Using REDUCE, (vergriffen)
SC 88-3. J. C. Alexander; B. Fiedler. Global Decoupling of Coupled Symmetric Oscillators.
SC 88-4. Herbert Melenk; Winfried Neun. Parallel Polynomial Operations in the Buchberger
Algortthm.
SC 88-5. P. Deuflhard; P. Leinen; H. Yserentant. Concepts of an Adaptive Hierarchical Finite
Element Code.
SC 88-6. P. Deuflhard; M. Wulkow. Computational Treatment of Polyreaction Kinetics by
Orthogonal Polynomials of a Discrete Variable, (vergriffen)
SC 88-7. H. Melenk; H. M. Möller; W. Neun. Symbolic Solution of Large Stationary Chemical
Kinetics Problems.
SC 88-8. Ronald H. W. Hoppe; Ralf Kornhuber. Multi-Grid Solution of Two Coupled Stefan
Equations Arising in Induction Heating of Large Steel Slabs.
SC 88-9. Ralf Kornhuber; Rainer Roitzsch. Adapiive Finite-Element-Methoden für
konvektions-dominierte Randwertprobleme bei partiellen Diiferentialgleichungen.
SC 88-10. S -N. Chow; B. Deng; B. Fiedler. Homoclinic Bifurcation at Resonant Eigenvalues.

SC 89-1. Hongyuan Zha. A Numerical Algorithm for Computing the Restricted Singular Value
Decomposition of Matrix Triplets.
SC 89-2. Hongyuan Zha. Restricted Singular Value Decomposition of Matrix Triplets.
SC 89-3. Wu Huamo. On the Possible Accuracy of TVD Schemes.
SC 89-4. H. Michael Möller. Multivariate Rational Interpolation: Reconstruction of Rational
Functions.
SC 89-5. Ralf Kornhuber; Rainer Roitzsch. On Adaptive Grid Refinement in the Presence of
Internal or Boundary Layers.
SC 89-6. Wu Huamo; Yang Shuli. MmB-A New Class of Accurate High Resolution Schemes
for Conservation Laws in Two Dimensions.
SC 89-7. U. Budde; M. Wulkow. Computation of Molecular Weight Distributions for Free
Radical Polymerization Systems.

ZJ

