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HUHFA: A Framework for Facet Classification

Olga Heismann∗ Achim Hildenbrandt∗∗ Francesco Silvestri∗∗

Gerhard Reinelt∗∗ Ralf Borndörfer∗

Abstract

Usually complete linear descriptions of polytopes consist of an enormous number of
facet-defining inequalities already for very small problem sizes. In this paper, we de-
scribe a method for dividing the inequalities into equivalence classes without resorting
to a normal form. Within each class, facets are related by certain symmetries and it
is sufficient to list one representative of each class to give a complete picture of the
structural properties of a polytope. We propose an algorithm for the classification and il-
lustrate its efficiency on a broad range of combinatorial optimization problems including
the Traveling Salesman and the Linear Ordering Problem.

1 Introduction

The polyhedral approach to combinatorial optimization problems studies the structure of
their associated polytopes. One way is to compute complete linear descriptions of small
polytopes in order to generalize the equations and inequalities. “Small polytopes” might
actually not look so small at first sight: There is often a huge number of facet-defining
inequalities already for very small problem sizes.

However, there are also often many symmetries implied by the combinatorial structure
of the problem which can be used to classify the facets. These symmetries act on the feasible
solutions and naturally form a group. In their representation as maps on the variable values
they can be extended to symmetries acting on the polytope, and one can prove that they
map vertices of the polytope to vertices of the polytope, and facets to facets. We say that
those facet-defining inequalities which are similar in the sense that they can be transformed
onto each other by some symmetry belong to one class.

Understanding all the facet-defining inequalities of a combinatorial optimization problem
polytope then reduces to understanding one facet from each class.

To do this classification, one applies the symmetries to the facet-defining inequalities and
then checks whether any two facets can be transformed into each other and hence belong to
∗Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany, {borndoerfer, heismann}@zib.de. Sup-

ported by the DFG Research Center MATHEON “Mathematics for key technologies”.
∗∗Ruprecht-Karls-Universität Heidelberg, INF 368, 69120 Heidelberg, Germany, {achim.hildenbrandt,

gerhard.reinelt}@informatik.uni-heidelberg.de, f.silvestri@stud.uni-heidelberg.de.
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the same class. Often, this check is not so easy as two linear expressions describing the same
facet might differ by the sum of multiples of several equalities from the problem description.

The check can be accomplished by defining a so-called normal form for the representa-
tion of inequalities—inequalities which have the same normal form describe the same facet.
To this end, problem-specific normal forms were developed for some extensively studied
combinatorial optimization problems. For the Traveling Salesman Problem, every facet-
defining inequality can be efficiently transformed to the so-called tight triangular normal
form [Naddef and Rinaldi, 1993]. For an example of a normal form for the Linear Ordering
Problem, see [Reinelt, 1985]. In general, the representation of facet-defining inequalities in
the orthogonal complement of the linear subspace spanned by the equations can be of course
used as a normal form for the facets of a polytope. However, this needs techniques from lin-
ear algebra and can therefore raise numerical issues. Unfortunately, normal forms that can
be described combinatorially are often not known. Hence, having a method that can be
applied to every combinatorial optimization problem and relies solely on the combinatorial
structure of the polytope is desirable.

Indeed, in this paper we propose a novel technique for classifying facets without using
normal forms. The main idea is to identify every facet-defining inequality with the ver-
tices of the polytope which satisfy it with equality. With this method, complete descriptions
of polytopes computed by a software like PORTA [Christof and Loebel, 2008] (or a similar
package) can be analyzed to divide the facets into equivalence classes according to groups
generated by given symmetry mappings. It works regardless of whether the polytope is
full-dimensional or not.

Facet classification methods without normal forms are also used in the Software SymPol
[Rehn and Schürmann, 2010] for polyhedral representation transformations. To the best of
our knowledge, their method relies on geometric scalar product invariants and algebraic
invariants using polynomial rings as described in [Rehn, 2010, Section 3.2.2]. The invari-
ant proposed in this paper is much easier to compute and relies only on the vertex-facet
incidence structure of the polytope.

This paper is organized as follows. In Section 2 we present our approach for the clas-
sification of facet-defining inequalities. Section 3 gives some examples for symmetries, and
in Section 4 we make a few comments about extensions of our theory for the classification
of equations, which can be present in linear descriptions. Finally, we describe the imple-
mented algorithm in Section 5 and give some computational results. The paper closes with
a conclusion in Section 6.

2 Equivalence of Facets

A polyhedron P is the solution set of a finite system of linear equations and inequalities, i. e.,
P can be described as P = {x ∈ Rn : Ax ≤ b, C x = d} for some A ∈ Rm×n, b ∈ Rm, C ∈
Rl×n, d ∈ Rl . A bounded polyhedron is called a polytope. The dimension dim(P) of P is the
cardinality of a maximum affinely independent subset minus one.

In the following we will only consider polytopes as feasible solutions of combinatorial
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optimization problems are usually bounded. Furthermore, we will not give the explicit di-
mensions of real vectors or matrices whenever they are clear from the context.

An inequality aT x ≤ b is called a valid inequality for P if it is satisfied by all elements of P.
For a valid inequality, the set F = {x : aT x = b} ∩ P is called a face of P. A face F is called a
facet of P if dim F = dim P − 1. The inequality inducing the facet is called facet-defining. A
face consisting of a single element is called a vertex.

A linear representation {x : Ax ≤ b, C x = d} of a polytope is called anH -representation
of P.

The convex hull conv(X ) of a finite set X = {x1, x2, . . . , x t} is the set of all vectors z which
can be written as a (convex) combination z =

∑t
i=1λi x i, 0≤ λi ≤ 1, i = 1, . . . , t.

It is a fundamental theorem in polyhedral theory (see, e. g., [Weyl, 1934]) that a poly-
tope P can also be described as the convex hull of its vertices vert(P). For V = vert(P) we
call conv(V ) the V -representation of P.

The following definition of symmetries will allow us to view facet classes as equivalence
classes.

Definition 2.1. Let s : x 7→ M x + r be a bijection on Rn with some (nonsingular) matrix M
and a vector r. The faces F1 and F2 of a polytope P are equivalent with respect to s if
s(vert(F1)) = vert(F2). If S is a set of bijections, then F1 and F2 are equivalent with respect
to S if they are equivalent with respect to s for some s ∈ S. A bijection s is said to be a
symmetry for P if s(vert(P)) = vert(P).

The following two lemmas establish useful properties of a symmetry.

Lemma 2.2. Let s : x 7→ M x + r be a bijection on Rn with some (nonsingular) matrix M and
a vector r. Then s−1 : x 7→ M−1 x −M−1r.

Proof. Since s is bijective, an inverse exists. We compute that t(s(x)) = x for t(x) = M−1 x−
M−1r:

t(s(x)) = M−1(M x + r)−M−1r

= x +M−1r −M−1r
= x .

Lemma 2.3. Let P be a polytope and s : x 7→ M x + r be a symmetry for P with some (nonsin-
gular) matrix M and a vector r. Then s(P) = P.

Proof. Consider the V -representation of P with V := vert(P):

x =
∑

v∈V

λv · v,
∑

v∈V

λv = 1, 0≤ λv ≤ 1 ∀v ∈ V
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for every x ∈ P. Then,

s(x) = s

 

∑

v∈V

λv · v

!

= M ·

 

∑

v∈V

λv · v

!

+ r

= M ·

 

∑

v∈V

λv · v

!

+ r ·

 

∑

v∈V

λv

!

=
∑

v∈V

λv · (M v+ r)

=
∑

v∈V

λs−1(v)v ∈ conv(V ) = P.

Thus, s(x) ∈ P for every x ∈ P.
Since s−1(x) = M−1 x − M−1r is a symmetry, too, the argument from above proves also

that s−1(x) ∈ P for every x ∈ P. s(x) ∈ P and s−1(x) ∈ P for every x ∈ P implies that
s(P) = P.

In our combinatorial understanding, a symmetry acts on the feasible solutions of a com-
binatorial optimization problem. This might seem not to match Definition 2.1 where a sym-
metry acts only on those feasible solutions which are vertices of the corresponding polytope.
The vertices might be only a subset of the feasible solutions. However, this is not a restriction
as feasible solutions that are vertices have to be mapped to feasible solutions that are ver-
tices, too, by a symmetry in the combinatorial understanding. This is proven in the following
lemma.

Lemma 2.4. Let s : x 7→ M x + r be a bijection on Rn with some (nonsingular) matrix M
and a vector r, and let P be a polytope. If s(S) = S for some set vert(P) ⊆ S ⊆ P, then
s(vert(P)) = vert(P).

Proof. We have to prove that for every v ∈ vert(P), s(v) ∈ vert(P).
Since v is a face, a valid inequality aT x ≤ b exists for P such that {v}= {x : aT x = b}∩P.

The inequality aT s−1(x)≤ b⇔ (aT M−1)x ≤ aM−1r+b is fulfilled by s(v) with equality, and
it is valid for s(S), because S ⊆ P and aT x ≤ b is valid for P. On the other hand, for every
s(v′) that fulfills (aT M−1)x ≤ aM−1r + b with equality, aT v′ = b, so that v is the only point
with this property. Thus, {s(v)}= {x : (aT M−1)x = aM−1r + b} ∩ P is a vertex of P.

We now show that a group of such symmetries induces indeed an equivalence relation
on the faces of a polytope.

Lemma 2.5. Let P be a polytope and S be a set of symmetries on P forming a group with respect
to the composition operator (◦). Then equivalence with respect to S defines an equivalence
relation on the faces of P.
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Proof. Reflexivity holds because S contains the identity. Transitivity follows from the closure
of S and the fact that if vert(F2) = s1(vert(F1)) and vert(F3) = s2(vert(F2)), then vert(F3) =
(s2 ◦ s1)(vert(F1)). Finally, symmetry follows from the existence of inverse elements in S. If
vert(F2) = s(vert(F1)), then vert(F1) = s−1(vert(F2)).

Theorem 2.6. Let F be a facet of the polytope P and s : x 7→ M x + r a symmetry for P. If
aT x ≤ b defines the facet F, then (aT M−1)x ≤ b+ aT M−1r defines some facet F ′ of P as well.
Further, s(F) = F ′ holds.

Proof. Since s is bijective and by Lemma 2.3 s−1(x) ∈ P for every x ∈ P, the inequality
aT s−1(x)≤ b holds for every x ∈ P as well. Written explicitly, we have aT (M−1 x −M−1r) =
aT s−1(x)≤ b and therefore the inequality aT M−1 x ≤ b+ aT M−1r is valid for P, too.

To complete the proof we will show that dim(F ′) = dim(F) where

F ′ := {x : aT M−1 x = b+ aT M−1r} ∩ P.

Because s is a bijection we get

aT x = b⇔ aT s−1(s(x)) = b

⇔ aT (M−1s(x)−M−1r) = b

⇔ (aT M−1)s(x) = b+ aT M−1r

⇔ s(x) ∈ {x : aT M−1 x = b+ aT M−1r}.

By Lemma 2.3 for s and s−1, x ∈ P⇔ s(x) ∈ P. Using the equivalence shown above, we get

x ∈ F ⇔ x ∈ P ∧ aT x = b

⇔ s(x) ∈ P ∧ aT M−1s(x) = b+ aT M−1r
⇔ s(x) ∈ F ′.

Hence, s(F) = F ′. Since s is an affine bijective map, it is dimension-preserving and the proof
is completed.

3 Examples and Groups of Bijections

In this section, we investigate some interesting groups of symmetries. We begin with exam-
ples of symmetries in two well-known combinatorial optimization problems. Afterwards, we
prove possibilities to generate symmetry groups, and illustrate them using the hypercube as
an example.

Example 3.1. Given the complete directed graph Dn = (Vn, An) on n nodes, a Hamiltonian
cycle (tour) in Dn is a directed cycle that contains all nodes. For given arc weights the well-
known Asymmetric Traveling Salesman Problem (ATSP) consists of finding a Hamiltonian
cycle (tour) in Dn of minimum total length.
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If a tour and a permutation σ of the nodes Vn are given, then the replacement of every
arc (i, j) by (σ(i),σ( j)) yields again a tour. Furthermore, changing the direction of all arcs,
i. e., replacing each arc (i, j) by ( j, i), also gives a feasible tour. Thus, these two operations
can be viewed as symmetries on the set of tours.

Consider the standard linear characterization of tours with binary variables x i j where
x i j = 1 if arc (i, j) is in the tour, and x i j = 0, otherwise.

n
∑

i=1,i 6= j

x i j = 1, for all j ∈ Vn, (TSP i)

n
∑

j=1, j 6=i

x i j = 1, for all i ∈ Vn, (TSP ii)

∑

i∈S

∑

j∈S,i 6= j

x i j ≤ |S| − 1, for all S ⊂ Vn, 2≤ |S| ≤ n− 1, (TSP iii)

x i j ∈ {0, 1}, for all (i, j) ∈ An. (TSP iv)

The Asymmetric Traveling Salesman Polytope Pn
ATSP is defined as the convex hull of all feasible

0/1 vectors of this characterization.
If σ is a permutation of Vn, then the map sσ with (sσ(x))i j = xσ−1(i)σ−1( j) is an affine map.

By applying sσ to a feasible solution x we obtain the feasible solution x ′ where

x ′i j :=

(

1 if xσ−1(i)σ−1( j) = 1,

0 otherwise.

The other symmetry, which reverses arcs, can be represented as the affine map r with
(r(x))i j = x ji converting a tour x to the tour x ′′:

x ′′i j :=

(

1 if x ji = 1,

0 otherwise.

Both maps sσ and r are bijective. Further, they map the vertices of Pn
ATSP onto themselves,

so they are symmetries for Pn
ATSP.

E. g., consider the inequality x12 + x13 + x14 ≤ 1 which is facet-defining for P4
ATSP, and

let σ be the permutation interchanging nodes 1 and 2. If we apply sσ and r we obtain the
facet-defining inequality x12+ x32+ x42 ≤ 1 that belongs to the same equivalence class.

Example 3.2. Let Dn = (Vn, An) be the complete directed graph on n nodes. A tournament in
Dn is a subset of An which contains for every pair (i, j) of nodes exactly one of the arcs (i, j)
or ( j, i). For given arc weights the well-known Linear Ordering Problem (LOP) consists of
finding an acyclic tournament of maximum total weight.
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With binary variables yi j indicating whether arc (i, j) is in the tournament or not a linear
characterization of acyclic tournaments is given by the system

yi j + y ji = 1, for all 1≤ i < j ≤ n, (LOP i)

yi j + y jk + yki ≤ 2, for all 1≤ i, j, k ≤ n, i < j, i < k, k 6= j, (LOP ii)

yi j ≤ 1, for all 1≤ i, j ≤ n, j 6= i, (LOP iii)

yi j ∈ Z, for all (i, j) ∈ An. (LOP iv)

The Linear Ordering Polytope is the convex hull of all feasible 0/1 vectors of this characteri-
zation.

As for the ATSP, also here node permutations and arc reversals can be used to convert
acyclic tournaments into other acyclic tournaments. In addition to these symmetries there is
another type given in [Bolotashvili et al., 1999]. For a node r ∈ Vn define the bijective map
φr : Rn(n−1)→ Rn(n−1) by

�

φr(y)
�

i j =

(

y ji if i = r or j = r,

yi j + y jr − yir otherwise.

This symmetry is a so-called “rotation mapping” and maps the linear ordering 1,2, . . . , r−
1, r, r+1, . . . n to the linear ordering r+1, . . . n, r, 1, 2, . . . , r−1. However, it is different from
a node permutation symmetry: The interesting fact is that with this mapping the 3-dicycle
inequalities (LOP ii) and the trivial inequalities (LOP iii) belong to the same equivalence
class, which can be checked by an easy calculation.

In combinatorial optimization problems, variables often model whether some object is
selected for the solution. Then, a permutation symmetry on these objects implies such a
symmetry on the variables as stated in the next definition.

Definition 3.3. Let σ be a permutation of {1, . . . , n}. σ induces a linear bijective map
σ : x = (x1, . . . , xn) 7→ xσ := (xσ(1), . . . , xσ(n)).

Analogously, every subgroup S of the permutation group Sn defines a group S = {σ : σ ∈
S} of bijections. In the following will not distinguish between σ and Sn and their implied
bijections σ and Sn in notation.

We denote by (i1, i2, . . . , ik) ∈ Sn the permutation that maps i j to i( j mod k)+1 for all j =
1,2, . . . , k. For a group S and s1, s2, . . . sl ∈ S, we write < s1, s2, . . . , sl > for the subgroup of S
that is generated by s1, s2, . . . , sl .

The following definition and the next lemma allow to create further groups of symmetries
on a polytope.

Definition 3.4. Let τ : R→ R be an involution, i. e., τ ◦ τ = id. For a set I ⊆ {1, . . . , n}, we
define the map sτI : Rn→ Rn by setting

sτI (x)i =

(

τ(x i) if i ∈ I ,
x i otherwise.
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It is not hard to see that sτI ◦ sτI = id. In addition, define SτJ = {s
τ
I : I ⊆ J} and Sτ = Sτ{1,...,n}

when n is clear from context.

Lemma 3.5. For every J ⊆ {1, . . . , n} and every involution τ : R→ R, SτJ is a group of bijections
with respect to composition.

Proof. Because of ; ⊆ J it follows that id= sτ; ∈ SτJ .
Existence of inverse functions is a direct consequence of sτI being an involution.
Closure follows from the fact that for every I1, I2 ⊆ J one has I14I2 ⊆ J (where 4

denotes symmetric difference) as well as sτI1
◦ sτI2

= sτI14I2
, which can be easily verified.

Thus, for example, S−J with − : x 7→ −x and J ⊆ {1, . . . , n} is a group of bijections with
respect to composition and we could apply Lemma 2.5 to get an equivalence relation on a
polytope for which the elements in S−J are symmetries.

Furthermore, we can show that compositions of certain types of bijections also form a
group. They are defined as follows.

Definition 3.6. Let S and T be sets of bijections. The set S ◦ T is the set of all possible
compositions of elements in S and T , i. e., S ◦ T = {s ◦ t : s ∈ S, t ∈ T}.

The following two lemmas state that we can compose Sn and S− to generate new groups
of bijections.

Lemma 3.7. Let S, T be groups. S ◦ T is a group if and only if S ◦ T = T ◦ S.

Proof. Part 1: S ◦ T = T ◦ S⇒ S ◦ T group:
(i) Because id ∈ S, T , we can write id= (id◦ id) ∈ S ◦ T .
(ii) To show the existence of inverse elements let (s ◦ t) ∈ S ◦ T , where s ∈ S and t ∈ T .

The inverse of (s ◦ t) is clearly given by (t−1 ◦ s−1) which is in T ◦ S = S ◦ T again.
(iii) S ◦ T = T ◦ S means that for any (t ◦ s) ∈ T ◦ S, we have (t ◦ s) = (s′ ◦ t ′) for some

s′ ∈ S, t ′ ∈ T and vice versa (*). Using this rule, we can show that

(s1 ◦ t1) ◦ (s2 ◦ t2) = (s1 ◦ t1) ◦ (t3 ◦ s3)
= s1 ◦ t1 ◦ t3 ◦ s3

= s1 ◦ ((t1 ◦ t3) ◦ s3)
= s1 ◦ (s4 ◦ t4)
= (s1 ◦ s4) ◦ t4 ∈ S ◦ T

where the substitutions are all due to (*). This shows composition.
Part 2: S ◦ T is a group⇒ S ◦ T = T ◦ S:
It suffices to show that for any s ∈ S, t ∈ T , we have (t, s) ∈ S ◦ T and (s, t) ∈ T ◦ S.

First, consider (s−1 ◦ t−1) ∈ S ◦ T . Because S ◦ T is a group, it follows for the inverse that
(t ◦ s) = (s−1 ◦ t−1)−1 ∈ S ◦ T , which shows T ◦ S ⊆ S ◦ T .

We proceed to show that T ◦ S is also a group, so swapping S and T in the argument
before shows T ◦ S ⊇ S ◦ T and we are done.

8



Reflexivity is clear since (id◦ id) ∈ T ◦ S. To see the closure, choose some s, s′ ∈ S and
t, t ′ ∈ T . By the closure of S ◦ T ,

(s′−1 ◦ t ′−1) ◦ (s−1 ◦ t−1) = (s′′−1 ◦ t ′′−1)

holds for some s′′ ∈ S, t ′′ ∈ T . Its inverse reads as

(t ◦ s) ◦ (t ′ ◦ s′) = (t ′′ ◦ s′′).

This proves the closure of T ◦ S.
For (t ◦ s) ∈ T ◦ S it follows by closure that

(t ◦ s)−1 = (s−1 ◦ t−1) = (id◦s−1) ◦ (t−1 ◦ id) ∈ T ◦ S,

which shows the existence of inverse elements and completes the proof.

Lemma 3.8. For the groups S ⊆ Sn and Sτ we have Sτn = S ◦ Sτ = Sτ ◦ S.

Proof. It suffices to show explicitly that σ ◦ sτI = sτ
σ(I) ◦σ for σ ∈ S and sτI ∈ Sτ. Then we can

apply Lemma 3.7.
For x ∈ Rn we have

(σ ◦ sτI )(x)i =

(

τ(xσ(i)) if i ∈ I ,
xσ(i) otherwise,

and

(sτσ(I) ◦σ)(x)i =

(

τ(xσ(i)) if σ(i) ∈ σ(I),
xσ(i) otherwise.

Since σ is a bijection, i ∈ I ⇔ σ(i) ∈ σ(I), which shows that the two functions above are
identical and thus S ◦ Sτ = Sτ ◦ S.

Example 3.9. We define the involution

¬ : x 7→ 1− x .

If we view 0 and 1 as Boolean values, s¬ simply negates them. By Lemma 3.5, S¬ = {s¬I : I ⊆
{1, . . . , n}} forms a group and defines equivalence classes on the faces of any polytope P it is
a symmetry for. Further, S¬n := Sn ◦ S¬ = S¬ ◦ Sn is a group by Lemma 3.7.

Consider the so-called hypercube Qn ⊂ Rn given by its V -representation

Qn = conv({0, 1}n),

where vert(Qn) = {0, 1}n. The facets of Qn are defined by the inequalities −x i ≤ 0 and
x i ≤ 1 for i = 1, . . . , n. We get the following different equivalence classes with respect to the
different symmetry groups Sn, S¬ and S¬n .
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x1
x2

x3

1 1

1

Figure 1: This figure shows where the symmetry (x1, x2, x3) 7→ (x2, x3, x1) maps the vertices
of the cube.

Sn : As we can swap any two variables x i and x j with each other but cannot do anything
about the form of the inequality, we get exactly two equivalence classes:

–
�

{x ∈ P : x i = 0} : i ∈ {1, . . . , n}
	

,

–
�

{x ∈ P : x i = 1} : i ∈ {1, . . . , n}
	

.

See Figures 1–3 for a visualization.

S¬ : Using s¬{i} one can transform the facet {x ∈ P :−x i = 0} into the facet {x ∈ P : x i = 1},
but we cannot change which variables occur in the inequality. So we get a total of n
equivalence classes, one for each i = 1, . . . , n of the form:

�

{x ∈ P :−x i = 0}, {x ∈ P : x i = 1}
	

See Figure 4 for a visualization.

S¬n : As we can swap any two variables x i, x j as well as use s¬{i} to transform the facet-
defining inequalities into one another, we only have one equivalence class which in-
cludes every facet of Qn. Given the symmetrical nature of Qn, this is exactly what we
would like to see if we are interested in geometric properties.

This example shows that the equivalence classes depend on the chosen symmetry group.

4 Equivalence of Equations

Many combinatorial polytopes require equations for their linear description. However, we
unfortunately cannot proceed in the same way as for inequalities to classify them. The
reason is that the vertices are not an invariant of equations since every point in P has to
satisfy them.
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x1
x2

x3

1 1

1

Figure 2: The symmetry (x1, x2, x3) 7→ (x2, x3, x1) maps one facet of the cube onto another
facet.

x1
x2

x3

1 1

1

Figure 3: Shows where permutation symmetries could map a particular facet of the cube.

x1
x2

x3

1 1

1

Figure 4: The symmetry (x1, x2, x3) 7→ (1 − x1, x2, x3) maps one facet of the cube onto
another facet. It cannot be mapped to this facet by a permutation symmetry.
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After an example of what classification of equations means for the Asymmetric Traveling
Salesman Problem, we will present a theoretical analysis of different invariants related to
equations and group of symmetries.

Example 4.1. In Example 3.1, we analyzed the inequalities in the H -representation of the
Asymmetric Traveling Salesman Polytope. However, there are also n Equations (TSP i) and
n Equations (TSP ii) present in the description of the polytope.

With the same symmetries as in Example 3.1, node permutations sσ and the arc reversal
r, these 2n equations belong to one equivalence class: Using the node permutation σ that
changes the nodes i1 ∈ Vn and i2 ∈ Vn, any two Equations (TSP i) with i = i1 and i = i2
belong to the same class. In the representation given, we can see this just by mapping the
variables using the permutation symmetry σ. The same holds for the Equations (TSP ii)
by interchanging the vertices j = j1 and j = j2 . Further, arc reversals imply that Equa-
tions (TSP i) and (TSP ii) for the same node i = j belong to the same class. Thus, the n
Equations (TSP i) and n Equations (TSP ii) all belong to the same equivalence class.

However, there are many other equivalent representations of the Equations (TSP i) and
(TSP ii). E. g., the given equations could be iteratively changed by adding a multiple of some
equation to another one. Although this would of course not change the polytope, it would
be not as easy as above to see that the equations belong to the same equivalence class.

We will now study different approaches to classify equations that might be given in dif-
ferent representations. Our results show that the simpler approaches do not lead to valid
equivalence relations.

As a starting point, the next definition introduces the concept of a linear subspace that
represents all the equations that can be generated by applying all symmetries from a given
group to one equation. We will need this notion in our exploration of possible invariants for
the identification of equations regardless of their representation.

Definition 4.2. Let S be a group of symmetries that are bijections on Rn and cT x = d a valid
equation for the polytope P ⊆ Rn. We can identify the equation with the vector (c, d) ∈ Rn+1.
Then the symmetric subspace US(c, d)⊂ Rn+1 of (c, d) over S is defined as

US(c, d) := span({(cσ, dσ) : σ ∈ S,σ(x) = Mσx + rσ}),

where cσ := M T c and dσ = d − cT r.

The following Lemma establishes an equivalence relation on equations.

Lemma 4.3. The relation

(c, d)'1 (c
′, d ′) :⇔ US(c, d) = US(c

′, d ′)

is an equivalence relation on the valid equations of a polytope P.

Proof. Being an equivalence relation is a direct consequence of "=" being one:

• (c, d)'1 (c, d) since US(c, d) = US(c, d),
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• (c, d)'1 (c′, d ′)⇒ (c′, d ′)'1 (c, d)
since US(c, d) = US(c′, d ′)⇒ US(c′, d ′) = US(c, d), and

• (c, d)'1 (c′, d ′), (c′, d ′)'1 (c′′, d ′′)⇒ (c, d)'1 (c′, d ′)
since US(c, d) = US(c′, d ′), US(c′, d ′) = US(c′′, d ′′)⇒ US(c, d) = US(c′′, d ′′).

Lemma 4.3 shows an equivalence relation on equation. But '1 does not necessarily pro-
duce a minimal number of equivalence-classes as we will show now. Consider the following
example.

S :=< (2,3), (4,5)>⊆ S5,

(c, d) := (1, 1,−1, 0,0, 0),
(c′, d ′) := (1, 0,0, 0,0, 0),
(c′′, d ′′) := (1, 0,0, 1,−1, 0).

Using the equivalence relation '1, we get three classes because we have (c, d) 6'1 (c′, d ′) 6'1

(c′′, d ′′) 6'1 (c, d).
However, we might want to view (c, d), (c′, d ′) and (c′′, d ′′) as belonging to one equiv-

alence class w. r. t. S. For each pair of these vectors (c1, d1), (c2, d2), one of them lies in the
symmetric subspace of the other one, i. e., (c1, d1) ∈ US(c2, d2) or (c2, d2) ∈ US(c1, d1) holds.

Therefore, the result in the last Lemma is not satisfying. But simpler approaches do not
lead to an equivalence relation, as we will show in the remainder of this section.

But at least we can use this approach to obtain some subclasses where all members are
equivalent. As mentioned above, these classes are not necessarily complete.

For practical computations, we consider this result as not strong enough to be worth
implementing. However, this is not such a big problem since most polytopes do not contain
that many equations and their number is bounded by the number of variables.

The following lemma leads to further ideas for equivalence relations on equations.

Lemma 4.4. The following implication is true:

(c, d) ∈ US(c
′, d ′)⇒ US(c, d)⊆ US(c

′, d ′).

Proof. (c, d) ∈ US(c′, d ′) means there is a representation

(c, d) =
∑

σ∈S

λσ(c
′
σ, d ′σ)

where λσ ∈ R. Now consider for τ ∈ S the equation (cτ, dτ) ∈ US(c, d). Using τ on the
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representation of (c, d) in US(c′, d ′) yields

(cτ, dτ) =
∑

σ∈S

λσ((c
′
σ)τ, (d

′
σ)τ)

=
∑

σ∈S

λ(τ−1◦τ◦σ)(c
′
τ◦σ, d ′τ◦σ)

=
∑

σ∈τ(S)

λ(τ−1◦σ)(c
′
σ, d ′σ)

=
∑

σ∈S

λ(τ−1◦σ)(c
′
σ, d ′σ) ∈ US(c

′, d ′).

Unfortunately, the implication in Lemma 4.4 does not result in an equivalence relation,
as we show now.

Lemma 4.5. The relation

(c, d)'2 (c
′, d ′) :⇔ (c, d) ∈ US(c

′, d ′)

is not an equivalence relation on the valid equations of a polytope P.

Proof. Although the relation is reflexive and transitive, it may not be symmetric; a coun-
terexample is easy to construct:

S :=< (2,3)>⊆ S3, (c, d) := (1,0, 0,0), (c′, d ′) := (1, 1,−1, 0).

To avoid the problem that the relation is not symmetric, we try a weaker approach.

Lemma 4.6. The relation

(c, d)'3 (c
′, d ′) :⇔ (c, d) ∈ US(c

′, d ′) or (c′, d ′) ∈ US(c, d)

is not an equivalence relation on the valid equations of a polytope P ⊂ Rn.

Proof. Although the relation is reflexive and symmetric, it may not be transitive. A coun-
terexample where (c, d) '3 (c′, d ′), (c′, d ′) '3 (c′′, d ′′) but (c, d) 6'3 (c′′, d ′′) is again the one
we used in the discussion of the result in Lemma 4.3,

S :=< (2,3), (4,5)>⊆ S5,

(c, d) := (1, 1,−1, 0,0, 0),
(c′, d ′) := (1, 0,0, 0,0,0),
(c′′, d ′′) := (1,0, 0,1,−1,0).

So this approach also does not work. The only possibility seems to be to define an
equivalence relation based on Definition 4.2 and to demand the equivalence of the two
spans themselves, as shown in Lemma 4.3.
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5 A Facet Classification Algorithm

Based on the results of the previous sections we propose the following algorithm for facet
classification.

Algorithm 1: HUHFA
Data: min. H , V -representations of polytope P ⊂ Rn and symmetries given by
• list of vertices v1, v2, . . . , vk,
• list of facet-defining inequalities f1, f2, . . . , fm,
• set S = {s1, s2, . . . , sl} of symmetries on P,
• Boolean closed indicating whether (S,◦) is a group.

Result: equivalence classes Class of facets of P w. r. t. < S >

1 Incidence← two-dimensional array of size m× k
2 P← two-dimensional array of size l × k
3 Class← array of size m
4 Index← empty list of key-value pairs (array with k entries (incidence vector of facet),

integer) lexicographically sorted by the keys
5 VertIndex← list of key-value pairs (vertex vi, i) lexicographically sorted by the keys
6 PermIndex← array of size k

7 for i← 1 to m do // For all Facet-defining inequalities
8 for o← 1 to k do // For all vertices
9 Incidence[i,o]← 1 if vo satisfies the inequality fi with equality, 0 otherwise

// create incidence vector
10 Index( Incidence[i])←i // index the vector to identify it quickly
11 Class[i]←i // set class of facet fi to i

12 for j← 1 to l do // For all symmetries
13 for o← 1 to k do // For all vertices
14 P[j,o]← VertIndex(s j(vo)) // create mapping table

15 for i← 1 to m do // for each facet-defining inequality f1, f2, . . . , fm

16 if not closed or Class[i]=i then
17 for j← 1 to l do // for each symmetry s1, s2, . . . , sl

18 for o← 1 to k do // for each vertex v1, v2, . . . , vk

19 PermIndex[o]=Incidence[i,P[j,o]] // create vector by using j
on the incidence vector of j

20 ImageIndex← Index(PermIndex) // identify class
21 unite classes i and ImageIndex in Class // with a disjoint-set data

structure maintained and updated in parallel to Class

22 return Class
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Theorem 5.1. Algorithm 1 works correctly and terminates.

Proof. We first prove that the algorithm is well-defined. It is obvious that it then also termi-
nates.

The only critical part is Step 20 where it is not immediately clear that PermIndex is the
incidence vector of a facet of P. However, because the s j is a symmetry for P, this property
follows directly from Theorem 2.6.

Thus, the proof of termination is completed and we proceed with the correctness. We
will need the following definition. Let GP,S = (V, E) denote the graph of facet symmetries of
P with regard to S, i. e., V = {1, ..., m} where i ∈ V refers to the facet Fi induced by fi, and
{i, j} ∈ E if and only if there exists a map s ∈ S such that either fi is equivalent to f j with
regard to s or vice versa. Note that we allow loops to arise.

To show correctness, we first prove that the algorithm computes the connected compo-
nents of GP,S such that the corresponding facet-defining inequalities from one component all
have the same Class in the algorithm.

Suppose that S is closed. If we have both edges {a, b} and {b, c} in E it follows from
closure that we have the edge {a, c} as well. Using this argument iteratively on every path
connecting nodes i and j shows that already {i, j} ∈ E which implies that the connected
components form complete subgraphs. In this case, we get the whole connected component
of some i ∈ V by examining all its incident edges, which is exactly what the algorithm does
in Steps 15–21.

So let S be not closed. This means that we have to check the neighborhood of every node
in order to compute the connected components, which again is exactly what the algorithm
does in Steps 15–21.

Therefore, the main argument for correctness in the case in which S is not closed lies in
the following claim: GP,S and GP,<S> have the same connected components.

We may view the maps in S as permutations of the set vert(P) where their explicit form
as affine maps is only used to encode these vertex permutations. (In fact, this is what the
algorithm does in Steps 12–14. However, saving the maps as vertex permutations is not
necessary but is supposed to reduce the running time.) Then we can view < S > as a finite
group. Finiteness is justified because we retain all the information needed to determine the
edge sets.

Obviously, because S ⊆< S >, every pair of nodes connected in GP,S is connected in
GP,<S> as well. So suppose that i ∈ V and j ∈ V are connected in GP,<S>. As stated previously,
the connected components of GP,<S> form complete subgraphs such that {i, j} is an edge in
GP,<S>. By our definition, this means that there exists a map si j ∈< S > such that Fi and F j

are equivalent with respect to si j.
By definition of < S > this means that si j can be written as the composition of a sequence

of maps from S. Because < S > is finite, we can assume this sequence to be finite as well.
Suppose that si j = σt ◦ . . . ◦σ2 ◦σ1 where σr ∈ S for r = 1, . . . , t. By Theorem 2.6, we have
that F (r) := (σr ◦ ...◦σ2 ◦σ1)(Fi) is a facet of P as well. In this setting F (t) = F j, F (0) = Fi and
we have that F (r+1) = σr+1(F (r)) for r = 0, . . . , t − 1. But now it follows from our definition
of the edge set that this does in fact define a path connecting i and j in GP,S. Therefore the
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claim and the theorem are proven.

Theorem 5.2. Algorithm 1 has a worst case running time of

O(m(nk+ log(m)) + kl(n2+ log(k)) +ml(k+ log(m)))

if S is not closed, and

O(m(nk+ log(m)) + kl(n2+ log(k)) + cl(k+ log(m)))

if S is closed, where c denotes the number of equivalence classes with respect to S.

Proof. Running time of Steps 1–6 can be neglected.
Loop 7 has m iterations, Loop 8 has k iterations. Step 9 consists of at most n multipli-

cations and n− 1 addition operations. Step 10 adds an element to a sorted list with ≤ m
entries, this is in O(log(m)). Step 11 is in O(1). Thus, Steps 7–11 are in O(m(kn+ log(m))).

Loops 12 and 13 have l and k iterations, respectively. Step 14 involves the evaluation of
an affine map, which can be done in O(n2), and finding an element in a sorted list with k
entries, which can be done in O(log(k)). All other operations in this step are in O(1). Thus,
Steps 12–14 have a running time in O(kl(n2+ log(k)).

There are m iterations of Loop 15, l iterations of Loop 17 and k iterations of Loop 18.
Step 19 is in O(1) and Step 20 in O(log(m)) . Because of the use of a disjoint-set data
structure, Step 21 has an amortized constant of α(m), where α(m) denotes the inverse
of the Ackermann function (this value does not rise above 4 for all practical purposes,
[Cormen et al., 1989]).

If S is closed we enter Step 21 exactly once for every class and we get the estimate of
O(cl(k+ log(m)+α(m))) = O(cl(k+ log(m))) for Steps 15–21 where c denotes the number
of equivalence classes with respect to S. Otherwise we do Step 21 once for every facet and
get O(ml(k+ log(m) +α(m))) = O(ml(k+ log(m))) for these steps.

All together, these terms sum up to

O(m(nk+ log(m)) + kl(n2+ log(k)) + al(k+ log(m)))

where a = c if S is closed and a = m else.

However, with reasonable assumptions the term can be simplified:

Corollary 5.3. Assuming log(m) ≤ k ≤ m, n ≤ k, n ∈ O(m), sparsity of the affine maps in
S, that is, they can be applied to the vertices in linear time, and |S| ∈ O(k), Algorithm 1 has a
running time in O(mk2).

These assumptions are reasonable in the sense that they are often encountered when
dealing with combinatorial problems and their LP-formulations. In this scenario, symme-
tries are often given by permuting variables or flipping their respective 0/1-values, which
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Polytope #Variables #Vertices #Facets |S| / |< S > | closed #Classes CPU (in s)

P6
LO 15 720 910 6 / ?? false 2 2.2

P5
TSP 20 24 390 5 / 240 false 6 0.8

P4
TVP 18 24 1280 4 / 48 false 48 0.2

P5
STVP 30 120 30040 5 / 240 false 175 17.2

P3
HAP 45 978 14049 4608 / 4608 true 30 90.3

Table 1: Run times of HUHFA for different combinatorial optimization problem polytopes.

naturally results in sparse matrices. At the same time, it is a well known fact that every sub-
group of the symmetric group Sk can be generated by at most k maps, and because < S >
is a subgroup of Sk (it permutes k vertices), this applies to < S > as well. Thus generators
can be chosen accordingly, and there are known algorithms for this task which run in poly-
nomial time [Jerrum, 1986]. The difficulty would be to find a low number of generators
which possess a sparse affine map presentation at the same time but as said before, this case
arises naturally in practice. The estimates for m and k and their relation to n are typical for
NP-hard problems.

With an implementation of Algorithm 1 we were able to produce the results shown in
Table 1. The algorithm was implemented in C++ and all computations were performed on
an Intel(R) Core(TM) i7-2600 CPU 4-core processor with 3.40 GHz and 16 GB Ram.

With our computations, we contributed to the understanding of the polyhedral structure
of certain combinatorial optimization problems with a large number of facets. Although we
could calculate all the facet-defining inequalities from the known V -descriptions before, clas-
sifying the inequalities manually was not possible. Further, we could show that Algorithm 1
results in a practically usable software.

As test instances we used several LOP and TSP polytopes as well as polytopes describing
the symmetric and asymmetric Target Visitation Problem (STVP/TVP)
[Hildenbrandt and Reinelt, ], a combination of the Linear Ordering Problem and the Trav-
eling Salesman Problem, or the Hypergraph Assignment Problem (HAP) for part size two
[Borndörfer and Heismann, 2012], a generalization of the assignment problem to bipartite
hypergraphs. Both TVP, STVP and HAP are problems where already very small instances are
described by a very large number of facets.

Table 1 shows the computation times of our algorithm for these problems. The cho-
sen problem sizes are the maximum ones which PORTA is able to compute in a reasonable
amount of time. As you can see, HUHFA can classify the facets for the different problems
that we have included in our computations in a practically acceptable time.

The results obtained with HUHFA lead us a better understanding of the polytopes for
the Target Visitation and Hypergraph Assignment Problems. For example, we realized that
one half of the 30 facet classes for P3

HAP can be described combinatorially as a generalization

18



of odd set inequalities for the matching problem. This would have not been possible if we
had to deal with the more than 14,000 facets. Using HUHFA, we could also easily check
that all the 14049 facet-defining inequalities can be stated with coefficients -1, 0 and 1,
and a right hand side equal to 1. We do not know whether this result holds in general for
the Hypergraph Assignment Problem, however, it is an interesting starting point for further
research in this direction.

The software HUHFA can be downloaded from the website
http://comopt.ifi.uni-heidelberg.de/people/hildenbrandt/HUHFA.

6 Conclusion

In this paper, we presented new ideas for classifying facets of a given polytope with respect
to given symmetries. Contrary to all approaches known so far, this method does not need
any normal forms and can be applied to all kinds of combinatorial polytopes. Our theoretical
results show that the vertices which are met by facets with equality can be, in fact, used as
invariants. Our computations suggest that our method can be used without time problems
in practice for all polytopes which PORTA is able to compute. Further, the results of our
computations allowed important insights into the facet structure of certain polytopes.

An open problem that remains is to find a practically applicable way to classify equalities
and implement it.
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