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Abstract

The adaptive Rothe method approaches a time-dependent PDE as an
ODE in function space. This ODE is solved virtually using an adaptive
state-of-the-art integrator. The actual realization of each time-step requires
the numerical solution of an elliptic boundary value problem, thus perturbing
the virtual function space method. The admissible size of that perturbation
can be computed a priori and is prescribed as a tolerance to an adaptive
multilevel finite element code, which provides each time-step with an individ-
ually adapted spatial mesh. In this way, the method avoids the well-known
difficulties of the method of lines in higher space dimensions.

During the last few years the adaptive Rothe method has been applied
successfully to various problems with infinite speed of propagation of infor-
mation. The present study concerns the adaptive Rothe method for hyper-
bolic equations in the model situation of the wave equation. All steps of the
construction are given in detail and a numerical example (diffraction at a
corner) is provided for the 2D wave equation. This example clearly indicates
that the adaptive Rothe method is appropriate for problems which can gen-
erally benefit from mesh adaptation. This should be even more pronounced
in the 3D case because of the strong Huygens’ principle.
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Introduction

Adaptive methods become particularly important for the efficient and reli-
able numerical solution of time dependent PDEs in the presence of transient
phases and sharply localized phenomena. There are two principal choices
if one wishes to avoid a nonuniform subdivision of the whole space-time
domain and stays with a time-marching approach:

• Discretization in space first, known as the “method of lines.” This
creates an ordinary differential equation which can be solved by a state-
of-the-art numerical integrator. However, the spatial mesh-points stay
fixed in time, or in the case of a moving mesh, are subject to often
severe restraints. Thus, the method has considerable difficulties in
changing the spatial mesh appropriately in higher dimensions.

• Discretization in time first, known as the “Rothe method.” Here,
one first applies an adaptive time-marching scheme to an appropriate
reformulation of the problem as an ODE in function space. Each time-
step results in an elliptic boundary value problem, which can be solved
effectively by an adaptive finite element method. By this means, an
appropriate spatial mesh is introduced for each individual time-step.

The advantages of the latter approach were shown by the second author in a
series of papers [2, 3, 4] for linear parabolic equations. It was demonstrated
that an adaptive finite element code such as KASKADE [1, 15] could be
applied successfully as a black box. At each time-step only a tolerance has
to be prescribed for the elliptic solver. This single number is chosen such
that a more accurate solution of the elliptic problem would not change the
time-step—at least not locally. This general methodical approach was called
adaptive Rothe method and numerical experiments confirmed its efficiency.

This approach was later extended to several equations of importance in
applications—including problems not of parabolic type, e.g.,

• the so-called bio-heat-transfer-equation [4]

• Schrödinger’s equation and Fresnel’s wave equation1 [25, 26]

• nonlinear reaction-diffusion equations [14, 22]

• nonlinear ODEs in infinite dimensional sequence spaces, as arising in
polymer chemistry and statistics [28]

1Note, that Fresnel’s equation is parabolic in the damped case and of Schrödinger type
in the loss-free case.
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All these equations have infinite speed of propagation of information. This
makes the adaptive Rothe method particularly well suited since there is a
clear cut distinction between time and space.

Hyperbolic equations have a different character: there are finite speeds
of propagation, which blurs the distinction between time and space; the
“light-cone” only provides a distinction between “time-like” and “space-
like” directions. The aim of this paper is to study the adaptive Rothe
method in detail in a hyperbolic model case. The principal design steps of
the method and the necessary tolerance formulas for controlling the black
box elliptic solver are presented. A numerical example—so far for the 2D
case only—clearly indicates, that the adaptive Rothe method is appropriate
for problems which can benefit from mesh adaptation in general.

Our paper is organized as follows:
In Section 1, we reformulate the wave equation as an ODE with an

infinite-dimensional state space, i.e., as an abstract Cauchy problem in a
certain Hilbert space.

In Section 2, we discuss single-step methods which can be applied to
this abstract Cauchy problem and their approximation and conservation
properties.

In Section 3, we introduce the adaptive time-step algorithm in Hilbert
space. Note, that this algorithm is virtual : in reality there are perturbations
by a discretization in space.

In Section 4, we derive the tolerances which have to be prescribed to
the discretization in space. They are chosen such that the time-step is not
changed seriously and that a user given tolerance in time is matched.

In Section 5, we finally show how the design principles are reflected in the
actual performance of the method in 2D. We have chosen a diffraction prob-
lem, where adaptivity pays off in the beginning because of the large “shadow
regions.” We also indicate why adaptivity will be even more important in
the 3D case, where in contrast to the 2D case the strong Huygens’ principle
predicts growing “shadow regions” whenever sharply localized initial data
are given.

1 The Continuous Problem

For the sake of simplicity we restrict ourselves to the homogeneous wave
equation

ytt(t, x) − c2Δy(t, x) = 0, x ∈ Ω, t ∈]0, T ]
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with wave speed c > 0, homogeneous Dirichlet boundary conditions

y(t, ·)|∂Ω = 0, t ∈]0, T ],
and initial data

y(0, ·) = y0 ∈ H1
0 (Ω), yt(0, ·) = z0 ∈ L2(Ω).

Here, Ω ⊂ R
d denotes a bounded Lipschitz domain and T > 0 a fixed final

time. We will apply semi-group theory as the tool for establishing exis-
tence and uniqueness and—even more important—error estimates of semi-
discretizations in time. To this end, we have to reformulate our problem
accordingly.

Let L denote the selfadjoint Friedrichs representation operator L : DL ⊂
L2(Ω) → L2(Ω) of the Dirichlet form (∇u,∇v)L2 , i.e.,

(Lu, v)L2 = (∇u,∇v)L2 u ∈ DL, v ∈ H1
0 (Ω),

cf. [21, pp. 332ff]. For s ≥ 0, we introduce the smoothness spaces Ḣ2s =
DLs . Using the Poincaré-Friedrichs inequality, we can equip the Hilbert
space

H = H1
0 (Ω) × L2(Ω)

with the energy inner product of our problem, i.e.,

a(u, v) = c2(∇u1,∇v1)L2 + (u2, v2)L2 , u = (u1, u2), v = (v1, v2) ∈ H.

The corresponding energy norm of H is denoted as

‖u‖2a = a(u, u) u ∈ H.

Deploying the unbounded, densely defined, and closed operator

A : DA = Ḣ2 ×H1
0 (Ω) ⊂ H → H,

where
Au = (u2,−c2Lu1) u = (u1, u2) ∈ DA,

yields an equivalent formulation of the wave equation as the following ab-
stract, first order Cauchy problem

ut = Au, u(0) = u0 ∈ H,

with the solution and initial data

u = (y, yt), u0 = (y0, z0).
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Lemma 1 The operator A, defined as above, is skew-adjoint with respect to
the energy inner product on H.

Proof. Let u = (u1, u2), v = (v1, v2) ∈ DA be given. The skew-symmetry
of A is best visible in the second row of the following formula

a(Au, v) = c2(∇u2,∇v1)L2 − c2(Lu1, v2)L2

= c2 ((Lv1, u2)L2 − (Lu1, v2)L2)

= −a(u,Av)

and implies that −A∗ is an extension of A as a densely defined closed op-
erator. By the maximality of the Friedrichs representation L, we conclude
that in fact A = −A∗.

Corollary 2 The operator A generates a C0-group exp(tA) of operators
which are unitary with respect to the energy norm of H. In particular, the
solution of the abstract Cauchy problem is uniquely given by

u(t) = exp(tA)u0 ∈ H.

It conserves the smoothness norm

‖Asu(t)‖a = ‖Asu0‖a, t ∈ R, (1)

for u0 ∈ DAs and s ∈ N0 . Hence, DAs is an invariant subspace under the
action of the group.

Proof. The operator A/i is selfadjoint and Stone’s theorem [23] implies
that A is generating a C0-group exp(tA) = exp(itA/i) of unitary operators
on H. The norm conservation follows from the fact that A commutes with
the group.
The special case s = 0 of formula (1) is just an abstract reformulation of the
well known conservation of energy of the wave equation [20, p. 139].

2 Semi-Discretization in Time

We consider single-step methods which are given by a rational approximation
R of the exponential function with consistency order p ∈ N,

|R(z) − exp(z)| = O(|z|p+1), z → 0.
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We assume throughout that the rational function A-stable1, i.e.,

�z ≤ 0 ⇒ |R(z)| ≤ 1.

The single-step method approximating the abstract Cauchy problem is now
given by the time-marching scheme

un+1 = R(τA)un,

where τ denotes the time-step. In a seminal paper Brenner and Thomée
have shown [11, Theorem 4] that the following error estimate holds.

Theorem 3 Let R be an A-stable rational approximation of order p of the
exponential function. Then, the estimate

‖un − u(t)‖a ≤ Cts−β(s)τβ(s)‖Asu0‖a, u ∈ DAs (2)

holds uniformly for t = nτ , where β(s) = sp/(p+ 1) and s ∈ N is restricted
to (p+ 1)/2 < s ≤ p+ 1.

Later on we will use the implicit Euler scheme

RE(z) =
1

1 − z
,

which is of order p = 1, yielding the single-step solution uEn , and the Crank-
Nicolson scheme

RCN(z) =
1 + z/2

1− z/2
,

which is of order p = 2, yielding the single-step solution uCN
n .

Lemma 4 If the regularity of the initial data u0 = (y0, z0) of the wave
equation is given by y0 ∈ Ḣ2 and z0 ∈ Ḣ2, we obtain the error estimates

‖uEn − u(t)| ≤ Ctτ, ‖uCN
n − u(t)| ≤ Ct2/3τ4/3,

for all t = nτ . Imposing the higher regularity y0 ∈ Ḣ4 and z0 ∈ Ḣ2 yields
the error estimates

‖uEn − u(t)‖a ≤ Ctτ, ‖uCN
n − u(t)‖a ≤ Ctτ2,

for all t = nτ .

1Since the spectrum of a skew-adjoint operator is purely imaginary, A-stability might
appear unnecessarily restrictive. One would rather expect the assumption of I-stability,
i.e., |R(ix)| ≤ 1 for all x ∈ R. However, it was shown in [27] that a j-stage I-stable
Runge-Kutta method of order p ≥ 2j − 1 is A-stable. Thus, there is no restriction for
all practical reasons. Furthermore, no generalization of Theorem 3 is known for I-stable
methods which are not A-stable.
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Proof. We note that

A2u0 = −c2(Ly0, Lz0), A3u0 = −c2(Lz0,−c2L2y0), u0 = (y0, z0),

and therefore

u0 ∈ DA2 ⇔ y0 ∈ Ḣ2, z0 ∈ Ḣ2, u0 ∈ DA3 ⇔ y0 ∈ Ḣ4, z0 ∈ Ḣ2.

We can now use Theorem 3.
Since the norm conservation (1), in particular for s = 0, is an important

feature of the continuous model it is natural to consider single-step methods
which are energy conserving, i.e., for which R(τA) is a unitary operator with
respect to the energy norm. A useful criterion is provided by the following
Lemma.

Lemma 5 If a rational approximation R of the exponential function with
real coefficients fulfills

R(z)R(−z) = 1 ∀z ∈ C

and has no poles in the half-plane C− = {z : �z ≤ 0}, then R is an A-stable
approximation of the exponential function and R(τA) is unitary with respect
to the energy inner product, i.e.,

R(τA)R(τA)∗ = I.

Proof. Applying any operational calculus for unbounded operators, e.g.,
the Dunford-Taylor calculus [16], and using the skew-adjointness A∗ = −A
yields

I = R(τA)R(−τA) = R(τA)R(τA∗)
as a consequence of R(z)R(−z) = 1. It remains to show that R(τA∗) =
R(τA)∗. This, surprisingly, requires some work.

Using R(z)R(−z) = 1 and the maximum principle one can show the
A-stability of R, cf. [13, Lemma 6.20]. Hence, by a result of Brenner and
Thomée [11, p. 685], there exists a bounded measure μ on R+ such that R
is the Laplace-Stieltjes transform of μ,

R(z) =

∫ ∞

0
ezλdμ(λ), �z ≤ 0.

Now, the fact that R has real coefficients immediately implies that μ is
real-valued. Applying the Hille-Phillips functional calculus [19], we get

R(τA∗) =

∫ ∞

0
exp(τλA∗)dμ(λ) =

∫ ∞

0
exp(τλA)∗dμ(λ)

=

(∫ ∞

0
exp(τλA)dμ(λ)

)∗
= R(τA)∗.
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The second equality follows from Stone’s theorem and the third equality
holds since μ is real-valued. Note, that all integrals represent bounded linear
operators on H.

The Crank-Nicolson scheme satisfies the assumption of Lemma 5 which
implies the well-known conservation of energy of the corresponding semi-
discretization in time. Note, that RCN(τA) being unitary also follows from
observing that −RCN(τA) is the Cayley transform of the selfadjoint operator
τA/2i, cf. [24, Theorem 13.19].

Corollary 6 Let u0 ∈ DAs, s ∈ N0 be given. The semi-discretization
in time given by the Crank-Nicolson scheme conserves the corresponding
smoothness norm,

‖AsuCN
n ‖a = ‖Asu0‖a, n = 1, 2, . . . .

In particular, DAs is an invariant subspace under the action of the Crank-
Nicolson scheme.

Proof. The fact that the operator RCN(τA) is unitary proves the case s = 0.
The other cases follow from the commutativity AR(τA) = R(τA)A.

Note, that this result immediately extends to the all implicit Runge-
Kutta methods based on Gauss-Legendre quadrature [13, 18].

3 The Hilbert Space Algorithm

The backbone of the adaptive Rothe method is the application of ODE-
techniques [13, 17, 18] to the abstract Cauchy problem. Modern integrators
for ODEs adapt the time-step in such a way that it is as large as possible
while the local error estimate matches a user prescribed tolerance TOL. To
this end, a simple feedback control loop is used which can be described by
just explaining the first step of a single-step method.

For a given initial value u0 ∈ DA2 , and a step size guess τ0, two approx-
imations of different accuracy are computed, e.g.,

uE1 = RE(τ0A)u0, uCN
1 = RCN(τ0A)u0.

If τ0 is small enough, we may assume by referring to Lemma 4 that

ε = ‖uE1 − uCN
1 ‖a ≈ ‖uE1 − exp(τ0A)u0‖a.
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A reasonable new time-step τnew which tries to push the error ε near to but
below TOL would thus be given by

τnew = σ

√
TOL

ε
τ0,

where σ < 1 is a safety factor. Note, that this formula takes the asymptotic
behavior of the implicit Euler method for τ → 0 into account. However,
using arguments of control theory one can show, that this proposal is a
robust device even if the asymptotics is seriously perturbed, cf. [13]. Now,
we distinguish two cases:

• ε > TOL. We repeat the step with the same u0, but replace the
time-step τ0 by τnew.

• ε ≤ TOL. We set u1 = uCN
1 ∈ DA2 and τ1 = τnew and progress as in

the first step.

The choice u1 = uCN
1 is made for two reasons: First, uCN

1 is more accurate
than uE1 and second, it conserves energy which is crucial.

4 Perturbations by Finite Element Solution

The actual approximation of the Crank-Nicolson and of the implicit Euler
step using linear finite elements yields perturbations which we denote by

ûCN
1 = uCN

1 + δCN, ûE1 = uE1 + δE.

The idea of the adaptive Rothe method as introduced by Bornemann [3]
is to control the perturbations δCN and δE by an adaptive finite element
method in such a way that the time-step sequence is not influenced in an
essential way. We set

ε̂ = ‖ûCN
1 − ûE1 ‖a, Θ = ‖δCN‖a + ‖δE‖a,

and take the computable new time-step

τ̂new = σ

√
TOL

ε̂
τ0

instead of the virtual τnew. Using the trivial estimate

ε̂−Θ ≤ ε ≤ ε̂+Θ,

8



we notice that the constraint
Θ ≤ ε̂/4 (3)

would guarantee
0.89 τ̂new ≤ τnew ≤ 1.16 τ̂new,

which seems to be a tolerable range in practice. We realize the condition
(3) by using error estimators

‖δCN‖a ≈ [δCN], ‖δE‖a ≈ [δE].

Here and in what follows, we use square brackets for denoting an estimator of
some error quantity. The final error control in each step is given by splitting
the tolerance in an appropriate way,

[δCN], [δE] ≤ (1 − ρ) TOL /2, 4(1 − ρ) TOL ≤ ε̂ ≤ ρTOL . (4)

Note, that the first two are conditions on the finite element solution whereas
the third is a condition on the time-step. We have to require ρ ≥ 0.8 and in
practice we use

ρ∗ = 5/6 = 0.83333 . . . ,

which means that the spatial problems have to be solved ten times as
accurate as is prescribed to the time-marching loop, (1 − ρ∗) TOL /2 =
0.1 ρ∗TOL. This also helps to assure energy conservation since the finite el-
ement solution does not exactly conserve energy but keeps it nearly constant
within the given range of accuracy.

Adaptive finite element codes such as KASKADE [15, 8] do usually not
provide the error estimators [δCN] and [δE] directly. One has to relate them
to the energy norm of the elliptic problem under consideration. This will be
worked out next.

We analyze the Crank-Nicolson and the implicit Euler step and recall
that there are two components u = (y, z) since we reformulated the wave
equation as a first order system. Let uj = (yj , zj), ûj = (ŷj , ẑj), and δ =
(η, ζ). The superscripts CN and E will only be used when a distinction is
necessary and not clear from the context.

The Crank-Nicolson step is given by(
I +

τ2c2

4
L

)
y1 =

(
I − τ2c2

4
L

)
y0 + τz0,

z1 =
2

τ
(y1 − y0)− z0.
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The first equation is solved by a finite element method and yields an approx-
imation for which we control the error η in the energy norm of the elliptic
operator I+τ2c2L/4. Therefore, an adaptive finite element method provides
the error estimator

[η]2 ≈ ‖η‖2L2 +
τ2c2

4
|η|2H1 .

The second equation yields ẑ1 after a projection or interpolation of y0 and z0.
We may assume that the projection or interpolation errors are considerably
smaller than 2[η]/τ and obtain

‖ζ‖2L2 ≈ 4

τ2
‖η‖2L2 .

Altogether, we get that

‖δ‖2a = c2|η|2H1 + ‖ζ‖2L2 ≈ 4

τ2
[η]2,

which makes it natural to define the error estimator

[δCN] =
2

τ
[ηCN].

Likewise, the implicit Euler step reads as(
I + τ2c2L

)
y1 = y0 + τz0,

z1 =
1

τ
(y1 − y0).

Arguing as above, we obtain the estimator

[η]2 ≈ ‖η‖2L2 + τ2c2|η|2H1 , ‖ζ‖2L2 ≈ 1

τ2
‖η‖2L2

and get

‖δ‖2a = c2|η|2H1 + ‖ζ‖2L2 ≈ 1

τ2
[η]2.

Therefore, it is natural to define

[δE] =
1

τ
[ηE].

Hence, the error criterion (4) will be implemented in the form

[ηCN] ≤ τ(1 − ρ) TOL /4, [ηE] ≤ τ(1 − ρ) TOL /2. (5)
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5 Numerical Examples

The method introduced above has been implemented in the 2D case using
the program KASKADE 3.0 as the black box solver of the elliptic problems.
KASKADE 3.0 dates back to work of Deuflhard, Leinen, and Yserentant [15]
and was later improved by Bornemann, Erdmann, and Kornhuber [7, 8]. Its
present implementation at the Konrad-Zuse-Zentrum Berlin is due to Beck,
Erdmann, and Roitzsch [1]. It features all the properties which are needed
for the adaptive Rothe method and offers two fast multilevel solvers for
elliptic problems of the type

(I + τ2L)u = f.

Both have multigrid complexity O(N), where N is the number of nodal
points. This complexity bound holds uniformly in the time-step τ . One fast
solver is a τ -dependent modification of the BPX method [10] developed by
Bornemann [4]; the other is the cascadic multilevel method developed by
Deuflhard [12] and studied by Bornemann, Deuflhard, and Krause [5, 6, 9].
The mass matrix is stabilized by lumping for very small time-steps.
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Figure 1: Number of Time-Steps and Nodal Points vs. Tolerance TOL (Example 1)

5.1 A Simple Example

This simple example illustrates the efficiency of the method for a wide range
of user prescribed tolerances. We take the simple domain Ω =]0, 1[×]0, 1[,
the wave speed c = 1 and initial data

y0 = 0, z0(x) = sin(πx1) sin(πx2).
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The exact solution is given by y(t, x1, x2) = sin(t) sin(πx1) sin(πx2). Fig-
ure 1 shows that the number of time-steps grows like

n ∝ TOL−1/2

and the number of nodal points of the finite element triangulation like

N ∝ TOL−2 .

This directly resembles the error behavior O(τ2 + h) of a method using a
uniform time-step τ and a uniform mesh-size h in space.

x1

x2

P

1

S

1

Figure 2: Geometry of the Initial Data (Example 2)

5.2 Diffraction at a Corner

Given the L-shaped domain

Ω = {(x1, x2) : 0.5 < x1 < 1 and 0 < x2 ≤ 0.5}
∪ {(x1, x2) : 0 < x1 < 1 and 0.5 < x2 < 1}

with boundary segments Γ1 = {x ∈ ∂Ω : x2 = 1} and Γ2 = ∂Ω\Γ1, we
consider the wave equation with wave speed c = 1, homogeneous Dirichlet
boundary conditions on Γ1 and homogeneous Neumann boundary conditions
on Γ2. The initial values are

z0 = 0, y0(x) =

{ −ω · sin(2πkx2/S) for x2 ∈ [0, S],

0 for x2 ∈ [S, 1].
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These initial data are depicted in Figure 2. They resemble a monochromatic
plane wave propagating in the x2 direction which is diffracted at the point P
into the shadow region of geometrical optics. The parameters of our example
are given by

k = 2, S = 0.4, ω = 0.05, TOL = 0.15.

We computed 45 time-steps. Table 1 provides some relevant information
every 15th step. Here, we define the ratios

θspace =
4[ηCN]

τ TOL
, θtime =

ε̂

TOL
.

Because of the error criteria (4) and (5) we have 4(1 − ρ∗) = 0.67 . . . ≤
θtime ≤ ρ∗ = 0.83 . . . and θspace ≤ (1 − ρ∗) = 0.17 . . .. Small values of
θtime and θspace indicate that the method computes unnecessarily accurate
solutions which means a loss in efficiency. Note, however, how close the
computed values of θtime and θspace are to their upper bounds.

# step time θtime θspace ‖ûCN
n ‖a τ τnew/τ # nodal points

1 0.014 0.81 0.16 0.48 0.014 1.96 3876
15 0.194 0.74 0.15 0.47 0.013 1.00 11884
30 0.394 0.77 0.17 0.47 0.014 1.00 12166
45 0.593 0.74 0.15 0.46 0.013 1.01 22227

Table 1: Performance Data for Example 2

The time-step has been automatically chosen to be one tenth of a pe-
riod of the monochromatic wave. This seems quite reasonable given the
prescribed 15% accuracy. Note, that since the solution propagates into the
shadow region the number of nodal points has to increase steadily with time.
The observed 4% loss of energy is due to the fact that the triangulations
are changing at each time-step and the finite element projection does not
exactly conserve energy. However, this error is well below the prescribed
space error tolerance.

In the “lighted region” the algorithm chooses a nearly uniform mesh-size
of h ≈ τ/2. At time-step 45 this region fills up the whole domain, which
explains that the number of nodal points is roughly given by N ≈ 3h−2/4 ≈
20000. Thus, if one measures the work of the method by the number of
degrees of freedom, it corresponds to the work of an explicit method with
uniform time-space grid and a CFL-number of roughly 2.

As has to be expected, adaptivity offers no benefit at the end of the
computation. However, during the eralier stages up to 6 times as many
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Min: -0.02423   Max: 0.02985

Figure 3: Solution and Triangulation for Time-Step # 20 (Example 2)

nodal points would be required using a uniform mesh. A 3D problem would
benefit from adaptivity at all times because of the strong Huygens’ principle.
We will return to that point in our conclusion.

6 Conclusion

We have shown that the adaptive Rothe method is a successful adaptive
device for problems with finite propagation speed. It requires only a simple
outer loop to take advantage of an adaptive finite element code such as
KASKADE [1, 7, 8, 15]. The method is reliable and robust if the finite
element solutions are accurate enough. The necessary accuracy is given by
simple formulas. The numerical examples presented nicely reflect the design
principles discussed.

However, there is one major drawback of the black box use of the finite
element code. The energy of the wave equation cannot be conserved exactly.
Therefore one should think about simple modifications of the finite element
module which would strictly guarantee energy conservation, not only within
the accuracy of the elliptic solver.

The diffraction example shows that adaptivity can pay off for the wave
equation, however, it does so only in the “shadow regions.” In the 2D case
the “lighted region” tends to spread out everywhere thus producing nearly
uniform triangulations after some time. However, in 3D due to the strong
Huygens’ principle [20, p. 131] “shadow regions” are created after that a

14



Min: -0.02691   Max: 0.03064 Min: -0.02725   Max: 0.03334

Figure 4: Solution for Time-Step # 30 and # 40(Example 2)

sharp signal has passed by. This generates large areas where coarse trian-
gulations are a benefit in efficiency. Note, that we presented the algorithm
for any spatial dimension. We therefore believe that our algorithm will be
of particular interest in the 3D case.
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