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Abstract

In classical Molecular Dynamics a molecular system is modelled by classi�
cal Hamiltonian equations of motion� The potential part of the correspond�
ing energy function of the system includes contributions of several types
of atomic interaction� Among these� some interactions represent the bond
structure of the molecule� Particularly these interactions lead to extremely
sti� potentials which force the solution of the equations of motion to oscil�
late on a very small time scale� There is a strong need for eliminating the
smallest time scales because they are a severe restriction for numerical long�
term simulations of macromolecules� This leads to the idea of just freezing
the high frequency degrees of freedom �bond stretching and bond angles�
via increasing the sti�ness of the strong part of the potential to in�nity�
However� the naive way of doing this via holonomic constraints mistakenly
ignores the energy contribution of the fast oscillations� The paper presents a
mathematically rigorous discussion of the limit situation of in�nite sti�ness�
It is demonstrated that the average of the limit solution indeed obeys a con�
strained Hamiltonian system but with a corrected soft potential� An explicit
formula for the additive potential correction is given via a careful inspection
of the limit energy of the fast oscillations� Unfortunately� the theory is valid
only as long as the system does not run into certain resonances of the fast
motions� Behind those resonances� there is no unique limit solution but a
kind of choatic scenario for which the notion 	Takens chaos
 was coined� For
demonstrating the relevance of this observation for MD� the theory is applied
to a realistic� but still simple system� a single butan molecule� The appear�
ance of 	Takens chaos
 in smoothed MD is illustrated and the consequences
are discussed�
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� Introduction

In classical molecular dynamics �MD� simulations the evolution of a molecu�
lar system in time is described via classical Hamiltonian equations of motion
in which the unknowns are the positions qi � R

� and momenta pi � R
� of

all atoms in the system� The interatomic forces are given by an empirically
constructed interaction potential V so that the motion is governed by the
Hamiltonian

H�q� p� �
�

�
pTM��p 	 V�q�� �����

where M is the diagonal mass matrix corresponding to the atomic masses�
Typically
 the potential can be split into two parts of essentially di�erent
sti�ness� In order to indicate this separation we rewrite the potential as the
sum

V�q� � V �q� 	
�

��
U�q��

where U represents the sti� parts and V the collection of all soft contribu�
tions� The number � � � is small �� � �� and ��� gives the ratio of the
di�erent time scales of the motion �i�e�
 the spectral norms of the Hessian
matrices of U and V are comparably to each other�� Thus
 the sti� part
U��� of the potential forces the solution of the equations of motion to os�
cillate on a very small time scale of order O���� We are concerned with the
following Hamiltonian equations of motion


�q � M��p
�p � � gradV � ��� gradU

�
� M �q	gradV �q�	

�

��
gradU�q� � ��

�����
in which gradient is taken with respect to q � R�d� There is a strong need
for eliminating the smallest time scales because they are a severe restriction
for numerical long�term simulations of macromolecules� This leads to the
idea of just freezing the high frequency degrees of freedom
 i�e�
 constraining
the system to the manifold of equilibrium positions of the sti� potential U
while the motion is given by the tangential derivative of the soft potential
V only� However
 this naive approach via holonomic constraints is observed
to produce incorrect results�

This article presents a mathematically rigorous discussion of the limit
situation in which the sti�ness of the sti� part of the potential is increased
to in�nity
 i�e�
 of the limit � � �� It is demonstrated that the average of
the limit solution indeed obeys a constrained Hamiltonian system where the
constraints are given by the equilibrium positions of U but with a corrected

soft potential� An explicit formula for the additive potential correction is

�



given� This formula is based on two theorems which we will quote from the
review ���� While Theorem ��� can only be found in ���
 the �rst proofs of
Theorem ��� were given in an early paper by Rubin and Ungar ���
 also by
Takens ����� In ��� these proofs are simpli�ed via their uni�cation in the
context of weak convergences � an approach which we will exploit for the
problems occuring in MD�

Unfortunately
 the theory is valid only as long as the system does not
run into certain resonances of the fast motions� Behind those resonances

there is no unique limit solution but a kind of choatic scenario for which
the notion �Takens chaos� was coined� For demonstrating the relevance of
this observation for MD
 the theory is applied to a realistic
 but still simple
system
 a single butan molecule� The appearance of �Takens chaos� in
smoothed MD is illustrated and the consequences are discussed�

� Preliminaries

In a numerical solution of ����� we do not want to compute all the �unessen�
tial� oscillatory details on scale O���� But if we want to get the physically
relevant dynamical behavior of the considered system
 we cannot simply ig�
nore the fast degrees of freedom� The idea of smoothed MD is to compute
the �running average� of the exact solution q of ����� only� In the simplest
case we have q�t� � q��t� 	 a sin���t�T � with q� oscillating on scale O���
and T � O���� Its running average is de�ned by

�q�t� �
�

T

t�T ��Z
t�T ��

q�s� ds �
�

T

t�T ��Z
t�T ��

q��s� ds � q��t�� �����

which is not any longer a�ected by the small time scale T � Thus
 a direct
numerical computation of �q would allow larger timesteps and
 in turn
 larger
maximal time spans for MD�simulations�

In order to deduce an equation directly for the average
 we look at the
limit solution q� of the solutions q� of ����� for �� �� Figure � shows some
solutions of an example system of form ����� for di�erent small �� We observe
that for decreasing � the fast oscillation get faster and faster but the running
average remains �invariant�� Thus
 the limit solution for �� � may give us
a good approximation of the running average� Hence
 the question is posed
whether one can derive a di�erential equation governing this limit solution
q��

�



In order to give an answer to this question we have to introduce a suitable
concept of convergence because another inspection of Figure � shows that
the velocities �q� do not converge strongly although their �running average
converges�� The suitable type of convergence appears to be the weak��
convergence in L���� T �
 We have x�

�
� x� for a sequence �x�� of functions


if and only if the averagesZ
x��t���t� dt �

Z
x��t���t� dt

converge for all � � L�� An even �weaker� notion of weak convergence is
given
 if we restrict these test functions � to the space of in�nitely contin�
uous functions with compact support
 which gives us the notion of weak

convergence in the space of distributions D�
 x�
D�

� x��
The link to averaging
 which makes weak��convergence a suitable concept

herein
 may be illustrated for the easiest situation
 i�e�
 for sequences of
harmonic oscillations


� In the case of constant amplitude with period �
 i�e�
 x��t� � x��t� 	
a sin�t��� we have x�

�
� x� �Riemann�Lebesgue�Lemma� but no strong

convergence�

� If the amplitude a is of order O��� also
 e�g�
 x��t� � x��t� 	 � sin�t���

we get strong convergence x� � x��

Furthermore
 it is easy to understand the central problem of averaging

The strong �pointwise� convergence x� � x� of functions implies the strong
convergence f�x�� � f�x��
 where f is a function continuous in the point
argument x� However
 x�

�
� x� does not imply f�x��

�
� f�x��� For example


we get sin��t���
�
� ��� �� �� This fact � continuous functions do not in

general constitute weak��continuous operators � appears to be the reason
for the necessity of the potential correction W mentioned above�

In the following all convergences of function sequences are meant with
respect to a �xed but arbitrary interval ��� T �
 e�g�
 in L���� T � or Cm��� T �

respectively�

� Limit equation for bounded energy

Let us now switch back to the derivation of the di�erential equation govern�
ing this limit solution q�� To this end
 we rewrite the equation of motion as
the second order equation

�q� 	 F �q�� 	
�

��
G�q�� � �� �����

�
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Figure �
 Illustration of the convergence with � � � for the system ����� in the
two	dimensional collinear case with V �q� � q�

�
and U�q� � �q� � q��

��
� on the left
hand side the �rst component q�� of the solution versus time for � decreasing from
top to bottom �� � 
���� 
���� 
�

��� on the right hand side the corresponding
derivatives �q�

�
in the corresponding order� The total energy is identical in all three

cases� Note that q�� converges strongly to its running average while �q�� converges
only weakly�

with forces F �q� � M�� gradV �q� and G�q� � M�� gradU�q�� For the
sake of notational simplicity we set M � I throughout
 which corresponds
to a simple rede�nition of the potentials V and U � Now
 for an unique
determination of the sequence of solutions q� we need the initial values

q���� � q�� and �q���� � �q���

�



which
 moreover
 determine the sequence of total energies corresponding to
q�


E� �
�

�
j �q��j

� 	 V �q��� 	
�

��
U�q���	

For the case that E� is a constant sequence
 Figure � demonstrates that
the momenta �q� converge only weakly
 because they oscillate with constant
amplitude but period O��� around their running average� This observation
can be generalized as the following lemma states


Lemma ��� Let the sequence �E�� of total energies be bounded� i�e�� there

is a bound C � � such that jE�j 
 C for all � � �� then the following three

assertions hold �up to a possible extraction of subsequences��

�� q� converges strongly in C�� q� � q��

	� �q� converges weakly in L�� �q�
�
� �q��


� �q� � O����� converges in the sense of distributions� �q�
D�

� �q��

A proof for this statement may be found in ���� Therein
 one can also �nd
an example which shows that for unbounded �E�� even q� does in general
not converge strongly but only weakly�

For the following we remain with the case of bounded energy� We also
restrict ourselves to potentials U which are strictly convex in directions
orthogonal to the manifold M of its equilibrium positions with U jM � �
and gradU jM � �� This is the typical case for the sti� bond potentials in
MD�

By multiplying ����� with �� and using the convergences from Lemma ���
we directly get that G�q�� � �
 i�e�
 that q� indeed lives on the constraints
manifold

M � fq 
 G�q� � gradU�q� � �g�

i�e�
 it is �xed to the equilibrium positions of the sti� potential U �
Now
 the following notation will be useful
 The orthogonal projection of

a position q onM will be denoted with qM � Each position q in a su�ciently
small neighborhood of M can uniquely be written as the sum of its projec�
tion and the distance vector qN normal to the manifold
 q � qM 	 qN � We
may assume that q� is in such a neighborhood
 because its distance to M is
of order O����

We are interested in an equation for the motion of q� on M� Therefore

let us now investigate the consequences of the di�erent types of convergence

�



in ����� directly


�q���z�
D�

��q�

	 F �q��� �z �
�F �q��

	
�

��
G�q��� �z �

D�

�D�� lim
���

G�q�����

� �	 �����

In order to compute the desired D��limit of G�q����� one can use Taylor ex�
pansion of G�q�� around the projection q�M of q� onM� A careful treatment
of the di�erent convergences �strong
 weak�
 weak in D� � in this expansion
leads to the following theorem
 which is proved in our paper ����

Theorem ��� For the case of bounded energy the limit average q� ful�lls

�q� 	 F �q�� 	 gradG�q��T 	 � 	 �
� D

�G�q�� 
 � � �

G�q�� � ��
�����

where ����
D�

� � and �� 
 ��
�
� � with the quantity �� � �q� � q�M ���

�
� ��

D� denotes the second derivative with respect to q�

In this result
 only the correction term D�G 
 ��� is surprising� If it
is not there
 equation ����� describes a system in which the fast degrees of
freedom normal to M are frozen and the fast oscillations on scale O��� are
loosing any impact on the motion in the limit � � �� But in general
 this
is not the case� Although we have ��

�
� � it is � �� � in general because

squaring a function is not a weak��continuous operation as we have already
observed above� Unfortunately
 � and � are not directly known and it may
be that D�G 
 � vanishes in certain cases
 e�g�
 if G is linear or gives only a
correction of the Lagrange parameter � �cf� below��

In order to compute the correction D�G 
 � we have to construct an
explicit formula for �� This is done in the next section�

� An explicit formula for the corrected potential

We will now see that we can compute � from the total energy of the fast
oscillations normal toM� At �rst
 let us restrict the discussion to the case in
whichM is of codimension one� In a neighborhood of q�M the sti� potential
U is harmonic with �spring constant�


��q� � D�
NU�q�� q �M� �����

�



where DN denotes the derivation normal to M� D�
NU is a positive scalar

value becauseM is of codimension � and U is assumed to be strictly convex
in normal direction toM� Thus
 
 is a positive scalar function onM� Since
q� � q�M � O���
 one intuitively assumes that the normal oscillation of q� is
nearly harmonic with this frequency 
�q�M ��

Thus
 the normal energy corresponding to a state �q�� �q�� may be de�ned
as

E�
N �q�� �q�� �

�

�
j �q�N j

�� �z �
	T �

N

	
�

�

� �q�M � �q�N���

�� �z �
	U�

N

	 ��� �

Since q�N � O���
 the total energy splits as

E� �
�

�
j �q�j� 	 V �q�M � 	E�

N 	O���	

Hence
 in the limit we have

E� �
�

�
j �q�j� 	 V �q�M � 	 E�

N

i�e�
 the limit E�
N of the normal energy occurs as a correction of the soft

potential V in the limit of the total energy� In order to construct an explicit
limit equation we still have to �nd two missing links


�� We need the relation of E�
N to the correction term D�G 
 �
 i�e�
 to the

normal part �NN of �� Because of the strong convergence q�M � q�

we easily compute

U �
N �

�

�

� �q�M � �q�N���

� �
�

�

�

��q���NN 	 �����

Moreover
 It turns out that
 in the limit � � �
 E�
N is equipartioned

into its kinetic and its potential part
 i�e�
 T �
N � U�

N � E�
N�� �cf� ��� for

details�� This equipartition is a well known fact for the time averages of
these energy parts for harmonic oscillations and is connected to the so
called Virial Theorem of Statistical Mechanics
 a mathematical result
which has the appearance of an ergodic theorem
 but no ergodicity
is assumed
 cf� ���� Together with �����
 the equipartition gives the
desired equation


E�
N � 
��q���NN 	 ������

�� We also need a formula for E�
N allowing an explicit computation of its

value as a function of q� �M� This formula is given by the observation

�



that E�
N�
�q

�� is an adiabatic invariant in the limit � � �� A proof
for this statement can again be found in ���� It results from inserting
the abstract limit equation ����� from Theroem ��� in the expression
for the �rst time derivative of E�

N and using �������

Conclusively
 we �nd �cf� ���
 Theorem ����


Theorem ��� The sequence E�
N � EN �q�� �q�� converges strongly� E�

N �
E�
N � The magnitude E�

N�
�q
�� is an adiabatic invariant of the motion in

the limit �� �� i�e�� it exists a constant ! � R such that

E�
N � !
�q��� �NN �

!


�q��
	 ������

This constant ! can uniquely be determined via the initial positions q�� �
lim��� q

�
� of the limit average q� in t � ��

! � E�
N ����
�q���	 ������

The limit average q� obeys the following constrained Hamiltonian system

�q� 	 grad�V 	W ��q�� 	 D�U�q�� 	 � � �

gradU�q�� � ��
������

in which the correcting potential W is given by the limit of the normal energy

W �q� � !
�q�

for q �M�

Now we can directly see in which cases the correction will vanish
 The
initial conditions may lead to a constant ! � � �vanishing normal energy�

or 
 may be constant on M �constant gully width�� The �rst case is given
if E�

N � �� It can be shown that then we have q�N � O���� and � � �
 cf�
���� The second case is the case of the so"called Arnold�theorem ������ with

D�
NU

���
M

� const	

Using the general result of Theorem ���
 we have shown in ��� that the
correction does not contribute in precisely these two cases � independently

of the codimension of M�
Typical MD"applications do not belong to one of these cases
 i�e�
 we have

to expect a nonvanishing correcting potential� It was mistakenly argued in
the literature � � that the potential correction is given by the well"known
Fixman"potential� An illustrative test example for the correcting poten�
tial W e�ected by sti� bond angle potentials and the comparison with the
Fixman"potential can be found in ����

 



� Application to Molecular Dynamics

Let us now switch to the general case in which M is of codimension r � ��
We restrict ourselves to a short review of the results of Takens� He calls
the Hessian matrix D�

NU of the sti� potential in the normal directions ofM
diagonizable
 if there is a �eld �e�N � 	 	 	 � e

r
N � of orthonormal bases of NM


which are eigenvectors of D�
NU 
 i�e�


D�
NU�q� 
 �eiN �q�
 ejN �q�� � 
�

i �q� 	 �ij �q �M	 ������

Here
 the eigenfrequencies 
i shall depend smoothly on q � M� Takens

proves ����
 Theorem ��� that the adiabatic invariance of the ratio of normal
energy and frequency holds for each normal component
 if one can exclude
certain resonances
 i�e�
 if for x �M we always have


i�x� �� 
j�x� � � i� j � r� i �� j� ������

and

i�x� �� 
j�x� 	 
k�x�� � � i� j� k � r	

Using this result
 we can extend Theorem ��� to these �no"resonance� cases�
But Takens ���
 Theorem �� also constructed an example with r � �


where a one�parameter family of initial data q���#��
 �q���#��
 depending
on � � ��� �� but with �"independent !i
 yields an one�parameter family
of limit solutions q��t#�� having the following property
 There is a time
t� � � at which the no"resonance conditions are hurt for the �rst time� For
� � t � t� the solutions

q��t#�� � q��t�

do not depend on the parameter �
 as Theorem ��� states� But for �xed
t � t� the values of q��t#��
 � � ��� ��
 constitute a continuum� Thus
 for
time spans larger than t� and for a �xed parameter � we cannot describe
the limit q� by a uniquely solvable initial value problem� Koiller ��� coined
the notion �Takens�chaos� for this e�ect�

In general
 this e�ect will occur in smoothed MD as can be illustrated
in one of the most simple realistic examples
 the lumped butan molecule�
The model for the butan molecule �CH�CH�CH�CH�� consists of four mass
points �the four �units� CHk
 k � �� �� with the corresponding positions
qi � R

� and momenta pi � R
�
 i � �� 	 	 	 � �� Thus
 the state space has

dimension �� and the position and momenta states are

q � �q�� 	 	 	 � q
� � R
�� and p � �p�� 	 	 	 � p
� � R

��	

�



The sti� part of the interaction potential V is given by bond stretching and
bond angle contributions

U�q���� �
�X

k	�

Ust�qk� qk��� 	 Uan�q�� q�� q�� 	 Uan�q�� q�� q
�

Therein
 the three bonds are modelled as �d"springs with forces only de�
pending on the deviation from the equilibrium length

Ust�x� y� �
�

�
�jx� yj � r��

� �

while the bond"angle interactions are �quasi"harmonically� given by the
angle ��x� y� z� between the two bonds connecting x with y
 and y with z


Uan�x� y� z� �
�

�
�cos� � cos���

� with cos� �
�x� y�T �z � y�

jx� yj jz � yj
	

The soft part V of V is the so"called torsion angle potential

V �q� � Vtor�q� � Vtor���q��	

The torsion angle � � ��q� is the angle between the two �d"planes which
are spanned by q�� q�� q� and q�� q�� q

 respectively� The torsion angle po�
tential Vtor has more than one equilibrium angle but three local minima �cf�
Figure ��� Herein
 the coe�cients � �  �	� kcal$�mol %A�� and � � ��	�
kcal$mol and the potential Vtor are taken from ����� The mass matrix M is
given by the masses of CH� �m� � m
 � ���� and CH� �m� � m� � ����

where � is the atomic mass unit � � �	�� 	 ����� kg�

Note
 that the sti� potential U can be rewritten as

U�q� �
�

�
j��q�j� �

�X
k	�

�k�q�
�

with � � ���� 	 	 	 � ��� where the �k denote the di�erent contributions from
Ust and Uan scaled with ��� Thus
 the manifold M of equilibrium positions
of U has codimension r � �� Some simple calculus shows
 that the condition
������ for computing the frequencies 
i of the fast normal oscillations results
in the eigenvalue problem for the �
 � Gram matrix G


grad�T M�� grad�� �z �
	G

� � 
� ��

��



0 1 2 3 4 5 6

1

2

3

4

5

�

�i

kcal���

mol����A

Vtor

kcal
mol

��
��

��

��

��

Figure �
 Dashed line� Torsion angle potential Vtor versus torsion angle �� Note
that the potential is symmetric with respect to the main minimum located at � � �
with two equal local minima near � � ���� ����� Solid lines� Frequencies �i of the
fast oscillations normal to M versus the torsion angle �� Note the crossings of
the two lowest frequencies near the local minima of Vtor� They are connected to
resonances of the fast oscillations�

where grad�T denotes the � 
 �� Jacobian matrix of �� The correspond�
ing eigenvectors � of G allow the evaluations of the constants !i for the
correcting potential

W �q� �
�X
i	�

!i 
i�q�	

A direct evaluation of G shows that it depends on q only via the torsion angle
�
 G�q� � G���q��� Thus
 the frequencies 
i may be given as functions of
� which is done in Figure �� We observe that Takens� �no"resonance�
condition ������ is hurt for two values of the torsion angle� Thus
 for certain
initial conditions
 i�e�
 in general
 this butan model will develop Takens"
chaos� In particular cases
 i�e�
 for initial data for which the constants !i

for the two lower frequencies 
� and 
� are zero
 there is no Takens"chaos
and our Theorem ��� governs the limit solution�

For one of these cases �!i � � for all i �� �� the corresponding correcting
potential W is shown in Figure �� Herein
 the initial data has been chosen

��



so that only !
 �� � corresponding to the normal energy EN � �	� kcal$mol
which is half of the average kinetic energy of a butan molecule in a gas at
temperature T � ���K collected in this single degree of freedom� Note
 that
in this case the correcting potential leads to an inversion of the importance
of the local minima�
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Figure �
 Left hand side� Torsion angle potential Vtor �dashed line� and the cor	
rected potential Vtor � W for the scenario explained in the text �solid line� in
kcal�mol versus the torsion angle �� In the corrected potential the minimum at
� � � is no longer the global minimum� Right hand side� Evolution of the distance
jq��q�j with t for the original MD�solution �dashed line� and for the limit solution
�solid line� for the scenario explained in the text�

For corresponding initial data the right hand sub�gure in Figure � il�
lustrates the original and limit solutions� Obviously
 in this case
 the limit
solution is a good approximation of the running average of the original
solution up to the time shown in the �gure� For larger times the two solu�
tions increasingly deviate from each other� This must be expected because

for values � � �
 the spectral gap between fast and slow motions is �nite
and introduces a direct coupling of both kinds of motion which e�ects the
adiabaticity of EN�
 to be valid only approximately� The time steps in a
numerical integration of the limit solution can be a factor � larger than those
used for integrating the original solution �comparable accuracy�� Thus
 the
corresponding computational e�ort is smaller
 but unfortunately
 only by a
factor of �
 because of the repeated diagonalizations of the Gram matrix G�

For initial data with !� �� � or !� �� � �resonant cases� the limit solution
again is a good approximation of the running average but only as long as
the system remains inside the potential well of the main minimum of Vtor
at � � �� The deviation increases if the system switches to one of the local

��



minima of Vtor and signi�cantly before the crossing of 
� and 
� is reached�

� Conclusive Remarks

We discussed the limit � � � for the Hamiltonian system ����� and its
usefulness for applications to MD� In addition to the construction of the
explicit limit equation away from resonance points and the observation that
these points can e�ect a non"uniqueness called Takens"chaos
 two main
results were collected


�� Even if the limit solution is determined uniquely
 it is a good ap�
proximation for the running average of MD"solutions for a relatively
short time span only� This is due to the fact that for realistic MD"
applications the resulting � is not small enough� For the same reason
the oscillations on scale O��� are not fast enough in order to e�ect a
signi�cant gain in e�ciency if their evaluation is avoided by solving
the limit equation�

�� The observation of Takens"chaos means that in general the homog�
enization problem is not solvable� The present authors assume that
the corresponding problem of the resonances of the fast degrees of
freedom will be the bottleneck for any mathematical approach to the
running average
 even for � � �
 because any �averaging� or �smooth�
ing� technique must skip some of the information about the phases of
fast motions� But exactly this �phase information� is necessary for an
accurate description of the resonant scenario�

References

�
� R� Abraham and J� E� Marsden� �Foundations of Mechanics�� Addison	
Wesley Publ� Co�� Redwood City� New York� Bonn� 
��� printing of the 
nd
edition �
�����

�
� V� I� Arnold� V� V� Kozlov� and A� I� Neishtadt� Mathematical Aspects
of Classical and Celestial Mechanics� In V� I� Arnold� editor� �Dynamical
Systems III�� Springer	Verlag� Berlin� Heidelberg� New York �
�����

��� F� A� Bornemann and Ch� Sch�utte� �Homogenization of Highly Oscilla	
tory Hamiltonian Systems�� Konrad�Zuse�Zentrum� Berlin �
����� Preprint
SC ��	��� submitted to Physica D�

��



��� F� A� Bornemann and Ch� Sch�utte� �A Mathematical Approach to
Smoothed Molecular Dynamics� Correcting Potentials for Freezing Bond An	
gles�� Konrad�Zuse�Zentrum� Berlin �
����� Preprint SC ��	��� submitted to
Physica D�

��� G� Gallavotti� �The Elements of Mechanics�� Springer	Verlag� Berlin�
Heidelberg� New York �
�����

��� J� Koiller� A note on classical motions under strong constraints� J� Phys�

A� Math� Gen� ��� L�

�L�
� �
�����

��� Ch� Lubich� Integration of sti� mechanical systems by Runge	Kutta methods�
Z� angew� Math� Phys� ��� 
�

�
��� �
�����

��� S� Reich� Smoothed dynamics of highly oscillatory Hamiltonian systems�
Physica D ��� 
���
 �
�����

��� H� Rubin and P� Ungar� Motion under a strong constraining force� Comm�

Pure Appl� Math� ��� ����� �
�����

�
�� F� Takens� Motion under the in�uence of a strong constraining force� In
Z� Nitecki and C� Robinson� editors� �Global Theory of Dynamical Sys	
tems� Evanston 
����� Springer	Verlag� Berlin� Heidelberg� New York �
�����

�

� G� Zhang and T� Schlick� LIN� A new algorithm to simulate the dynamics
of biomolecules by combining implicit�integration and normal mode technique�
J� Comp� Chem� ��� 



�

�� �
�����

��


