Martin Grötschel Andreas Löbel Manfred Völker

Optimierung des Fahrzeugumlaufs im Öffentlichen Nahverkehr
Optimierung des Fahrzeugumlaufs im Öffentlichen Nahverkehr

M. Grötschel¹, A. Löbel¹ und M. Völker²

¹ Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustraße 7, D-14195 Berlin-Dahlem, E-mail: [name]@zib.de, URL: http://www.zib.de/
² HanseCom GmbH, Spehrstraße 6, 22083 Hamburg

Abstract. This paper addresses the problem of scheduling vehicles in a public mass transportation system. We show how this problem can be modelled as a special multicommodity flow problem and outline the solution methodology we have developed. Based on polyhedral investigations, we have designed and implemented a branch&cut algorithm and various heuristics with which real vehicle scheduling problems of truly large scale can be solved to optimality. We describe some implementation issues and report computational results.

¹ Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

1 Einleitung

Der Betrieb eines öffentlichen Nahverkehrssystems kann – aus der abstrakten Sicht eines Mathematikers – als ein gigantisches Optimierungsproblem mit komplexen Nebenbedingungen aufgefasst werden. Wir diskutieren in diesem Aufsatz eine wichtige Komponente, die Fahrzeugumlaufplanung, und stellen das Problem anhand der Busumlaufplanung dar.

Wir gehen davon aus, daß in Fahrplan erstellt wurde. Zur Durchführung aller Fahrten des Fahrplanes müssen Busse bereitgestellt werden, wobei berücksichtigt werden muß, daß gewisse Busse (Doppeldecker, Gelenkbusse) nicht alle Linien bedienen können. Das Ziel ist, so wenige Fahrzeuge wie möglich einzusetzen und die Kosten für "Leerfahrten" so gering wie möglich zu halten. (Dabei wird eine Dienst- und Dienstreihenfolgeplanung noch nicht berücksichtigt. Sie geschieht in einem nachgeordneten Optimierungsschritt.)

Zur Lösung derartiger Umlaufplanungsprobleme werden vielfach noch manuelle, z. T. computergestützte Planungsmethoden verwendet. Fortgeschrittene
Verkehrsnetze benutzen heuristische Algorithmen, die auf mathematischen Modellen basieren. Durch enorme Fortschritte in der mathematischen Methodik und der Computertechnik ist es heute möglich geworden, die riesigen Optimierungsprobleme, die in diesem Bereich entstehen, exakt zu lösen.

2 Das Fahrzeugumlauflaufplanungsproblem

Wir wollen nun einige Begriffe definieren, die uns eine korrekte mathematische Formulierung des Umlaufplanungsproblems erlauben, aber auch gleichzeitig die Behandlung von Sonderfällen und Nebenbedingungen ermöglichen.

Ein Depot ist eine Menge von Fahrzeugen, die im Rahmen der vorzunehmenden Planung als gleichwertig angesehen werden. Zu jedem Depot gehört ein Startpunkt und ein Endpunkt, wo jedes eingesetzte Fahrzeug seinen Einsatz beginnt bzw. beendet. Es ist Aufgabe des betrieblichen Planers, eine für seinen Verkehrsbetrieb angemessene Einteilung des Fahrzeugbestandes in Depots vorzunehmen. In Extremfällen können alle Fahrzeuge zu einem Depot zusammengefaßt oder jedes Fahrzeug für sich allein als Depot aufgefaßt werden. In der Regel wird ein Depot aus allen Fahrzeugen eines Typs (oder aus Fahrzeugen, die für die vorliegende Planung als homogen angesehen werden) bestehen, die einem Betriebshof zugehören. In diesem Fall sind Start- und Endpunkt ein und dieselbe Betriebshof.

In unserem mathematischen Modell ist es möglich, für jede Fahrgast- und Leerfahrt depotbezogene *Gewichte* anzugeben, z. B. die strecken- und/oder zeitaabhängigen Kosten zur Bedienung der Fahrt mit einem bestimmten Fahrzeugtyp. In die Gewichtung einer Leerfahrt können die Kosten für die Standzeit mit oder ohne Fahrer und die Kosten für eine erforderliche Verbindungs fahrt eingehen. Genaue Kostendeinitionen müssen betriebsspezifisch erfolgen, wobei die Zielsetzungen des Betriebes quantitativ umzusetzen sind.

Minimierung der Fahrzeuganzahl äquivalent zur Minimierung der Anzahl der Umlaufketten. Das \textit{Gewicht einer Umlaufkette} ist die Summe der Gewichte seiner Fahrgast- und Leerfahrten.

Mit der oben vorgenommenen Begriffsbildung können wir das zunächst nur verbal formulierte \textit{Ziel der Umlaufplanung} quantifizieren: \textit{Es ist eine gewichtsminimale Menge von Umlaufketten zu bestimmen, so daß jede Fahrgastfahrt in genau einer Umlaufkette enthalten ist.}

Auch wenn die Problemstellung der Umlaufplanung bereits recht kompliziert erscheint, so sind doch noch eine Reihe von Sonderfällen zu beachten, die bei manchen Verkehrsbetrieben auftreten bzw. deren Berücksichtigung gewünscht wird. Wir listen hier nur Stichworte auf, ohne die zugehörigen (umfangreichen) Details zu erläutern:

- Vermeidung von \textbf{Linienwechsel} (für Fahrzeuge, bei denen ein Linienwechsel aufwendige Umrüstungen erfordert);
- Vermeidung von \textbf{Fahrtartenwechsel} (Stamm- und Ergänzungsfahrten wie Schulbusfahrten sollen nicht gemischt werden);
- Berücksichtigung einer \textbf{maximale Wendezeit};
- Festlegung von \textbf{Erst- und Letztfahrten};
- Berücksichtigung von \textbf{Bereitschaften und vordefinierten (Teil-)Umläufen};
- geplante \textbf{Depotwechsel}.

Alle diese Anwendungsfallen können in unserem Modell durch Streichung bestimmter Kopplungen, geeignete Einführung neuer Kopplungen bzw. Modifikation von Gewichten berücksichtigt werden.

Folgende Anforderungen können wir in unserem Modell nicht berücksichtigen: \textbf{Maximale Umlaufdauer} und/oder \textbf{Umlauflänge} für bestimmte Fahrzeugtypen und \textbf{maximale Anzahl von Linienwechseln pro Umlauf}. Wir können jedoch durch heuristische (siehe z. B. [FP]) oder manuelle Nachbearbeitung (wie das i. a. üblich ist) weiche oder harte Nebenbedingungen dieser Art einbeziehen.

3 Das Mathematische Modell

Mit der in Abschnitt 2 eingeführten Begriffsbildung formulieren wir nun das mathematische Modell des Umlaufplanungsproblems. Wir beginnen mit einer graphentheoretischen Beschreibung. Hierzu führen wir einen Digraphen $D := (V, A)$ ein, dessen Knoten V und Bögen A wie folgt definiert sind:

Mit D bezeichnen wir die Menge der Depots. Für jedes Depot $d \in D$ bezeichnen wir mit $d^+ \text{ seinen Startpunkt}$ und mit $d^- \text{ seinen Endpunkt}$; wir setzen $D^- := \{d^- \mid d \in D\}$ und $D^+ := \{d^+ \mid d \in D\}$. Die Menge der Fahrgastfahrten bezeichnen wir mit \mathcal{T}. Für jede Fahrgastfahrt $t \in \mathcal{T}$ führen wir für den Anfangshaltepunkt einen Knoten t^- und für den Endhaltepunkt einen Knoten t^+ ein und definieren $\mathcal{T}^- := \{t^- \mid t \in \mathcal{T}\}$ und $\mathcal{T}^+ := \{t^+ \mid t \in \mathcal{T}\}$. Die Knotenmenge V des Digraphen \overrightarrow{D} besteht aus den Start- und Endpunkten der Depots und allen Anfangs- und Endpunkten der Fahrgastfahrten, d. h.
$V := D^+ \cup D^- \cup T^+ \cup T^-$.

Für jede Fahrgastfahrt $t \in T$ bezeichnen wir mit $G(t) \subseteq D$ die Depotgruppe von t, d. h. die (nichtleere) Menge aller Depots, deren Fahrzeuge die Fahrt t durchführen können. Die Menge aller Fahrgastfahrten, die vom Depot $d \in D$ bedient werden können, bezeichnen wir mit T_d, d. h. $T_d := \{ t \in T \mid d \in G(t) \}$; analog definieren wir $T_d^- := \{ t^- \mid t \in T_d \}$, $T_d^+ := \{ t^+ \mid t \in T_d \}$ und $V_d := \{ d^+, d^- \} \cup T_d^- \cup T_d^+$.

Wir kommen zu den Bögen. Für jedes Depot $d \in D$ führen wir einen Rückführungsbo gen (d^-, d^+) ein, mit dessen Hilfe wir Depotkapazitäten kontrollieren können. Pro Depot $d \in D$ führen wir für jede Fahrgastfahrt, Einsatzfahrt, Aussetz- und Kopplung jeweils einen Bogen ein, wie folgt geschieht:

$$A_d^{ex} := \{ (t^-, t^+) \mid t \in T_d \} \text{ (Fahrgastfahrten)},$$
$$A_d^{ex} := \{ (d^+, t^+) \mid t \in T_d^- \} \text{ (Einsetz-)},$$
$$A_d^{es} := \{ (t^+, d^-) \mid t \in T_d^+ \} \text{ (Aussetz-)},$$
$$A_d^{supp} := \bigcup_{(p,q) \in \mathcal{K} [d]} \{ (p^+, q^-) \},$$
$$A_d^{supp} := A_d^{ex} \cup A_d^{es} \cup A_d^{supp} \text{ (Löserfahrten).}$$

Wir erläutern den Gebrauch der Bezeichnungen. Wenn wir von einem Bogen (t^-, t^+) sprechen, so müßten wir eigentlich noch vermerken, bezüglich welcher Depots d der Depotgruppe $G(t)$ der Bogen benutzt wird. Dies sollte i. a. implizit klar sein; zusätzliche Indices würden die Notation noch häßlicher machen. Wenn wir zwei Bogensynchronen $A_d^{ex} = A_d^{es}$ und A_d^{es} verbinden, so entstehen dabei für jede Fahrgastfahrt $t \in T_d \cap T_d^- \cap$ zwei parallele Bögen. Wir operieren hier also mit "disjunkten Vereinigungen". Analoges gilt für die Kopplungen. Vom Endhaltepunkt p^+ einer Fahrgastfahrt p kann es zum Anfangshaltepunkt q^- einer anderen Fahrgastfahrt q auch mehrere Kopplungen geben, dies kann auch bereits bezüglich eines Depots der Fall sein, jedoch werden sich dann i. a. die Gewichte der parallelen Kopplungen unterscheiden. Auch hier ersetzen wir nicht zwei parallele Bögen durch einen Bogen, wir vereinigen die Bogenmengen disjunkt.

Für jedes Depot $d \in D$ erhalten wir damit die folgende Menge von Bögen: $A_d := A_d^{ex} \cup A_d^{es} \cup \{ (d^+, d^-) \}$. Die Bogemenge A des Digraphen für das Um- laufproblem ist dann die disjunkte Vereinigung all dieser Bogemengen:

$$A := \bigcup_{d \in D} A_d.$$

Für jeden Bogen aus A führen wir nun noch Bezeichnungen für seine Kosten und Kapazitätsschranken ein. Für den Bogen $a \in A_d$ bezeichnen wir mit $c_a^d \in \mathbb{Q}$ seine Kosten und mit t_a^d bzw. u_a^d seine untere bzw. obere Kapazitätsschranke. Für einen Rückführungsbo gen $a = (d^-, d^+)$ ist t_a^d in der Regel die untere Kapazitätsschranke des Depots d und u_a^d die maximale Kapazität von d. Für die übrigen Bögen hat t_a^d den Wert null und u_a^d den Wert eins.
Analog führen wir für jedes Depot d und jeden Bogen $a \in A_d$ eine ganzzahlige Variable x^d_a ein; x^d_a muß die vorgegebenen Kapazitätschranken erfüllen:

$$\l_a^d \leq x^d_a \leq u^d_a. \quad (1)$$

Aufgrund unserer Annahmen ist eine Variable x^d_a eine Entscheidungsvariable, die angibt, ob ein Fahrzeug des Depots d die Fahrt a durchführt, außer a ist der Rückführungsleger des Depots d; in diesem Fall zählt x^d_a die eingesetzten Fahrzeuge des Depots d.

Damit ein ganzzahlerer Vektor $x := \left((x^d_a)_{a \in A} \right)_{d \in D} \in \mathbb{R}^A$ eine zulässige Lösung des Umlaufplanungsproblems darstellt, muß er neben den Kapazitäts-

$$\sum_{a \in \delta^- (v) \cap A_d} x^d_a - \sum_{a \in \delta^+ (v) \cap A_d} x^d_a = 0 \quad \forall \ v \in V \ \forall \ d \in D, \quad (2)$$

$$\sum_{a \in G (t)} x^d_a = 1 \quad \forall \ t \in T, \quad (3)$$

wobei $\delta^- (v) := \{(i, j) \in A | j = v\}$ und $\delta^+ (v) := \{(i, j) \in A | i = v\}$. Die Gleichungen (2) besagen (in der Sprache der Fahrzeugausleihung), daß alle Fahrzeuge eines Depots d, die einen Knoten $v \in V$ erreichen, diesen Knoten auch wieder verlassen müssen. Die Gleichungen (3) erzwingen, daß jede Fahrgastfahrt t genau einmal durchgeführt wird, wobei natürlich nur Fahrzeuge der zugehörigen Depotgruppe zugelassen sind.

Damit können wir nun das Umlaufplanungsproblem als das folgende lineare ganzzahlige Optimierungsproblem darstellen:

$$\min_{x \in \mathbb{Z}^A \cap (a \geq 0)} \sum_{d \in D} \sum_{a \in A_d} c^d_a x^d_a. \quad (4)$$

Dieses ganzzahlige Problem (4) ist ein spezielles Mehrgüterflußproblem. Betrachten wir jedes Depot d für sich, so beschreibt ein Lösungsvektor x^d wie sich Fahrzeuge vom Startpunkt d^+ durch den Digraphen (V_d, A_d) verteilen, dann im Endpunkt d^- zusammenströmen und über den Rückführungsbogen (d^-, d^+) wieder dem Startpunkt zugeführt werden. In der Sprache der Netzwerkflußtheorie wird x^d ein Fluß oder genauer eine Zirkulation des „Gutes d^d“ im Digraphen (V_d, A_d) genannt. Die Schwierigkeit besteht darin, daß die Zirkulationen $x^d, d \in D$, durch die Gleichungen (3) voneinander abhängen. Der Digraph $D = (V, A)$ wird also von $|D|$ verschiedenen Gütern durchströmt, wobei die Nebenbedingung besteht, daß für jede Fahrgastfahrt t genau einer der $G (t)$ parallelen Bögen (t^-, t^+) durchströmt werden muß.

Die Abbildung 1 zeigt ein Zwei-Depot-Problem mit fünf Fahrgastfahrten im Ort-Zeit-Diagram und eine zulässige Lösung. Abbildung 2 zeigt die dazu gehörenden Digraphen (V, A) und (V_d, A_d).
Abb. 1. Ort-Zeit-Diagramm und zulässige Lösung.

Abb. 2. Digraphen \((V, A)\) und \((V_d, A_d)\) zu \(D = \{r, g\}\), \(F = \{a, b, c, d, e\}\).

Abb. 3. “Geschrumpfter” Digraph \((V', A')\).
Es ist offensichtlich, daß man die parallelen Bögen \((t^-, t^+)\) zwischen dem Anfangs- und dem Endhaltepunkt einer Fahrgastfahrt \(t\) nicht benötigt und man daher die zugehörigen Variablen eliminieren kann (Grund: "Was in \(t^-\) hineinfließt, fließt wegen (2) aus \(t^+\) wieder hinaus"). Graphentheoretisch setzt man für jede Fahrgastfahrt \(t\) die Knoten \(t^-\) und \(t^+\) durch einen neuen Knoten \(t\) und entfernt alle Bögen zwischen \(t^-\) und \(t^+\). Jeder Bogen mit Endknoten \(t^-\) erhält als neuen Endknoten den Knoten \(t\), und analog beginnt jeder Bogen mit Anfangsknoten \(t^+\) nunmehr in \(t\). Der so definierte neue Digraph \(D' := (V', A')\) (mit \(V' := D^+ \cup D^- \cup T\), \(A' := A'_{\text{eff}} \cup \{(d^-, d^+)\}\) und \(A' := \bigcup_{d \in D} A'_d\)) entsteht also durch Schrumpfen der Knotenmengen \(\{t^-, t^+\}\), \(t \in T\), und Entfernen der dabei auftretenden Schlingen. Abbildung 3 zeigt den geschrumpften Digraphen \((V', A')\) zu dem Beispiel der Abb. 1 und Abb. 2.

Durch geeignete Kombination der Gleichungen (2) und (3) kann man beweisen, daß die Gleichungen (3) nach Elimination aller Variablen der Form \(x_{d^-,d^+}^d\) äquivalent zu den folgenden Gleichungen sind:

\[
\sum_{d \in D} \sum_{a \in \delta^-(t) \cap A'_d} x_{a}^d = 1 \quad \forall \ t \in T.
\]

(5)

Jede zulässige (optimale) Lösung des linearen ganzzahligen Programms

\[
\min \sum_{d \in D} \sum_{a \in A'_d} c_{a}^d x_{a}^d
\]

(6)

\[
\sum_{d \in D} \sum_{a \in \delta^-(t) \cap A'_d} x_{a}^d = 1 \quad \forall \ t \in T,
\]

(7)

\[
\sum_{a \in \delta^-(v) \cap A'_d} x_{a}^d - \sum_{a \in \delta^+(v) \cap A'_d} x_{a}^d = 0 \quad \forall \ v \in V' \quad \forall \ d \in D,
\]

(8)

\[
l_a^d \leq x_{a}^d \leq u_a^d \quad \forall \ a \in A' \quad \forall \ d \in D,
\]

(9)

\[
x \text{ ganzzahlig}
\]

(10)

definiert somit eine zulässige (optimale) Lösung des Umlaufplanungsproblems und umgekehrt. Man kann auch noch die zu den Rückführungsbögen gehörenden Variablen und die redundanten Kapazitätsschränken \(x_{a}^d \leq 1\), für alle \(a \in A'_{\text{eff}}\) und \(d \in D\), eliminieren, aber darauf gehen wir nicht ein. In [FHW] und [BCP] werden ähnliche Modelle zu (6-10) vorgeschlagen; diese verwenden ebenfalls Depotgruppen.

4 Heuristiken

Viele Verkehrsunternehmen haben manuelle und/oder computerunterstützte Verfahren zur Bestimmung brauchbarer Umlaufpläne entwickelt. Wir kennen keinen Verkehrsbetrieb, der das von uns in den Abschnitten 2 und 3 dargestellte

5 Ein exakter Lösungsansatz

In Abschnitt 3 haben wir gezeigt, daß das Umlaufplanungsproblem durch das ganzzahlige Programm (6-10) gelöst werden kann. Umlaufplanungsprobleme von großen Verkehrsbetrieben führen zu derartigen ganzzahligen Programmen mit mehreren Millionen Variablen. Aufgrund dieser enormen Größen-
ordnungen sind nur wenige Versuche unternommen wurden, reale Problem-
beispiele exakt zu lösen. Forbes et al. [FH] berichten von praktischen Pro-
blemen mit drei Depots und 6.500 Fahrgastfahrten. Mit ihrem Algorithm-
us und den ihnen zur Verfügung stehenden Rechnern konnten jedoch nur
Teilprobleme mit höchstens 600 Fahrgastfahrten und rund 90.000 Leerfahr-
ten gelöst werden. Ribeiro und Soumis [RS] lösen mit Column-Generation-
Technik (Dantzig-Wolfe-Dekomposition) zufällig erzeugte Umlaufplanungs-
probleme mit bis zu 10 Depots und bis zu 300 Fahrgastfahrten.

 Unsere Idee war, LP-Techniken, die sich in letzter Zeit gerade bei der Lösung
sehr großer kombinatorischer Optimierungsprobleme bewährt haben, in Ver-
bindung mit polyedrtheoretischen Überlegungen einzusetzen. Wir hatten die
Hoffnung, daß reale Umlaufplanungsprobleme vielleicht nicht ganz so
schwierig sind, wie es komplexitätstheoretische Überlegungen erwarten las-
sen. Diese Hoffnung hat sich bestätigt.

 Die Idee des “polyedrischen Ansatzes” ist es, die konvexe Hülle MDVS(D′)
der zulässigen Punkte von (6-10) zu betrachten. MDVS(D′) ist ein Polytob,
dessen Ecken den Lösungen des durch den Digraphen D′ definierten Umlau-
plansproblems entsprechen. Aus der Polyedrtheorie ist bekannt, daß es
ein System von (i.a. sehr vielen) Ungleichungen Bx ≤ b und Gleichungen
Ex = e gibt, so daß gilt: MDVS(D′) = \{ x ∈ \mathbb{R}^4 | Bx ≤ b, Ex = e \}.

 Diese (theoretische) Konstruktion erlaubt es, das Umlaufplanungsproblem
als lineares Programm der Form min{c^T x | Ex = e, Bx ≤ b} zu lösen. In
der Praxis nennt man nur einen winzigen Bruchteil aller notwendigen Unglei-
chungen. Aber selbst dieser Bruchteil besteht schon aus einer Zahl von
Ungleichungen, die exponentiell in der Knotenzahl von D′ ist. Man geht da-
er wie folgt vor: Zunächst bestimmt man eine “vernünftige” Teilmenge der
Ungleichungen, sagen wir das Teilsystem B′x ≤ b′ von Bx ≤ b, und löst
das lineare Programm min{c^T x | Ex = e, B′x ≤ b′}. Entsprech die Opti-
mallosung einem Umlaufplan, so ist man fertig. Andernfalls wird versucht,
aus der Menge der bisher nicht berücksichtigten Ungleichungen einige zu fin-
d die gegenwärtige gebrachte Optimallosung abschneiden. Diese Un-
gleichungen werden Schnittebenen genannt. Die Schnittebenen werden dann
zum gegenwärtigen linearen Programm hinzugefügt, und es wird iteriert, bis
entweder ein optimaler Umlaufplan gefunden ist oder die gegenwärtige optim-
ale Lösung eines linearen Teil-Programms nicht mehr abgeschritten werden
cann. In diesem Fall wird ein Branch-and-Bound Verfahren angewendet.

 Wir haben das Polytob MDVS(D′) untersucht und verschiedene Klassen von
Facetten gefunden. Die Darstellung dieser Ergebnisse ist technisch aufwendig,
weswegen wir hier nicht darauf eingehen.

 Unsere Rechenexperimente haben gezeigt, daß die Lösung der LP-Relaxie-
 rung von (6-10), die durch Weglassen der Ganzzahligkeitsbedingung (10) ent-
steht, für reale Probleme einen Optimalwert ergibt, der nahe am Optimalwert
des Umlaufplanungsproblems liegt. In der Regel lieferte die LP-Relaxierung
die minimale Fahrzeuganzahl, und die optimalen Kosten liegen nie mehr als 1% über den Kosten der optimalen LP-Lösung. Die Schnittebenen wurden benötigt, um diese kleine Lücke zu schließen und aus den gebrochenen optimalen LP-Lösungen ganzzahlige Optimallösungen zu erzeugen.

Wirklich schwierig war es jedoch, die LP-Relaxierungen selbst zu lösen. Immerhin handelt es sich hier um lineare Programme, die bei realen Datensätzen bis zu 50 Millionen Variablen und 60,000 Gleichungen umfassen. Hierfür haben wir spezielle Techniken entwickelt, die wir in Abschnitt 6 beschreiben.

6 Implementierungsdetails

Bei LP-Problemen mit mehreren Millionen Variablen ist allein aus Speicherschlaggründen vorhinein klar, daß die LP’s nicht vollständig erzeugt und einem Löser übergeben werden können. In unserem Fall bot es sich an, alle Gleichungen und Ungleichungen von (6-10) zu berücksichtigen und Variablen sukzessive durch “column generation” einzubeziehen. Nach verschiedenen Experimenten hat sich der folgende Weg als erfolgreich erwiesen.

Phase A: Wir überprüfen die reduzierten Kosten aller Nichtbasis-Variablen und lösen diejenigen Variablen aus dem gegenwärtigen LP, deren reduzierte Kosten eine gewisse (parametergesteuerte) Schranke überschreiten (heuristische Reduktion der LP-Größe). Nacheinander werden die folgenden drei Spaltengenerierungsalgorithmen aufgerufen:

SG2: Durch geeignete Kombination der Gleichungen (7) und (8) erzeugen wir ein (redundantes) Gleichungssystem der Form

\[-\sum_{d \in D} \sum_{a \in \delta^+(t) \cap A_d^t} x^d_a = -1 \quad \forall \ t \in T. \quad (11)\]
Die Gleichungen (8) und die Schranken für die Depotkapazität von (9) werden aus dem LP gestrichen und über einen Lagrange-Ansatz zur Zielfunktion hinzugefügt. Die Lagrange-Multiplikatoren erhalten auch hier die Werte der zugehörigen Dualvariablen zu den Gleichungen (8) und Ungleichungen (9) des zuletzt gelösten LPs. Die verbleibenden Gleichungen (6), (7) und (11), die Ungleichungen $x \geq 0$ und die neue (Lagrange-) Zielfunktion bilden ein (riesiges) Minimal-Kosten-Fluß-Problem, welches wiederum mit dem Netzwerksimplex-Code MCF gelöst wird. Analog zu SG2 werden dann alle Variablen, die in der optimalen Lösung des Minimal-Kosten-Fluß-Problems einen positiven Flußwert besitzen und sich nicht bereits im aktuellen LP befinden, zum LP hinzugefügt.

SG3: Die reduzierten Kosten aller nicht im gegenwärtigen LP vorhanden Variablen werden bestimmt. Die Variablen mit den geringsten reduzierten Kosten werden (parametergesteuert) zum LP hinzugefügt.

Nach der Spaltenentfernung wird das veränderte LP mit dem dualen Simplexverfahren und einem vorgeschalteten Preprocessing gelöst. Ist der Minimalwert des neuen LPs “deutlich niedriger” als der des vorhergehenden LP’s, so wird die Phase A wiederholt, andernfalls wird zur Phase B gesprungen.

Phase B: Wie in Phase A werden zuerst Variablen aus dem gegenwärtigen LP entfernt. Anschließend wird lediglich SG3 aufgerufen. Das so veränderte LP wird in dieser Phase mit dem primalen Simplexalgorithmus gelöst, wobei die optimale Basis des letzten LP’s als Startbasis verwendet wird. Die Phase B wird solange wiederholt, bis in SG3 die globale Optimalität der Optimallösung des gegenwärtigen LP’s nachgewiesen ist.

Die Spaltengenerierungsstechnik SG3 ist notwendig, um am Ende die globale Optimalität einer LP-Lösung mit reduziertem Variablenansatz nachzuweisen. Allerdings haben praktische Experimente gezeigt, daß diese Methode allein LP’s des vorliegenden Typs nicht löst. Es wird praktisch kein Fortschritt im Zielfunktionswert erreicht (“stalling”), außerdem lassen sich kaum Variablen aufgrund ihrer reduzierten Kosten aus dem LP entfernen.

Die beiden Spaltengenerierungsstechniken SG1 und SG2 bringen eine globale Sichtweise als SG3: Es wird nicht nur eine einzelne Variable für sich allein aufgrund ihrer reduzierten Kosten beurteilt, sie wird vielmehr im Zusammenspiel mit den übrigen Variablen bewertet. Auf diese Weise werden ganze Umläufe, die natürlich in SG2 nicht notwendig depot-rein sind, generiert. Hierbei können durchaus auch Variablen zum LP hinzugefügt werden, deren reduzierte Kosten positiv sind, also lokal gesehen keine Verbesserung des Zielfunktionswerts versprechen, jedoch zur Komplettierung ansonsten günstiger Umläufe benötigt werden.

Es ist aus Platzgründen unmöglich, alle Details der gesamten Lösungsmethode zu beschreiben. Wir wollen jedoch noch erwähnen, daß wir heuristisch versuchen, aus jeder LP-Lösung eine zulässige Lösung zu generieren. Dies führt bei unseren Problemen zu deutlichen Verbesserungen der oberen Schranke,
was das anschließende Branch&Cut-Verfahren erheblich beschleunigt.

7 Rechenergebnisse

Die oben beschriebenen Methoden wurden insbesondere auf den in Tab. 1 skizzierten realen Datensätzen der Hamburger Hochbahn AG, der Berliner Verkehrsgebiete und der Verkehrsgebiete Hamburg-Holstein AG getestet:

<table>
<thead>
<tr>
<th>Verkehrsgebiet</th>
<th>Depots</th>
<th>Fahrgastfahrten</th>
<th>Leerfahrten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hamburg</td>
<td>40</td>
<td>16.239</td>
<td>5.100.000</td>
</tr>
<tr>
<td>Hamburg 1</td>
<td>12</td>
<td>8.563</td>
<td>11.400.000</td>
</tr>
<tr>
<td>Hamburg 2</td>
<td>9</td>
<td>1.834</td>
<td>1.100.000</td>
</tr>
<tr>
<td>Hamburg 3</td>
<td>2</td>
<td>791</td>
<td>200.000</td>
</tr>
<tr>
<td>Hamburg 4</td>
<td>2</td>
<td>238</td>
<td>24.000</td>
</tr>
<tr>
<td>Hamburg 5</td>
<td>2</td>
<td>1.461</td>
<td>620.000</td>
</tr>
<tr>
<td>Hamburg 6</td>
<td>2</td>
<td>2.283</td>
<td>1.700.000</td>
</tr>
<tr>
<td>Hamburg 7</td>
<td>2</td>
<td>341</td>
<td>36.000</td>
</tr>
<tr>
<td>Berlin</td>
<td>49</td>
<td>21.003</td>
<td>50.000.000</td>
</tr>
<tr>
<td>Hamburg-Holstein</td>
<td>4</td>
<td>3.413</td>
<td>3.700.000</td>
</tr>
</tbody>
</table>

Hamburger Hochbahn AG: In Hamburg werden zur Zeit 14 Betriebshöfe (z.T. Fremdunternehmen) mit insgesamt 9 verschiedenen Fahrzeugtypen geplant. Werden die einzelnen Fahrzeugtypen, die jeweils in einem Betriebshof stationiert sind, als ein Depot definiert, so sind in Hamburg 40 Depots zu unterscheiden. Der Datensatz umfasst 16.239 Fahrgastfahrten, die für alle Depots zusammen durch rund 15,1 Millionen Leerfahrten verknüpft werden können. Das Gesamtpaket dekomponiert in ein 12-Depot-Problem, ein 9-Depot-Problem, fünf 2-Depot-Probleme und neun kleinen Ein-Depot-Probleme mit insgesamt 728 Fahrgastfahrten.

Berliner Verkehrsgebiete: Die BVG unterhändelt zur Zeit 9 Betriebshöfe mit 10 verschiedenen Fahrzeugtypen. Insgesamt ergibt sich für die BVG 49 Depots. In Berlin sind an einem normalen Wochentag rund 28.000 Fahrgastfahrten zu erledigen. Durch Vergabe von Fahrgastfahrten bzw. ganzen Linien an Fremdunternehmen reduziert sich das Problem auf 21.003 Fahrgastfahrten und rund 50 Millionen Leerfahrten.

Verkehrsgebiet Hamburg-Holstein AG: Hier werden 18 Betriebshöfe (z.T. Fremdunternehmen) geplant. Eine Unterteilung in Fahrzeugtypen wurde in unseren Testdaten nicht vorgenommen, jeder Betriebshof definiert deshalb ein Depot. Die 5.603 Fahrgastfahrten können mit rund 4,2 Millionen
Leerfahrten verknüpft werden. Auch dieses Problem dekomponiert in ein 4-Depot-Problem mit 3.413 Fahrgast- und 3,7 Millionen Leerfahrten und in 14 kleinere Ein-Depot-Probleme mit bis zu 613 Fahrgast- und ca. 150.000 Leerfahrten.

Tabelle 2. Fahrzeugbedarfe mit Gewichtungen.

<table>
<thead>
<tr>
<th>Verkehrsbetrieb</th>
<th>Optimalwerte</th>
<th>Heuristische Lösung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fahrzeuge</td>
<td>Gewichtung</td>
</tr>
<tr>
<td>Hamburg (alle Depots)</td>
<td>812</td>
<td>117540</td>
</tr>
<tr>
<td>Hamburg 1</td>
<td>432</td>
<td>63074</td>
</tr>
<tr>
<td>Hamburg 2</td>
<td>103</td>
<td>14702</td>
</tr>
<tr>
<td>Hamburg 3</td>
<td>39</td>
<td>5085</td>
</tr>
<tr>
<td>Hamburg 4</td>
<td>6</td>
<td>1205</td>
</tr>
<tr>
<td>Hamburg 5</td>
<td>62</td>
<td>10920</td>
</tr>
<tr>
<td>Hamburg 6</td>
<td>111</td>
<td>14330</td>
</tr>
<tr>
<td>Hamburg 7</td>
<td>15</td>
<td>2655</td>
</tr>
<tr>
<td>Berlin</td>
<td>1157</td>
<td>194202</td>
</tr>
<tr>
<td>Hamburg-Holstein</td>
<td>201</td>
<td>26405</td>
</tr>
</tbody>
</table>

Tabelle 3. Rechenzeiten in Stunden:Minuten auf SUN SPARCSStation 20-71.

<table>
<thead>
<tr>
<th>Verkehrsbetrieb</th>
<th>Optimal</th>
<th>Fahrzeug-</th>
<th>Heuristisch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fahrgast-minimal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamburg 1</td>
<td>56:47</td>
<td>50:10</td>
<td>0:10</td>
</tr>
<tr>
<td>Hamburg 2</td>
<td>4:07</td>
<td>2:52</td>
<td>0:05</td>
</tr>
<tr>
<td>Hamburg 3</td>
<td>0:04</td>
<td>0:03</td>
<td>0:01</td>
</tr>
<tr>
<td>Hamburg 4</td>
<td>0:01</td>
<td>0:01</td>
<td>0:01</td>
</tr>
<tr>
<td>Hamburg 5</td>
<td>0:08</td>
<td>0:05</td>
<td>0:03</td>
</tr>
<tr>
<td>Hamburg 6</td>
<td>0:06</td>
<td>0:01</td>
<td>0:01</td>
</tr>
<tr>
<td>Hamburg 7</td>
<td>0:01</td>
<td>0:01</td>
<td>0:01</td>
</tr>
<tr>
<td>Berlin</td>
<td>41:00</td>
<td>5:00</td>
<td>0:27</td>
</tr>
<tr>
<td>Hamburg-Holstein</td>
<td>1:55</td>
<td>0:33</td>
<td>0:03</td>
</tr>
</tbody>
</table>

Das von uns entwickelte Branch&Cut-Verfahren ist in der Lage, in akzepta-

Literatur

[SV] P. Schütze und M. Völker. Recent developments of HOT II. In Daduna et al. [DBP].