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Abstract

This paper makes use of statistical mechanics in order to con-
struct effective potentials for Molecular Dynamics for systems with
nonstationary thermal embedding. The usual approach requires the
computation of a statistical ensemble of trajectories. In the context of
the new model the evaluation of only one single trajectory is sufficient
for the determination of all interesting quantities, which leads to an
enormous reduction of computational effort. This single trajectory is
the solution to a corrected Hamiltonian system with a new potential
Ṽ . It turns out that Ṽ can be defined as spatial average of the ori-
ginal potential V . Therefore, the Hamiltonian dynamics defined by
Ṽ is smoother than that effected by V , i.e. a numerical integration
of its evolution in time allows larger stepsizes. Thus, the presented
approach introduces a Molecular Dynamics with smoothed trajecto-
ries originating from spatial averaging. This is deeply connected to
time–averaging in Molecular Dynamics. These two types of smoothed
Molecular Dynamics share advantages (gain in efficiency, reduction of
error amplification, increased stability) and problems (necessity of clo-
sing relations and adaptive control schemes) which will be explained
in detail.

Keywords: smoothed molecular dynamics, effective potentials, averaging,
nonstationary heat bath embedding, expectation values, ensemble averages
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� Introduction

In Molecular Dynamics (MD) we are interested in a description of the dy-
namical behaviour of a (macro)molecular system in the scope of classical
mechanics. Therefore we are concerned with Hamiltonian functions of the

form

H(q, p) =
1

2
pTM−1p + V (q) ≥ 0 (1.1)

which lead to the following Hamiltonian equations of motion:

d

dt
q = DpH(q, p) = M−1p

d

dt
p = −DqH(q, p) = −DV (q),

(1.2)

where Dp and D = Dq are the differential operators with respect to p ∈ R3N

and q ∈ R
3N, the momenta and space coordinates of the N atoms of the

considered molecular system. We assume that the potential V is given, and
that it is a “good classical model” for the system. Then, if adequate initial
conditions

(q, p)(0) = (q0, p0) (1.3)

are given, a solution of (1.2) describes the motion of the molecular system
without interaction with any other system. Thus, we only have to care for an
efficient, accurate, and stable numerical solution of (1.2).
This is the idealized situation. There are several serious problems. Three of

them will be explained in the following. They make up the starting point for
the considerations in this paper.

Problem 1: Even if we accept that the exact solution of (1.2) gave us the

answers we are interested in, we are often not able to compute its numerical
solution on a sufficiently large time scale. In the typical situation the potential
V contains parts which stand for the bond interaction between bonded atoms
in the molecule:

V (q) = U(q) +
1

2

m∑
k=1

λk gk(q) (1.4)
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with e.g. harmonic models for gk for the k = 1 . . . m different bond-types:

gk(q) =
∑
i,j∈B

(‖qi − qj‖ − Lk)
2
,

where Lk is the equilibrium length of bond type k, qi ∈ R3 the vector of the

space coordinates of the ith atom, and the summation runs over all bonded
pairs. This g–part of the potential V causes highly oscillatory motions of the
bonded atoms. Because of the typical magnitude of the λk, these bond vi-

brations appear on a timescale of about 1 femtosecond and are the “fastest
degrees of freedom” of the molecule. Careful investigations have shown that
the bond vibrations are an essential part of the nonlinear dynamics of the
molecule, i.e. they cannot simply be eliminated or modelled [3][8].

Thus, if we are interested in the accuracy of the numerical solution of (1.2),
we have to resolve this timescale, i.e. we have to choose stepsizes τ ≈ 1 fs
in the time discretization. And even if accuracy is less important we have
to use τ ≈ 1 fs in order to ensure numerical stability for the iteration of

the discretization (at least for all conventional explicit discretizations [1]; for
most implicit methods similar stepsize bounds result from the requirement
of unique convergence of the iterative solution of the nonlinear equations in
each step).

The typical time length of an MD simulation is tmax � 1ps. Therefore we
have to make a large number tmax/τ of time steps, i.e. only the large compu-
tational effort of a typical MD calculation strictly limits its time length. In

Section 2 the idea of “smoothed dynamics” will be discussed as a proposal
for reducing the effort of those computations.

Problem 2: Normally, we are not interested in the motion of the molecular

system without interaction with any other system. It is frequently desirable
to simulate a system under conditions of constant temperature T , since this
is the condition under which most experiments are performed. Hence, we
have to model the heat bath embedding of the considered molecular system,

“simply” solving (1.2) is not enough. But “temperature” and “heat bath em-
bedding” can only be defined in a statistical sense, i.e. for an ensemble of
identically prepared systems or in a stochastic theory for the single system.
In addition, we are not interested in the pure equilibrium theory but in the

motions, reactions, and structural changes of the molecular system embed-
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ded in an environment with constant temperature. Hence Section 3 shortly
presents the statistical formulation of (1.2) and a definition of an ensemble

of molecular systems with nonstationary embedding in heat baths of tempe-
rature T , which in particular is different from the “canonical” equilibrium
theory.

Problem 3: Another crucial point is the requirement for adequate initial
conditions. The initial state of the molecular system is typically known from
measurement. Therefore there is a fundamental uncertainty about the initi-

al condition of (1.2) if they are adapted to experimental realizations. More
precisely, the coordinates q can only be given with a (small) degree of uncer-
tainty

qk(0) ∈ {x : |x − q0k| ≤ δk} ∀k = 1 . . . 3N, (1.5)

whereas the initial momenta p are typically not determined experimentally.
As a consequence adequate initial condition can only be given in the frame-

work of, again, an ensemble formulation. The statistical version of (1.2) (cf.
Section 3) can be used for a concise definition of the “initial conditions”, in
particular for the initial momenta.

Problems 2 and 3 demand for a statistical formulation of (1.2). But the dy-
namical behaviour of the statistical ensemble is “rich”, the computational
effort for its full simulation is far too large. One main aspect of the followi-

ng sections is the reduction of this effort. This is realized by reducing the
rich ensemble–dynamics to the far simpler evolution of a single Hamiltonian
system with a new Hamiltonian H̃. The other main aspect (construction of
a smoothed MD) is deeply connected to this because the H̃-trajectories are

smoother than the corresponding H-trajectories.

� Smoothed MD and Averaging in Time

As stated above bond vibrations are the fastest motions in typical MD situa-
tions and lead to hard restrictions for the stepsize τ in (explicit) numerical
integration methods. Mostly, we do not want to compute all these “unessen-
tial” oscillatory details. But we want to get correct information about the

physically relevant dynamical behaviour of the considered system, i.e. we
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cannot ignore the bond dynamics.

2.1 Basic Ideas and Problems

The idea of smoothed dynamics is to compute only the “running average”(
q(t)
p(t)

)
:= Aα

(
q
p

)
(t)

of the exact solution (q, p)T of (1.2). The average operator Aα is given by

(Aαx)(t) :=
1

α

∫
R

w
(
t− s

α

)
x(s) ds

with an appropriate weight function w with limt→∞ w(t) = 0, e.g.

w(x) = χ[−1/2,1/2](x) =

{
1 : −1/2 ≤ x ≤ 1/2
0 : otherwise

.

Another possibility may be to choose w in a way which makesAα a low pass
filter with cut–off frequency O(1/α). Now, the task is to deduce a differential
equation for (q, p) from (1.2). We can use the fact that

d

dt
Aα x = Aα

d

dt
x, ∀x

to get using (1.2) that

d

dt

⎛
⎝ q

p

⎞
⎠ =

⎛
⎝ M−1p

−DV (q)

⎞
⎠ (2.1)

The trajectories of (2.1) would be smooth, if Aα was chosen in a way which
lets the “fastest oscillations” of (q, p) occur on a time scale Δt � 1 fs, i.e.

that the numerical integration of (2.1) allows stepsizes τ ≈ Δt � 1 fs (cf.
Figure 1).
Unfortunately, we have to know the solution q(t) of (1.2) to compute the
right hand side DV (q) of (2.1), because the nonlinear function DV (q) and

Aα do not commute:

DV (q) = AαDV (q) 	= DV (Aαq) = DV (q). (2.2)
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Fig. 1. Typical dynamics with bond vibrations (top) and its running average with avera-

ging on different time scales.

And worse, up to now there is no way to deduce a function v with

DV (q) = v (q) (2.3)

using mathematical means only. Thus, we have to look for a physical alterna-
tive: we may construct v by using additional physical insight in the dynamics,
e.g. in form of additional postulates. [9] and [10] may be taken as examples
for this approach. In [9] , a result from statistical mechanics (equipartition of

energy for ergodic systems embedded in a heat bath of fixed temperature) is
used as such a postulate. Then, it is shown that v can be written as v = DṼ
with a corrected potential Ṽ , if the parameters λk in (1.4) are large enough
in comparison to all changes in the forces effected by U (gap condition):

λk � max
t

D2U(q(t)).

In the new potential Ṽ the bond interaction part V − U is cancelled and a
“smoother” correction term occurs, which models the influence of the bond

motions on the “rest” of the motions. Conclusively, a statistical postulate
allows to construct a smoother potential which models the influence of bond
dynamics instead of containing it explicitly. How can such a smoother poten-
tial be constructed directly using a statistical formulation of (1.2)? Section

4 gives an answer to this question.

5



2.2 Reduction of Error Amplification

Potentials with steep gradients can lead to a strong amplification of numerical
errors along the trajectories of the corresponding Hamiltonian system. For
highly oscillatory trajectories a “successful smoothing” can effect an essential
reduction of this error amplification. This should become clear if one considers

the following 4-dimensional test system:

H(q1, q2, p1, p2) =
1

2

(
p21
2

+
p22
2

+ ω2 (q2 − q1)
2

)
+ V (q1) (2.4)

with a strong harmonic part (ω � 1) and the morse potential (cf. Figure 2)

V (q) =
1

2
(1 − exp(−a q))L with a > 0 and L ∈ N. (2.5)

It can be shown (using perturbation analysis or the results of [9]) that for ω �
a (gap condition) and time intervals not too large the smoothed evolution of
(2.4) is approximately given by the solution of the 2d–Hamiltonian system
with

H(q, p) =
1

2
p2 + V (q).

This allows us to compare the error propagation in the two systems: Assume

that we have made an (numerical) error ε for the state (q, p) of a system at
t = 0. How strong will it be amplified by the evolution of the system? Let
Φt be the phase flow of (2.4), i.e. Φtx0 is the solution of (2.4) with initial
conditions x0 = (q, p)(0) = (q0, p0). Then we are interested in the interval

condition number

κ[0, t] := max
s∈[0,t]

sup
ε

‖Φt(x0 + ε) − Φtx0‖
‖ε‖ , (2.6)

in an arbitrary norm ‖ · ‖ (for the theoretical background of this concept see

[2]). Figure 3 shows the evolution of κ[0, t] in time t for the original and for the
smoothed system. We observe that, firstly, the amplification of errors can be
strong for collision potentials like (2.5) and that, secondly, this amplification

can be reduced by smoothing the dynamics. Thus, smoothing techniques will
not only help to increase stepsize and efficiency but also allow accurate MD
integration on larger time intervals.
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2.3 Adaptation of Stepsizes

Figure 3 shows another important aspect of the smoothed dynamics: For the
original, highly oscillatory solution and for each discretization scheme there

is a fixed stepsize τ0 which is overall optimal with respect to efficiency (τ =
a fixed fraction of the average period of the oscillation), i.e. stepsize control
cannot increase efficiency. For the corresponding solution of the smoothed
dynamics this is not the case, because the oscillations are “cancelled” (cf.

Figure 1: you can make large timesteps except in the region of the two jumps).
Thus, in order to be efficient, smoothed MD requires stepsize control schemes.
Up to now, it has not become clear how to solve this problem most efficiently:
in the scope of explicit, symmetric extrapolation schemes (cf. [4] or [2]) or

by use of symplectic discretizations [5][6].

� Statistical formulation of Molecular Dynamics

This Section is concerned with the question of how to give an ensemble for-

mulation of (1.2) and of the additional heat bath embedding of the molecular
system.

3.1 Probability Density and Expectation Values

We consider a statistical ensemble of identically prepared molecular systems

which are described by the Hamiltonian H from (1.1). The basic concept of
the formulation is the introduction of a (phase space) probability density

f : R3N ×R3N ×R → [0, 1].

for this ensemble. f(q, p, t) must be interpreted as the relative frequency of
systems in the ensemble which occupy state (q, p) at time t. The equation of
motion for f is the well–known Liouville equation

∂t f = [H , f ]

= DqH ·Dpf − DpH ·Dqf (3.1)

= DV (q) ·Dpf − Dqf ·M−1 p
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with the Poisson brackets [·, ·]. Let us assume that a normalized initial density

f(·, ·, 0) = f0 : R3N ×R3N → [0, 1] with
∫

R6N

f0(q, p) dq dp = 1

is given (see Section 3.3). Let Φt again be the phase flow of (1.2), i.e. Φt(q0, p0)

is the solution of (1.2) with initial conditions (q, p)(0) = (q0, p0). Then, the
formal solution of (3.1) can be given:

f
(
Φt(q, p) , t

)
= f0 (q, p) . (3.2)

From (3.2) we see that (3.1) describes the transport of the initial density
along the integral curves of (1.2). Moreover, it is obvious that a solution
of (3.1) is equivalent to the evaluation of the total flow Φt, i.e. equivalent

to the solution of an infinite number of initial value problems with (1.2) as
differential equation.
Fortunately, we are not interested in f itself but in the expectation values of
physical observables with respect to f , i.e. with respect to our ensemble. An

observable is a sufficiently smooth and f–integrable function

A : R3N × R
3N → R

m, m ∈ N
and its expectation value is defined as

〈A〉(t) =
∫

R6N

A(q, p) f(q, p, t) dq dp.

So far, this can be found in textbooks on Statistical Mechanics, e.g. [7]. Now,
Liouville’s equation (3.1) gives us equations of motion for the expectation
values (via partial integration):

d

dt
〈A〉 = 〈DqA ·M−1p〉 − 〈DpA ·DV 〉. (3.3)

In particular, the equation of motion for the position and momenta observable
A(q, p) = (q, p)T is

d

dt

⎛
⎝ 〈q〉

〈p〉

⎞
⎠ =

⎛
⎝ M−1〈p〉

−〈DV (q) 〉

⎞
⎠ (3.4)
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and we observe the same fundamental problem of noncommutativity as we
had in Section 2 (eq. (2.2)):

〈DV (q)〉 	= DV (〈q〉), (3.5)

i.e. equation (3.4) is not closed, we need knowledge about f for the evaluation
of its right hand side. More precisely, we do not need f but only the reduced
density

F (q, t) :=
∫

R3N

f(q, p, t) dp, (3.6)

because of

〈DV (q) 〉 =
∫

R3N

DV (q)F (q, t) dq. (3.7)

But again, we are not able to deduce this knowledge mathematically without
solving (3.1) and we have to construct it using a physical model, i.e. we have to
construct a closing relation 〈DV (q)〉) = DṼ (〈q〉) for the statistical equation

of motion (3.4). For the case of (nonequilibrium) thermal embedding Ṽ can
be constructed via a heuristical model for f (cf. Section 4). But before going
into details we must give some comments on the definition of “temperature”,
“heat bath embedding”, and the initial density f0 (“solving” Problem 2 and

3 from the introduction).

3.2 Temperature and Heat Bath Embedding

All densities f(q, p) = ψ(H(q, p)) with a smooth and sufficiently decreasing
function ψ : R+ → [0, 1] are stationary solutions of Liouville’s equation (3.1).
One of these, the well–known canonical ensemble

fc(q, p) =
1

Q
exp(−βH(q, p)) with Q =

∫
R6N

e−βHdp dq, (3.8)

is used to define “temperature”: fc is the probability density of our ensemble
iff the ensemble is in equilibrium with a heat bath of temperature

T =
1

kB β
, kB : Boltzmann constant.
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This statistical way of defining temperature has an interesting consequence
for Hamiltonian of the form (1.1): If 〈·〉 is the expectation value with respect

to fc it is 〈p〉 = 0 and with the dyadic product (p⊗ p)kl = pkpl we find:

〈p⊗ p〉 =
1

β
M = M kBT,

ifM = diag(mk) is diagonal (what we assume in the following). Together we

have

〈p⊗ p〉 − 〈p〉 ⊗ 〈p〉 =
1

β
M. (3.9)

In particular, the deviation of the measurement of 〈pl〉 in the canonical en-
semble is controlled by the temperature:

Δ(pl) := 〈p2l 〉 − 〈pl〉2 =
ml

β
= mlkBT.

A concrete computation of an expectation value 〈A〉 with respect to fc re-

mains a very hard problem, because a careful approximation of the corre-
sponding high–dimensional integrals (e.g. in the evaluation of Q) produces
dramatically large computational effort. Moreover, in the typical MD con-
text, we often are not interested in describing the equilibrium state of the

molecular system. Certainly, we want to simulate the system in interaction
with a heat bath of fixed temperature but not necessarily in equilibrium with
it. Thus, our question is how to construct a density which describes this si-

tuation? This is a crucial point. Let us be careful and therefore precise. The
solution f of Liouville’s equation with initial condition f(·, 0) = f0 describes
an ensemble of single system of type S, which all are totally characterized by
the Hamiltonian H, i.e. the evolution of each single systems is totally deter-

mined by H and the corresponding initial condition for this system. But H
doesn’t include the heat bath: systems of type S are free, i.e. they are not
interacting with a heat bath. Then, what is the meaning of the statement
“fc describes equilibrium heat bath embedding of the S–ensemble”? It states,

that there is a particular initial density f0 = fc which models the situation
of heat bath embedding of S in the sense that the expectation values with
respect to the corresponding solution f(·, t) = fc of Liouville’s equation are
correct descriptions for S in thermal equilibrium! This shows the importance

of the initial density in this statistical approach, i.e. the importance of the
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initial preparation of the ensemble. If f0 	= fc we do not know how to mo-
del “thermal embedding”. We may go the way of changing the Hamiltonian

H → Ĥ, e.g. by adding additional stochastic forces. Or we may construct a
model for the density f which, then, must no more fulfil Liouville’s equation
for H but a “corrected” one. This last approach is realized herein (cf. Section

4). As a first step it should be noted that (3.9) is not equivalent to the cano-
nical ensemble, i.e. if (3.9) is fulfilled for the expectation values with respect
to a density f this does not imply f = fc. We may use this freedom and de-
fine that a density f which fulfils (3.9) describes an ensemble in interaction

with a heat bath with temperature T = 1/kBβ (in local equilibrium).

3.3 Initial Density

What is the “right” initial density f0 = f(·, ·, 0) for (3.1) if we are in the

situation explained in Problem 3 in the introduction? Equation (1.5) leads
us to the following model for the “spatial part” of f0:

f0(q, p) = φ(p)
3N∏
k=1

wk

(
qk − q0k
δk

)

where φ must still be defined and the wk : R → [0, 1] are suitable weight
functions with

∫
w(x)dx = 1. If we assume normal distribution for the error

of the spatial measurements we will e.g. use

wk(x) =
1√
π

exp(−x2).

If f0 is the initial density of an ensemble in interaction with a heat bath of
temperature T = 1/kBβ, the usual model for φ is normal distribution with

a variance controlled by temperature

φ(p) =
1

α
exp

(
−β
2
pTM−1p

)

with α so that f0 is normalized, i.e.

f0(q, p) =
1

α
exp

(
−β
2
pTM−1p

)
3N∏
l=1

wk

(
qk − q0k
δk

)
(3.10)
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with

α =

(√
2π√
β

)3N 3N∏
k=1

δk
√
mk.

This construction guarantees that f0 fulfils (3.9) and that

〈p〉 = 0 and 〈qk〉 = q0k. (3.11)

In particular, the form of the spatial part shows that f0 	= fc, i.e. the initial
preparation of our ensemble given by the spatial measurement (1.5) does not

fit in the context of thermal equilibrium (see above).

� Smoothed MD and Spatial Averaging

In “standard” MD–approaches the statistical nature of our problem may be
taken into account by computing a representatively large number of trajec-
tories with different, f0–distributed initial values and (1.2) as equation of

motion. Then, interesting expectation values are computed as mean values
over all these trajectories. If this is done carefully it produces an enormous
computational effort. Is it possible to evaluate these expectation values from

one trajectory only, for instance the solution of our statistical equations of
motion (3.4)? This would only be possible if we found a closing relation
〈DV (q)〉 = DṼ (〈q〉) for (3.4) and adequate initial values. In the followi-
ng such a closing relation and initial values are constructed from a model

for the nonstationary probability density for thermally embedded systems
which fits to the initial conditions (3.10). The reformulated equation of mo-
tion will again be Hamiltonian with a smoothed effective potential Ṽ leading
to smoother trajectories. But let us start proving some useful properties of

“separable” densities.

4.1 Separable Densities

In this subsection we assume that the considered density f is separable, i.e.

for all t ≥ 0 it holds

f(q, p, t) = Q(q, t) · P (p, t) (4.1)

13



with both, Q and P , being normalized and with

lim
|pk|→∞

P (p, t) = lim
|qk|→∞

Q(q, t) = 0 ∀k = 1, . . . , 3N. (4.2)

In this situation the following theorem holds:

theorem 1. Let 〈·〉 be the expectation value with respect to a separable
density. Then the equations of motion (3.4) for the position and momenta
expectation can be written in closed form and as a new Hamiltonian system

d

dt
〈q〉 = DpH̃(〈q〉, 〈p〉) = M−1〈p〉

d

dt
〈p〉 = −DqH̃(〈q〉, 〈p〉) = −DṼ (〈q〉),

(4.3)

with a corrected Hamiltonian

H̃(q, p) =
1

2
pTM−1p + Ṽ (q). (4.4)

Thus, the closing relation for system (3.4) is deduced: 〈DV (q)〉 = D̃V (〈q〉).
The new potential Ṽ only depends on the old one V and on the initial density
f(·, ·, 0).

Proof. (4.1) implies for the reduced density (3.6)

F (q, t) = Q(q, t)

and, in particular: ∫
R3N

pP (p, t) dp = 〈p〉(t). (4.5)

In this situation we can deduce an equation for F = Q alone. Therefore,
integrate (3.1) over p and use (4.2) to get

∂t F = −DqF · M−1
∫

R3N

p P (p, t) dp

= −DqF · M−1 〈p〉. (4.6)
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If 〈p〉(t) and the initial reduced density

F0 = F (·, 0)
are known, the solution of (4.6) can be written as

F (q, t) = F0

⎛
⎝q − M−1

t∫
0

〈p〉(s) ds
⎞
⎠ ,

and we can use our general formula (3.4) to get

M−1

t∫
0

〈p〉(s) ds = 〈q〉(t) − 〈q〉(0)

and from this
F (q, t) = F0 (q − 〈q〉(t) + 〈q〉(0)) .

If we switch to the centered initial density

F̃0(q) := F0(q + 〈q〉(0)) (4.7)

we finally have

F (q, t) = F̃0(q − 〈q〉(t)), (4.8)

i.e. the initial probabilities F̃0(q) are transported along the curves 〈q〉(t) of
the spatial expectation value (cf.(3.2)). With (4.8) the desired consequences
for the equation (3.4) follow directly: From (3.7) we get

〈DV (q)〉(t) =
∫

R3N

DV (q)F (q, t) dq

=
∫

R3N

DV (q) F̃0 (q − 〈q〉(t)) dq

=
∫

R3N

DV (q′ + 〈q〉(t)) F̃0(q
′) dq′

= Dq Ṽ (〈q〉(t))
with a new potential

Ṽ (q) :=
∫

R3N

V (q′ + q) F̃0(q
′) dq′. (4.9)
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This implies the statement of the theorem.

Our theorem has additional nice consequences. If we consider an arbitrary
spatial observable A = A(q) one can show by the same calculations starting

with (3.3) that
d

dt
〈A〉 = DÃ(〈q〉) M−1〈p〉 (4.10)

with a new function

Ã(q) :=
∫

R3N

A(q′ + q) F̃0(q
′) dq′,

i.e. solving (4.3) makes the computation of all spatial expectation values

possible.

4.2 Probability Density for Thermally Embedded Systems

We want to construct a density fβ for an ensemble which describes (non-
stationary) thermal embedding. This density shall allow us to find a closing

relation for (3.4). Theorem 1 states that we can deduce the desired closing
relation if fβ is separable. Therefore, consider the following density:

fβ(q, p, t) = F (q, t) · 1

α
exp

(
− β

2
(p− 〈p〉(t))TM−1(p− 〈p〉(t))

)
(4.11)

with

α =
3N∏
l=1

√
2πml

β
.

It is separable in the sense of (4.1), nonstationary, fulfils the initial condition

(3.10) with

F (q, 0) = F0(q) =
3N∏
l=1

1

δk
wk

(
qk − q0k
δk

)
(4.12)

and 〈p〉(0) = 0,

and has the property

〈p⊗ p〉 − 〈p〉 ⊗ 〈p〉 =
1

β
M,
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which is (3.9), our defining equation for nonstationary embedding in a heat
bath of temperature β.

Thus, fβ models the situation which we wanted to describe with the “correc-
ted spatial Liouville equation”

∂t F = −DqF · M−1 〈p〉 (4.13)

and
d

dt
〈p〉 = −

∫
R3N

DV (q)F (q, t) dp

as equations of motion (cf. the proof of Theorem 1) and (4.12) as initial

condition.
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Fig. 4. Original (solid line) and smoothed potential (dotted line) and the corresponding

Hamiltonian dynamics. Already in this simple example numerical integration of the smoo-

thed dynamics needs 3 times less steps than in the original case.

Finally, we know from Theorem 1, that the separability of fβ , the initial
conditions (4.12), and the new potential Ṽ from (4.9) give us new and clo-

sed Hamiltonian equations of motion for the expectation values of ensembles
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modelling nonstationary thermal embedding:

d

dt
〈q〉 = M−1〈p〉 〈q〉(0) = (q0k)k=1,...,3N

d

dt
〈p〉 = −DṼ (〈q〉) 〈p〉(0) = 0.

(4.14)

4.3 Averaged Potentials for MD Calculations

According to (4.14) we have to use (4.9) to compute the new potential Ṽ
with a centered density F̃0 given by (4.7) and (4.12):

Ṽ (q) =
∫

R3N

V (q + q′)
3N∏
l=1

1

δk
wk

(
q′k
δk

)
dq′1 · · · dq′3N . (4.15)

This means that Ṽ is constructed from V by weighted (spatial) averaging on
scales δl, e.g. with Gaussians

Ṽ (q) =
∫

R3N

V (q + q′)
3N∏
l=1

1√
πδk

exp

⎛
⎝
(
q′k
δk

)2
⎞
⎠ dq′1 · · · dq′3N . (4.16)

Therefore, the new system (4.14) has smoothed trajectories in comparison
to the original system (1.2) and its integration produces less computational

effort (cf. Figure 4). Because of this, things explained in Sections 2.2 and 2.3
are valid for (4.14), too.
For typical MD potentials V the explicit evaluation of the integrals in (4.15)
is possible, because they are sums of “simple” potentials V (k):

V (q) =
m∑
k=1

∑
(j1...jNk

)∈Bk

V (k)
(
q j1, . . . , q jNk

)
,

wherein Nk is small for all types k = 1, . . . , m. Realization of this evaluation
and efficient numerical integration of (4.14) for realistic molecular systems
will be subject of further work.
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� Conclusion

Typical MD simulations for (macro)molecular systems with nonstationary
thermal embedding necessarily require the computation of a representative-

ly large (statistical) ensemble of trajectories and expectation values as cor-
responding ensemble averages. In addition, the evaluation of each of these
trajectories produces large computational effort because hard stepsize limi-
tations are demanded in order to ensure stability of the time integration.

We have presented an approach which leads to a reduction of computational
effort in both cases:
The construction of a model for the nonstationary probability density for the
considered situation allows us to deduce a closing relation for the equation

of motion (3.4) which is the equation for the (q, p)–observable. Thus, we are
able to evaluate the expectation values of all spatial observables via (4.10)
by computing only one trajectory (〈q〉, 〈p〉) as the solution of a new Hamil-

tonian system (4.14) with uniquely determined initial values. The potential
Ṽ of this Hamiltonian system is determined as a weighted spatial average of
the original potential V . Thus, in comparison to the original trajectories, our
single trajectory (〈q〉, 〈p〉) is smoother, i.e. it allows larger stepsizes and has

also the other advantages of a smoothed MD (gain in efficiency, reduction of
error amplification, increased stability).
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