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Abstract. We consider a nonlinear nonconvex network design problem that arises in the extension
of natural gas transmission networks. Given is such network with active and passive components,
that is, valves, compressors, control valves (active) and pipelines (passive), and a desired amount of
flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints
in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to
potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist
a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts.
Then a natural question is where to extend the network by adding pipes in the most economic
way such that this flow becomes feasible. Answering this question is computationally demanding
because of the difficult problem structure. We use mixed-integer nonlinear programming techniques
that rely on an outer approximation of the overall problem, and a branching on decision variables.
We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution
time when added to the formulation. We demonstrate the computational merits of our approach
on test instances.

Keywords: Network Design; Mixed-Integer Nonlinear Programming; Cutting Planes.

1 Introduction

Natural gas is a nontoxic, odorless, transparent, and flammable gas that originates from underground
deposits. Today natural gas is mainly used for heating private houses and office buildings, for the gen-
eration of electrical power, as fuel for vehicles, and for several reactions in chemical process engineering.
The world’s joint resources in natural gas are assumed to last for the next 60 to 500 years, if conveyance
and consumption remain on the current level. With natural gas around one quarter of the world’s energy
demand is covered. Since natural gas is the “greenest” energy source among the fossil ones, its market
share is estimated to grow to 50% towards the end of this century.

The natural gas must be transported from the deposits to the customers, sometimes over distances
of several thousand kilometers. For very long distances (more than 4000km) it is more economic to cool
down the gas to −160◦C such that it becomes liquid and to transport it via ships. For shorter distances
or for the delivery to the end customers large pipeline systems are used. An existing gas network usually
has grown over time. In Germany, it was built by gas supply companies such that it can ensure the
transportation of exactly the required amounts of gas to their customers. In the past, the German gas
supply companies were gas vendors and gas network operators at the same time: They purchased gas
from other suppliers and set up and operated the necessary infrastructure to transport the gas from
those suppliers to their customers. In course of the liberalization of the German gas market, these roles
and business units were separated by regulatory authorities (see [15] for more details on the regulatory
background). Now there are companies whose sole task is the transportation of gas and who operate gas
transportation networks for this purpose. Several previously independent networks were aggregated into
bigger units. A discrimination free access to these networks has to be granted to everyone. This increase
in flexibility for gas vendors and customers requires a higher degree of operational flexibility from the



gas network operators. Although the total amount of transported gas is approximately the same, today’s
gas networks cannot cope with this. Various congestions show up obstructing the desired flexibility. To
overcome these shortcomings a massive investment in the network infrastructure is necessary in the
near future. Extension management becomes a crucial issue, since each single investment into a new
compressor or a new pipe costs up to several hundreds of million Euros.

A gas network may be extended in several ways to increase the local transportation capacity. It is
possible to build new pipes and to extend the capabilities of compressor stations and control valves or to
build new ones. A special case of building a new pipe is looping: A loop is a pipe that follows an existing
one. Loops are to some extend cheaper to build than a new pipe somewhere in the country, because land
owner rights are already settled and building permissions are easier to obtain. Hence loop extensions are
first-choice, long before a non-loop pipeline is considered. Thus in the computational section we focus
on loop extensions, the methods, however, can be applied to any kind of extension by new pipelines. For
more details we refer to [13].

Several approaches to improve the topology of a gas network are reported in the literature. Mainly
various heuristic and local optimization methods are in use. So far, we are not aware of approaches from
the literature that apply global methods to solve network design problems for gas transmission networks.
Boyd et al. [5] apply a genetic algorithm to solve a pipe-sizing problem for a network with 25 nodes and
25 pipes, each of which could have one of six possible diameters. Castillo and Gonzaleza [7] also apply a
genetic algorithm for finding a tree topology solution for a network problem with up to 21 nodes and 20
arcs. In addition to pipes, also compressors can be placed into the network. Mariani et al. [21] describe
the design problem of a natural gas pipeline. They present a set of parameters to evaluate the quality of
the transportation system. Based on these they evaluate a number of potential configurations to identify
the best among them. Osiadacz and Gorecki [24] formulate a network design problem for a given topology
as a nonlinear optimization problem, for which they iteratively compute a local optimum. For a given
topology the diameter of the pipes is a free design variable. Their method is applied to a network with
up to 108 pipes and 83 nodes. De Wolf and Smeers [11] also use a nonlinear formulation and apply a local
solver. They distinguish the operational problem (running the network) from the strategical investment
problem (extending the network). For a given topology with up to 30 arcs and nodes they can determine
(locally) optimized pipe diameters. Bonnans and André [2, 4] consider the optimal design problem of a
straight pipeline system, and derive some theoretical properties of an optimal design. In [20] we describe
a primal heuristic based on dual information from KKT solutions of the gas network model formulation.

Our contribution in this field is to apply exact optimization methods that can converge to a proven
global optimal solution. Our theoretical contribution is the introduction of a new class of valid inequalities
that improve the relaxation of the model, and thus have a positive impact on the running time of a branch-
and-cut solution algorithm. Our methods were developed in cooperation with Open Grid Europe GmbH
(OGE), a large gas transportation company.

The remainder of this article is organized as follows. In Section 2 we introduce the physical background
of gas flows and in Section 3 the mathematical background of mixed-integer nonlinear programming.
Section 4 presents a mathematical programming model for the simultaneous gas nomination and extension
of a given network by selecting from a set of additional loop pipes. For a subproblem of this model to be
defined in Section 4.2 we derive valid inequalities in Section 5. These inequalities are extended to a valid
cut for the topology optimization problem in Section 6. We show computational results obtained using
this procedure in Section 7. Finally we conclude in Section 8 and give some ideas for future research
directions.

2 Physical and Technical Background of Transmission Networks

We give mathematical descriptions for active and passive elements that are the basic building blocks of
the transmission networks we study.

2.1 Pipes

The majority of the edges in a transmission network are passive pipes. In a network with node potentials
the amount of flow over an edge is determined by the actual node potential values at both ends. Depending
on the physical properties of the flow different functional relationships are described in the literature to
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approximatively determine the flow value. The fundamental equation we assume for an edge e = (v, w)
is

αeqe|qe|ke = πv − γe πw. (2.1)

Here αe and ke are constants that subsume all physical properties of the pipe, the flow, and the in-
teractions of the flow with the edge (c.f. Weymouth [31]). The constant γe in particular represents the
height difference between nodes v and w. If some pipelines e1, . . . , en form a directed cycle, it is assumed
that γe1 · . . . · γen

= 1. If a cycle is undirected, we assume this constraint holds after reverting some of
the arcs, so that this cycle becomes directed. If arc (v, w) with right-hand side πv − γ(v,w)πw in (2.1) is
reverted, then the new right-hand side of arc (w, v) becomes πw − γ−1

(w,v)πv. (Note that the constant on
the left-hand side changes from αe to αe · γ−1

e .) Although each edge e in principle might have a different
value for ke it is natural to assume that all edges have the same constant. The mathematical theory
which we present in the following relies on the fact that ke ∈ {0, const}, with const ∈ R>0. The variable
qe ∈ R represents the flow, where a positive value is a flow from v to w, and a negative value is a flow in
the opposite direction from w to v. The variables πv, πw are the node potential values.

Gas Networks. The Weymouth equation [31] is an old but still used equation to approximate the flow
of gas in long pipelines. It relates the pressure of the gas in the end nodes, pv and pw, to the flow in the
following way:

qe|qe| = C2
e · (p2

v − p2
w),

where C2
e is computed by the following formula:

C2
e := 96.074830 · 10−15 d5

e

λe z T Le δ
,

where
1
λe

=
(

2 log
(

3.7 de
ε

))2

,

with Le being the length of the pipe (km), de the inner diameter of the pipe (mm), T the gas temperature
(K), ε the absolute roughness of the pipe (mm), δ the density of the gas relative to air, and z the gas
compressibility factor [23, 12, 26]. Note that our approach cannot cope with other more accurate pressure
loss equations, if C2

e is not a constant but a flow- or pressure-dependent variable. After substituting
πv = p2

v and πw = p2
w (for γe = 1) Weymouth’s equation takes the form of (2.1). The slightly more

general version of Weymouth’s equation with γe 6= 1 (for different heights of the pipe’s end nodes) is
given in [25].

Water Networks. Our mathematical approach is also suited for water networks. The flow of water in
pipelines can, for instance, be approximated by the Hazen-Williams equation [18]:

10.67
C1.85
e

Le
d4.87
e

qe|qe|0.85 = ρ · g · (hv − hw),

where Ce is a dimensionless roughness coefficient (typically ranging between 90 and 150), Le is the
length (meters), de is the inside diameter (meters), ρ is the density of the fluid (kg/m3), g is the local
acceleration due to gravity (m/s2), qe is the volumetric flow rate (cubic meters per second), and hv, hw
are the geographical heights of nodes v and w (Pa). Setting πv = hv and πw = hw and γe = 1 the
Hazen-Williams equation takes the form of (2.1).

2.2 Valves

A valve is installed in the network to separate or join two independent pipes. They allow for a discrete
decision, either being open or closed. The spatial dimension of a valve is assumed to be small in com-
parison to the pipes. Hence in our model the node potential values are identified when the valve is open.
If the valve is closed then they are decoupled. Mathematically a valve is an edge e = (v, w) with the
following description:

xe = 1 ⇒ πv − πw = 0,
xe = 0⇒ qe = 0,

where xe ∈ {0, 1} is a binary decision variable.
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2.3 Increasing the Node Potential

In transmission networks it is necessary at certain locations to increase the node potential value. For
example, in gas networks the pressure is too low after a transport distance of 100-150km. Here compressors
are used to increase the pressure level again. For the mathematical description of such active network
elements, various models exist in the literature. We follow the approach of De Wolf and Smeers [12], and
make use of the following formulation for a pipe e = (v, w) with a compressor:

αeqe|qe|ke ≥ πv − πw, (2.2)

which allows a flow larger than the one corresponding to the pressure decrease in the pipe. We rewrite
this inequality as equality by introducing a weighted slack variable ye as

αeqe|qe|ke + βeye = πv − πw (2.3)

with constant βe ∈ R and y
e
≤ ye ≤ ye. Note that the flow can only go in positive direction through a

compressor, hence the lower bound needs to be set accordingly, i.e., qe ≥ 0.

2.4 Reducing the Node Potential

It can be necessary to reduce the node potential along an edge e = (v, w) in the network, for example,
to protect parts of the network from high potentials. In gas networks, for instance, these are control
valves that reduce the gas pressure. A pipe with a control valve e = (v, w) is inverse to a pipe with a
compressor. Hence we need to turn the sense of the inequality (2.2) around:

αeqe|qe|ke ≤ πv − πw, (2.4)

in order to decrease the pressure in w more than the flow and the input pressure would actually require.
After introducing weighting slack variables ye equation (2.4) appears similar to equation (2.3). (The only
difference between a compressor and a control valve is either the sign of βe or the bounds on ye.) Note
that the flow direction through a control valve is also fixed by setting the lower bound to zero, i.e., qe ≥ 0.

3 Mathematical Background

In order to obtain proven global optimal solutions we apply linear and nonlinear mixed-integer program-
ming techniques, which we briefly introduce here.

3.1 Global Mixed-Integer Nonlinear Programming

We formulate the topology extension problem as mixed-integer nonlinear program (MINLP). Solving
optimization problems from this class is theoretically intractable and also known to be computationally
difficult in general. By “solving” we mean to compute a feasible solution for a given instance of the
problem together with a computational proof of its optimality. Therefor we apply the general framework
of a branch-and-cut approach, where the bounds are obtained from relaxations of the original model.
To this end, we relax the MINLP first to a mixed-integer linear program (MILP) and then further to a
linear program (LP), which is solved efficiently using the simplex algorithm. The so obtained solution
value defines a (lower) bound on the optimal value of the original MINLP problem. In case this solution
is MINLP feasible, it would be a proven global optimal MINLP solution. However, this rarely happens
in practice. Hence we either add cutting planes to strengthen the relaxation, or we decide to branch on
a variable. As an example, consider the nonlinear pressure loss constraint (2.1), c.f. Fügenschuh et al.
[14]. In the LP relaxation this function is replaced by a polyhedral (linear) outer approximation, which is
iteratively refined during the branch-and-cut process by branching on variables (spatial branching), see
Figure 3.1. For more details on cutting planes and branch-and-bound for MILP we refer to Nemhauser and
Wolsey [22], and for an application of this framework to global mixed-integer nonlinear programming to
Smith and Pantelides [27], and Tawarmalani and Sahinidis [28, 29]. Information on the MINLP framework
SCIP which we apply is given by Achterberg [1], and in particular on nonlinear aspects of SCIP in
Berthold, Heinz, and Vigerske [3].
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Fig. 3.1: a) Polyhedral outer approximation of qe 7→ αe qe|qe|, b) initial spatial branching on zero, c)
further spatial branching.

3.2 Nonlinear Programming

In addition to the simplex algorithm for linear programs we use nonlinear solvers on nodes of the branch-
and-bound tree. Actually we apply the solver IPOPT from Wächter and Biegler [30]. It applies a primal-
dual interior point (or barrier) method with a filter line-search method. One of the central underlying
methods in nonlinear programming, which is part of IPOPT and which we also apply directly in our
solution approach, are the Karush-Kuhn-Tucker (KKT) conditions. Under certain additional assumptions
they provide necessary conditions for a (local) optimum. For a nonlinear optimization problem of the
form min{f(x) : gi(x) ≤ 0, hj(x) = 0, x ∈ Rn}, where f is the objective function, gi (i = 1, . . . ,m)
are continuously differentiable inequality constraint functions and hj (j = 1, . . . , `) are continuously
differentiable equality constraint functions, the KKT system reads as follows

∇f(x∗) +
m∑

i=1

λi∇gi(x∗) +
∑̀

j=1

µj∇hj(x∗) = 0, (3.1a)

gi(x∗) ≤ 0, ∀ i = 1, . . . ,m, (3.1b)
hj(x∗) = 0, ∀ j = 1, . . . , `, (3.1c)

λi ≥ 0, ∀ i = 1, . . . ,m, (3.1d)
λigi(x∗) = 0, ∀ i = 1, . . . ,m, (3.1e)

where x∗ is a local minimum, and λi (i = 1, . . . ,m), µj (j = 1, . . . , `) are constants (called KKT multi-
pliers). The existence of these constants is guaranteed if x∗ satisfies some regularity conditions (to be
discussed later). In the special case of m = 0, i.e., no inequality constraints exist, the KKT multipliers
are also called Lagrange multipliers. For more details we refer to Conn, Gould, and Toint [8].

4 Topology Optimization of Transmission Networks

In the following we describe a mixed-integer nonlinear model for the extension problem in a transmission
network. Our model integrates two features: if the set of potential extensions is empty, it can be used
to determine if a configuration of all active elements is possible such that all physical, technical, and
contractual constraints are fulfilled. For a non-empty set of potential extensions it can be used to find a
subset of extensions having minimal cost and allowing a feasible flow. To this end, the model must be
solved numerically with a solving technique that has the potential to give a certificate for optimality, or
to prove that no solution exists. The details of our solution technique will be subject of the following
sections.

4.1 The Model

We use the following notation for sets. A transmission network is modeled by a directed graph G = (V,E)
where V denotes the set of nodes and E ⊆ V × V the set of arcs. We define an extended set of arcs
EX ⊆ V × V × N0 where each arc (v, w, i) ∈ EX represents the arc e = (v, w) ∈ V × V together with
index i.
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This set EX contains all “original” arcs from E with index 1, that is, (e, 1) ∈ EX for all e ∈ E. Arcs
e ∈ E that represent preexisting valves are additionally represented by the arc (e, 0) ∈ EX (to indicate
the status that the valve is closed). For valves we set αe,1 = βe,1 = 0.

Furthermore, set EX contains potential new network elements (pipes, valves, compressors, or control
valves), where a new element can in principle be built between any pair of existing nodes v, w ∈ V, v 6= w.
A potential extension between nodes v and w is represented by at least two arcs: (v, w, 0) (to indicate in
the model below that the element is not erected) and (v, w, i) for i ∈ {2, 3, . . .} (to indicate that different
design parameters can be selected for the new element).

By GX := (V,EX) we denote the transmission network together with its potential extensions. Note
that GX is a graph with multiple parallel arcs, i.e., a multigraph.

We assume the following data to be given as parameters. For each node v ∈ V we have lower and
upper bounds on the node potential, πv, πv ∈ R with πv ≤ πv. For each arc (e, i) ∈ EX we have lower and
upper bounds on the flow, q

e,i
, qe,i ∈ R with q

e,i
≤ qe,i. For each node v ∈ V the value sv ∈ R denotes

the amount of flow that is either led into the network (for sv > 0), or taken out of the network (for
sv < 0). A node with sv > 0 is also called source or entry node, and nodes with sv < 0 are sinks or exit
nodes. All other nodes with sv = 0 are inner or transmission nodes. Vector s is also called nomination.
In order not to pose a problem that is trivially infeasible, only those nominations are allowed that have
matching entry and exit flows, that is, ∑

v∈V
sv = 0. (4.1)

Such nominations are said to be balanced. For each arc (e, i) ∈ EX we have a transmission coefficient
αe,i ∈ R+, bounds on the weighted slack variable y

e,i
, ye,i ∈ R with y

e,i
≤ ye,i, a scaling factor βe,i for

the range coefficient, a coefficient γe ∈ R\{0}, and a cost coefficient ce,i ∈ R+. Note that ce,1 = 0 for all
existing arcs e ∈ E and ce,0 = 0 for every preexisting valve e.

Let us introduce the following variables. The flow on arc (e, i) ∈ EX , i 6= 0 is denoted by qe,i ∈ R,
where a positive value means the flow is heading in the same direction as the arc, and a negative value
indicates the opposite direction. The potential value of a vertex v ∈ V is given by πv ∈ R. For example, in
a gas transmission network this variable refers to the squared pressure in this node. The variable ye,i ∈ Z
specifies that additive component of the pressure loss term in (2.3). For passive pipelines this variable is
fixed to zero, whereas for active elements it defines the operating range. We remark that we define this as
being an integer variable (and not a continuous, real valued variable). Because of this discretization, the
cuts we derive in the following will become classical linear inequalities. For a continuous variable, these
cuts would be nonlinear in βe,i ye,i, hence we would no longer be able to apply a linear programming
based branch-and-cut approach.

We introduce a binary decision variable xe,i ∈ {0, 1} for each arc (e, i) ∈ EX , where xe,i = 1 represents
the decision that arc (e, i) is used (i.e., a necessary condition for a non-zero flow).

In Figure 4.1 we show a small example network to demonstrate our notation. In the left part 4.1a, the
original network (V,E) is shown. In the middle part 4.1b of the figure, the arc flow and node potential
variables are shown. The right part 4.1c of the figure shows the decision variables x. Simple arcs, such
as (2, 1), (5, 1), (6, 1) which correspond to the original arcs 2, 5 and 6 represent passive pipelines of the
network. In particular, these pipelines do not carry active elements (such as valves), and are also not
extendible via loops, i.e., by adding parallel pipes. A pipe with a valve is shown in arc pair (4, 0), (4, 1).
Note that there is no flow variable q4,0. Such arc pair could also represent a control valve or a compressor
station, depending on the actual definition of the parameters ke and βe,i for arc (e, i). Multiple arcs
such as (1, 1), (1, 2) and (3, 1), (3, 2), (3, 3) represent each a passive pipeline (which is (1, 1) and (3, 1),
respectively), together with one or two possible loop extensions, respectively.

The following nonlinear non-convex mixed-integer program with indicator constraints is called topol-
ogy optimization problem:

min
∑

(e,i)∈EX

ce,ixe,i s. t. (4.2a)

xe,i = 1⇒ αe,iqe,i|qe,i|ke + βe,iye,i − (πv − γeπw) = 0 ∀ (e, i) ∈ EX , i 6= 0, (4.2b)

xe,i = 0⇒ qe,i = 0 ∀ (e, i) ∈ EX , i 6= 0, (4.2c)
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Fig. 4.1: Example for a network.

xe,i = 0⇒ ye,i = 0 ∀ (e, i) ∈ EX , i 6= 0, (4.2d)
∑

i:(v,w,i)∈EX

xe,i = 1 ∀ e ∈ E, (4.2e)

∑

w,i:(v,w,i)∈EX
i6=0

qv,w,i −
∑

w,i:(w,v,i)∈EX
i6=0

qw,v,i = sv ∀ v ∈ V, (4.2f)

πv ≤ πv ∀ v ∈ V, (4.2g)

πv ≥ πv ∀ v ∈ V, (4.2h)

qe,i ≤ qe,i ∀ (e, i) ∈ EX , i 6= 0, (4.2i)

qe,i ≥ qe,i ∀ (e, i) ∈ EX , i 6= 0, (4.2j)

xe,i = 1⇒ ye,i ≤ ye,i ∀ (e, i) ∈ EX , i 6= 0, (4.2k)

xe,i = 1⇒ ye,i ≥ ye,i ∀ (e, i) ∈ EX , i 6= 0, (4.2l)

xe,i ≤ 1 ∀ (e, i) ∈ EX , (4.2m)

xe,i ≥ 0 ∀ (e, i) ∈ EX , (4.2n)

qe,i ∈ R ∀ (e, i) ∈ EX , i 6= 0, (4.2o)

ye,i ∈ Z ∀ (e, i) ∈ EX , i 6= 0, (4.2p)

xe,i ∈ Z ∀ (e, i) ∈ EX . (4.2q)

The objective function (4.2a) calculates the extension costs for those new pipes that are actually built.
The indicator constraints (4.2b) are switching on only those pressure-flow coupling constraints for po-
tential arcs that are actually built. The indicator constraints (4.2c) forbid flow on those arcs that are not
used, that is, they are either not built or switched off by a closed valve. These indicator constraints are
handled by our numerical solver SCIP by a special purpose constraint handler. Hence it is not necessary
to reformulate by, for example, big-M -constraints and further binary variables. Exactly one pressure loss
constraint (4.2b) must be selected which is guaranteed by constraints (4.2e). Note that if (v, w) ∈ E, that
is, nodes v and w are already connected in the original network, then the selection of an extension will
automatically switch off (or overwrite) the existing connection. If e ∈ E is a valve, then the closed mode
(xe,0 = 1) implies (xe,1 = 0) and zero flow is ensured by constraint (4.2c). The node flow conservation
constraints (also called Kirchhoff’s constraints) are defined in (4.2f). Constraints (4.2g) – (4.2n) define
the trivial bounds on the variables, and constraints (4.2o) – (4.2q) specify the continuous or discrete
range of the variables.
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For a given nomination s, the topology optimization problem (4.2) is to find a cost optimal selection
of pipe capacities for the transmission of the specific flow s in the transmission network GX . Otherwise,
if this transport is not possible for any selection of pipe capacities, the nomination is infeasible.

4.2 Outline of Our Method

We give an outline of our method here. The details are given in the following sections. In order to
solve the topology optimization problem above we apply a standard branch-and-cut approach, where the
subproblems at the nodes of the branching tree are solved by linear or nonlinear programming methods.
The numerical solver SCIP takes control of the decisions which variable to select for branching, which
cut to add, and in which order the open problems (nodes of the branching tree) are selected. For the
reader’s convenience, we give a brief outline of this procedure below. If the reader is familiar with the
method, the remainder of this paragraph can be skipped.

Initially, at the root node of the tree, we consider the linear relaxation of (4.2). This relaxation is
obtained by relaxing all binary decision variables (for active elements and for topology extension mea-
sures) to their continuous counterparts, and by replacing the nonlinear pressure-flow coupling constraints
(4.2b) by initially coarse outer linear approximations. The relaxation is solved by Dantzig’s simplex al-
gorithm, and further cutting planes are added by standard routines of the solver (such as Gomory cuts,
mixed-integer rounding cuts, and others). Further cuts are also generated by the constraint handler for
the nonlinear constraints, if necessary, to strengthen the outer approximation in the convex parts of the
nonlinear function.

When no further cuts are added, the root LP solution is usually neither integral nor fulfilling the
nonlinearities. We then start branching on x and y, that is, we select a fractional variable which is
required to be binary or integral, and split the problem into two subproblems: in the one we fix it to the
next integer value lower than the LP solution of the variable, and in the other we fix it to the next upper
integer value. In this way we obtain two linear subproblems out of one. It is important to remark that
we only branch on discrete variables such that no spatial branching is performed. These subproblems are
further strengthened by standard integrality cuts and by outer approximation cuts. At this point, also
the new cuts presented in this article are invoked and (globally) added to the model. The subproblems
are all linear programs, and thus can still be solved by the simplex algorithm. This way of branching
creates a tree of subproblems, where the leaves are in generally still not feasible solutions for the initial
problem (4.2) as the nonlinearities might not be fulfilled.

5 Inequalities for a Leaf Problem

When solving problem (4.2) within a branch-and-cut framework, the solver will iteratively branch on
binary and integer decision variables, as well as spatial branching on continuous variables. After some
number of subsequent branches, all integer and binary variables are fixed. We consider such a node. Since
all discrete decisions are settled, also ye,i is fixed to some integer value. We set β̃e,i := βe,iye,i. Throughout
this section, E′ contains all arcs where the flow is not fixed to zero, i.e., E′ = {(e, i) ∈ EX | xe,i = 1}. Note
that for each family of arc (e, i), exactly one i is chosen. Hence as an abbreviation we omit the subscript i
and simply write as abbreviation qe instead of qe,i. As further abbreviations we set δ+(v) := {(v, w) ∈ E′}
and δ−(v) := {(w, v) ∈ E′} for v ∈ V . The remaining problem, which might still be infeasible with respect
to the nonlinear constraints, then is the following:

αeqe|qe|ke + β̃e − (πv − γeπw) = 0 ∀ e = (v, w) ∈ E′, (5.1a)
∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe = sv ∀ v ∈ V, (5.1b)

πv ≤ πv ∀ v ∈ V, (5.1c)

πv ≥ πv ∀ v ∈ V, (5.1d)

qe ≤ qe ∀ e ∈ E′, (5.1e)

qe ≥ qe ∀ e ∈ E′, (5.1f)
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πv ∈ R ∀ v ∈ V, (5.1g)

qe ∈ R ∀ e ∈ E′. (5.1h)

This problem (5.1) will be referred to as leaf problem in the following. We define a relaxation of the leaf
problem (5.1), called domain relaxation problem, as follows:

min
∑

v∈V
∆v +

∑

e∈E′
∆e s. t.

αeqe|qe|ke + β̃e − (πv − γeπw) = 0 ∀ e = (v, w) ∈ E′, (5.2a)
∑

e∈δ+(v)

qe −
∑

e∈δ−(v)

qe = sv ∀ v ∈ V, (5.2b)

πv −∆v ≤ πv ∀ v ∈ V, (5.2c)

πv +∆v ≥ πv ∀ v ∈ V, (5.2d)

qe −∆e ≤ qe ∀ e ∈ E′, (5.2e)

qe +∆e ≥ qe ∀ e ∈ E′, (5.2f)

πv ∈ R ∀ v ∈ V, (5.2g)

qe ∈ R ∀ e ∈ E′, (5.2h)

∆v ∈ R+ ∀ v ∈ V, (5.2i)

∆e ∈ R+ ∀ e ∈ E′. (5.2j)

In the following we describe how to obtain a valid inequality for our leaf problem (5.1) from a
KKT point of the domain relaxation problem (5.2). We write Φe(qe) := αeqe|qe|ke + β̃e and define the
Lagrangian of problem (5.2) as

L(q, π,∆, µ, λ) =
∑

v∈V
∆v +

∑

e∈E′
∆e

+
∑

e=(v,w)∈E′
µe (Φe(qe)− (πv − γeπw))

+
∑

v∈V
µv


sv −

∑

e∈δ+(v)

qe +
∑

e∈δ−(v)

qe




+
∑

v∈V

(
λ+
v (πv −∆v − πv) + λ−v (πv − πv −∆v)

)

+
∑

e∈E′

(
λ+
e (qe −∆e − qe) + λ−e (q

e
− qe −∆e)

)

−
∑

v∈V
λv∆v −

∑

e∈E′
λe∆e.

For a local optimum of a nonlinear problem it is shown by Boyd and Vandenberghe [6] that there exist
values for these dual variables fulfilling the KKT conditions. From these KKT conditions we derive the
following constraints, c.f. equation system (3.1):

∂L

∂qe
: µe (∇qe

Φe(qe)) + λ+
e − λ−e = µv − µw ∀ e = (v, w) ∈ E′, (5.3a)

∂L

∂πv
:

∑

e∈δ+(v)

µe −
∑

e∈δ−(v)

µeγe = λ+
v − λ−v ∀ v ∈ V, (5.3b)
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∂L

∂∆v
: λ+

v + λ−v + λv = 1 ∀ v ∈ V, (5.3c)

∂L

∂∆e
: λ+

e + λ−e + λe = 1 ∀ e ∈ E′. (5.3d)

From this we conclude:

πv < πv ⇒ λ+
v = 0, πv = πv ⇒ 0 ≤ λ+

v ≤ 1, πv > πv ⇒ λ+
v = 1 ∀ v ∈ V, (5.4a)

πv > πv ⇒ λ−v = 0, πv = πv ⇒ 0 ≤ λ−v ≤ 1, πv < πv ⇒ λ−v = 1 ∀ v ∈ V, (5.4b)

qe < qe ⇒ λ+
e = 0, qe = qe ⇒ 0 ≤ λ+

e ≤ 1, qe > qe ⇒ λ+
e = 1 ∀ e ∈ E′, (5.4c)

qe > q
e
⇒ λ−e = 0, qe = q

e
⇒ 0 ≤ λ−e ≤ 1, qe < q

e
⇒ λ−e = 1 ∀ e ∈ E′. (5.4d)

Constraint (5.3b) is the basis for the inequalities that we derive in this section. Therefore we give the
following definition:

Definition 1. Every vector (µ, λ) = (µv, µe, λ+
v , λ

−
v , λ

+
e , λ

−
e )v∈V,e∈E, such that µv, µe ∈ R and λ+

v , λ
−
v , λ

+
e , λ

−
e ∈

R≥0, which fulfills the constraints
∑

e∈E
µe −

∑

e∈E
γeµe = λ+

v − λ−v ∀ v ∈ V, (5.5)

is called dual transmission flow. This dual transmission flow is always a flow in the original network
(V,E).

5.1 A Nonlinear Inequality

In the next two lemmas we will give two different inequalities for a leaf problem. The first one is derived
from a dual transmission flow.

Lemma 1. If the leaf problem (5.1) is feasible, then for any dual transmission flow (µ, λ) with µe = 0
for all arcs e /∈ E′, the inequality

∑

e∈E′
µe(αe qe|qe|ke + β̃e) ≤

∑

v∈V

(
λ+
v πv − λ−v πv

)

is valid.

Proof: We multiply equation (5.2a) by µe and sum over all e ∈ E′ to obtain
∑

e∈E′
µe(αe qe|qe|ke + β̃e) =

∑

e=(v,w)∈E′
µe(πv − γeπw).

We rewrite the right-hand side by changing the order of summation and obtain

∑

e=(v,w)∈E′
µe(πv − γeπw) =

∑

v∈V
πv




∑

e∈δ+
E′ (v)

µe −
∑

e∈δ−
E′ (v)

γeµe


 .

Note that all arcs in e ∈ E\E′ have µe = 0, hence they can be added:

∑

v∈V
πv




∑

e∈δ+
E′ (v)

µe −
∑

e∈δ−
E′ (v)

γeµe


 =

∑

v∈V
πv


 ∑

e∈δ+E(v)

µe −
∑

e∈δ−E (v)

γeµe


 .

We use equation (5.5) in Definition 1 of a dual transmission flow and obtain

∑

v∈V
πv


 ∑

e∈δ+E(v)

µe −
∑

e∈δ−E (v)

γeµe


 =

∑

v∈V
πv (λ+

v − λ−v ).
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We estimate the right-hand side as follows:
∑

v∈V
πv(λ+

v − λ−v ) ≤
∑

v∈V

(
λ+
v πv − λ−v πv

)
.

Putting these reformulations together we derive
∑

e∈E′
µe(αe qe|qe|ke + β̃e) ≤

∑

v∈V

(
λ+
v πv − λ−v πv

)
.

2

Before we go on with the next lemma, we give some definitions. We assume that a root node r ∈ V
is selected, and further that each node v ∈ V is reachable from r on a directed path. Note that this
property of the graph is obtained by reorienting some arcs if necessary. Denote by Pr(v) a path from
r to v. Then we define γr,v :=

∏
e∈Pr(v) γe. This definition is independent from the actual path Pr(v),

because on a cycle the product of γe equals 1 (c.f. Section 2.1). Using this value γr,v we define

π′v(π) := γr,v πv

It follows from elementary calculations that

π′v(π)− π′w(π) = γr,v (πv − γeπw) (5.6)

holds for each arc e = (v, w) ∈ E′. As a trivial consequence we obtain lower and upper bounds of π′v(π)
by π′v := π′v(π) and π′v := π′v(π) respectively.

Let q be a network flow in (V,E). In the next lemma and the ongoing section we will consider this
flow as a network flow in (V,E′) by setting qe,i := qe for every arc (e, i) ∈ E′.
Lemma 2. If the leaf problem (5.1) is feasible, then for any q∗ being a primal flow in E, and any slack
values ∆±v ≥ 0 for each node v ∈ V such that the flow conservation

∑

e∈δ+
E′ (v)

q∗e −
∑

e∈δ−
E′ (v)

q∗e − (∆+
v −∆−v ) = sv,

is fulfilled, then the inequality
∑

e=(v,w)∈E′
γr,v(qe − q∗e)(αeqe|qe|ke + β̃e) ≤

∑

v∈V
(∆−v π

′
v −∆+

v π
′
v)

is valid.

Proof: We note that qe for all e ∈ E′ is a feasible flow from the sources to the sinks in the network, i.e.,
∑

e∈δ+
E′ (v)

qe −
∑

e∈δ−
E′ (v)

qe = sv

for all nodes v ∈ V . From this we derive
∑

e∈δ+
E′ (v)

(qe − q∗e)−
∑

e∈δ−
E′ (v)

(qe − q∗e) = ∆−v −∆+
v

for all nodes v ∈ V . We multiply each side by π′v(π), take the sum over all nodes v ∈ V and obtain:
∑

e=(v,w)∈E′
(qe − q∗e)(π′v(π)− π′w(π)) =

∑

v∈V
π′v(π) (∆−v −∆+

v ) ≤
∑

v∈V
(π′v∆

−
v − πv∆+

v ).

The last estimation is obtained by taking the lower and upper bounds on π′v(π) into account. We use
this estimation to obtain from (5.1a) and (5.6)

∑

e=(v,w)∈E′
γr,v(qe − q∗e)(αeqe|qe|ke + β̃e) =

∑

e=(v,w)∈E′
(qe − q∗e)γr,v(πv − γeπw)
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=
∑

e=(v,w)∈E′
(qe − q∗e)(π′v(π)− π′w(π)) ≤

∑

v∈V
(π′v∆

−
v − π′v∆+

v ).

2

Now we consider a linear combination of both inequalities from the previous two Lemmas:

Corollary 1. Assume that the leaf problem (5.1) is feasible. Let (µ, λ) be dual transmission flow with
µe = 0 for all arcs e /∈ E′. Let q∗ be a primal flow in E, and let ∆±v ≥ 0 be slack values for each node
v ∈ V such that the flow conservation

∑

e∈δ+
E′ (v)

q∗e −
∑

e∈δ−
E′ (v)

q∗e − (∆+
v −∆−v ) = sv,

is fulfilled. Then for any ζ ∈ [0, 1] the inequality
∑

e=(v,w)∈E′
(ζ γr,v (qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

≤ ζ
∑

v∈V
(∆−v π

′
v −∆+

v π
′
v) + (1− ζ)

∑

v∈V

(
λ+
v πv − λ−v πv

) (5.7)

is valid.

Proof: The inequality is a linear combination of the inequalities from Lemma 1 and Lemma 2. 2

5.2 A Linear Inequality for the Leaf Problem

So far we derived in Corollary 1 a nonlinear inequality which is valid for a leaf problem. In principle, it
would be possible to add this inequality to the MINLP model formulation of (4.2), and let the solver
SCIP do the work (adding cuts and spatial branching). Nevertheless, in the following, we describe how
to derive a linear inequality that can also be used in our linear programming based branch-and-cut
framework. Our proposed method has the advantage that we can use this inequality not only locally (for
the subtree), but derive a globally valid cut (for the entire tree) in the next Section 5.3.

We will derive a certain linear underestimator for the left-hand side of inequality (5.7) in Corollary 1.
This left-hand side is a sum of functions in qe for arcs e ∈ E′. We consider each of these functions
separately and give a linear underestimator. This underestimator will be a function of the following form

qe 7→ const + ζ γr,v(π∗v − γeπ∗w) qe + (1− ζ)(µv − µw − λ+
e + λ−e ) qe.

for an arc e = (v, w) ∈ E′. Using this underestimator, inequality (5.7) rewrites as follows:

Lemma 3. Assume that the leaf problem (5.1) is feasible. Let (µ, λ) be dual transmission flow with
µe = 0 for all arcs e /∈ E′. Let q∗ be a primal flow in E, and let ∆±v ≥ 0 be slack values for each node
v ∈ V such that the flow conservation

∑

e∈δ+
E′ (v)

q∗e −
∑

e∈δ−
E′ (v)

q∗e − (∆+
v −∆−v ) = sv

is fulfilled for each node v ∈ V . Furthermore, let π∗ be a vector of potential values for each node v ∈ V
and let ζ ∈ [0, 1]. Then there exists a constant τe = τe(ζ, αe, β̃e, q∗, π∗, µ, λ) for e ∈ E′ such that the
inequality

∑

e∈E′
τe ≤ ζ

(∑

v∈V
(∆−v π

′
v −∆+

v π
′
v)−

∑

v∈V
svπ
′
v(π
∗)

)

+(1− ζ)
(∑

v∈V

(
λ+
v πv − λ−v πv

)
+
∑

e∈E′

(
λ+
e qe − λ−e qe

)
−
∑

v∈V
svµv

) (5.8)

is valid.
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We remark that the unfixed variables in the leaf problem are flow variables q and node potentials π.
These variables are not contained in inequality (5.8). Thus inequality (5.8) is constant on both sides,
left- and right-hand side. If the inequality is violated, the leaf problem is infeasible.
Proof: We define the constant τe = τe(ζ, αe, β̃e, q∗, π∗, µ, λ) for each arc e = (v, w) ∈ E′ as follows:

τe(ζ, αe, β̃e, q∗, π∗, µ, λ) := min
q

e
≤qe≤qe

{
(ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

− ζ γr,v(π∗v − γeπ∗w) qe − (1− ζ)(µv − µw − λ+
e + λ−e ) qe

}
.

We consider inequality (5.7) of Corollary 1. By the definition of τe we obtain the underestimator for each
summand on the left-hand side as

(ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

≥ τe + ζ γr,v(π∗v − γeπ∗w) qe + (1− ζ)(µv − µw − λ+
e + λ−e ) qe.

We rewrite the underestimator. Each primal solution q fulfills the flow conservation constraint
∑

e∈δ+
E′ (v)

qe −
∑

e∈δ−
E′ (v)

qe = sv.

Multiplying this equation with π′v(π∗) and summing over the nodes v ∈ V we obtain

ζ
∑

e=(v,w)∈E′
(π′v(π

∗)− π′w(π∗)) qe = ζ
∑

v∈V
svπ
′
v(π
∗) (5.9)

and multiplying it with µv and summing over the nodes v ∈ V we derive

(1− ζ)
∑

e=(v,w)∈E′
(µv − µw) qe = (1− ζ)

∑

v∈V
svµv. (5.10)

Using the reformulations (5.6), (5.9), (5.10) we obtain
∑

e=(v,w)∈E′
(ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e) (5.11a)

≥
∑

e∈E′
τe + ζ

∑

v∈V
svπ
′
v(π
∗) + (1− ζ)

∑

v∈V
svµv − (1− ζ)

∑

e∈E′
(λ+
e − λ−e )qe. (5.11b)

We apply inequality (5.7) of Corollary 1 to the left-hand side (5.11a) in order to obtain an upper
estimation. Then we use the lower and upper bounds on qe to obtain

(1− ζ)
∑

e∈E′
(λ+
e − λ−e )qe ≤ (1− ζ)

∑

e∈E′
(λ+
e qe − λ−e qe),

which gives a lower estimation for the rand-hand side (5.11b). Putting these two estimations together
yields inequality (5.8). 2

5.3 Feasibility Characterization for a Leaf Problem by a Linear Inequality

So far we derived an inequality (5.8) that does not contain the free variables of the leaf problem. The
question that now arises is how to choose the parameter ζ ∈ [0, 1] in order to obtain an inequality that
represents the infeasibility of the leaf problem, i.e., we want to get an inequality that is violated if and
only if the leaf problem is infeasible. First we show, that the inequality (5.8) is violated for a KKT point
of the domain relaxation (5.2) for a suitable choice of ζ.

In the sequel we will speak of deriving a dual transmission flow in (V,E) from a KKT point of the
relaxation (5.2). This means that we consider a KKT point (q∗, π∗, ∆∗, µ∗, λ∗) of (5.2). Then the dual
variables fulfill the dual flow conservation

∑

e∈δ+
E′ (v)

µ∗e −
∑

e∈δ−
E′ (v)

µ∗eγe = λ+
v
∗ − λ−v

∗
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for all nodes v ∈ V . We obtain a dual transmission flow (µ, λ) in (V,E) by setting µv := µ∗v and λ±v := λ±v
∗

for each node v ∈ V and µe := µ∗e, λ
±
e := λ±e

∗ if e ∈ E′ and µe := 0, λ±e := 0 otherwise for each arc
e ∈ E \ E′.
Lemma 4. Consider a KKT point (q∗, π∗, ∆∗, µ∗, λ∗) of the domain relaxation (5.2). We derive a dual
transmission flow (µ, λ) with µe = 0 for all arcs e /∈ E′. Assume that there exists a ζ ∈ [0, 1[ such that
the minimum of the function

qe 7→ (ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

−ζ γr,v(π∗v − γeπ∗w) qe − (1− ζ)(µv − µw − λ+
e + λ−e ) qe

is attained for q∗e for each arc e = (v, w) ∈ E′. Then for this value of ζ, there exists τe for each arc e ∈ E′
such that inequality (5.8) is violated if and only if (q∗, π∗) is not feasible for the leaf problem (5.1). The
violation (i.e., the absolute difference of the left-hand and the right-hand side of the inequality) equals
(1− ζ) times the optimal objective value of the relaxation (5.2).

Proof: First we recall the definition of τe = τe(ζ, αe, β̃e, q∗, π∗, µ, λ) from Lemma 3. If the minimum of
the function

qe 7→ (ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

−ζ γr,v(π∗v − γeπ∗w) qe − (1− ζ)(µv − µw − λ+
e + λ−e ) qe

is attained at q∗e , then
∑
e∈E′ τe rewrites as follows:

∑

e∈E′
τe =

∑

e=(v,w)∈E′

(
(1− ζ)µe(αe q∗e |q∗e |ke + β̃e)− ζ γr,v(π∗v − γeπ∗w) q∗e

)

−
∑

e=(v,w)∈E′
(1− ζ)(µv − µw − λ+

e + λ−e ) q∗e

= (1− ζ)
∑

e∈E′
µe(αe q∗e |q∗e |ke + β̃e)− ζ

∑

v∈V
svπ
′
v(π
∗)

− (1− ζ)
∑

v∈V
svµv + (1− ζ)

∑

e∈E′
(λ+
e − λ−e )q∗e .

(5.12)

Since q∗e realizes the nomination, we derive from
∑

e∈δ+
E′ (v)

q∗e −
∑

e∈δ−
E′ (v)

q∗e − (∆+
v −∆−v ) = sv

for each node v ∈ V , that the slack variables are zero, ∆+
v = ∆−v = 0. Then inequality (5.8) reduces to

∑

e∈E′
τe ≤ −ζ

∑

v∈V
svπ
′
v(π
∗)

+(1− ζ)
(∑

v∈V

(
λ+
v πv − λ−v πv

)
+
∑

e∈E′

(
λ+
e qe − λ−e qe

)
−
∑

v∈V
svµv

)
.

(5.13)

Combining (5.12) with (5.13) results in

(1− ζ)
∑

e∈E′
µe(αe q∗e |q∗e |ke + β̃e) + (1− ζ)

∑

e∈E′
(λ+
e − λ−e ) q∗e

≤ (1− ζ)
∑

v∈V

(
λ+
v πv − λ−v πv

)
+ (1− ζ)

∑

e∈E′

(
λ+
e qe − λ−e qe

)
.

(5.14)

To show that this inequality is violated if and only if (q∗, π∗) is infeasible for the leaf problem we proceed
as follows. From the proof of Lemma 1 we obtain the equality

∑

e∈E′
µe(αe q∗e |q∗e |ke + β̃e) =

∑

v∈V
(λ+
v − λ−v )π∗v .
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Constraints (5.4a) and (5.4b) are fulfilled by the dual variables. Thus it holds that λ+
v > 0 if πv ≥ πv

and λ−v > 0 if πv ≤ πv. This implies

0 ≤
∑

v∈V
(λ+
v − λ−v )π∗v −

∑

v∈V

(
λ+
v πv − λ−v πv

)
=
∑

v∈V
(λ+
v + λ−v )∆∗v.

The right-hand side is strictly positive, if at least one node potential value πv violates its bounds. Similarly
the constraints (5.4c) and (5.4d) imply that λ+

e ≥ 0 if qe ≥ qe and λ−e ≥ 0 if qe ≤ q
e
. We obtain the

inequality
0 ≤

∑

e∈E′
(λ+
e − λ−e )q∗e −

∑

e∈E′

(
λ+
e qe − λ−e qe

)
=
∑

e∈E′
(λ+
e + λ−e )∆∗e

which is strict, if at least one flow variable qe violates its bounds. Thus (5.14) rewrites as

(1− ζ)
(∑

v∈V
(λ+
v + λ−v )∆∗v +

∑

e∈E′
(λ+
e + λ−e )∆∗e

)
≤ 0.

Now it follows from (5.4) that λ+
v +λ−v = 1 if ∆∗v > 0 and λ+

e +λ−e = 1 if ∆∗e > 0. Thus we rewrite (5.14)
as

(1− ζ)
(∑

v∈V
∆∗v +

∑

e∈E′
∆∗e
)
≤ 0.

It is violated if and only if the primal solution (q∗, π∗) is not feasible to the leaf problem (5.1). As (5.14)
is a reformulation of (5.8), (5.8) is violated if and only if the primal solution (q∗, π∗) is not feasible to
the leaf problem (5.1). This proves the Lemma. 2

Lemma 5. Let (q∗, π∗, ∆∗, µ∗, λ∗) be a KKT point of the relaxation (5.2). We derive a dual transmission
flow (µ, λ) with µe := 0 for all arcs e /∈ E′. Let e = (v, w) ∈ E′. Select ζ ∈ [0, 1] such that

1. if µe q∗e > 0, then ζ γr,v|q∗e | > (1− ζ)|µe|,
2. if µe q∗e < 0, then (1− ζ) |µv − µw − λ+

e + λ−e | < ζ γr,v|π∗v − γeπ∗w − β̃e|,
3. if µe q∗e = 0, then (1− ζ)µe = 0.

Then the minimum of the function

qe 7→ (ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

−ζ γr,v(π∗v − γeπ∗w) qe − (1− ζ)(µv − µw − λ+
e + λ−e ) qe

(5.15)

is attained in q∗e .

Proof: We consider an arc e = (v, w) ∈ E′ and write the derivative of function (5.15) as

qe 7→ ζ γr,v(ke + 2)αeqe|qe|ke + ζ γr,vβ̃e − (ζ γr,vq∗e − (1− ζ)µe)(ke + 1)αe|qe|ke

−ζ γr,v(π∗v − γeπ∗w)− (1− ζ)(µv − µw − λ+
e + λ−e ).

We set qe = q∗e and obtain

γr,v
(
ζ(ke + 2)αeq∗e |q∗e |ke − ζ(ke + 1)q∗eαe|q∗e |ke + ζβ̃e − ζ(π∗v − γeπ∗w)

)

+(1− ζ)µe(ke + 1)αe|q∗e |ke − (1− ζ)(µv − µw − λ+
e + λ−e )

= γr,v
(
ζ(αeq∗e |q∗e |ke + β̃e)− ζ(π∗v − γeπ∗w)

)
+ (1− ζ)µe(ke + 1)αe|q∗e |ke − (1− ζ)(µv − µw − λ+

e + λ−e )
= 0 + 0.

This implies, that function (5.15) has an extreme point for qe = q∗e . The question is, whether this point
is a global minimum for the choice of ζ. In the case that αe = 0 it follows from (5.2a) and (5.3a) that
function (5.15) is constant. This implies that q∗e is a global minimum. To prove that the point is a global
minimum for the case αe > 0 we assume w.l.o.g. the arc e to be oriented such that µe ≥ 0. We write
function (5.15) as f(qe)− g(qe) where f and g are defined by

f : qe 7→ (ζ γr,vqe + (1− ζ)µe − ζ γr,vq∗e)αe qe|qe|ke + ((1− ζ)µe − ζq∗e)β̃e
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qe

f(qe)

g(qe)

(a) (1− ζ)µe − ζ γr,vq
∗
e < 0

qe

f(qe)
g(qe)

(b) (1− ζ)µe − ζ γr,vq
∗
e > 0

Fig. 5.1: Visualization of the functions f(qe) and g(qe) defined in the proof of Lemma 5 for different
values of (1− ζ)µe − ζ γr,vq∗e and αe > 0.

and
g : qe 7→ ζγr,v(π∗v − γeπ∗w − β̃e) qe + (1− ζ)(µv − µw − λ+

e + λ−e ) qe.

Figure 5.1 shows a visualization of these two functions.
Now we analyze the cases q∗e 6= 0 and q∗e = 0 consecutively. First we concentrate on q∗e 6= 0. The first

function f is quasi-convex by the choice of ζ which we show as follows: If q∗e > 0, the function f has
its global minimum at some qe > 0, as (1 − ζ)µe − ζ γr,vq∗e < 0 holds if either µe = 0 or, if µe > 0, by
assumption 1 of the lemma. If q∗e < 0, the function f has its global minimum at some qe < 0, because of
(1− ζ)µe − ζ γr,vq∗e > 0, which follows from µe ≥ 0.

The second function g is linear. The definition of ζ implies that g has positive slope in the case q∗e > 0
and negative slope in the case q∗e < 0. This follows from sign(q∗e) = sign(π∗v−π∗w−β̃e) and assumption 2 of
the lemma for the case µe > 0. For the case µe = 0 it follows from 0 = sign(µe) = sign(µv−µw−λ+

e +λ−e )
and sign(q∗e) = sign(π∗v − π∗w − β̃e).

The previous observations guarantee that function (5.15) has only one local optimum if µeq∗e 6= 0 and
αe > 0. This implies that the extreme point q∗e is global.

Now we turn to the case q∗e = 0. This implies µeq∗e = 0 and we have (1− ζ)µe = 0 by assumption 3
of the lemma. It follows that function (5.15) is a convex function. We note that this function is constant
if ζ = 0. Because of the convexity the extreme point qe = q∗e is a global minimum. 2

Corollary 2. Let (q∗, π∗, ∆∗, µ∗, λ∗) be a KKT point of the relaxation (5.2). We derive a dual transmis-
sion flow (µ, λ) with µe := 0 for all arcs e /∈ E′. Let ζ ∈ [0, 1[ such that

1. if µe q∗e > 0 then ζ γr,v|q∗e | > (1− ζ)|µe|,
2. if µe q∗e < 0 then (1− ζ) |µv − µw − λ+

e + λ−e | < ζ γr,v|π∗v − γeπ∗w − β̃e|,
3. if µe q∗e = 0 then (1− ζ)µe = 0

holds for each arc e = (v, w) ∈ E′. Then there exists a constant τe for each arc e ∈ E′ such that the
inequality ∑

e∈E′
τe ≤ −ζ

∑

v∈V
svπ
′
v(π
∗)

+(1− ζ)
(∑

v∈V

(
λ+
v π
′
v − λ−v π′v

)
+
∑

e∈E′

(
λ+
e qe − λ−e qe

)
−
∑

v∈V
svµv

) (5.16)

is violated if and only if (q∗, π∗) is not feasible for the leaf problem (5.1). The violation is greater than
or equal to (1− ζ) times the optimal objective value of the relaxation (5.2).

Proof: First we write the flow conservation with ∆±v := 0 as
∑

e∈δ+
E′ (v)

q∗e −
∑

e∈δ−
E′ (v)

q∗e − (∆+
v −∆−v ) = sv

for each node v ∈ V . Next we define the constant τe = τe(ζ, αe, β̃e, q∗, π∗, µ, λ) for each arc e = (v, w) ∈ E′
as follows:

τe := min
q

e
≤qe≤qe

{
(ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

− ζ γr,v(π∗v − γeπ∗w) qe − (1− ζ)(µv − µw − λ+
e + λ−e ) qe

}
.
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Then it follows from Lemma 3 that inequality (5.16) is valid for the leaf problem. By Lemma 5 the value
ζ is chosen such that the global minimum of the function

qe 7→ (ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

−ζ γr,v(π∗v − γeπ∗w) qe − (1− ζ)(µv − µw − λ+
e + λ−e ) qe

is attained in q∗e . We set

τ ′e := min
qe∈R

{
(ζ γr,v(qe − q∗e) + (1− ζ)µe) (αe qe|qe|ke + β̃e)

− ζ γr,v(π∗v − γeπ∗w) qe − (1− ζ)(µv − µw − λ+
e + λ−e ) qe

}
.

Then it follows from τ ′e ≤ τe for all arcs e ∈ E′ that the inequality

∑

e∈E′
τ ′e ≤ −ζ

∑

v∈V
svπ
′
v(π
∗)

+(1− ζ)
(∑

v∈V

(
λ+
v πv − λ−v πv

)
+
∑

e∈E′
(λ+
e qe − λ−e qe)−

∑

v∈V
svµv

)

is valid for the leaf problem. The violation is equal to the optimal objective value of the relaxation (5.2)
by Lemma 4. Now it follows from τ ′e ≤ τe that the violation of (5.16) is greater than or equal to the
optimal objective value of the relaxation (5.2). 2

6 A Capacity Inequality for the Topology Optimization Problem

We derive a capacity inequality for the topology optimization problem by lifting inequality (5.8) which
is valid for a certain leaf problem.

Theorem 1. Let (µ, λ) be a dual transmission flow. Let π∗ be a vector of potential values for each node
v ∈ V and q∗ be a vector of flow values for each arc e ∈ E. Furthermore let slack values ∆±v ≥ 0 be given
for each node v ∈ V such that the flow conservation

∑

e∈δ+E(v)

q∗e −
∑

e∈δ−E (v)

q∗e − (∆+
v −∆−v ) = sv

is fulfilled for each node v ∈ V . There exist constants τe,i = τe,i(ye,i) for each arc (e, i) ∈ EX , i 6= 0 such
that the inequality in x, y

∑

(e,i)∈EX
i6=0

xe,i τe,i(ye,i) ≤

ζ

(∑

v∈V
(∆−v π

′
v −∆+

v π
′
v)−

∑

v∈V
svπ
′
v(π
∗)

)

+(1− ζ)



∑

v∈V

(
λ+
v πv − λ−v πv

)
+

∑

(e,i)∈EX
i6=0

xe,i
(
λ+
e qe,i − λ−e qe,i

)
−
∑

v∈V
svµv




+ζ
∑

e=(v,w)∈E
xe,0 max

{
q∗e(π

′
v − π′w), q∗e(π

′
w − π′v)

}

+(1− ζ)
∑

e=(v,w)∈E
xe,0 max

{
µe(πv − πw), µe(πw − πv)

}

(6.1)

is valid for the topology optimization problem (4.2).
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Proof: We are going to apply Lemma 3 that yields a valid inequality for a leaf problem corresponding to
the arc set E′. We write E′ = E′(x) depending on the active configuration x by E′(x) := {(e, i) ∈ EX |
xe,i = 1}. In order to apply Lemma 3 we define ∆ variables in dependence of E′(x) by considering the
following equality which is valid for each active configuration x:

∑

e∈δ+E(v)

xe,0 q
∗
e −

∑

e∈δ−E (v)

xe,0 q
∗
e +

∑

e∈δ+
E′(x)

(v)

q∗e −
∑

e∈δ−
E′(x)

(v)

q∗e − (∆+
v −∆−v ) = sv.

We define variables ∆̃+
v (x) ≥ 0 and ∆̃−v (x) ≥ 0 where at least one of both values equals zero by

∆̃−v (x)− ∆̃+
v (x) :=

∑

e∈δ+E(v)

xe,0 q
∗
e −

∑

e∈δ−E (v)

xe,0 q
∗
e .

From this we obtain
∑

e∈δ+
E′(x)

(v)

q∗e −
∑

e∈δ−
E′(x)

(v)

q∗e − (∆̃+
v (x) +∆+

v ) + (∆̃−v (x) +∆−v ) = sv (6.2)

for every node v ∈ V . We proceed analogously for µ in order to obtain a dual transmission flow for E′(x).
For each active configuration x it holds

∑

e∈δ+E(v)

xe,0 µe −
∑

e∈δ−E (v)

xe,0 µe +
∑

e∈δ+
E′(x)

(v)

µe −
∑

e∈δ−
E′(x)

(v)

µe = λ+
v − λ−v

for every node v ∈ V . We define variables λ̃+
v (x) ≥ 0 and λ̃−v (x) ≥ 0 with at least one of both values

being equal to zero by

λ̃−v (x)− λ̃+
v (x) :=

∑

e∈e∈δ+E(v)

xe,0 µe −
∑

e∈e∈δ−E (v)

xe,0 µe

and obtain ∑

e∈δ+
E′(x)

(v)

µe −
∑

e∈δ−
E′(x)

(v)

µe =
(
λ̃+
v (x) + λ+

v

)
−
(
λ̃−v (x)− λ−v

)
. (6.3)

Now equation (6.2) and (6.3) allow to write inequality (5.8) for each active configuration x as
∑

e∈E′(x)
τe ≤

ζ

(∑

v∈V

(
(∆−v + ∆̃−v (x))π′v − (∆+

v + ∆̃+
v (x))π′v

)
−
∑

v∈V
svπ
′
v(π
∗)

)

+(1− ζ)
(∑

v∈V

(
(λ+
v + λ̃+

v (x))πv − (λ−v + λ̃−v (x))πv
))

+(1− ζ)


 ∑

e∈E′(x)

(
λ+
e qe − λ−e qe

)
−
∑

v∈V
svµv


 .

We replace ∑

e∈E′(x)
τe =

∑

e∈EX
i6=0

xe,iτe,i,

and take the definition of the constant τe,i = τe,i(ζ, αe,i, βe,iye,i, q∗, π∗, µ, λ) for each arc (e, i) = (v, w, i) ∈
EX , i 6= 0 as follows:

τe,i(ye,i) := min
q

e
≤qe≤qe

{
(ζ γr,v(qe,i − q∗e) + (1− ζ)µe) (αe,i qe,i|qe,i|ke + βe,iye,i)
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− ζ γr,v(π∗v − γeπ∗w) qe,i − (1− ζ)(µv − µw − λ+
e + λ−e ) qe,i

}
.

Furthermore we write
∑

e∈E′(x)

(
λ+
e qe − λ−e qe

)
=

∑

(e,i)∈EX
i6=0

xe,i
(
λ+
e qe,i − λ−e qe,i

)
.

We proceed by deriving an estimation for the right-hand side using the previous definitions for ∆̃+
v (x)

and ∆̃−v (x) by setting

π̃v :=

{
π′v if ∆̃−v (x)− ∆̃+

v (x) ≥ 0,
π′v else.

Then we obtain
∑

v∈V

(
∆̃−v (x)π′v − ∆̃+

v (x)π′v
)

=
∑

v∈V

(
∆̃−v (x)− ∆̃+

v (x)
)
π̃v =

∑

e=(v,w)∈E
xe,0q

∗
e(π̃v − π̃w) ≤

∑

e=(v,w)∈E
xe,0 max

{
q∗e(π

′
v − π′w), q∗e(π

′
w − π′v)

}
.

Similarly, using the definition of λ+
v (x) and λ−v (x) we derive the estimation

∑

v∈V

(
λ̃+
v (x)πv − λ̃−v (x)πv

)
≤

∑

e=(v,w)∈E
xe,0 max

{
µe(πv − πw), µe(πw − πv)

}
.

2

Theorem 2. Let (µ, λ) be derived from a KKT point (q∗, π∗, ∆∗, µ∗, λ∗) of the relaxation (5.2) for arc
set E′. Let ζ ∈ [0, 1[ be minimal such that

1. if µe q∗e > 0 then ζ γr,v|q∗e | > (1− ζ)|µe|,
2. if µe q∗e < 0 then (1− ζ) |µv − µw − λ+

e + λ−e | < ζ γr,v|π∗v − γeπ∗w − β̃e|,
3. if µe q∗e = 0 then (1− ζ)µe = 0,

holds for each arc e = (v, w) ∈ E′. Then there exist constants τe,i = τe,i(ye,i) for each arc (e, i) ∈ EX , i 6=
0 such that the inequality in x and y

∑

(e,i)∈EX
i6=0

xe,i τe,i(ye,i) ≤ −ζ
∑

v∈V
svπ
′
v(π
∗)

+(1− ζ)



∑

v∈V

(
λ+
v πv − λ−v πv

)
+

∑

(e,i)∈EX
i6=0

xe,i
(
λ+
e qe,i − λ−e qe,i

)
−
∑

v∈V
svµv




+ζ
∑

e=(v,w)∈E′
xe,0 max

{
q∗e(πv − πw), q∗e(πw − πv)

}

+(1− ζ)
∑

e=(v,w)∈E
xe,0 max

{
µe(πv − πw), µe(πw − πv)

}

(6.4)

is valid for the topology optimization problem (4.2). This inequality cuts off the leaf problem corre-
sponding to the arc set E′ if it is infeasible. For the corresponding decision vector x, y the violation of
inequality (6.4) is greater than or equal to (1− ζ) times the optimal objective value of the leaf problem’s
relaxation.

Proof: We define q∗e := 0 for all arcs e ∈ E \ E′ and obtain
∑

e∈δ+E(v)

q∗e −
∑

e∈δ−E (v)

q∗e = sv.
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Hence ∆+
v = ∆−v = 0 for all v ∈ V , and thus the validity of (6.4) as a globally valid inequality for (4.2)

follows from Theorem 1.
If x and y are the binary and integer values, respectively, that correspond to the leaf problem of the

relaxation (5.2) for arc set E′, then (6.4) can be rewritten as (5.16). Now the theorem follows from the
special choice of ζ (which is the same as in Corollary 2). 2

Let us visualize τe,i for an arc e = (v, w) ∈ E. The value of τe,i depends on αe,i. Thus we consider
τe,i as a function τ(α) defined by

τ(α) := min
q∈R

{
(ζ γr,v(q − q∗e) + (1− ζ)µe)α q|q|ke

− ζ γr,v(π∗v − γeπ∗w) q − (1− ζ)(µv − µw − λ+
e + λ−e ) q

}
.

A visualization of this function is shown in Figure 6.1. From this image we conclude, that either increasing
or decreasing the diameter of a pipe reduces the violation of inequality (6.4) of the previous Theorem 2.

�

1

�(�)

Fig. 6.1: Visualization of τ(α) for q∗e = 5, µe = 1, γe = 1, πv − πw = 25, µv − µw = 10, λ+
e − λ−e = 0, k =

1, ζ = 0.7, γr,v = 1. The depicted point corresponds to the original α = 1 of the leaf problem.

We remark that the inequality in Theorem 2 is not a linear inequality yet. In order to add it to the
problem as a globally valid cut, it needs to be linearized. To this end, we introduce binary variables
zke,i ∈ {0, 1} for k ∈ Ze,i := [y

e,i
, ye,i] ∩ Z, and the constraints

ye,i =
∑

k∈Ze,i

k zke,i, xe,i =
∑

k∈Ze,i

zke,i.

Now we compute τke,i := τe,i(k) for all k ∈ Ze,i, which gives the coefficients in the linear inequality
∑

(e,i)∈EX
i6=0

∑

k∈Ze,i

zke,i τ
k
e,i ≤ −ζ

∑

v∈V
svπ
′
v(π
∗)

+(1− ζ)



∑

v∈V

(
λ+
v πv − λ−v πv

)
+

∑

(e,i)∈EX
i6=0

xe,i
(
λ+
e qe,i − λ−e qe,i

)
−
∑

v∈V
svµv




+ζ
∑

e=(v,w)∈E′
xe,0 max

{
q∗e(πv − πw), q∗e(πw − πv)

}

+(1− ζ)
∑

e=(v,w)∈E
xe,0 max

{
µe(πv − πw), µe(πw − πv)

}
.

(6.5)

These globally valid inequalities are added to the problem.

7 Computational Results

We consider two different transmission networks with different topologies. Both networks consist of
pipelines only and all pipes are modelled with βe,i = 0 and ke,i = 1. The first network Net1 in Figure 7.1
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has 20 nodes and 29 pipelines, which represent the backbone network of the Belgium natural gas network.
The data for this network can be found in [16], and results using this network in De Wolf et al. [12, 10].
The second network Net2 in Figure 7.2 consists of 32 nodes and 37 pipelines. It is an approximation
to the German L-gas network in the Rhine-Main-Ruhr area. The data of network Net2 is publicly
available at URL http://gaslib.zib.de under the name gaslib-40. We generate the cuts described

Fig. 7.1: The test network Net1. All extensions are parallel arcs (or loops) and thus not visible in the
picture.

Fig. 7.2: The test network Net2. All extensions are parallel arcs (or loops) and thus not visible in the
picture.

in Theorem 6.4 as follows. Consider an open subproblem the branching tree, which can be a leaf, or an
integer feasible node. Out of this we define a nonlinear optimization problem which has the form of (5.1),
where we fix all integer variables to the given values at this node. Since the problem might be nonlinear
infeasible, we reformulate the problem and obtain (5.2). Note that this relaxation is always feasible (see
[19]). After solving the NLP with a nonlinear solver, one of the following two cases occurs.

In the first case, the NLP has a zero objective function value in the optimal solution. We obtain a
primal feasible solution and prune the current node.

In the second case, the NLP might have a positive objective function value in the optimal solution.
This means that some slack variables could not become zero. In this case we use the KKT point, i.e.,
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primal and dual solution values and derive a cutting plane (6.5) which is valid for the topology opti-
mization problem by Theorem 2. The inequality is stored in and managed by a cut pool of the solver.
We continue by spatial branching.

We implemented the cut generation algorithms described in section 6 in C on a cluster of 64bit
Intel Xeon X5672 CPUs at 3.20 GHz with 12 MByte cache and 48 GB main memory, running an
OpenSuse 12.1 Linux with a gcc 4.6.2 compiler. We used the following software packages: SCIP 3.0.1 as
mixed-integer nonlinear branch-and-cut framework (for details on SCIP we refer to [1]), CPLEX 12.1
[9] as linear programming solver, Ipopt 3.10 [30] as nonlinear solver, and Lamatto++ [17] as framework
for handling the input data. Hyperthreading and Turboboost were disabled. In all experiments, we ran
only one job per node to avoid random noise in the measured running time that might be caused by
cache-misses if multiple processes share common resources. In our initial implementation we added all
obtained cuts directly to the branch-and-cut process. In the final implementation we do not add them
immediately. Instead we store them in a cut pool, until a predefined number of inequalities is reached
(experimentally, a pool size of 40 inequalities turned out to be a good value). Then, we restart the whole
branch-and-cut solution process and multiply the cut pool size by 1.5. Additionally, we also restart, if a
new primal feasible solution with a better objective function compared to the current best is found. For
the restart, only the best feasible solution and the valid inequalities are kept. Now the solver SCIP uses
its proprietary routines to further strengthen our cuts (together with all other model inequalities).

Given is a (balanced) flow demand at the entry (source) and exit (sink) nodes of the network. For
this given demand, there exists a feasible flow in the network. Now we scale up this demand, that is, we
multiply each entry and exit value by the same scalar > 1. For a certain value (2.0 for instance net1 and
2.1 for instance net2) the instance is not longer feasible, i.e., there is no valid flow that fulfills all model
constraints. In order to obtain a feasible flow again, the network topology needs to be extended, for
which we introduce a number of loops. For instance net1 we allow up to 7, ..., 11 loops, and for instance
net2 we allow between 2 and 4 loops, respectively. That is, each original pipeline can be extended by at
most this number of pipelines having the same characteristic as the original one.

The computational results are shown in the Tables 1–4. We distinguish between results that were
solved to proven global optimality within a given time limit of 12 hours and those that did not. In the
latter case an optimality gap remains, that is defined as the ratio between the best upper bound u (i.e., the
objective function value of best feasible solution) and the best lower bound `. That is, gap = (u−`` )·100%.

The first column of the Tables 1–4 shows the scaling factor of the demand vector. The second column
gives the number of loops that can maximally be selected by the topology optimization. We compare the
results that are achieved with our cuts (with and without restarts) against the results that are achieved
without our cuts. In the latter case, the model is solved using the default settings of the solver SCIP.
For each run we report the optimality gap (as defined above). A gap of 0.0% means that the solver was
able to find a proven global optimal solution within the time limit of 12 hours. Furthermore we report
in column “primal” the objective function value of the best feasible solution, i.e., the building cost for
the chosen loop pipes, and in column “dual” the best lower bound. Note that in Table 1 and Table 3
these two columns are merged into one single “primal/dual” column, because both values coincide. In the
column “time” we report the CPU time (runtime) in seconds, and column “nodes” shows the number of
nodes that were solved during the branch-and-cut process. In the case that we use multiple restarts when
adding our cuts, this “node” value refers to the total number of all nodes, summing up the individual
restarted solution processes. In the column “#cuts” we report the total number of cuts that were added.
The rows in Table 2 and Table 4 are ordered such that we first have those instances that can be solved
to global optimality when using our cuts, then those instances where the gap can be reduced when using
our cuts, and finally those instances where we do not have a gap (because of no primal feasible solution).
Figure 7.3 shows a scatter plot of the runtimes that are achieved without cuts gainst with using our cuts
and restarts.

For those instance that were solved to optimality within the time limit, Table 1 and Table 3 show
huge reductions of the nodes of the branch-and-bound tree and the runtime when using our cuts and
restarts. Practically speaking, an instance is more computationally demanding, the more potential loops
are offered and the higher the scaling factor. The runtime and node reduction becomes more significant,
the more demanding the instance. Table 2 shows that 5 instances of net1 that reached the time limit can
be solved to proven global optimality when using our inequalities. Table 4 shows that for all instances
of net2 that reached the time limit while at least one primal solution was found, the gap was reduced
and much better primal feasible solutions were found.
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Fig. 7.3: Runtime comparison on instance net1 and net2. Each cross (×) corresponds to a single instance
of the test set. Note that multiple crosses are drawn in the upper right corner of the plots that cannot
be differed. They represent those instances that ran into the time limit for SCIP without and with using
our cuts.

27



8 Conclusions and Outlook

We considered a network design and extension problem for natural gas transmission networks, where the
gas flow is not only governed by flow conservation constraints in nodes (as in classical linear network flow
problems), but also subject to nonlinear functions depending on node potential values (which represent
the gas pressure in the nodes). We gave a model formulation, and applied a standard MINLP solver
for its solution. We derived additional valid inequalities for the topology optimization problem. We
could demonstrate by numerical experiments on a test set of instances that the separation of these new
inequalities leads to significant smaller branch-and-bound trees and thus lower overall running times.

So far, we considered loop extensions only. From a practical point of view these kind of extensions
are desired by network operations since they are cheaper than non-loop pipelines. From a computational
point of view this restriction limits the amount of potential extensions. When adding all possible pipelines
between all node pairs in the network, the model and the combinatorial decisions would be so large that
the computations would not finish within a reasonable time limit, even when adding our cuts. Hence new
techniques for making a reasonable selection of new pipes are necessary in the first place. To this end, it
is necessary to further speed up the computations. Hereto, the methods presented in [19] could be used,
instead of solving subproblems of the topology optimization model via linear programming. This is one
of our future research directions.

Finally, our method was applied to the case of a single invalid nomination. In practice, however,
one has to deal with a whole set of different infeasible nominations, and needs to determine a topology
extension that can cope with all of them simultaneously. The extension of our methods to this multi-
scenario case is a further area of our current research.
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