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Abstract

We present a new semidefinite representation for the trace of a real
function f applied to symmetric matrices, when a semidefinite represen-
tation of the convex (or concave) function f is known. Our construction
is intuitive, and yields a representation that is more compact than the
previously known one. We also show with the help of matrix geometric
means and a Riemannian metric over the set of positive definite matrices
that for a rational exponent p in the interval (0, 1], the matrix X raised to
p is the largest element of a set represented by linear matrix inequalities.
This result further generalizes to the case of the matrix A]p B, which is
the point of coordinate p on the geodesic from A to B. We give numerical
results for a problem inspired from the theory of experimental designs,
which show that the new semidefinite programming formulation can yield
an important speed-up factor.

Keywords semidefinite representability, optimal experimental designs, SDP,
matrix geometric mean

AMS Classification: 90C22, 62K05

1 Introduction
In this article we discuss semidefinite representations of scalar functions ap-
plied to symmetric matrices. We recall that it is possible to extend the def-
inition of a function f : I 7→ R, x → f(x), where I is a real interval, to the
set SIm of m × m−symmetric matrices whose spectrum lies in I as follows: if
X = U Diag(λ1, . . . , λm)UT is an eigenvalue decomposition of X, then we define
f(X) := U Diag

(
f(λ1), . . . , f(λm)

)
UT . Throughout this article we denote by

Sm (resp. S+
m,S++

m ) the set of m × m symmetric (resp. positive semidefinite,
positive definite) matrices.

If the scalar function f is semidefinite representable, then a result of Ben-Tal
and Nemirovski can be used to construct a semidefinite representation of
X → trace f(X). Indeed, trace f(X) can be rewritten as

∑
i f(λi), which is

a symmetric and semidefinite representable function of the eigenvalues of X, so
that Proposition 4.2.1. in [5] applies.

In this article, we show that the semidefinite representation of x → f(x)
can be lifted to the matrix case X → trace f(X) by an intuitive transformation
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which involves Kronecker products (Theorem 3.1). For a convex (resp. con-
cave) function, the resulting semidefinite representation of the epigraph (resp.
hypograph)

E = {(t,X) ∈ R× Sm : trace f(X) ≤ t)}(
resp. H = {(t,X) ∈ R× Sm : trace f(X) ≥ t)}

)
is more compact than the one obtained from the general construction of Ben-
Tal and Nemirovski, in which the Ky-Fan k-norms of M must be bounded
for k = 1, . . . ,m. Our numerical results of Section 5 moreover show that the
semidefinite programs (SDP) based on the present representation are solved in
a shorter time than the former SDP formulations, and they are numerically
more stable.

For the case where f(x) = xp : R+ 7→ R+, where p is a rational number in
(0, 1], we shall see that our construction yields a stronger result. Namely, we
show in Theorem 4.4 that Xp has an extremal representation of the form

Xp = max�{T ∈ Sm : T ∈ S},

where the set S is semidefinite representable and max� denotes the largest
element with respect to the Löwner ordering, which is defined over Sm as follows:

A � B ⇐⇒ (B −A) ∈ S+
m.

More generally, our result shows that the matrix B]pA := B
1
2

(
B−

1
2AB−

1
2 )pB

1
2

has an extremal representation. The proof of this result uses the notion of
matrix geometric mean, and the Banach fixed point theorem in the space S++

m

equipped with a Riemannian metric.
Our study is motivated by the theory of optimal experimental designs, where

the general problem to solve takes the form

max
w∈Rs

Φp

(
s∑
i=1

wiMi

)
, (1)

s. t.

s∑
i=1

wi = 1, w ≥ 0,

where M1, . . . ,Ms are given positive semidefinite matrices, and for p ∈ [−∞, 1]
the Φp−criterion is defined over the set of positive definite matrices M ∈ S++

m

as

Φp(M) =


λmin(M) for p = −∞ ;
( 1
m trace Mp)

1
p for p ∈ (−∞, 1], p 6= 0 ;

(det(M))
1
m for p = 0.

(2)

The definition of Φp is extended by continuity to singular matrices M ∈ S+
m,

so that Φp(M) = 0 if M is singular and p ≤ 0. This design problem arises
when an experimenter must select a subset of trials to perform among a set
of available experiments, and has many applications in various domains, such
as dose-finding in clinical studies [11] or measurements in telecommunication
networks [21]. We refer the reader to Pukelsheim [17] for more background on
optimal experimental designs.
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Note that any semidefinite representation of the function M → traceMp

yields a semidefinite programming (SDP) formulation of Problem (1). The
cases p = −∞, p = −1, and p = 0, known as E−, A− and D−optimal design
problems have been extensively studied in the literature, and SDP formulations
are known for these problems [10]. We also point out that lighter Second Order
Cone Programming (SOCP) formulations exist for p = −1 and p = 0 [19, 18].
The general case (p ∈ [−∞, 1]) deserved less attention. However, it was re-
cently noticed by Papp [16] that the SDP formulation can be obtained by using
Proposition 4.2.1. in [5]. Our numerical results (cf. Section 5) show that the
new SDP formulation from this paper can improve the computation time by
several orders of magnitude.

2 Preliminaries
In this section, we briefly recall some basic notion about semidefinite repre-
sentability and matrix geometric means. A Semidefinite Program (SDP) is an
optimization problem where a linear function cTx must be maximized, among
the vectors x belonging to a set S defined by linear matrix inequalities (LMI):

S = {x ∈ Rn : F0 +
∑
i

xiFi � 0}.

We now recall the definition of a semidefinite representable set, which was
introduced by Ben-Tal and Nemirovski [5]:

Definition 2.1 (Semidefinite representability). A convex set S ⊂ Rn is said to
be semidefinite representable, abbreviated SDr, if S is the projection of a set
in a higher dimensional space which can be described by LMIs. In other words,
S is SDr if and only if there exists symmetric matrices F0, . . . , Fn, F

′
1, . . . , F

′
n′

such that

x ∈ S ⇐⇒ ∃y ∈ Rn
′

: F0 +

n∑
i=1

xiFi +

n′∑
i=1

yiF
′
i � 0.

Such an LMI is called a semidefinite representation (SDR) of the set S.

Definition 2.2 (SDR of a function). A convex (resp. concave) function
f : S ⊂ Rn 7→ R is said SDr if and only if the epigraph of f , {(t,x) : f(x) ≤ t}
(resp. the hypograph {(t,x) : t ≤ f(x)}), is SDr.

It follows immediately from these two definitions that the problem of max-
imizing a concave SDr function (or minimizing a convex one) over a SDr set
can be cast as an SDP.

We now give a short insight on the theory of matrix geometric means and
the Riemannian metric of the set of positive definite matrices S++

m . We refer the
reader to the book of Bhatia [6] and the references therein for more details on
this subject. The Geometric mean of two positive definite matrices A,B ∈ S++

m

was introduced by Ando [3]:

A]B := A1/2
(
A−1/2BA−1/2

)1/2
A1/2.
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In the latter paper, Ando shows that A]B satisfies the following extremal prop-
erty:

A]B = max�

{
X ∈ Sm :

(
A X
X B

)
� 0

}
. (3)

The space of positive definite matrices is equipped with the Riemannian metric

δ2(A,B) = ‖ logA−1/2BA−1/2‖F ,

where ‖M‖F =
√

trace(MTM) denotes the Frobenius norm ofM . In this space,
there exists a unique geodesic [A,B] between two matrices A and B, which can
be parametrized as follows (using the common ]t−notation):

γA→B(t) = A]tB := A1/2
(
A−1/2BA−1/2

)t
A1/2, 0 ≤ t ≤ 1.

Note that A]B = A] 1
2
B is the midpoint of this geodesic. The geometric mean

of two matrices has the following properties (cf. chapter 4 in [6]):

• it is commutative:
A]B = B ]A; (4)

• if A, and B commute, then

A]B = A1/2B1/2; (5)

• the map X → A]X is operator monotone, i.e.

Y � X =⇒ A]Y � A]X; (6)

• the ]−operator is invariant under congruent transformation: for all in-
vertible matrix U of size m,

UT (A]B)U = (UTAU) ] (UTBU). (7)

We also point out that the metric δ2 enjoys an important convexity property
(cf. §6.1.11 in [6]), which will be useful in the proof of Theorem 4.4:

∀A,B,C,D ∈ S++
m , δ2(A]B,C ]D) ≤ 1

2
δ2(A,C) +

1

2
δ2(B,D). (8)

3 Lifting the SDR of a scalar function
In this section, we show that the SDR of a function f : I 7→ R can be trans-
formed in a simple way to a SDR of trace f : SIm → R:

Theorem 3.1. Let f : I 7→ R be a scalar function, where I is a real interval.
Assume that f admits the following SDR: for all x ∈ I,

f(x) ≤ t⇐⇒ ∃y ∈ Rn : F0 + xFX + tFT +

n∑
i=1

yiFi � 0,
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where the symmetric matrices F0, . . . , Fn, FX , FT are given. Then, a SDR of
the function g : SIm 7→ R, X → trace f(X) is given by: for all X ∈ SIm,

trace f(X) ≤ t⇐⇒ ∃T, Y1, . . . , Yn ∈ Sm :

(i) F0 ⊗ Im + FX ⊗X + FT ⊗ T +

n∑
i=1

Fi ⊗ Yi � 0;

(ii) traceT ≤ t,

where Im denotes the m×m identity matrix and ⊗ is the Kronecker product. In
other words, the SDR is lifted from scalar to matrices by replacing each scalar
by a corresponding matrix block of size m×m.

Proof. Let X be an arbitrary matrix in SIm, and X = U Diag(λ)UT be an
eigenvalue decomposition of X.

We first assume that trace f(X) ≤ t. For k = 1, . . . ,m, define tk = f(λk).
By assumption there exists a vector y(k) such that

Bk := F0 + λkFX + tkFT +

n∑
i=1

y
(k)
i Fi � 0.

Denote by B the block diagonal matrix with blocks B1, . . . , Bm on the diagonal,
and by yi the vector of Rm with components y(1)

i , . . . , y
(m)
i . We may write

B = Im ⊗ F0 + Diag(λ)⊗ FX + Diag(t)⊗ FT +

n∑
i=1

Diag(yi)⊗ Fi � 0.

In the previous expression, we may commute the Kronecker products, which is
equivalent to pre- and post-multiplying by a permutation matrix:

F0 ⊗ Im + FX ⊗Diag(λ) + FT ⊗Diag(t) +

n∑
i=1

Fi ⊗Diag(yi) � 0.

Now, we multiply this expression to the left by the block diagonal matrix
Diag(U, . . . , U) = I ⊗ U , and to the right by its transpose. This gives:

F0 ⊗ Im + FX ⊗X + FT ⊗ T +

n∑
i=1

Fi ⊗ Yi � 0,

where we have set T = U Diag(t)UT and Yi = U Diag(yi)U
T . By construction,

we have T = f(X), so (ii) holds and we have proved the “⇒” part of the
theorem.

For the converse part, consider some matrices T ′, Y ′1 , . . . Y ′n ∈ Sm such that
the LMI (i) of the theorem is satisfied. Define HT = T ′ − T and Hi = Y ′i − Yi,
where T = f(X) and Yi = U Diag(yi)U

T are defined as in the first part of this
proof. We will show that traceHT ≥ 0, which implies traceT ′ ≥ trace f(X),
and the proof will be complete.

So from (i) we have:

F0 ⊗ Im + FX ⊗X + FT ⊗ (T +HT ) +

n∑
i=1

Fi ⊗ (Yi +Hi) � 0.
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Again, we multiply this expression to the left by I ⊗ UT and to the right by
I ⊗ U , and then we commute the Kronecker products. This gives:

Diag(B1, . . . , Bm) + UTHTU ⊗ FT +

n∑
i=1

UTHiU ⊗ Fi � 0.

For all k = 1, . . . ,m, this implies that the kth diagonal block is positive semidef-
inite:

Bk + (UTHTU)k,k FT +

n∑
i=1

(UTHiU)k,k Fi � 0.

According to the SDR of the scalar function f , it means that

f(λk) ≤ tk + (UTHTU)k,k,

and since f(λk) = tk we obtain (UTHTU)k,k ≥ 0. From there, it is easy to
conclude:

traceHT = traceHTUU
T = traceUTHTU =

m∑
k=1

(UTHTU)k,k ≥ 0.

Example 3.2. A SDR of the function x→ xp, where p ∈ Q is briefly sketched
in [5] (§3.3.1., examples 12 to 15) and given with more details in [1] (§2.3.h).
(Note that this function is concave for p ∈ [0, 1] and convex for other values
of p.) For example, the epigraph of the convex function x → x−4/3 mapping
(0,∞) onto itself, may be represented as follows: for all t ≥ 0, x > 0:

x−4/3 ≤ t⇐⇒ 1 ≤ x4t3

⇐⇒ ∃u ≥ 0, v ≥ 0 : 1 ≤ xu, u2 ≤ tv, v2 ≤ t

⇐⇒ ∃u ∈ R, v ∈ R :

(
x 1
1 u

)
� 0,

(
t u
u v

)
� 0,

(
t v
v 1

)
� 0

For the second equivalence, the “⇐” part is clear and the “⇒” part is obtained
by setting u = t3/4 and v = t1/2. The third equivalence is a standard use of
the Schur complement lemma. By using Theorem 3.1, we obtain a SDR of the
function X → traceX−4/3 :

traceX−4/3 ≤ t⇐⇒ ∃U, V, T ∈ Sm :



(
X Im
Im U

)
� 0(

T U
U V

)
� 0,(

T V
V Im

)
� 0,

traceT ≤ t

Note however that LMI (i) of Theorem 3.1 does not imply the stronger
property f(X) � T . As a counter-example, consider the function f(x) = x4,
which admits the SDR

x4 ≤ t⇐⇒ ∃u ∈ R :

(
u x
x 1

)
� 0,

(
t u
u 1

)
� 0.

6



If we set X =

(
1 1
1 2

)
, U =

(
3 3
3 5

)
and T =

(
18 24
24 34

)
, the reader

can check that the LMI (i) of Theorem 3.1 holds:(
U X
X I2

)
� 0,

(
T U
U I2

)
� 0,

but X4 � T . In the next section, we show that this stronger property holds for
f : x→ xp when p ∈ Q ∩ (0, 1].

4 Semidefinite representation of A]pB

Throughout this section, p denotes a rational number in (0, 1], and we choose
two integers α and β such that p = α

β and 0 < α ≤ β. We are going to show
that the lifted SDR of the function fp mapping R+ onto itself and defined by
f(x) = xp, also provides an extremal representation of Xp. In other words,
there is a SDr set S ⊂ S+

m for which Xp is the largest element with respect to
Löwner ordering. In fact, we will prove a stronger statement: for any A ∈ S+

m

and B ∈ S++
m , the matrix B ]pA = B

1
2

(
B−

1
2AB−

1
2 )pB

1
2 , which is the point of

coordinate p on the geodesic from B to A, is the largest element of a SDr set.
The matrix power Ap arises as the particular case B = Im.

To do this, we first present the construction of the SDR of
f̃p : (a, b)→ apb1−p. As explained in [1], this SDR is based on binary trees
whose nodes contain variables. Note that in a perfect binary tree, every node
of depth k can be index by an element of Γk := {L,R}k, which indicates the
sequence of left or right turns needed to reach this node from the root of the
tree. For example, a perfect binary tree T of depth 2 is indexed as follows:

T∅

TL

TLL TLR

TR

TRL TRR

We denote by Tn = Γ0 ∪ . . . ∪ Γn the set of node indices in a perfect binary
trees of depth n, so that (Sm)Tn represents the set of binary trees of depth n,
whose nodes are matrices of Sm. The concatenation of tree indices is denoted
by t, so that for example, LR t L = LRL ∈ Γ3. We define n as the integer
such that 2n−1 < β ≤ 2n, and χα,β as the following formal sequence of length
2n, which is formed with characters in the alphabet {A, B, X}:

χα,β := (A, . . . , A︸ ︷︷ ︸
α times

, B, . . . , B︸ ︷︷ ︸
(β−α) times

, X, . . . , X︸ ︷︷ ︸
(2n−β) times

).

Now, let σ be any one of the permutations of χα,β , and let A,B be two arbitrary
matrices (respectively in S+

m and S++
m ). The elements of σ are indexed by γ ∈ Γn,

in the order corresponding to the leaves of a tree of depth n from left to right.
For example, if σ = (A, B, X, B), we have σLL = A, σRL = X, and σLR = σRR = B.
Let us now define for all γ ∈ Γn the function σ̂γ , mapping S+

m to either A,B, or

7



X as follows:

∀X ∈ S+
m, σ̂γ(X) =

 A if σγ = A
B if σγ = B
X if σγ = X

(9)

With a slight abuse of notation, we will write σγ(X) instead of σ̂γ(X) in the
remaining of this paper. (So σγ denotes a character in {A, B, X}, while σγ(X)
denotes the corresponding matrix in S+

m.) Similarly, we will simply write σ(X)
to denote the sequence

(
σ̂γ(X)

)
γ∈Γn

.
We can now construct the SDR of f̃p (already lifted to S+

m by considering
matrix blocks instead of scalar variables). It involves a tree whose root is X,
leaves are defined by σ, and a LMI related to the matrix geometric mean must
be satisfied at each node:

S(σ) = {X ∈ S+
m : ∃T ∈ (Sm)Tn :

(i) T∅ = X;

(ii) ∀γ ∈ Γn, Tγ = σγ(X);

(iii) ∀k = 0, . . . , n− 1, ∀γ ∈ Γk,

(
TγtL Tγ
Tγ TγtR

)
� 0}

Example 4.1. If p = 1/3, we have α = 1, β = 3, n = 2, and σ must contain
respectively α = 1, (β − α) = 2, and (2n − β) = 1 copies of A, B, and X. If
σ = (A, X, B, B), the set S(σ) is defined through a tree of the form

X

TL

A X

TR

B B

(10)

The property (iii) in the definition of S(σ) implies that TR satisfies(
B TR
TR B

)
� 0.

So by Equation (3) we have TR � B, and the definition of S(σ) simplifies to:

X ∈ S(σ)⇐⇒ ∃TL ∈ Sm :

(
TL X
X B

)
� 0,

(
A TL
TL X

)
� 0.

Generally speaking, we point out that the order of the elements in the per-
mutation σ can be chosen such that the definition of S(σ) involves no more than
2(n− 1) = O(log β) LMIs of size 2m× 2m:

Proposition 4.2. The permutation σ of χα,β can always be chosen such that
S(σ) admits an SDR involving no more than 2(n− 1) = O(log β) LMIs of size
2m× 2m, and no more than 2n− 3 = O(log β) additional variables Tγ ∈ Sm.

A constructive proof of this result is sketched in appendix.
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Now, as a consequence of Equation (3), observe that property (iii) in the def-
inition of S(σ) implies Tγ � TγtL ] TγtR (if the geometric mean is well defined,
i.e. TγtL, TγtR ∈ S++

m ). By operator monotonicity of the matrix geometric
mean (see (6)), we see that if the matrices A,B,X, TL and TR of Tree (10) are
positive definite, then:

X � TL ] TR � (A]X) ] (B ]B).

In the general case, we can bound X from above (with respect to Löwner
ordering) by an expression with nested “]-operations” in the binary tree whose
leaves are defined through σ. Formally, for any two collections ς, ς ′ ∈ (S+

m)Γn of
2n positive definite matrices indexed by tree indices, i.e.

∀γ ∈ Γn, ςγ ∈ S+
m, ς

′
γ ∈ S+

m,

we define the juxtaposition ς u ς ′ ∈ (S+
m)Γn+1 as follows:

∀γ ∈ Γn, (ς u ς ′)Ltγ = ςγ , (ς u ς ′)Rtγ = ς ′γ .

Note that if n ≥ 1, any sequence ς ∈ (S+
m)Γn can be uniquely decomposed as

ς = ς [L] u ς [R], where the subsequences ς [L] and ς [R] are elements of (S+
m)Γn−1 .

This allows us to define inductively the nested sharp operator #, which acts
from (S++

m )Γn onto S++
m as follows:{
∀ς ∈ (S++

m )Γ0 , #(ς) := ς∅;
∀ς = ς [L] u ς [R] ∈ (S++

m )Γn , n ≥ 1, #(ς) :=
(
#(ς [L])

)
]
(
#(ς [R])

)
.

With a straightforward induction, we can now obtain the following lemma:

Lemma 4.3. If A and B are positive definite, then

X ∈ S(σ) =⇒ X � #(σ(X)).

We can finally give the main result of this section:

Theorem 4.4 (Extremal representation of B ]pA). Let p = α
β , 0 < α ≤ β,

α ∈ N, β ∈ N, A ∈ S+
m, B ∈ S++

m , and let σ be an arbitrary permutation of
χα,β. Then, B ]pA satisfies the following extremal property

B ]pA = max�{X ∈ S+
m : X ∈ S(σ)}.

Proof. Let A ∈ S++
m be an arbitrary positive definite matrix. We are first going

to show that B ]pA = max�{X ∈ S++
m : X ∈ S(σ)}. The general statement

where A ∈ S+
m may be singular will be obtained at the end of this proof by

continuity. Our proof relies on the following lemma:

Lemma 4.5. If A and B are positive definite, then X = B ]pA is a solution of
the equation

X = #(σ(X)).

Proof of the lemma.
Define a sequence σ′(X), such that for all γ ∈ Γn,

σ′γ(X) = B−
1
2 σγ(X) B−

1
2 .
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Set Y = B−
1
2AB−

1
2 , so that the elements of σ′(B ]pA) are all in {Y, Im, Y p},

and hence they commute. A simple induction shows that #
(
σ′(B ]pA)

)
= Y p

(the geometric means are easy to compute when the matrices commute, see (5)).
By congruence invariance (see (7)),

#
(
σ(B ]pA)

)
= B

1
2 #

(
σ′(B ]pA)

)
B

1
2

= B
1
2Y pB

1
2

= B ]pA.

Proof of Theorem 4.4 (continued). Let X ∈ S++
m such that X ∈ S(σ), and let

T ∈ (Sm)Tn be a tree satisfying properties (i) − (iii) of the definition of S(σ).
Define a new tree T ′ as follows:

∀γ ∈ Γn−1, T
′
γ := TγtL ] TγtR � Tγ ,

and
∀γ ∈ Γk, T

′
γ := T ′γtL ] T

′
γtR � Tγ

for k = (n − 2), . . . , 0. By construction, the root of T ′ is
X ′ := T ′∅ = #

(
σ(X)

)
� X. It remains to define the leaves of T ′, which

we do according to σ(X ′):

∀γ ∈ Γn, T
′
γ := σγ(X ′) � Tγ .

By construction, it is clear that T ′ satisfies the property (iii) of the definition
of S(σ) for the depth levels k = 0, . . . , n − 2. For a γ ∈ Γn−1, (iii) also holds,
because (

T ′γtL T ′γ
T ′γ T ′γtR

)
�
(
TγtL T ′γ
T ′γ TγtR

)
� 0,

where the first inequality follows from T ′γtL � TγtL, T ′γtR � TγtR, and the
second inequality is a consequence of T ′γ = TγtL ] TγtR. This shows that X ′
belongs to S(σ), too.

Define h : S++
m 7→ S++

m , X → #
(
σ(X)

)
. So far, we have shown that

X ∈ S(σ) =⇒
[
h(X) � X and h(X) ∈ S(σ)

]
. By using the convexity prop-

erty of the Riemannian metric (Equation (8)), a simple induction shows that h
is a contraction mapping with a contraction factor equal to the fraction of the
number of elements of σ that take the value X:

∀X,X ′ ∈ S++
m , δ2(h(X), h(X ′)) ≤ 2n − β

2n
δ2(X,X ′) < δ2(X,X ′).

Hence, the mapping X → h(X) is contractive in the space S++
m equipped with

the Riemannian metric δ2. It is known that this space is complete (see e.g. [15]),
and hence we can apply the Banach fixed point theorem: the fixed point equation
X = h(X) has a unique solution X∗ ∈ S++

m . Moreover for all X ∈ S++
m the

sequence defined by X0 = X, Xi+1 = h(Xi) converges to X∗. In particular,
if X ∈ S(σ), our previous discussion shows that X � X∗. Moreover, we can
construct a tree with leaves defined by σ(X∗), and such that all non-leaf node
is the geometric mean of its two children, so that the root will be h(X∗) = X∗.

10



So, X∗ ∈ S(σ) is the largest element of S(σ). Finally, we know from Lemma 4.5
that X∗ = B ]pA.

It remains to show that the statement of the theorem remains valid when
the matrix A ∈ S+

m is singular. We will first show that B ]pA ∈ S(σ). Consider
a tree T with leaves σ(B ]pA). Since the matrix B ]pA = B

1
2

(
B−

1
2AB−

1
2 )pB

1
2

is singular, we may not define the non-leaf nodes of this tree using geomet-
ric means. However, observe that every leaf is of the form B ]k A, with
k ∈ {0, p, 1}. Hence, we define the non-leaf nodes of T by the following re-
lation: if TγtL = B ]k1 A and TγtR = B ]k2 A, then Tγ := B ] k1+k2

2
A. It is easy

to check that the property (iii) of the definition of S(σ) is satisfied for the
resulting tree T . A simple induction shows that the root of this tree is

T∅ = B ]nA(σ)+pnX(σ)
2n

A,

where nA(σ) and nX(σ) represent the number of times that A and X appear in
the sequence σ. Replacing nA(σ) by α and nX(σ) by 2n−β, we find T∅ = B ]pA.
This shows that B ]pA ∈ S(σ).

Until now the matrices A and B were fixed, but now we need to let A vary so
we introduce the notation σ̄A′(X) to represent the sequence of length 2n which
is identical to σ(X), except for the elements A that are replaced by A′:

(
σ̄A′(X)

)
γ

:=

 A′ if σγ = A;
B if σγ = B;
X if σγ = X.

In particular, σ̄A(X) = σ(X) for all X ∈ S+
m. We also define the set

S̄(σ) := {(A′, X) ∈ S+
m × S+

m : X ∈ S(σ̄A′)}.

Note that S̄(σ) is SDr by construction, and hence convex.
Now, choose a sequence Ai ∈ S++

m such that Ai → A as i → ∞, as well as
a sequence εi > 0 such that εi → 0. We know that (Ai, B ]pAi) ∈ S̄(σ) for all
i. Let X ∈ S(σ), so that (A,X) ∈ S̄(σ) and define A′i := (1 − εi)A + εiAi,
X ′i := (1 − εi)X + εiB ]pAi. By convexity of S̄(σ), we have (A′i, X

′
i) ∈ S̄(σ).

Moreover, since the matrices A′i and X ′i are positive definite, we know that
X ′i � B ]pA′i. By taking the limit, we obtain X � B ]pA. This completes the
proof.

Corollary 4.6. Let p = α
β , 0 < α ≤ β, and for all U,X ∈ S+

m let σX(U) be
a permutation of χα,β(X, Im, U) (the order of the elements in σX(U) does not
depend on X and U). If K is a m × r−matrix, then the concave function
X → traceKTXpK, which maps S+

m to R+, has the following semidefinite rep-
resentation: for all X ∈ S+

m,

t ≤ traceKTXpK ⇐⇒ ∃U ∈ S(σX), t ≤ traceKTUK.

Proof. If t ≤ traceKTXpK, we set U = Xp, so that t ≤ traceKTUK and by
Theorem 4.4 U ∈ S(σX). Conversely, assume that U ∈ S(σX). We know from
previous theorem that U � Xp. Hence, we have traceMU ≤ traceMXp for all
positive semidefinite matrix M . In particular,

traceKTUK = traceKKTU ≤ traceKKTXp = traceKTXpK,

from which the conclusion follows.
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Remark 4.7. In the recent years, many authors have proposed to generalize
the definition of matrix geometric means for three or more matrices [4, 7, 9, 8].
In a seminal work, Ando, Li and Mathias [4] have given a list of 10 properties
that a “good” geometric mean should satisfy. A natural question arising from
this paper is the following: is there a matrix geometric mean satisfying the
ten properties of [4], that coincides with the largest element of a SDR set ?
Interestingly, our result can be generalized in a straightforward way to give an
extremal representation of the unique fixed point F (A1, . . . , AN ) of the map

X → #
(

(A1, A2, . . . , AN , X, . . . ,X︸ ︷︷ ︸
2n−N

)
)
,

where the operand of # is a sequence of (S++
m )Γn , with n ∈ N such that

2n−1 < N ≤ 2n. We claim that this fixed point satisfies most of the Ando-
Li-Mathias properties, but the permutation invariance is not fulfilled: for a
permutation σ, F (A1, . . . , AN ) 6= F (Aσ(1), . . . , Aσ(N)) in general.

5 Numerical Results
In this section, we compare the CPU time required to solve problems of the
form

min
w≥0∑
i wi=1

trace f(

s∑
k=1

wkMk), (Pf )

by using the semidefinite representation of Theorem 3.1, and the one of Ben-Tal
and Nemirovski [5]. This problem is inspired from the application to optimal
experimental design that is presented in the introduction. For the sake of variety,
we do not limit ourselves to power functions x→ xp with p < 1. More precisely,
assume that f : I → R is a convex real valued function defined on the interval
I, an SDR of f is known:

∀x ∈ I, f(x) ≤ t⇐⇒ ∃y ∈ Rn : F0 + xFX + tFT +

n∑
i=1

yiFi � 0,

and the matrices M1, . . . ,Ms ∈ SIm are given. We compare the efficiency of the
following two SDP formulations of Problem (Pf ): the one with block matrices
resulting from Theorem 3.1,

min
X,T,{Yi},w

traceT (SDPf − 1)

s. t. F0 ⊗ Im + FX ⊗X + FT ⊗ T +

n∑
i=1

Fi ⊗ Yi � 0;

X =

s∑
k=1

wkMk, w ≥ 0,

s∑
k=1

wk = 1,
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f(x) I m CPU time (s) [SeDuMi] CPU time (s) [MOSEK]
(SDPf − 1) (SDPf − 2) (SDPf − 1) (SDPf − 2)

−x
1
3 [0,∞)

10 0.40 0.80 0.05 0.18
25 5.16 40.85 0.72 6.92
40 59.19 706.43 † 3.47 71.25 [

−x
2
5 [0,∞)

10 0.58 1.28 0.08 0.22
25 20.38 39.57 1.68 5.88
40 298.90 799.77 † 19.33 [ 66.69 [

x
−8
7 (0,∞)

10 0.49 0.90 0.10 0.19
25 22.38 40.07 † 1.65 4.96
40 357.22 691.75 † 14.65 61.87

x
7
4 [0,∞)

10 0.41 1.23 0.07 0.17
25 8.71 39.95 1.19 [ 5.90 [

40 120.16 741.15 † 6.38 [ 68.63 [

1
x(1−x) (0, 1)

10 0.30 0.76 0.05 0.15
25 4.31 37.21 0.37 4.97
40 51.79 607.57 † 2.27 61.44 [

gconv(x) R
10 0.75 1.50 0.12 0.24
25 63.62 43.08 † 2.94 4.37
40 1019.70 903.55 † 31.06 58.46 [

Table 1: CPU time of two SDP formulations for Problem (Pf ) with SeDuMi and
MOSEK. The second column indicates the interval I where the function f is defined,
and the third column specifies the size of the matrices Mi ∈ SIm. The function gconv in
the last raw is defined in (11). †The numbers displayed in italics for SeDuMi indicate
that the solver stopped before reaching the optimality tolerance, because of numeri-
cal problems. [The numbers displayed in italics for MOSEK indicate that the solver
returned the near-optimal status.

and the SDP from [5] that bounds each Ky-Fan Norm of X:

min
X,t,x,y,σ,{Zj}

m∑
j=1

tj (SDPf − 2)

s. t. F0 + xjFX + tjFT +

n∑
i=1

y
(j)
i Fi � 0, (j = 1, . . . ,m);

x1 ≥ x2 ≥ . . . ≥ xm;

j∑
k=1

xk − jσj − trace(Zj) ≥ 0, (j = 1, . . . ,m− 1);

Zj � 0, (j = 1, . . . ,m− 1);

Zj −X + σjIm � 0, (j = 1, . . . ,m− 1);

traceX =

m∑
j=1

xj ;

X =

s∑
k=1

wkMk, w ≥ 0,

s∑
k=1

wk = 1.

Our computational results are summarized in Table 1. Besides rational
power functions, we have also consider the function f : (0, 1) 7→ R, x→ 1

x(x−1) ,
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which has the SDR

∀x ∈ (0, 1), f(x) ≤ t⇐⇒ ∃u ∈ R : 1 ≤ u(1− x), 1 ≤ (t− u)x

⇐⇒ ∃u ∈ R :

(
u 1
1 1− x

)
� 0,

(
t− u 1

1 x

)
� 0,

as well as the convex envelope of a polynomial of degree 6. The fact that convex
envelopes of univariate rational functions are SDr was proved by Laraki and
Lasserre [13]. For the function

gconv : R 7→ R, x→ convex-envelope(
x6

6
− 3

x4

2
+ 4x2 + x), (11)

the SDR given in [13] is:

gconv(x) ≤ t⇐⇒ ∃y2, . . . , y6 ∈ R :


1 x y2 y3

x y2 y3 y4

y2 y3 y4 y5

y3 y4 y5 y6

 � 0,

t ≥ y6

6
− 3

y4

2
+ 4y2 + x.

For all our instances, we have generated s = 25 random matrices Mi ∈ SIm.
We solved the SDPs by using SeDuMi [22] interfaced by YALMIP [14], and
MOSEK 7.0 [2] interfaced by PICOS [20], with the default settings on a PC
with 8 processors at 2.2GHz. Our experiments show that the block matrix
formulation (SDPf − 1) improves the CPU time by a factor that vary between
2 and 12 for SeDuMi, and between 1.5 and 27 with MOSEK. An exception is the
case f = gconv with SeDuMi, but in this case the solver encountered numerical
problems with (SDPf − 2) and stopped the computation before reaching the
optimality tolerance.

Also note that SeDuMi was always able to compute an optimal solution
with (SDPf − 1) but not with (SDPf − 2), and that MOSEK returned the
near-optimal status twice more often with the formulation (SDPf − 2). This
suggests that the formulation from this paper is numerically more stable.

To confirm this fact, we have computed the behavioural measures studied
in [12], for the two SDP formulations of several of the above instances. The
authors of this article evidence a positive correlation between the number of
interior point method iterations and some measures of the SDP instances, such
as the Renegar condition number C and some geometry measures Dε

p, gp, D
ε
d, gd

related to the primal and dual feasible regions and the norm of the solutions.
We used a matlab code written by an author of [12] to compute these be-
havioural measures and compare them. For all the instances we considered,
the Renegar condition number C was infinite, as well as the geometric mea-
sures Dε

p and gd. However, gp and Dε
d had finite values for most instances,

see Table 2. These quantities are always orders of magnitude smaller for the
formulation (SDPf − 1), which suggests that the formulation of this paper has
better numerical properties indeed.
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f(x)
Dε
d gp

(SDPf − 1) (SDPf − 2) (SDPf − 1) (SDPf − 2)
−x1/3 319.2 2438.4 639.0 38292
−x2/5 463.5 2115.7 1143.0 38420
x−8/7 +∞ +∞ +∞ +∞
x7/4 674.4 2087.8 297.4 8117.7
x

1−x 167.7 215.2 128.9 4867.8
gconv(x) 1506.8 2582.4 5522.8 12472

Table 2: Behavioural measures Dε
d and gp of [12], computed for the same in-

stances as in Table 1, for m = 25.
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Appendix
Proof of Proposition 4.2. To prove this result, the key point is that whenever
both children of a variable node are the same matrix Z ∈ {A,B,X}, we can
assume without loss of generality that the variable takes the same value Z. To
see this, let Tγ be a variable node, and assume that TγtL = TγtR = Z. Denote
respectively by γ0 and γ1 the parent and sibling nodes of γ. The variable Tγ is
involved in the 2 LMIs(

Z Tγ
Tγ Z

)
� 0 and

(
Tγ Tγ0
Tγ0 Tγ1

)
� 0. (12)

We know that Tγ = Z ]Z = Z is the largest matrix (in the Löwner sense)
satisfying the first LMI (see (3)), and if Tγ satisfies the second LMI, then Z � Tγ
implies (

Z Tγ0
Tγ0 Tγ1

)
� 0.

Hence we can assume without loss of generality that Tγ takes the value Z.
This technique can be used to reduce the number of matrix variables and

LMIs to represent the set S(σ). For example, the tree involved in the represen-
tation of S

(
(A, A, A, A, X, X, B, X)

)
can be reduced as follows

X

TL

TLL

A A

TLR

A A

TR

TRL

X X

TRR

B X

 

X

A TR

X TRR

B X

so that this set can be represented using only 3 LMIs and 2 additional matrix
variables TR ∈ Sm and TRR ∈ Sm.

We next show how to construct a permutation σ of χα,β , such that S(σ) has
a representation involving no more than 2(n − 1) LMIs of size 2m × 2m and
2n− 3 additional variables Tγ ∈ Sm.

Let nA := α, nB := β−α and nX := 2n−β represent the number of occurrences
of A, B and X in χα,β (Recall that n is the largest integer such that 2n−1 < β ≤
2n). Let the binary representation of these numbers be

nA =
∑
k∈KA

2k, nB =
∑
k∈KB

2k, and nX =
∑
k∈KX

2k,

where KA,KB and KX are (finite) subsets of N. Denote by ςZk the sequence
containing 2k times the character Z. Our permutation σ is obtained by concate-
nating the sequences (ςAk)k∈KA , (ςBk)k∈KB , (ςXk)k∈KX , ordered by decreasing values
of k (the order of the subsequences ςZ1k and ςZ2k that have the same index k but
different characters Z1 6= Z2 has no importance). For example, if nA = 4 = 22,
nB = 1 = 20, and nX = 3 = 21 + 20, the permutation σ is obtained by arrang-
ing the subsequences {(A, A, A, A), (B), (X, X), (X)} by decreasing lengths, which
gives e.g. σ = (A, A, A, A, X, X, B, X).

Observe that we need at most one LMI to define the variables Tγ for the
depth level γ ∈ Γn−1. Indeed, the variables are arranged by groups of 2k
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variables, so if k > 0 this number is even and according to our claim at the
beginning of the appendix we do not need an LMI, nor an additional matrix
variable to define the parents of the variables in this group. There are at most
three groups ςZ0 = (Z) of cardinality one (one for each Z ∈ {A, B, X}), but 0 ∈
KA ∩KB ∩KX would imply that nA, nB and nX are odd, and so n = nA + nB + nX
would be odd, a contradiction. So there are at most two singleton groups of the
form (Z) in σ, and we need a single LMI to define their parent.

We next show by induction on j that the number of LMIs needed at each
depth level n − j of the binary tree is bounded by 2. This was readily shown
for j = 1. The leftmost variables in the tree at the depth n − j are arranged
by groups of 2k−j identical variables Z ordered by decreasing length, for all
k ∈ KZ ≥ j, Z ∈ {A, B, X}. In addition, by our induction hypothesis we have 0,1
or 2 additional variables Tγi , which are at the rightmost locations of Γn−j . So
the number of singleton variables at depth n− j, i.e. the variables who can’t be
paired with an identical sibling to define their parent, is bounded by 5 (up to
2 additional variables and a singleton (Z) for each Z such that j ∈ KZ), but as
above it can’t be 5 otherwise there would be an odd number of nodes at level
n− j. This shows that the singleton variables of depth n− j are at most 4, they
occupy the rightmost positions of Γn−j , and we need no more than 2 LMIs and
2 additional variables indexed in Γn−(j+1) to handle them.

To sum up, we need at most one LMI at level n− 1, and at most two LMIs
at levels 1, 2, . . . , n−2, plus one LMI at the root of the tree, so the total number
of LMIs required to define S(σ) is bounded by 2(n−1). The number of required
additional variable is the same number minus one, because T∅ = X and we do
not need an extra variable for the LMI at the root.

Before concluding the proof, we point out that this bound can be attained.
For example, take α = 3, β = 5, so that n = 3, nA = nX = 3 and nB = 2.
This yields the permutation σ = (A, A, B, B, X, X, A, X) of χα,β , and the reader can
verify that 2(n− 1) = 4 LMIs of size 2m× 2m are needed to define S(σ).
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