
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ULRIKE GOLAS

A General Attribution Concept
for Models inM-adhesive
Transformation Systems

– Long Version –

ZIB-Report 12-22 (Juli 2012)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782
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Abstract. Attributes are an important concept for modeling data in
practical applications. Up to now there is no adequate way to define at-
tributes for different kinds of models used inM-adhesive transformation
systems, which are a special kind of graph transformation system based
on M-adhesive categories. Especially a proper representation and defi-
nition of attributes and their values as well as a suitable handling of the
data does not fit well with other graph transformation formalisms.
In this paper, we propose a new method to define attributes in a nat-
ural, but still formally precise and widely applicable way. We define a
new kind of adhesive category, called W-adhesive, that can be used for
transformations of attributes, while the underlying models are still M-
adhesive ones. As a result, attributed models can be used as they are
intended to be, but with a formal background and proven well-behavior.

1 Introduction

Graph transformation is a well-known formalism for the rule-based derivation
of graphs [Ehr79, Roz97]. For different application areas, different graph types
are necessary to express all the properties of the underlying models. An under-
lying category theoretical framework provides the possibility to once and for all
prove different properties of graph transformation, like the local Church-Rosser
property or local confluence, on the categorical level and then transfer it by
instantiation to the different graphs. M-adhesive categories [EGH10] and their
variants like adhesive [LS04] and weak adhesive HLR [EEPT06] categories form
such a framework for graph transformations and their analysis. They are based
on a distinguished morphism classM, which is used for the rule morphisms and
has to satisfy certain properties, and a special van Kampen (VK) property de-
scribing the compatibility of gluings and restrictions, i.e. pushouts and pullbacks
in categorical terms. Based on this van Kampen property, many results can be
proven that hold for all kinds of graphs.

Attributes play an important role for modeling, for example in object-
oriented system models or network graphs. But up to now, no general method for
the definition of attributes in arbitrary models has been found which represents
attributes as understood in object-oriented systems. In theoretical contributions,



often an algebraic approach combined with graphs is used which has disadvan-
tages like allowing multiple attribute values for one attribute or integrating the
complete data values into the graph structure leading to infinite graphs. While in
other contexts, like conflict resolution of diverging transformations in model ver-
sioning [HEO12], multiple attribute values may be useful, they are unexpected
and lead to strange behavior in the general modeling of object-oriented systems.

The idea of this contribution is a separation of concerns, i.e. the separation of
the graph structure and their attribution and data. The goal is to have a formal-
ism that allows users to use attributes as in object-oriented models, but with a
formal background. It should be applicable to all kinds of graphs and graph-like
structures and compatible with well-known graph transformation approaches.
We will not achieve a simple attribution concept – which does not seem to exist
in a formal and wide-ranging way – but a theoretically well-founded one, which
can be applied intuitively without the need to take care of unexpected side ef-
fects as necessary for current approaches. The formalization leads to the notion
of W-adhesive categories, where the main idea is to restrict the VK property to
those squares that actually appear in transformations.

This paper is organized as follows. In Section 2, we motivate our work by an-
alyzing how attributes should work, how they are defined in current approaches
and describe the general idea of our new attribution concept. This is defined for-
mally in Section 3. In Section 4, we define transformations of attributed objects
and show that the attribution concept does not lead to M-adhesive categories.
Instead,W-adhesive categories are defined in Section 5, where we show exemplar-
ily the Local Church-Rosser Theorem to illustrate that this category is suitable
for graph transformation. A conclusion and future work are given in Section 6.

We assume the reader to be familiar with graph transformation in the double
pushout approach and the foundations ofM-adhesive transformation systems as,
for example, introduced in [EEPT06]. The proofs of the theorems and facts, as far
as they are not directly included in this paper, can be found in the Appendix A.

2 Motivation and Related Work

When working with attributes, most people expect attributes to behave like in
object-oriented models. This means in particular that

– a model element has exactly one value for each attribute and
– model elements of different types may have the same attribute.

Unfortunately, this is not true for typed attributed graphs [EEPT06]. Typed
attributed graphs are based on so-called E-graphs, which are graphs consisting
of different node and edge types. The actual attribution of a node is done by an
attribute edge of a certain type, representing this attribute’s name, pointing from
this node to the data value. Thus, also multiple attribute edges of the same type
from a node form a valid graph, which means that the node has different values
for the same attribute. Moreover, the attribute edges form a set which means
that for different types we are not allowed to use the same attribute name. This
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cat:Cats
name="Greebo"

dog:Dogs

name="Gaspode"

Cats Dogs

String

cat:Cats dog:Dogs

Greebo

Maurice

Gaspode

name1 name2 name1
name1

name2

Fig. 1. Attribution in typed attributed graphs

situation is shown in Fig. 1. In the left, we see a class diagram-like graph modeling
a cat with name = "Greebo" and a dog with name = "Gaspode", which is what
we expect to see. In the middle, the corresponding type graph is shown. Since
Cats and Dogs are different types, the attribute edge names have to be different,
i.e. something like name1 and name2. In the right, the typed attributed graph
for our model is shown, where the typing of each element is denoted after the
colon. While we would not expect a second name attribute for an object in the
left representation, it could occur on the right, indicated by the dotted elements.
To avoid this we had to define constraints forbidding the occurrence of this kind
of double edges. Especially, we have to include application conditions for each
rule to ensure that attribute edges can only be created if they do not already
exist for the considered node. Another difficulty with this approach is that the
data values are completely stored in the graph and are not only implicitly there,
which means that the graph becomes infinite in general.

Symbolic graphs [OL10] are graphs labeled with variables and combined with
formulas over these variables and a data algebra. Due to this concept, they allow
for a separation of the graph and data part, such that the graphs themselves are
not infinite only because of their data. In general, a symbolic graph represents a
set of attributed graphs satisfying the formulas and allows for a logical reasoning
about data. Nevertheless, the underlying graph structure is an E-graph, like for
typed attributed graphs, and has the same behavior allowing multiple values for
the same attribute, but needing different attribution names for different types.

Transformations of partially labelled graphs [HP02], i.e. graphs where nodes
and edges may be labelled by (disjoint) label alphabets, can be treated somehow
similar to attributes. But the overall setting in this approach is different from
the standard version of double-pushout transformations. While we want to have
injective rule morphisms and arbitrary matches, in [HP02] only the left rule
morphism has to be injective, but in addition the match.

Other approaches also leave the context of M-adhesive transformation sys-
tems like coding the graphs as algebras [LKW93] or combining graphs with type
theory for attribution [RFS08], which needs a different transformation approach,
since the attribution transformation is done via pullbacks instead of pushouts.

Basic Idea

For rule-based transformations, attribute values need to be preserved or refined.
Note that actually changing attributes themselves would be a transformation
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cat:Cats
name="Greebo"

cat:Cats
name="Greebo"

cat:Cats
name="Greebo"

cat:Cats
name="Greebo"

cat:Cats

name=�
cat:Cats

name="Maurice"

Fig. 2. Typical attribute behavior in rules

in the meta model and is not our concern here. In addition to the creation or
deletion of complete nodes including all attributes, our rules should be able to:

1. keep an attribute value, i.e. leave it unchanged (top of Fig. 2), or
2. change an attribute value, i.e. assign a new value to it (bottom of Fig. 2).

To allow this, we need “undefined” attributes, which are denoted by �. They
should only appear in the interface of the rule and the corresponding intermedi-
ate graph models. For the morphisms used in rules, only certain mappings are
allowed, such that all undefined attributes are concretized by a data value, and
all other attribute values are identically mapped.

3 Attribution of Models

In this section, we define the category AttC of attributed objects with an un-
derlying category C. To reach this goal, we have to formalize the ideas of the
previous section. The key idea is to separate the (graphical) model and the data
values used for attribution.

Attribution values

Consider a finite set TYPES of available data types and for each type ∈ TYPES

we have a set Atype containing the data values. They may come, for example,
from the sorts of a signature and their respective carrier sets in an algebra, an
abstract data type, or a programming language. Moreover, not only concrete
values (like all integers) but also abstract values (like all terms over variables of
a certain signature [EM85]) can be used for attribution.

Definition 1 (Attribution values). Given the data types TYPES, attribution

values A =
�
∪type∈TYPESAtype are defined by a set Atype of data values for each

type ∈ TYPES.

Definition 2 (Attribution value morphism). Consider attribution values
A1 and A2, an attribution value morphism a : A1 → A2 is defined by a family of
functions (atype : A1,type → A2,type)type∈TYPES such that a(x) = atype(x) for all
x ∈ A1,type.
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Example 1. For our running example, we only need one data type of strings,
which means that TYPES = {string}. For models, we use as attribution values
Astring the set of all strings. Moreover, we need attribution values for rules, where
we use the set Tstring(V) of terms over variables V = {∗1, ∗2, ∗3}, where certain
standard string operations are defined. For an attribution value morphism a :
T (V)→ A, we use a variable assignment α : V → A such that a is the evaluation
of terms according to α.

Attribution of models

Consider different types of elements, which all should be attributed the same
way, for example the types of a type graph. For each of these attribution types,
we define a set of attribute names with a certain type. For readability, we do not
allow the same attribute name with different type for one attribution type.

Definition 3 (Typed attribute). Let K be a finite set whose elements are
called attribution types and Voc a set (or vocabulary) of available attribute
names. The mapping Atts : K → P(Voc×TYPES) defines a set of typed at-
tributes for each k ∈ K, if (s, t), (s, t′) ∈ Atts(k) for some k ∈ K implies that
t = t′. The set attname(k) is the projection of Atts(k) to its first component.

For the attribution of the elements of a certain model, these have to be
grouped into the attribution types K. This is done by a so-called K-functor.
Note that the sets are not necessarily disjoint, which means that an element
may have multiple attribution types. This can be used, for example, to express
inheritance.

Definition 4 (K-functor). For a category C, a pushout-preserving functor F :
C → SetsK is said to be a K-functor, where SetsK is the |K|-fold product of
Sets. With Fk : C → Sets we denote the (also pushout-preserving) functor as
projection of F to its k-th component.

Using all the above definitions, we can now attribute the models. The K-
functor combined with Atts defines which attributes are mapped to which model
element. We need an additional mapping of these attribute names to actual data
values consistent with their defined type. This mapping may be partial, because
we allow that certain attributes are not set. Note that for partial functions f
and f ′, with f(a) = f ′(a) we denote that both f(a) and f ′(a) are defined and
equal, or both are undefined. Moreover, we write f ≤ f ′, if f(d) = f ′(d) for all
d ∈ Dom(f).

Definition 5 (Attributed object). Given a category C and a K-functor F :
C → SetsK then AO = (C,A, att) is an attributed object if C ∈ C with
attribution values A and att = (attk : Fk(C) × attname(k) ◦→ A)k∈K is a family
of partial attribution functions such that for all attk(o, n) ∈ Atype we have that
(n, type) ∈ Atts(k).
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Example 2. We enrich our running example with humans. We define the attri-
bution types K = {pet, hum} of pets and humans, where pets have a name, i.e.
Atts(pet) = {(name, String)}, while humans have a first and a last name, i.e.
Atts(hum) = {(fname, String), (lname, String)}. Note that we are free to define
also an attribute name for humans, which even may have a different type than
String (if other types were available for our example). In this example, we only
use node attribution, but of course edge attribution would also be possible – we
only had to add an attribution type for the edges.

For the category C we choose the category of typed graphs using the type
graph TG shown in the left of Fig. 3 defining cats, dogs, humans, and owns
relations between humans and pets. An example typed graph G is depicted in
the right of Fig. 3 defining two cats, one dog, and one human, which owns one
of the cats. Note that actually we would need two different owns relations due
to the uniqueness of edges in the type graph, but we omit this here. While we

Cats Dogs

Humans

cat1:Cats cat2:Cats

dog:Dogshum:Humans

owns owns owns

Fig. 3. Type graph TG and typed graph G

allow the same attributes for dif-
ferent elements within our attri-
bution concept, we cannot solve
the same problem for types in
the underlying typed graphs. To
model one owns relation for all
pets we could implement an in-
heritance concept (see [EEPT06]) and extract a class pet.

The K-functor F : GraphsTG → SetsK includes each node of type Cats or
Dogs into the pet-set, and each human into the hum-set. This means that F (G) =
({n | type(n) ∈ {Cats, Dogs}}, {n | type(n) = Humans}), while morphisms are
mapped to their corresponding components. For the example graph G in Fig. 3
this means that F (G) = ({cat1, cat2, dog}, {hum}).

An attributed object AO′ = (G,A, att′) is shown in Fig. 4, where the

cat1:Cats
name="Greebo"

cat2:Cats
name="Maurice"

dog:Dogs

name="Gaspode"
hum:Humans
fname="Nanny"
lname="Ogg"

owns

Fig. 4. An attributed graph

underlying typed graph G is already given in
Fig. 3. The attribution is defined by
att′pet(cat1, name) = "Greebo",
att′pet(cat2, name) = "Maurice",
att′pet(dog, name) = "Gaspode",
att′hum(hum, fname) = "Nanny", and
att′hum(hum, lname) = "Ogg".

Morphisms

To express relations between attributed objects and apply graph transformation,
we need to define attributed morphisms. We combine a valid morphism in the
underlying category with an attribution value morphism to obtain attribution
morphisms, where we allow to concretize undefined attribute values.
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Fk(C1)× attname(k)

Fk(C2)× attname(k)

A1

A2

att1,k

Fk(g)×id a

att2,k

≥

Definition 6 (Attributed mor-
phism). Consider a set A of available
attribution value morphisms closed un-
der composition.

Given attributed objects AO1 =
(C1, A1, att1) and AO2 = (C2, A2, att2),
an attributed morphism f : AO1 → AO2 is a pair f = (g, a) with g : C1 → C2 ∈
C and a : A1 → A2 ∈ A such that a ◦ att1,k ≤ att2,k ◦ (Fk(g)× id).

We use the following convention: When given an attributed morphism fi,
we denote its components with gi and ai, i.e. fi = (gi, ai). Note that the set
A restricts the available attribution value morphisms. This is useful if these
morphisms shall preserve certain structure. In our example, we only want to use
attribution value morphisms that stem from an evaluation based on a variable
assignment.

Example 3. In Fig. 5, an attributed morphism f = (g, a) from an attributed
graph AO = (G,TV(A), att) to AO′ = (G,A, att′) is shown. The attribu-
tion of G in AO is defined by attpet(cat2, name) = ∗1, attpet(dog, name) =
∗2, atthum(hum, fname) = "Nanny", and atthum(hum, lname) = "Ogg", and
attpet(cat1, name) is undefined. AO′ is already known from Fig. 4. g is the identi-
cal morphism on the graph G, while a is the evaluation with α(∗1) = "Maurice"

and α(∗2) = "Gaspode".
To show that f is a valid attributed morphism we have to verify its properties

for all (o, n) ∈ Dom(a ◦ attk) with k ∈ {pet, hum}, which obviously holds.

Now attributed objects and attributed morphisms form a category.

Definition 7 (Category AttC). Given a category C, a set A of attribution
element morphisms, a finite set of attribution types K, a K-functor F , and a
mapping Atts as above, then attributed objects and attributed morphisms, to-
gether with the component-wise composition and identities, form the category
AttCF,A

Atts. If the setting is clear, we may also write AttC.

Theorem 1. The category AttC is well-defined, i.e. it is actually a category.

Proof. See Appendix A.1.

cat1:Cats

name=�
cat2:Cats
name=∗1

dog:Dogs

name=∗2
hum:Humans

fname="Nanny"
lname="Ogg"

cat1:Cats
name="Greebo"

cat2:Cats
name="Maurice"

dog:Dogs

name="Gaspode"
hum:Humans

fname="Nanny"
lname="Ogg"

fowns owns

Fig. 5. An attributed morphism
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Graphical Notation

Since the user does not want to know all the definitions and formal notations,
attributed objects and morphisms are depicted in an UML-like notion, where
the attributes are written down below the element they belong to as we already
used in Fig. 4. Undefined attributes are denoted by �.

4 Transformations of Attributed Models

To apply transformations in attributed objects, we need to define rules and in
particular rule morphisms. For our rules, undefined attributes shall only occur in
the gluing part, but not in the left or right hand side. Such undefined attributes
have to be concretized. Moreover, the data should not be changed by a rule, i.e.
the attribution value morphisms should be isomorphic. The morphism class R
represents these available morphisms.

Definition 8 (Morphism class R). Given anM-adhesive category (C,MC),
we define the morphism class R in AttC by R = {f : AO1 → AO2 | f = (g, a) ∈
AttC, g ∈MC, a is isomorphism, AO2 = (C2, A2, att2), att2 is total}.

Unfortunately, the category AttC together with the morphism class R does
not become an M-adhesive category, because pushouts over R-morphisms are
not constructed preserving the morphism class R.

Fact 1. The category (AttC,R) is not an M-adhesive category.

Proof. The diagram in Fig. 6 shows that M-morphisms are not stable under
pushouts in AttC. We look at the graph with one node n of type Cats, where f1
and f2 are identities with total codomain attribution and thus in R, and only the
actual attribution of n is concretized. To obtain a pushout, we need a commuting
square, i.e. its graph has to contain at least one node, where the nodes from B
and C map to, which also has to be of type Cats. For the attribution values,

n:Cats
name=�

n:Cats
name="Greebo"

n:Cats
name="Maurice"

n:Cats
name="GM"

f1

f2

f4

f3

Fig. 6. Pushout in attributed graphs

"Greebo" and "Maurice" have to
be merged by a3 and a4 – other-
wise, either f3 or f4 will not be a
valid attributed morphism. Actually,
the depicted attributed graph is the
pushout of f1 and f2, but f3, f4 /∈ R.
Therefore, AttC with the chosen R
is no M-adhesive category.

Since our morphism class R is rather restrictive, one may argue that a more
general morphism class may be suitable for AttC to become an M-adhesive
category. Thus we define the morphism class M as morphisms that are MC-
morphisms in the C-component and isomorphisms for the attribution values.
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Definition 9 (Morphism class M). Given an M-adhesive category
(C,MC), we define the morphism class M in AttC by M = {f : AO1 →
AO2 | f = (g, a) ∈ AttC, g ∈MC, a is isomorphism}.

But even (AttC,M) is not an M-adhesive category. Fig. 6 represents a
counterexample, because R ⊆ M, but f3, f4 /∈ M. Nevertheless, the morphism
class M will be useful for our further analysis. The above example gives us an
idea how pushouts in AttC along M-morphisms are constructed. Basically, we
use the pushout construction in C, while we have to integrate different data
values which are reached from the same elements by the given morphisms.

Fact 2 (Pushouts along M). The category AttC has pushouts along M-
morphisms.

AO1 AO3

AO2 AO4

C1 C3

C2 C4

A1 A3

A2 A4

f1

f4

f2 f3

g1

g4

g2 g3

i

j
∼

a4

a2 a3(1) (2) (3)

Construction. Consider
the attributed morphisms
f1 : AO1 → AO3 ∈
M and f2 : AO1 →
AO2 with the single com-
ponents as shown in the
right diagrams, where due to the definition of M i and j are correspond-
ing isomorphisms. We construct the pushout (2) in C and define a rela-
tion ∼ = {(att2,k(Fk(g2)(o), n), a2(j(att3,k(Fk(g1)(o), n)))) ∈ A2 × A2 | k ∈
K, n ∈ attname(k),∃o ∈ Fk(C1), (o, n) /∈ Dom(att1,k), (Fk(g2)(o), n) ∈
Dom(att2,k), (Fk(g1)(o), n) ∈ Dom(att3,k)}. Let ≡ be the equivalence
closure of ∼ and define A4 = A2|≡. Now let a3(x) = [a2(j(x))]
and a4(x) = [x]. Then AO = (C4, A4, att4) with att4,k(o, n) = [a2(j(att3,k(o3, n)))] ∃o3 ∈ Fk(C3) : Fk(g3)(o3) = o, (o3, n) ∈ Dom(att3,k)

[att2,k(o2, n)] ∃o2 ∈ Fk(C2) : Fk(g4)(o2) = o, (o2, n) ∈ Dom(att2,k)
undefined otherwise

is the pushout object with morphisms f3 = (g3, a3) and f4 = (g4, a4).
Note that ≡ is empty if each undefined attribute in AO1 is also undefined in

AO2 or AO3. In this case, A4 is the pushout object of i and a2 in Sets.

Proof. See Appendix A.2.

While the pushout construction is well-defined if one of the given morphisms
is inM, we do not want to glue attributes as done in Fig. 6 when applying a rule.
Intuitively, gluing in the pushout construction has to be done for the following

case:
� d

d′
. For transformations and their well-definedness, the key observation

is the fact that such a situation could never occur. It is prevented because we
have to construct a certain pushout complement first when applying a rule. Only

the situations
d′�d

a(d′)�a(d)

and
d d d

a(d) a(d) a(d)

can occur in the rule

span and the corresponding application via a match. The construction of the

9



pushout complement ensures that an undefined attribute in the intermediate
object of the rule leads to an undefined attribute in the intermediate object of
the rule application such that no data gluing has to occur. We describe such a
well-behaviour as a special property and show that we can define a well-behaved
pushout complement such that the double pushout of a direct transformation is
actually well-behaved.

AO1 AO3

AO2 AO4

f1

f4

f2 f3(1)

Definition 10 (Well-behaved pushouts). The class
W of morphism pairs with the same domain is de-
fined by: W = {(f1, f2) | f1 : AO1 → AO3 ∈
R, f2 : AO1 → AO2,∀(o1, n) /∈ Dom(att1,k) :
(Fk(g2)(o1), n) /∈ Dom(att2,k),∀o ∈ Fk(C2)\Fk(g2)(C1) :
(o, n) ∈ Dom(att2,k)}.

A pushout (1) is called well-behaved, or short a W-pushout, if (f1, f2) ∈ W.

Note that the pushout over (f1, f2) ∈ W always exists, since AttC has
pushouts along M-morphisms (Fact 2). For W-pushouts, in the construction of
Fact 2 the relation ∼ is empty leading to A2 = A4, or A2

∼
= A4 in general.

Now we can define rules and rule applications, which are called direct trans-
formations, based on W-pushouts. In contrast to rules for typed attributed
graphs in [EEPT06], all attributes of the elements in the left or right hand side
have to be defined, i.e. rules cannot be underspecified. While this requires some
additional specification effort to at least assign a variable to each of these at-
tributes, it clarifies the rule and is necessary for our approach. As a consequence,
rules cannot be applied to attributed objects with only partial attribution.

AOL AOK AOR

AOG AOD AOH

fL fR

fG fH

fM fK fN(1) (2)

Definition 11 (Rule and direct trans-
formation). A rule is a span p =

(AOL
fL← AOK

fR→ AOR) of R-morphisms
in AttC.

Given a rule p, an attributed object
AOG, and an attributed morphism fM :

AOL → AOG, called match, a direct transformation AG =
p,fM
===⇒ AH is given

by two W-pushouts (1) and (2) as in the diagram on the right.

Note that we could pragmatically adapt the rules of typed attributed graphs
in [EEPT06] with conditions as expressed byR-morphisms. These conditions can
be checked statically to allow only intended attribute changes. Nevertheless, the
underlying graph model still inhibits the disadvantages explained in Section 2.

Similar to the standard graph transformation, we define the gluing condition
which characterizes valid situations, where the pushout complement exists.

Definition 12 (Gluing condition). Given f1 and f3 as in Def. 10, the gluing
condition holds if the underlying pushout complement of g3 ◦ g1 in C exists and
for all o1, o

′
1 ∈ Fk(C1) with Fk(g3 ◦ g1)(o1) = Fk(g3 ◦ g1)(o′1) we have that both

att1,k(o1, n).att1,k(o′1, n) are either defined or undefined.
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Since both
�d

dd
and

�d

�d
are valid pushout complements, pushout

complements in AttC are not unique, but only the second situation behaves
well. Thus, we chose this one to construct pushout complements in AttC.

Fact 3 (Pushout complement along M). The category AttC has pushout
complements along M-morphisms, if the gluing condition holds.

Construction. Given attributed morphisms f1 : AO1 → AO3 ∈ M and
f3 : AO3 → AO4 as above, construct the pushout complement (2) in C (see Con-
struction of Fact 2). Now define A2 = A4, a2 = a3 ◦ i, a4 = id, and att2,k(o, n) =a2(att1,k(o1, n)) ∃o1 ∈ Fk(C1) : Fk(g2)(o1) = o, (o1, n) ∈ Dom(att1,k)

undefined ∃o1 ∈ Fk(C1) : Fk(g2)(o1) = o, (o1, n) /∈ Dom(att1,k)
att4,k(Fk(g4)(o), n) otherwise

.

Then AO2 = (C2, A2, att2) together with the morphisms f2 = (g2, a2) and
f4 = (g4, a4) is the pushout complement of f1 and f3.

Proof. See Appendix A.3.

A rule p is applicable to AOG if the gluing condition holds and the attribution
in AOG is total. In this case, for the construction of a direct transformation we
can first construct the pushout complement of Fact 3 and then the pushout of
Fact 2, which are both unique and well-behaved.

Theorem 2 (Construction of direct transformation). Given a situation
as in Def. 11 with fL, fR ∈ R, where the gluing condition holds and attG is
total, then the pushout complement (1) and the pushout (2) are uniquely defined
W-pushouts. Moreover, also fG, fH ∈ R.

Proof. See Appendix A.4.

Example 4. Now we can rename "Greebo" to "Maurice" using the second rule
in Fig. 2 or an arbitrary dog that belongs to someone to "Toto" with the rule
in the top row of Fig. 7. When applying such a rule, we construct first the
pushout complement and then the pushout, as shown in Fig. 7. Note that the
match m uses the variable assignment α(∗1) = "Terry", α(∗2) = "Dorothy",
and α(∗3) = "Gale", and its codomain graph has total attribution. We can see
that both pushouts are well-behaved because all attributes in the intermediate
object that are undefined in AOK are also undefined in AOD.

As we will need this fact in the next section, we state that also pullbacks
along M-morphisms exist in AttC.

AO1 AO3

AO2 AO4

f1

f4

f2 f3(1)

Fact 4 (Pullbacks over M). The category AttC has
pullbacks along M-morphisms. Moreover, M is closed un-
der pullbacks.

Construction. Given f4 ∈M we construct the pullback
in C with pullback object C1 and morphisms g1, g2. Then
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dog:Dogs

name=∗1
dog:Dogs

name=�
dog:Dogs

name="Toto"

hum:Humans
fname=∗2
lname=∗3

hum:Humans
fname=∗2
lname=∗3

hum:Humans
fname=∗2
lname=∗3

dog:Dogs

name="Terry"

dog:Dogs

name=�
dog:Dogs

name="Toto"

hum:Humans
fname="Dorothy"
lname="Gale"

hum:Humans
fname="Dorothy"
lname="Gale"

hum:Humans
fname="Dorothy"
lname="Gale"

owns owns owns

owns owns owns

m (1) (2)

Fig. 7. Direct transformation of attributed graphs

AO1 = (C1, A3, att1) with f1 = (g1, idA3
), f2 = (g2, a

−1
4 ◦ a3), and att1(o, n) =att3,k(Fk(g1)(o), n) (Fk(g1)(o), n) ∈ Dom(att3,k),

(Fk(g2)(o), n) ∈ Dom(att2,k)
undefined otherwise

is the pullback of f3

and f4.

Proof. See Appendix A.5.

5 W-adhesive Categories

As we have analyzed in the last section, not all pushouts are important in the
context of transformations, but only those we have called W-pushouts. In this
section, we generalize this idea to W-adhesive categories, which are categories
where the VK property is restricted to hold for W-pushouts, which are defined
by a classW of morphism spans. This restriction allows us to formulate a trans-
formation theory for the category AttC.

Definition 13 (W-adhesive category). Given a category C, morphism
classes R ⊆M, and a class W ⊆ R×MorC of morphism spans, (C,R,M,W)
is a W-adhesive category if:

1. M is a class of monomorphisms closed under isomorphisms, composition,
and decomposition, with idA ∈M for all A ∈ C,

2. C has pushouts along and pullbacks over M-morphisms,
3. M is closed under pullbacks: Given a pullback (1) with n ∈ M then also

m ∈M,
4. C has pushouts over W-morphisms, called W-pushouts,
5. R is closed under W-pushouts: Given W-pushout (1) with m ∈ R then also

n ∈ R,
6. W is closed under R: (m′ : A′ → B′, a) ∈ W, f ′ : A′ → C ′ ∈ R implies

(f ′, a) ∈ W,

12



7. W-pushout composition and decomposition: Given pushout (1), (1) + (2) is
a W-pushout with (f, h ◦ m) ∈ W if and only if (2) is a W-pushout with
(g, h) ∈ W,

8. W-pushouts fulfill the W-van Kampen property: Given a commutative cube
(3) with W-pushout (1) in the bottom, m, d ∈ R, b, c ∈M and the back faces
being pullbacks, it holds that the top is a pushout if and only if the front faces
are pullbacks.

A′

B′

A

B

C ′

D′

C

D

A B E

C D F

m′

a

f ′

g′

b
m

f

n′

c

d

n
g

m h

f

n

g

v

w(1) (2)

(3)

An example for a W-adhesive category is the category of attributed objects
and morphisms.

Theorem 3. AttC with an underlying M-adhesive category (C.MC), R as
defined in Def. 8, M as defined in Def. 9, and W as defined in Def. 10 is a
W-adhesive category.

Proof. Obviously,M is a class of monomorphisms because both components are
monomorphisms with the required closure properties inherited from the compo-
nents. AttC has pullbacks overM-morphisms andM is closed under pullbacks
as shown in Fact 4. Since AttC has pushouts alongM-morphisms, as shown in
Fact 2, it has pushouts over M-morphisms as well as W-pushouts. The closure
of R under W-pushouts and the closure of W under R follow from Thm. 2. The
W-pushout composition and decomposition follows from the fact that the unde-
fined attributes in A, B, and E are exactly the same. The proof of the W-van
Kampen property can be found in Appendix A.6.

As specified in Def. 11 for the special case of AttC, in aW-adhesive category
rules are defined as spans of R-morphisms, while transformations are defined by
double W-pushouts.

To prove important results for graph transformation, various so-called HLR
properties have been used in [EEPT06]. Here, we show the corresponding vari-
ant for W-categories for two of them, the W-pushout-pullback decomposition
property and that W-pushouts are pullbacks.

Fact 5 (W-pushout-pullback decomposition). Given the above commuta-
tive diagram, where (1) + (2) is a W-pushout, (2) is a pullback, v ∈ R, and
(f ∈ R or m,h ◦m ∈ R), then (1) is a pushout.
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D

F

E

B

A

B

A

B

C

D

C

D
h

v

m

m

h

f

f

n

n

v

g

g

g

w

Proof. Consider the right cube,
where all unnamed morphisms are
identities. The bottom is the W-
pushout (1) + (2) with (f ∈ R
or m,h ◦ m ∈ R), v ∈ R, and
h, idB , idC , idD ∈ M (Def. 13 Items
3 and 1). All back and front faces are
pullbacks. Now the W-van Kampen
property (Item 8) implies that the top, i.e. the square (1), is a pushout.

Fact 6 (W-pushouts are pullbacks). Given the above W-pushout (1) with
m ∈ R, then (1) is also a pullback.

A

A

A

B

C

C

C

D

m

n
m

f

f

n

f

g

Proof. Consider the right cube, where all un-
named morphisms are identities. The bottom
is the W-pushout (1) with m,n ∈ R (Def. 13
Item 5), and m, idC ∈ M (Item 1). All back
faces are pullbacks and the top is a pushout.
Now theW-van Kampen property (Item 8) im-
plies that the front faces, and in particular the
square (1), are pullbacks.

In the following, we sketch for the example of (one direction of) the Local
Church-Rosser Theorem that this result is also available in W-adhesive cate-
gories. It is concerned with parallel and sequential independence of direct trans-
formations. First, we define the notion of parallel and sequential independence.
Then we state the Local Church-Rosser Theorem and prove it. The proof follows
the one in [EEPT06] with certain adaptions for W-adhesive categories.

Definition 14 (Parallel and sequential independence). Two direct trans-
formations G =

p1,m1
===⇒ H1 and G =

p2,m2
===⇒ H2 are parallel independent if there are

morphisms i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1 and f1 ◦ j = m2.

L1K1R1 L2 K2 R2

GD1H1 D2 H2

l1r1

f1g1

m1
k1n1

l2 r2

f2 g2

m2
k2 n2

ij

R1K1L1 L2 K2 R2

H1D1G D2 G′

r1l1

g1f1

n1
k1m1

l2 r2

f2 g2

m2
k2 n2

ij

Two direct transformations G =
p1,m1
===⇒ H1 =

p2,m2
===⇒ G′ are sequentially indepen-

dent if there are morphisms i : R1 → D2 and j : L2 → D1 such that f2 ◦ i = n1
and g1 ◦ j = m2.

H1 H2

G

G′

p1,m1 p2,m2

p2,m
′
2 p1,m

′
1

Theorem 4 (Local Church-Rosser Theo-
rem). Given two parallel independent direct
transformations G =

p1,m1
===⇒ H1 and G =

p2,m2
===⇒

H2 there is an object G′ together with di-

rect transformations H1 =
p2,m

′
2===⇒ G′ and

14



H2 =
p1,m

′
1===⇒ G′ such that G =

p1,m1
===⇒ H1 =

p2,m
′
2===⇒ G′ and G =

p2,m2
===⇒ H2 =

p1,m
′
1===⇒ G′

are sequentially independent.

L1 K1 R1

G D1 H1

r1l1

g1f1

n1m1 (1) (2)

L2 K2 R2

G D2 H2

r2l2

g2f2

n2m2 (3) (4)

Proof. Consider the
parallel independent
direct transformations
G =

p1,m1
===⇒ H1 and

G =
p2,m2
===⇒ H2 depicted

right. We combine the W-pushouts (1) and (3) with the morphisms i1 and i2
obtained by parallel independence. Since f1, f2 ∈ M (Def. 13 Item 5) we can
construct the pullback (5) (Item 2) and obtain morphisms j1 and j2 as shown in
the following diagram on the left-hand side. Since (1) = (6) + (5) with f2, l1 ∈ R
Fact 5 implies that (6), and analogously (7), is a pushout. Now we construct
the pushouts (8) and (9) (Item 2) along r1, r2 ∈ M. Finally, the pushout (10)
is constructed by decomposition of pushout (8) and the pushout over r1 ∈ M
and h1 ◦ j1 (Item 2). From pushout (8) we obtain a morphism s1 : D′2 → H1

such that (2) = (8) + (11), and by Item 7 (11) is a W-pushout. Analogously, we
obtain the W-pushout (12).

K2 L2

K1 D D1

L1 D2 G

l2

k1

j2 i2

f2

k2 f1

i1

j1

l1

(7)

(6) (5)

K2 R2

K1 D D′1

R1 D′2 G′

r2

h1

j2 t2

h2

t1

j1

r1

(9)

(8) (10)

K1 R1

D D′2

D1 H1

r1

k1

j1 t1

g1

h1 s1

(8)

(11)

K2 R2

D D′1

D2 H2

r2

k2

j2 t2

g2

h2 s2

(9)

(12)

L2 K2 R2

D2 D D′1

H1 D′2 G′

(7) (9)

(11) (10)

L1 K1 R1

D1 D D′2

H2 D′1 G′

(6) (8)

(12) (10)

By Item 7, (7) + (11)
and (6) + (12) are W-
pushouts, and using Item
6 we obtain the sequen-
tially independent direct
transformations H1 =

p2
=⇒

G′ and H2 =
p1
=⇒ G′.

6 Conclusion and Future Work

In this paper, we proposed a new concept for attribution of objects in an ar-
bitrary category based on a functor selecting attributable elements of objects
and assigning attributes and values to them. We have then defined rules and
transformations on attributed objects based on M-adhesive categories, where
transformations rely on the new concept of W-pushouts. This concept leads to
the notion of W-categories, which are a suitable framework to show results for
transformations of attributed objects, as we have demonstrated for the example
of the Local Church–Rosser Theorem. Since the underlying objects come from
an M-adhesive category, we only have to prove the results for the attribution
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part and can rely on the underlying results for the pure, un-attributed transfor-
mations. In fact, we can use any suitable category for attribution. In this paper,
we chose M-adhesive categories, because a large number of results is available
there, but there is actually no need for this restriction.
W-adhesive categories have been introduced for attribution in this paper, but

they may also fit for transformations in other non-M-adhesive categories, where
the definition of the proper pushout complement depends on both morphisms,
like in RDF graphs (see [BB08]) or open Petri nets (see [BCEH01]). In this sense,
they are more expressive thenM-N -adhesive categories [HP12], which consider
a special class N for vertical morphisms in transformations.

Future work includes to prove other important results and theorems for graph
transformation, where additional requirements for W-adhesive categories may
have to be identified. For example, for the Parallelism Theorem some compati-
bility property of W with binary coproducts will be necessary. Moreover, rules
should be extended with constraints and application conditions for data as done
in [AVS12] for triple rules. Another interesting extension would be to integrate
an inheritance concept for the attribution types.

For language evolution, the deletion or addition of attributes, i.e. chang-
ing the meta-model, is an interesting field of work. Without the restrictions of
the R-morphisms in the rules, especially the total attribution, we would not
be able to define unique pushout complements for a transformation. It would
be interesting to explore if other graph transformation approaches may require
fewer restrictions to the rule morphisms. For computations and reasoning on at-
tributes, symbolic graphs [OL10] can be adapted for the underlyingM-adhesive
category, and their usefulness should be further elaborated.
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A Proofs

A.1 Proof of Thm. 1

We have to show that the component-wise composition is well-defined, associa-
tive, and compatible with the identities. The last two items follow directly from
underlying properties in the single components.

AO1 AO2 AO3
f1 f2

Well-definedness Given attributed ob-
jects AOi = (Ci, Ai, atti) for i = 1, . . . , 3
with morphisms f1 = (g1, a1) : AO1 → AO2

and f2 = (g2, a2) : AO2 → AO3, it holds for k ∈ K that:
a2 ◦ a1 ◦ att1,k

≤ a2 ◦ att2,k ◦ (Fk(g1)× id) (f1 is attributed morphism,
monotonicity of ≤ for a2 total)

≤ att3,k ◦ (Fk(g2)× id) ◦ (Fk(g1)× id) (f2 is attributed morphism)
= att3,k ◦ (Fk(g2 ◦ g1)× id) (properties of F and

product functor)

A.2 Proof of Fact 2

We have to show the well-definedness of att4, f3, and f4, the commutativity, and
the universal pushout property of diagram (1).

Well-definedness For att4, we have to show that Cases 1 and 2 do not clash.
If there exist both o3 ∈ Fk(C3) with Fk(g3)(o3) = o, (o3, n) ∈ Dom(att3,k)
and o2 ∈ Fk(C2) with Fk(g4)(o2) = o, (o2, n) ∈ Dom(att2,k) then there exists
o1 ∈ Fk(C1) with Fk(G1)(o1) = o2 and Fk(g2)(o1) = o2, because Fk preserves
pushouts and therefore Fk((1)) is a pushout in Sets.

If (o1, n) ∈ Dom(att1,k) then we have that i(att1,k(o1, n)) =
att3,k(o3, n), because f1 is an attributed morphism, and a2(att1,k(o1, n) =

att2,k(o2, n) because f2 is an attributed morphism. Therefore, att4,k(o, n)
Case 1

=
[a2(j(att3,k(o3, n)))] = [a2(j(i(att1,k(o1, n))))] = [a2(att1,k(o1, n))] =

[att2,k(o2, n)]
Case 2

= att4,k(o, n).

Otherwise, (o1, n) /∈ Dom(att1,k) implies that

(att2,k(o2, n), a2(j(att3,k(o3, n)))) ∈ ∼. This means that att4,k(o, n)
Case 1

=

[a2(j(att3,k(o3, n)))]
∼
= [att2,k(o2, n)]

Case 2
= att4,k(o, n).

For f3 and (o3, n) ∈ Dom(att3,k) we have that a3(att3,k(o3, n)) =
[a2(j(att3,k(o3, n)))] = att4,k(Fk(g3)(o3), n).

Similarly, for f4 and (o2, n) ∈ Dom(att2,k) we have that a4(att2,k(o2, n)) =
[att2,k(o2, n)] = att4,k(Fk(g4)(o2), n).

This means that att4, f3, and f4 are well-defined.
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Commutativity From the pushout construction in C we know that g4 ◦ g2 =
g3 ◦ g1. Moreover, a4 ◦ a2(d) = [a2(d)] = [a2(j(i(d)))] = a3 ◦ i(d) for all d ∈ A1.
This means that f4 ◦ f2 = f3 ◦ f1.

Universal Property Consider an attributed object AO5 with morphisms f5,
f6 such that f5 ◦ f2 = f6 ◦ f1.

AO1 AO3

AO2 AO4

AO5

C1 C3

C2 C4

C5

A1 A3

A2 A4

A5

f1

f4

f2 f3
f6

f5
f7

g1

g4

g2 g3

g6

g5
g7

i

j
∼

a4

a2 a3

a6

a5
a7

(1) (2) (3)

From pushout (2) in C we obtain a unique morphism g7 with g7 ◦ g4 = g5
and g7 ◦ g3 = g6.

Define a7([x]) = a5(x), which is well-defined because for x′ ∈ [x], there
is a chain of elements x′ = y0, y1, . . . , yn = x such that (yi−1, yi) ∈ ∼ or
(y1, yi−1) ∈ ∼ for all i = 1, . . . , n. Then there exist ki, oi, and ni such that
att2,ki

(Fki
(g2)(oi), ni) = yi and a2(j(att3,ki

(Fki
(g1)(oi), ni) = yi−1 or vice

versa. This means that a5(yi) = a5(att2,ki
(Fki

(g2)(oi), ni)) = att5,ki
(Fki

(g5 ◦
g2)(oi), ni) = att5,ki

(Fki
(g6 ◦ g1)(oi), ni) = a6(att3,ki

(Fki
(g1)(oi), ni)) =

a6(i(j(att3,ki(Fki(g1)(oi), ni)))) = a5(a2(j(att3,ki(Fki(g1)(oi), ni)))) = a5(yi−1)
for all i = 1, . . . , n and therefore a7([x′]) = a5(x′) = a5(y0) = a5(y1) = . . . =
a5(yn) = a5(x) = a7([x]).

With this definition we have that a7 ◦ a4(x) = a7([x]) = a5(x) for all x ∈ A2

and a7 ◦ a3(x) = a7([a2(j(x))]) = a5(a2(j(x))) = a6(i(j(x))) = a6(x) for all
x ∈ A3, which means that both triangles commute.

Moreover, f7 = (g7, a7) is a valid attributed morphism, because for (o4, n) ∈
Dom(att4,k) we have the following two cases:
1. ∃o3 ∈ Fk(C3) : Fk(g3)(o3) = o4, (o3, n) ∈ Dom(att3,k): a7(att4,k(o4, n)) =
a7([a2(j(att3,k(o3, n)))]) = a5(a2(j(att3,k(o3, n)))) = a6(att3,k(o3, n)) =
att5,k(Fk(g6)(o3), n) = att5,k(Fk(g7 ◦ g3)(o3), n) = att5,k(Fk(g7)(o4), n).
2. ∃o2 ∈ Fk(C2) : Fk(g4)(o2) = o4, (o2, n) ∈ Dom(att2,k): a7(att4,k(o4, n)) =
a7([att2,k(o2, n)]) = a5(att2,k(o2, n)) = att5,k(Fk(g5)(o2), n) = att5,k(Fk(g7 ◦
g4)(o2), n) = att5,k(Fk(g7)(o4), n).

It remains to show that f7 is unique with respect to the commutativity of the
triangles. For g7, this follows from the pushout property of (2). For a7, suppose
we find a′7 with a′7◦a4 = a5 and a′7◦a3 = a6. It follows that a′7([x]) = a′7(a4(x)) =
a5(x) = a7([x]) for all [x] ∈ A4, i.e. a′7 = a7.

Altogether, it follows that (1) is the required pushout.

A.3 Proof of Fact 3

We have to show the commutativity, the well-definedness of att2, f2 and f4, and
the equivalence to the pushout constructed over f1 and f2.
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Commutativity By construction in C we have that g4 ◦g2 = g3 ◦g1. Moreover,
for x ∈ A1 we have that a4 ◦a2(x) = a2(x) = a3 ◦ i(x) by definition, which means
that the square commutes.

Well-definedness Due to the gluing condition, att2 is well-defined since either
the first or the second case applies for all preimages of o ∈ Fk(C2) under Fk(g2).

For f2 and (o1, n) ∈ Dom(att1,k) we directly have that a2(att1,k(o1, n)) =
att2,k(Fk(g2)(o1), n) by definition.

For f4 and (o2, n) ∈ Dom(att2,k) we have the following cases:
1. ∃o1 ∈ Fk(C1) : Fk(g2)(o1) = o2, (o1, n) ∈ Dom(att1,k): a4(att2,k(o2, n)) =
a4(a2(att1,k(o1, n))) = a3(i(att1,k(o1, n))) = att4,k(Fk(g3 ◦ g1)(o1), n) =
att4,k(Fk(g4 ◦ g2)(o1), n) = att4,k(Fk(g4)(o2), n).
2. @o1 ∈ Fk(C1) : Fk(g2)(o1) = o2: a4(att2,k(o2, n)) =
a4(att4,k(Fk(g4)(o2), n)) = att4,k(Fk(g4)(o2), n).

Equivalence Consider the pushout (1′) of f1 and f2. We have to show that
AO′4

∼
= AO4.

AO1 AO3

AO2 AO′4

AO4

f1

f ′
4

f2 f ′
3

f3

f4
f5

(1′)

Since (1′) is a pushout and f4 ◦ f2 = f3 ◦ f1
we obtain an induced morphism f5 = (g5, a5) with
f5 ◦ f ′4 = f4 and f5 ◦ f ′3 = f3. Since pushout
complements along M-morphisms are unique in
C, we have that C ′4

∼
= C4 and g5 is an isomor-

phism. Moreover, as shown in the proof of Fact 2,
a5([x]) = a4(x) = x. Since a4 is the identity it fol-
lows that a5 is an isomorphism.

Altogether, it follows that (1) is the required pushout complement.

A.4 Proof of Thm. 2

Since the underlying pushout complement exists, we can construct (1) as pushout
complement by Fact 3. Using Fact 2, we construct the pushout (2). It remains
to show that (1) is a W-pushout, W is closed under R, where (2) being a W-
pushout follows, that the constructions are unique, and that W is closed under
W-pushout, which implies that fG, fH ∈ R.

(1) is W-pushout As a precondition, we have that fL ∈ R. By construc-
tion of attK (Case 2) we have that (Fk(gK)(o), n) /∈ Dom(attD,k) for all
(o, n) /∈ Dom(attK,k). For o ∈ Fk(CD)\Fk(gK)(CK) we have that attD,k(o, n) =
attG,k(Fk(gG)(o), n), which is defined since attG is total. Altogether, this means
that (fL, fK) ∈ W and (1) is a W-pushout.

W is closed under R Given (fL : AOK → AOL, fK : AOK → AOD) ∈ W and
fR : AOK → EOR ∈ R, then (fR, fK) ∈ W because all additional requirements
are requested for fK and therefore fulfilled.
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Uniqueness The uniqueness of W-pushout complements in W-adhesive cat-
egories follows analogously to the uniqueness of pushout complements in M-
adhesive categories from the W-van Kampen property. The uniqueness of (2) is
a general result for the uniqueness of pushouts.

AO1 AO3

AO2 AO4

f1

f4

f2 f3(1)

R is closed under W-pushouts Consider pushout
(1) with (f1, f2) ∈ W, where we have to show that
f4 ∈ R. Since C is an M-adhesive category, from g1 ∈
MC it follows that g4 ∈ MC. Since (f1, f2) ∈ W we
have that (Fk(g2)(o1), n) /∈ Dom(att2,k) for all (o1, n) /∈
Dom(att1,k), which means that ∼ = ∅ and A2

∼
= A4 in

the construction of the pushout (see Construction of Fact 2). Moreover, att4 is
total because each o ∈ Fk(C4) has either a preimage o3 ∈ Fk(C3) with (o3, n) ∈
Dom(att3,k), because att3 is total, or a preimage o2 ∈ Fk(C2)\Fk(g2)(C1) with
(o2, n) ∈ Dom(att2,k) by definition of W. Altogether, this means that f4 ∈ R.

A.5 Proof of Fact 4

Obviously, the constructed square commutes, att1 is well-defined, and f1 ∈ M.
We have to show that f1, f2 are well-defined attributed morphisms and that the
universal pullback property holds.

Well-definedness For (o, n) ∈ Dom(att1,k) we have that idA3
(att1,k(o, n)) =

att3,k(Fk(g1)(o), n) and a−14 (a3(att1,k(o, n))) = a−14 (a3(att3,k(Fk(g1)(o), n))) =
a−14 (att4,k(Fk(g3 ◦ g1)(o), n)) = a−14 (att4,k(Fk(g4 ◦ g2)(o), n)) =
a−14 (a4(att2,k(Fk(g2)(o), n))) = att2,k(Fk(g2)(o), n), which means that both f1
and f2 are well-defined.

AO1 AO3

AO2 AO4

AO0

f1

f4

f2 f3

f5

f6

f7

(1)

Universal Property Consider an attributed ob-
ject AO0 with morphisms f5, f6 such that f3 ◦f5 =
f4 ◦ f6. The pullback in C implies the existence
of a unique morphism g7 with g1 ◦ g7 = g5 and
g2 ◦ g7 = g6.

Now we define f7 = (g7, a5). For the attribu-
tion component we have that idA3

◦ a5 = a5 and
a−14 ◦ a3 ◦ a5 = a−14 ◦ a4 ◦ a6 = a6, i.e. both trian-
gles commute. Moreover, f7 is well-defined, since for (o, n) ∈ Dom(att0,k) we
have that a5(att0,k(o, n)) = att3,k(Fk(g5)(o), n) = att3,k(Fk(g1 ◦ g7)(o), n) =
att1,k(Fk(g7)(o), n). The uniqueness of f7 w.r.t. the commutativity of the trian-
gles follows from the underlying property in C and the construction of a7 with
idA3

◦ a7 = a5.
Altogether, it follows that (1) is the required pullback.

21



A.6 Proof of Thm. 3

We have to show that AttC fulfills the W-van Kampen property.

AO′1

AO′3

AO1

AO3

AO′2

AO′4

AO2

AO4

f ′
1

f5

f ′
2

f ′
3

f7f1
f2

f ′
4

f6

f8

f4 f3(1)

Consider the right cube (1), where
we have an underlying cube (1C) in
C with the corresponding morphisms
g1, g6, g7, g8 ∈MC, the back faces be-
ing pullbacks, and the bottom square
being amM-van Kampen square in C
such that the top is a pushout if and
only if the front faces are pullbacks.

For the attribution element mor-
phisms, we have that a1, a4, a′1, and a8 are isomorphisms and their codomain
objects, i.e. AO3, AO′3, and AO4, have total attribution. Moreover, also a6 and
a7 are isomorphisms.

Case 1: If the front faces are pullbacks, then also a′4 is an isomorphism.
Using the construction of Fact 2 for morphisms f ′1 and f ′2, for o ∈ Fk(C ′1)
with (o, n) /∈ Dom(att′1,k), (Fk(g′2)(o), n) ∈ Dom(att′2,k), and (Fk(g′1)(o), n) ∈
Dom(att′3,k) we have that att′2,k(Fk(g′2)(o), n) = a

′−1
4 (a′4(att′2,k(Fk(g′2)(o), n))) =

a
′−1
4 (att′4,k(fk(g′4 ◦ g′2)(o), n)) = a

′−1
4 (att′4,k(Fk(g′3 ◦ g′1)(o), n)) =

a
′−1
4 (a′3(att′3,k(Fk(g′1)(o), n))) = a′2(a

′−1
1 (att′3,k(Fk(g′1)(o), n))). This means

that ∼ contains only reflexive pairs and therefore the attribution elements in
the pushout are isomorphic to A′2, and hence also to A′4.

Moreover, for o ∈ Fk(C ′4) we have that att′4,k(o, n) = a′3(att′3,k(o3, n))
if ∃o3 ∈ Fk(C ′3) with Fk(g′3)(o3) = o and (o3, n) ∈ Dom(att′3,k) and
att′4,k(o, n) = a′2(att′2,k(o2, n)) if ∃o2 ∈ Fk(C ′2) with Fk(g′4)(o2) = o and
(o2, n) ∈ Dom(att′2,k). Otherwise, att′4,k(o, n) is undefined. This can be
shown as follows: Suppose att′4,k(o, n) is defined, but the first two cases do
not apply. Since the underlying top square is a pushout in C, o has at
least one preimage o2 or o3. Then the following two situations may occur:

�

��

�

�

d�

d

×
××
×

�

d�

d

1. If both o2, o3 exist with att′2,k(o2, n) and att′3,k(o3, n) unde-
fined, then att2,k(Fk(g6)(o2), n) and att3,k(Fk(g7)(o3), n) have
to be undefined as well for the front faces to be pullbacks. But
then the bottom cannot be a pushout.
2. If w.l.o.g. only o2 exists with att′2,k(o2, n) undefined then also
att2,k(Fk(g6)(o2), n) has to be undefined. Moreover, o2 has no
preimage under g′2 and Fk(g6)(o2) has no preimage under g2.
But then the bottom cannot be a pushout.

This means that AO′4 has total attribution and is isomorphic
to the constructed pushout object of f ′1 and f ′2, i.e. the top is
a pushout.

Therefore, (f ′1, f
′
2) ∈ W and the top is a W-pushout.

22



�

�d

d

d

dd

d

Case 2: If the top is a pushout, for the front right face to be
a pullback we have to show that for o ∈ C ′3 (Fk(g′3)(o), n) ∈
Dom(att′4,k) and (Fk(g7)(o), n) ∈ Dom(att3,k) implies that
(o, n) ∈ Dom(att′3,k). Suppose not, then there exists a preim-
age o′ under g′1 with Fk(g′1)(o′) = o such that att′1,k(o′, n) is
undefined, (Fk(g′2)(o′), n) ∈ Dom(att′2,k) and (Fk(g5)(o′), n) ∈
Dom(att1,k). But this means that the back left face is no pullback.

Analogously, it follows that the front left face is a pullback, which shows the
W-van Kampen property.
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