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Abstract. In this article, an illustrative example is given for the coarse-graining of a 

Markov process which leads to a shift in the statistical weights of a two-states-system. 

The example is based on a 2D-funnel trap. The funnel trap is constructed in such a 

way, that the area inside and outside of the trap is identical. However, observing the 

flight of the insect as a Markov process, the probability for being “in the trap” is higher. 

This example can be transferred to several kinds of processes (like receptor-ligand-

binding processes in chemistry) and describes the influence of “re-entering events”. 
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                  Fig. 1. Scheme of a funnel trap 

 A funnel trap (red line) is shown in Fig. 1. Its area is divided into 73 equally sized squares 

(black lines). The three squares which are marked with a green star will be important in the 

following sections. With this trap we will try to “catch an insect”. Note that 36 squares belong 

to the left (“in”) part and 36 squares belong to the right (“out”) part of the funnel trap. One 

marked square in the center of the funnel is neither “in” nor “out”. This is called the transition 

square. The first step is to model the flight of an insect inside this trap as a time-continuous 

Markov jump process between the given 73 boxes. This jump process will be constructed in 

such a way that there are good reasons to expect that the insect is “in” or “out” of the trap 

with almost the same probability (at the limit of an infinite observation time) because of the 

equivalence of the areas.  However, there are also good reasons to expect that the insect 

stays “in the trap” for a longer period of time than “out of the trap” because of the funnel 

shape of the transition area. We will see that both points of view are correct. This is the 

paradox. The solution to this paradox is the following idea: The red line in Fig. 1 splits the 

trap into two rooms with equal areas and it also generates two states of the insect which are 

called “in-the-trap”-state and “out-of-the-trap”-state. These two kinds of separation need not 

be the same. An insect that has just left the “in”-room will re-enter it with a significant 



probability, such that the insect has passed the transition square but is still in its “in-the-trap”-

state with a certain degree. Note, that for practical reasons it is not necessary for a funnel 

trap to be like a one-way-street (I have already seen flies escaping from my funnel trap). It is 

sufficient that the trap separates the two metastable states of the insect. Once the insect is in 

its “in-the-trap”-state the catcher should have enough time to react, i.e., kill the insect or take 

it to another place. 

Constructing the Markov Jump Process 
The flight of the insect will be modeled with a continuous-time Markov jump process. The 

instantaneous jumps between the 73 squares are given by transition rates. These rates are 

organized as a 73x73-rate-matrix  . Let us fist reconsider the following known properties of 

transition rate matrices [1]. The diagonal elements of   are negative and the off-diagonal 

elements are non-negative. For a given    , the expression               denotes the 

holding probability of square           . This is the probability that the flight time of the 

insect inside square   (without leaving it meanwhile) exceeds  . Instantaneous transitions 

only exist between two squares which are next to each other and share a common (black 

line) edge. All further entries of   are zero. The non-negative ratio                denotes 

the conditional probability of the insect to enter square   in the moment it leaves its starting 

square  .  Each row of   has the row-sum zero, which means that the sum of the conditional 

probabilities (per starting square  ) is “1” and that there is zero probability that the insect 

leaves the funnel trap (outer red line) or enters it from outside. Furthermore, the row-sum 

condition means that   is negative-semidefinite. We will construct   in such a way, that the 

dominant eigenvalue “0” is simple.  The corresponding (adequately normalized) left 

eigenvector of   is denoted as  . The  -th element      of   is the probability for the insect 

to be in square   (at the limit of an infinite observation time). A simple method for constructing 

a corresponding rate matrix   which leads to the same observation probability (identical 

entries     ) for each square is given by the following procedure: Enter the transition rate 

         whenever instantaneous transitions between square   and square   are possible. 

Afterwards, insert the diagonal elements of   such that the row-sums are zero.  We aim at a 

two-states-separation of the insect (in the next section). From a naïve point of view, the 

marked transition square of Fig. 1 has to be assigned to the “in”-state or to the “out”-state of 

the insect. Thus, one of the two states is expected to have the probability (at infinite 

observation time) of 50.68% (=37/73), the other state has a probability of 49.32% (=36/73).  

We will call these numbers the statistical weights of the states.  There is a simple possibility 

to manipulate the rates in   in such a way, that the difference between these statistical 

weights is decreased. By multiplying a row   of   with a positive real number    , the 

relative probability of the insect to be in the corresponding square   is reduced by the factor 

   . Thus, we will multiply the row of   corresponding to the transition square with factor 10. 

Furthermore, we will put a “lure” on the left and on the right side of the trap. The rows of   

corresponding to the left and the right marked square in Fig. 1 are multiplied with the factor 

1/7. By these manipulations, we expect the difference between the statistical weights of the 

“in” and the “out” states to be 50.06% (=42.1/84.1) vs. 49.94% (=42/84.1).  Which one of the 

states has the higher probability is expected to depend on the assignment of the transition 

square. This is the point of view when considering the splitting of the trap into two rooms.   



Constructing the Two-States-Separation 
Let us now consider the insect’s point of view and take a more sophisticated look at the rate 

matrix  . If one wants to compute the probability for finding the insect in a certain square 

after time-span   when the insect has started (let’s say) in square    , then this information 

can be computed in the following way: We have to evaluate the 73x73-transition probability 

matrix             , where “expm” is the matrix exponential. The entry         denotes 

the conditional probability that an insect starting in square   will be in square   after time  . 

Thus, the entry         is the answer to the given question. Taking the matrix exponential is 

like a time-discretization from the time-continuous Markov jump process to a time-discrete 

Markov chain [1]. However, we do not aim at a time-discretization. We aim at a spatial 

discretization (“in” and “out”), i.e. we want to project the 73x73-transition rate matrix   to a 

2x2-transition matrix   . In order to preserve the correct kinetics of the system, the spatial 

discretization has to commute with the time-discretization. This means that the time-

discretized matrix                should be equal to the spatial discretization of     For a 

two state system, this is possible only if                   , where   is the diagonal 

matrix of the vector components of    and   is a 73x2-matrix consisting of two column 

vectors     and      with entries between 0 and 1, see [2]. The vector element        denotes 

how much the square   counts for the “in-the-trap”-state of the insect. The vector element 

        denotes how much the square   counts for the “out-of-the-trap”-state of the insect. 

The two column vectors are visualized in Fig. 2.  

 

Figure. 2. In this scheme one can see the state of the insect when it is in a certain square of 

the funnel trap. The insect always partially attains both of the states (“in-the-trap” and “out-of-

the-trap”) with a certain degree. The squares in this figure are colored according to this 

degree. On the left side the “in-the-trap”-state is shown, on the right side it is the “out-of-the-

trap”-state. 

For a valid commutation of the discretizations, the column vectors     and      have to be 

linear combinations of the two dominant eigenvectors    and    of  , where    is a constant 

vector        . The PCCA+ algorithm [3] determines these vectors to be 

    
             

                
      

              

                
  

In order to compute the statistical weights of the two metastable states of the insect, we have 

to multiply the elements      of the dominant left eigenvector w of   with the corresponding 

entry in the vector        or        , respectively. Taking the sum over these products leads to 



the following statistical weights: The insect is in its “in-the-trap”-state with a probability of 

51.63% and in its “out-of-the trap”-state with a probability of 48.37%. As one can see in Fig. 

2, there are more “yellow squares” in       (right side) than in     (left side), which means 

that the insect has a higher tendency to re-enter the left side than the right side after passing 

the transition square. Thus, there is a shift in the statistical weights towards the “in-the-trap”-

state, because we expected the probabilities to be 50.06% and 49.94%. 

Conclusion 
The basic idea of this article is the following: The funnel trap does not divide the area into 

two “rooms”, it rather generates two metastable states of the insect.  

With the presented mathematical tools, “re-entering events” could be interpreted in other 

fields of application, too. One example is a ligand-receptor-binding process. The receptor 

does not divide the space of the ligand into an unbound and a bound part, it rather generates 

two states of the ligand -- the ligand is in a “bound” or in an “unbound” state. There need not 

be a 1-to-1-correspondence between “decomposition of the space into two sets” and “two 

states of the ligand”. 
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