A Note on Menger’s Theorem for Hypergraphs
A Note on Menger’s Theorem for Hypergraphs*

Ralf Borndörfer Marika Karbstein

Abstract

We prove the companion Theorem to Menger’s Theorem for hypergraphs. This result gives rise to a new class of blocking pairs of ideal matrices, that generalize the incidence matrices of cuts and paths.

1 Introduction

Let \(H = (V, \mathcal{E}) \) be an undirected hypergraph with \(n \) vertices \(V = \{v_1, \ldots, v_n\} \) and \(m \) hyperedges \(\mathcal{E} = \{e_1, \ldots, e_m\} \), where \(e_i \subseteq V, i = 1, \ldots, m \). We want to allow for parallel edges, i.e., it is possible that \(e_i = e_j \) for two edges \(e_i \) and \(e_j, i \neq j \); we say that edges \(e_i \) and \(e_j, i \neq j \), are distinct. Let \(s \) and \(t \) be two different vertices of \(H \). An \(st \)-path \((v_{i_0}, e_{j_1}, v_{i_1}, \ldots, e_{j_h}, v_{i_h}) \) in \(H \) is an alternating sequence of mutually different nodes \(v_{i_h}, h = 0, \ldots, k, \) and mutually distinct hyperedges \(e_{j_h}, h = 1, \ldots, k \), such that \(v_{i_0} = s, v_{i_h} = t, v_{i_h} \in e_{j_h} \) for all \(h = 1, \ldots, k \), and \(v_{i_k} = t \). The sequence \(\mathcal{P} = (e_{j_1}, \ldots, e_{j_h}) \) of hyperedges in an \(st \)-path is an \(st \)-hyperpath; we write \(e_{j_i} \in \mathcal{P}, i = 1, \ldots, k \), and we say that an \(st \)-hyperpath connects \(s \) and \(t \). A set of hyperedges \(\mathcal{E}' \subseteq \mathcal{E} \) is an \(st \)-hypercut if \(s \) and \(t \) are connected in \(H = (V, \mathcal{E}) \), but not in \(H' = (V, \mathcal{E} \setminus \mathcal{E}') \). Let \(\delta_H(W), W \subseteq V \), be the set of hyperedges that contain at least one node in \(W \) and one node in \(V \setminus W \), i.e., \(\delta_H(W) = \{e \in \mathcal{E} | e \cap W \neq \emptyset, e \cap (V \setminus W) \neq \emptyset\} \). Then \(\delta_H(W) \) is an \(st \)-hypercut for every \(s \in W \) and \(t \notin W \), provided that \(s \) and \(t \) are connected. A hypergraph is connected if each pair of nodes \(s, t \in V \) is connected. A hypergraph \(H = (V, \mathcal{E}) \) is \(k \)-hyperedge connected if \(H = (V, \mathcal{E} \setminus \mathcal{E}') \) is connected for every set of \(k - 1 \) hyperedges \(\mathcal{E}' \subseteq \mathcal{E} \), i.e., if the removal of \(k - 1 \) arbitrary hyperedges does not disconnect \(H \). Let \(c : \mathcal{E} \to \mathbb{N} \) be a weight function on the hyperedges with non-negative integer values. The capacity of a hypercut \(\mathcal{E}' \) w.r.t. \(c \) is \(c(\mathcal{E}') = \sum_{e \in \mathcal{E}'} c(e) / \text{length of a hyperpath } \mathcal{P} \) w.r.t. \(c \) is \(c(p) = \sum_{e \in p} c(e) \). An \(st \)-hypercut packing/st-hyperflow w.r.t. \(c \) is a set \(\{\mathcal{E}_1, \ldots, \mathcal{E}_k\} \) of \(st \)-hypercuts/a set \(\{p_1, \ldots, p_k\} \) of \(st \)-hyperpaths such that each hyperedge \(e \) is contained in at most \(c(e) \) hypercuts/hyperpaths; again, we allow for parallel hypercuts/hyperpaths. Two hypercuts/hyperpaths are disjoint if their edges are mutually distinct. The value or cardinality of an \(st \)-hypercut packing/st-hyperflow is the number \(k \) of hypercuts/hyperpaths it contains.

Figure 1 gives an example of a hypergraph with six hyperedges. Here, we illustrate a hyperedge by connecting its nodes in an arbitrary order (i.e., we represent

*Supported by the DFG Research Center “Mathematics for key technologies”
Adress of the authors: Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany;
Email: {borndoerfer, karbstein}@zib.de
Figure 1: Example of a hypergraph $G = (V, \mathcal{E})$ with six hyperedges ($\mathcal{E} = \{e_1 = \{a, b, c, d\}, e_2 = \{e, f, g\}, e_3 = \{a, e\}, e_4 = \{e, f, c\}, e_5 = \{g, d\}, e_6 = \{f, g, c, d\}\}$). An ed-hyperpath $\mathcal{P} = (e_4, e_1)$ with associated ed-path (e, e_4, c, e_1, d) contains the hyperedges e_4 and e_1; an example of an ed-hypercut is $\{e_2, e_3, e_4\}$ (hyperedges depicted as paths).

Menger’s theorem is known to hold for hypergraphs ([1, 2]).

Proposition 1 (Menger’s Theorem for Hypergraphs). The minimum cardinality of an st-hypercut is equal to the maximum number of hyperedge-disjoint st-hyperpaths.

Corollary 2. A hypergraph is k-hyperedge connected if and only if there are k hyperedge-disjoint hyperpaths between each pair of nodes.

Multiplying hyperedges yields the following weighted version of Proposition 1.

Corollary 3 (Max-Flow-Min-Cut Theorem for Hypergraphs). The minimum capacity of an st-hypercut is equal to the maximum value of an st-hyperflow.

2 A Companion to Menger’s Theorem

We will prove in this section a companion theorem to Proposition 3, which arises from interchanging the roles of hyperpaths and hypercuts.

Proposition 4. The length of a shortest st-hyperpath is equal to the maximum value of an st-hypercut packing.

Considering unit costs yields our main result, a companion to Menger’s Theorem for hypergraphs.

Proposition 5. The minimum cardinality of an st-hyperpath is equal to the maximum number of hyperedge-disjoint st-hypercuts.

To prove Proposition 4 we first consider the following linear program

$$\begin{align*}
\text{min} & \quad \sum_{e \in \mathcal{E}} c_e x_e \\
\text{s.t.} & \quad \sum_{e \in \delta_H(W)} x_e \geq 1 & \forall s \in W \subseteq V \setminus \{t\} \\
& \quad x_e \geq 0 & \forall e \in \mathcal{E}.
\end{align*}$$

(1)
Here, x_e is a variable which indicates how often the hyperedge e is chosen. The inequalities guarantee that at least one hyperedge crosses each st-hypercut.

Proposition 4 follows from showing that the inequality system of program (1) plus the upper bounds $x_e \leq 1$ is TDI.

Proposition 6. The inequality system of program (1) is TDI.

Proof. It suffices to consider st-connected hypergraphs, because otherwise program (1) is infeasible, and a nonnegative cost vector c, because otherwise program (1) is unbounded. Consider the dual of program (1):

$$
\max \sum_{W \in \mathcal{W}} y_W \\
\text{s.t.} \sum_{W : e \in \delta_H(W)} y_W \leq c_e \quad \forall e \in \mathcal{E} \\
y_W \geq 0 \quad \forall W \in \mathcal{W},
$$

where $\mathcal{W} = \{ W \subseteq V \setminus \{ t \} \mid s \in W \}$. We use the primal-dual shortest hyperpath Algorithm 1 to construct optimal solutions x and y for the linear programs (1) and (2), respectively. The algorithm generalizes Dijkstra's algorithm to the hypergraph setting. It computes a shortest hyperpath from node s to node t with respect to the cost function c. Note that the algorithm does not compute a tree in a hypergraph (in contrast to Dijkstra's algorithm for graphs).

The distances from node s are stored in node labels $d(v)$, and the nodes v_i are marked in the order of increasing distance from the root; their unions $W_i = \bigcup_{1 \leq j \leq i} \{ v_j \}$ produce a sequence of nested hypercuts $\delta_H(W_i)$. The shortest st-hyperpath and the set of nested hypercuts give rise to primal and dual solutions x and y for programs (1) and (2), respectively. In the following we show that x and y are integral, feasible, and that the associated objective values are equal.

Consider the nodes $s = v_1, v_2, \ldots, v_h = t$ as marked by Algorithm 1 in line 18 and the node sets W_0, \ldots, W_h as constructed in line 20. The following properties are easy to see:

1. $W_i = \{ v_1, \ldots, v_i \}$ for $i = 1, \ldots, h$ and $\emptyset = W_0 \subset W_1 \subset \ldots \subset W_h$. For each W_i, $i = 1, \ldots, h - 1$, we have $s \in W_i$ and $t \notin W_i$, i.e., $\delta_H(W_i)$ is an st-hypercut. (For $i = h$ we have $s, t \in W_h$, i.e., $\delta_H(W_h)$ is not an st-hypercut.)

2. $d(v_{i-1}) \leq d(v_i)$ for $i = 1, \ldots, h$. (For $i = 1$, note that $v_0 := s$ and $d(s) := 0$ is set in line 2, and $v_1 := s$ is set in the first pass through line 18.)

3. $d(t) < \infty$. (H is st-connected.)

We first show that y is a solution of program (2). Property 2 implies $y \geq 0$. In fact, the variables y_W are zero for all $W \neq W_1, \ldots, W_{h-1}$. It remains to show that

$$\sum_{W : e \in \delta_H(W)} y_W \leq c_e \quad \forall e \in \mathcal{E}.$$

Let $e \in \mathcal{E}$. If $v_i \notin e$ for all $i = 1, \ldots, h - 1$, then $e \notin \delta_H(W_i)$, $i = 1, \ldots, h - 1$, i.e., $\sum_{W : e \in \delta_H(W)} y_W = 0 \leq c_e$. Otherwise let $1 \leq i < h$ be the minimal
Algorithm 1: Primal-dual shortest hyperpath algorithm.

Input: An st-connected hypergraph \(H = (V, E) \), with costs \(c \in \mathbb{R}_+^E \) on the hyperedges, two nodes \(s, t \in V \).

Output: A minimum cost st-hyperpath \(P \subseteq E \). Values for \(x \) and \(y \) for programs (1) and (2).

1. \(d(s) := 0, d(v) := \infty \forall v \in V \setminus \{s\}, p(v) := \emptyset \forall v \in V \)
2. \(i := 0, v_0 := s, W_0 := \emptyset, y_W := 0 \forall W \in W \)
3. \(P := \emptyset, k := 1, u_1 := t, x_p := 0 \forall e \in E, k = 1 \)
4. All nodes are unmarked. All hyperedges are unmarked.
5. while \(u_i \neq t \) and \(\exists \) unmarked node \(w \) with \(d(w) < \infty \) do
6. find \(v \) with \(d(v) = \min \{d(w) \mid w \text{ unmarked}\} \)
7. for all unmarked \(e \in E \) with \(v \in e \) do
8. for all unmarked \(w \) with \(w \in e \) do
9. if \(d(w) > d(v) + c_e \) then
10. \(d(w) := d(v) + c_e \)
11. \(p(w) := v \)
12. \(P(w) := e \)
13. end
14. end
15. mark \(e \)
16. mark \(v \)
17. \(v_{i+1} := v \)
18. \(y_{W_i} := d(v_{i+1}) - d(v_i) \)
19. \(W_{i+1} := W_i \cup \{v_{i+1}\} \)
20. \(i := i + 1 \)
21. end
22. while \(u_k \neq s \) do
23. \(P := P \cup P(u_k) \)
24. \(x_P(u_k) := 1 \)
25. \(u_{k+1} := p(u_k) \)
26. \(k := k + 1 \)
27. end
28. return \(P, x, y \)

index smaller than \(h \) such that \(v_i \in e \), i.e., \(e \notin \delta_H(W_j) \) for \(1 \leq j < i < h \) but \(e \in \delta_H(W_i) \). Let similarly \(i \leq \ell < h \) be the maximal index smaller than \(h \) such that \(e \notin \mathcal{W}_j \), i.e., we have \(e \in \delta_H(W_j) \) for \(i \leq j \leq \ell < h \) and we have \(e \notin \delta_H(W_j) \) for \(\ell < j < h \). Then equation (3) becomes:

\[
\sum_{W \in W : e \in \delta_H(W)} y_W = \sum_{j=\ell}^{\ell} y_{W_j} = \sum_{j=1}^{\ell} d(v_{j+1}) - d(v_j)
= d(v_{\ell+1}) - d(v_\ell) \leq d(v_\ell) + c_e - d(v_\ell) = c_e.
\]

For the last inequality we distinguish the cases \(v_{\ell+1} \in e \) and \(v_{\ell+1} \notin e \). In the first case \(d(v_{\ell+1}) \leq d(v_\ell) + c_e \), because this value is considered in the computation of the distance label \(d(v_{\ell+1}) \) in line 9 when \(v_i \) is marked. In the second case, \(v_{\ell+1} = v_h = t \) and there exists a node \(w \in e \) with \(w \notin W_{h-1} \). Since \(v_{\ell+1} \) is
marked and not, we have \(d(v_{t+1}) \leq d(w) \). Since \(w \) can be reached from \(v_i \) via \(e \) we have \(d(w) \leq d(v_i) + c_e \). Again, \(d(v_{t+1}) \leq d(v_i) + c_e \), and inequality (3) is satisfied.

We now show that \(x \) is a solution of program (1). Due to the definition of \(x \) we have \(x \geq 0 \). We have to show that
\[
\sum_{e \in \delta_H(W)} x_e \geq 1 \quad \forall s \in W \subseteq V \setminus \{t\}.
\] (4)

Consider the nodes \(t = u_1, \ldots, u_k = s \) computed in the while loop starting in line 23 and an \(st \)-hypercut \(\delta_H(W) \). Let \(i \) be the largest index with \(u_i \notin W \) and \(u_{i+1} \in W \). This index exists since \(u_1 = t \notin W \) and \(u_k = s \in W \). Then we have \(x_P(u_i) = 1 \), \(P(u_i) \in \delta_H(W) \), and inequality (4) is satisfied.

The objective value of program (2) is
\[
\sum_{i=1}^{h-1} y_{W_i} = \sum_{i=1}^{h-1} (d(v_{i+1}) - d(v_i)) = d(v_h) - d(v_1) = d(t) - d(s) = d(t).
\]

Using lines 23 to 28 and 9 to 13 in Algorithm 1 we get
\[
d(t) = d(u_1) = d(u_2) + c_{P(u_1)} = d(u_3) + c_{P(u_2)} + c_{P(u_1)} = \ldots
\]
\[
= d(u_k) + \sum_{i=1}^{k} c_{P(u_i)} = 0 + \sum_{e \in \mathcal{P}} c_e = \sum_{e \in \mathcal{P}} c_e x_e,
\]
i.e., the objective values of (1) and (2) are equal. The integrality of \(x \) is obvious. Since \(c_e \) is integral, it follows that \(d(v_i) \) is integral for \(i = 0, \ldots, h-1 \). Therefore \(y_{W_i}, i = 1, \ldots, h-1, \) is also integral (line 19). This shows the claim.

\[
\min \sum_{e \in \mathcal{E}} c_e x_e
\] s.t.
\[
\sum_{e \in \delta_H(W)} x_e \geq 1 \quad \forall s \in W \subseteq V \setminus \{t\}
\] (5)
\[1 \geq x_e \geq 0 \quad \forall e \in \mathcal{E}.
\]

Corollary 7. The inequality system of program (5) is TDI.

Proof. Inequality system (5) adds upper bounds \(x \leq 1 \) to the inequality system (1); this adds variables \(z \) to the dual program. For solutions \(x \) and \(y \) as constructed by Algorithm 1 (note that \(x \leq 1 \)) the vectors \(x \) and \((y, 0)\) are primal and dual integer solutions of the extended systems with the same objective value.

\section{3 A New Class of Ideal Matrices}

\(st \)-hypercuts and \(st \)-hyperpaths form a blocking pair similar to \(st \)-cuts and \(st \)-paths. Likewise, the incidence matrices of all (inclusion wise) minimal \(st \)-hypercuts \(A_c \) and the incidence matrices of all (inclusion wise) minimal \(st \)-hyperpaths \(A_p \) form blocking pairs of matrices. By Propositions 3 and 4, these
matrices are ideal, like the incidence matrices of st-cuts and st-paths. Note that these matrices are in general not totally unimodular and also not balanced, see Figure 2 for an example. The st-hypercut incidence matrix A_c for the hypergraph associated with this example is

$$
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
\end{pmatrix}
\begin{pmatrix}
e_1 \\
e_2 \\
e_3 \\
e_4 \\
e_5 \\
e_6 \\
\end{pmatrix}
= A_c.
$$

The 3×3 matrix in the upper left corner has determinant -2.

The example also shows that the incidence matrices of st-hypercuts and st-hyperpaths form a new class of blocking pairs of ideal matrices which generalizes the class of incidence matrices of st-cuts and st-paths. This can be seen as follows. If A_c would be an incidence matrix of st-cuts in an undirected graph $G = (V, E)$, the columns of A_c have to correspond to the edges of G, i.e., such a graph would have six edges. Each cut of the graph contains exactly three edges, i.e., the edge-degrees of s and t have to be three. Furthermore, there can not be an edge connecting s and t since this edge would be contained in every cut. Therefore, the only possible graph is shown on the upper left of Figure 2. But this graph has seven minimal st-cuts instead of the six in matrix A_c. If A_c would be an incidence matrix of st-paths in an undirected graph $G = (V, E)$, this graph would have six edges and each (minimal) path from s to t would have to contain exactly three edges. The only possible graph of this type is shown on the lower left of Figure 2. But this graph has eight minimal st-paths.
References
