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Abstract

We consider Large Deformation Diffeomorphic Metric Mapping of gen-

eral m-currents. After stating an optimization algorithm in the function

space of admissable morph generating velocity fields, two innovative as-

pects in this framework are presented and numerically investigated: First,

we spatially discretize the velocity field with conforming adaptive finite el-

ements and discuss advantages of this new approach. Second, we directly

compute the temporal evolution of discrete m-current attributes.
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1 Introduction

The Large Deformation Diffeomorphic Metric Mapping (LDDMM) approach
initiated in [3, 15] has attracted considerable attention over the last few years
in medical imaging. It allows to match highly deformed objects and as such
is capable of performing inter-individual registration. LDDMM constructs a
space mapping by evolving a displacement field along a velocity field, we call
wind. Depending on the regularity of the wind, either diffeomorphisms [1, 10] or
homeomorphisms [18] of the embedded space can be obtained. Thus, it provides
a basis for many applications of anatomical shape analysis, where a one-to-one
correspondence between different spatial objects is required.

The LDDMM technique is commonly applied for matching currents [4]. Cur-
rents provide a unified mathematical description of geometrical objects of di-
mension 0 (points), 1 (curves), 2 (surfaces) or 3 (volumes) [6, 12] which are
embedded in R

3. The spaces of m-currents are linear and equipped with an in-
ner product and hence are a suitable tool for statistical shape analysis [4]. The
induced norm provides a similarity measure for matching of source and target
objects.

The most compact representation for currents at a given geometric resolution
(spectral length) is a sum of discrete Dirac delta m-currents [5]. Currently, the
LDDMM evolution of this representation is only done indirectly via an heuristic
scheme [4, Rem. 4.13], because it would otherwise require the computation of the
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Jacobian of the diffeomorphism, which is a challenge when discretizing the wind
using Gaussian kernels [7, 8, 16]. Furthermore, one looses the connectivity of
the input mesh structure in this case. However, this is not a significant problem,
since the connectivity can be recovered by applying the final displacement field
to the input meshes afterwards.

In this paper, we study the direct evolution of Dirac delta m-currents.
We show that the direct approach allows to uniformly treat m-currents for
m = 0, . . . , 3 (Sec. 2), which to the best of our knowledge has not been shown
before. We show also how to compute the Jacobian in this setting by using
adaptive finite elements (AFEM) to discretize the wind in the LDDMM frame-
work (Sec. 3). Since the compactly supported basis functions are fixed in space
the computation is significantly simplified. Our experiments illustrate the de-
coupling of the wind and current discretization, thus offering the potential for
a significant reduction of degrees of freedom (Sec. 4). Based on our results,
the increased spatial flexibility of AFEM may be exploited in the future by
implementing hierarchical schemes and error estimators.

2 Continuous Matching Problem

For given shapes S, T ⊂ R
3 we aim at constructing a sufficiently smooth bijec-

tion φ of R
3 such that the distance between φ(S) and T is minimal. Here we

fix the formalisms to describe the matching problem as an optimization task.

2.1 Currents

Currents are mathematical tools suited for describing geometrical objects such
as points, space curves, surfaces and volumes embedded in R

3. Their precise
definition from [6, 12] requires notation for differential forms taken from [13].
Following the discussion in [4, Sect. 1.5.1] it turns out that for the purpose of
their matching the testspace of all C∞ differential m-forms is not suited due to
a missing bound in variation. Moreover in our setting these differential m-forms
can be reinterpreted as scalarfields or 3-vectorfields on R

3. Both aspects moti-
vate the use of Reproducible Kernel Hilbert Spaces (RKHS) Wm as testspaces.

Definition 2.1. Let dm = 1 for m ∈ {0, 3} and dm = 3 for m ∈ {1, 2}. For
m = 0, 1, 2, 3 let Wm denote the dense span of dm-vectorfields of the form ω(x) =
km(x, y)a, where x, y ∈ R

3, a ∈ R
dm and km(x, y) = exp(−‖x − y‖2/σ2

m). The
space Wm can be equipped with the inner product 〈km(·, x)a, km(·, y)b〉W m =
a∗km(x, y)b. Here the symbol ∗ denotes the transpose operation.

An m-current in R
3 is a continuous linear functional on Wm. Wm denotes

the vector space of all m-currents in R
3.

For x ∈ R
3 and attribute a ∈ R

dm we define the elementary Dirac delta

m-currents δa
x ∈ Wm acting on ω ∈ Wm as δa

x(ω) = a∗ω(x).

The above inner product induces a norm on Wm, which can be computed
efficiently via FGT even for a large number of linear combinations of the above
basis functions. The chosen Gaussian kernel km can be considered as Green’s
function for some differential operator LW (see [1, 5, 7]). With the above objects
at hand the Riesz representation theorem provides a unique operator Km

W :
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Wm → Wm reflecting the canonical isometry between Wm and Wm defined via

〈Km
W f, g〉W m = 〈f, g〉Wm,W m = f(g)

for all f ∈ Wm and g ∈ Wm. It provides for the m-current Sm the Riesz
representant Km

WSm as unique dm-vectorfield on R
3.

2.2 Homeomorphisms and Diffeomorphisms

Let Ω be an open bounded subset of R
3 and consider functions vt : Ω̄ → R

3

that vanish on ∂Ω. For given final time T > 0 and a time-dependent wind
v = (vt)t∈[0,T ] we consider the temporal evolution of the identity map

∂φv
t

∂t
= vt(φ

v
t ) with φv

0(x) = x . (1)

In what follows it will be useful to define the trajectory xt := φv
t (x) for some fixed

space point x ∈ R
3 and the map φv

st := φv
t ◦ (φv

s)
−1, describing the movement of

a particle starting in x at time s towards φv
st(x) at time t. It is well known (see

[18, Thm. C.3]), that (1) is uniquely solvable when for some x0 ∈ Ω the integral
∫ T

0 ‖vt(x0)‖R3 + Lip(vt) dt is bounded. Furthermore its solution φv
t : R

3 →
R

3 is a homeomorphism of Ω for all times t ∈ [0, T ]. Under more restrictive
assumptions onto the spatial smoothness of the wind, i.e. vt ∈ C1

0 (Ω, R3) ∀t ∈

[0, T ] and
∫ T

0
‖vt‖1,∞ dt < ∞ the unique solution of (1) is even a diffeomorphism

of Ω for all times t ∈ [0, T ] (see [18, Thm. 8.7]). For convenience we look for the
wind vt in some Hilbert space V . Such spaces can be constructed by defining
inner products associated to differential operators. Let therefore L : V →
L2(R3) be a differential operator and equip the Hilbert space V with the inner
product 〈vt, g〉V = 〈Lvt, Lg〉L2 = 〈L∗Lvt, g〉V ∗,V . Here L∗ denotes the adjoint
operator. For this work we use

S := L∗L = (−div(σ2
V ∇) + I)k = (−σ2

V ∆ + I)k (2)

and k = 1 or k = 2 giving the Sobolev spaces Hk (see [7]). For given f ∈ V ∗ we
consider solutions vt ∈ V of Svt = f with homogeneous Dirichlet boundary con-
ditions for vt (and v′t if k = 2). Here the real parameter σV > 0 balances between
smoothing and data fitting of the right hand side f . For other choices of L∗L
and boundary conditions see [10]. Dealing with natural boundary conditions
is also possible, but requires a suffiently large domain to keep all trajectories
therein. Analogous to Km

W we introduce the isometry operator KV : V ∗ → V .
A mathematically equivalent approach of constructing V consists in defining
KV via the Green’s function kV (x, y) of L∗L, see for instance [7, 8, 16, 17].

2.3 Diffeomorphic Deformation of Currents

For m = 0, 1, 2, 3 let currents Sm ∈ Wm be given. Let φ denote a diffeomorphism
on R

3 and dxφ the Jacobian of φ at x. The pushforward φ♯(S
m) ∈ Wm of Sm

under φ is rigorously defined in [13] via the pullback of differential forms. For our
purpose it is sufficient to mention that if Sm is associated to a sub-manifold in
R

3 its pushforward φ♯(S
m) under φ corresponds to the deformed sub-manifold

φ(Sm). This important property justifies to write also φ(Sm) ∈ Wm. The



4

Table 1: Pushforwards of Dirac delta m-currents under φ

m = 0 d0 = 1 c ∈ R φ♯(δ
c
x) = δc

φ(x)

m = 1 d1 = 3 τ ∈ R
3 φ♯(δ

τ
x) = δ

dxφ(τ)
φ(x)

m = 2 d2 = 3 n ∈ R
3 φ♯(δ

n
x ) = δ

|dxφ|dxφ−∗(n)
φ(x)

m = 3 d3 = 1 ρ ∈ R φ♯(δ
ρ
x) = δ

|dxφ|ρ
φ(x)

explicitly calculated pushforwards for elementary Dirac delta m-currents taken
from [4, Table 1.2] are given in Table 1.

Let some wind v be given and consider the family (φv
t )t of diffeomorphisms

generated via (1). The following theorem describes the direct evolution of m-
current attributes am ∈ R

dm under (φv
t )t, where ′ denotes the time derivative.

Theorem 2.2. The pushforwards of δc0

x0
, δτ0

x0
, δn0

x0
and δρ0

x0
under φv

s satisfying

(1) are δc0

xs
, δτs

xs
, δns

xs
and δρs

xs
. Their components are given via the ODEs

x′
t = vt(xt) with x(0) = x0

τ ′
t = (dxt

vt)τt with τ(0) = τ0

n′
t = nttr(dxt

vt) − (dxt
vt)

∗nt with n(0) = n0

ρ′t = ρttr(dxt
vt) with ρ(0) = ρ0 .

Proof. Abbreviating Jt = dx0
φv

t and At = dxt
vt there holds (see [1]) J ′

t = AtJt

with J(0) = I3. Observing the evolution of the Wronskian [11, Thm. 2.14] or
via Jacobi’s formula one obtains

|Jt|
′ = |Jt|tr

(
J−1

t J ′
t

)
= |Jt|tr

(
J−1

t AtJt

)
= |Jt|tr(At),

where tr(A) denotes the trace of a matrix A. Now from Table 1 we read out

xt = φv
t (x0) , τt = Jtτ0 , nt = |Jt|J

−∗
t n0 , ρt = |Jt|ρ0 .

Differentiation of the above equations with respect to t yields

x′
t = φv

t (x0)
′ = vt(φ

v
t (x0)) = vt(xt)

τ ′
t = J ′

tτ0 = AtJtτ0 = Atτt

n′
t = |Jt|

′J−∗
t n0 + |Jt|(J

−∗
t )′n0 = |Jt|tr(At)J

−∗
t n0 − |Jt|A

∗
t J

−∗
t n0

= nttr(At) − A∗
t nt

ρ′t = |Jt|
′ρ0 = |Jt|tr(At)ρ0 = ρttr(At),

which proves the assertion.

2.4 Optimization Problem in Function Space

Let source Sm ∈ Wm and target current T m ∈ Wm be given for m = 0, . . . , 3.
For given wind v we define the deformed current Sm

t := φv
t (Sm) at time t.

Matching means the minimization of the distance of the deformed source current
at final time Sm

T with its target current T m, i.e. minimizing the dual norm
‖φv

T (Sm) − T m‖Wm
= ‖Sm

T − T m‖Wm
in the space of m-currents.
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Given a regularization parameter γ > 0 and matching weights ωm ≥ 0 we
consider for v ∈ L2([0, T ], V ) the following optimization problem:

J(v) := γ

∫ T

0

‖vt‖
2
V dt +

3∑

m=0

ωm‖φv
T (Sm) − T m‖2

Wm
→ min . (3)

Here the first summand involves the kinetic energy of the wind. The existence
of a solution for (3) is proven in [3, 15], however it is generally not unique [2].
Following [8] the gradient of J in L2([0, T ], V ) at fixed v is given by (∇J)t =
2γvt + 2KV (ft), where ft ∈ V ∗ is defined by

ft(u) =

3∑

m=0

ωm〈Sm
t ,∇(Km

W (Sm
T − T m) ◦ φv

tT )∗u〉Wm,W m ∀u ∈ V .

For further discussion concerning the choice of the gradients metric we refer the
reader to [1]. With the above quantities at hand one is able to state a steepest
descent optimization algorithm in the function space of velocity fields v.

3 Discrete Matching Problem

3.1 Discretization of the Wind by Finite Elements (FE)

In the field of optimal current matching mainly wind discretizations of the form

vt(x) =
∑

j
kV (xj,t, x)αj,t (4)

have been considered. Here αj,t ∈ R
3 are the time-dependent momentum vectors

and kV denotes a Gaussian kernel with some global kernel parameter σV > 0,
describing the coherent movement of neighboring particles. In order to apply
Fast Gauss Transform (FGT) for efficient evaluation, σV is necessarily a con-
stant. A further drawback is the spatial movement of non-compactly supported
basis functions along trajectories xj,t. Too small distances between them cause
a redundant or badly conditioned description of the velocity field while the ab-
sence of trajectories in a part of the domain produces almost no wind there for
small kernel sizes. The trajectory density varies during optimization and hence
is difficult to control. Because the trajectories’ starting points are the spatial
components of the Dirac delta source currents the number of trajectories is fixed
and hence a notion of adaptivity for the velocity field can hardly be introduced.
Finally, as mentioned in Sect. 2.2, C∞ smoothness is not required to solve the
evolution equation.

In [14], some of the above mentioned drawbacks are overcome by incorpo-
rating multiple kernel shapes at different scales σV .

We follow another new approach completely decoupling the discretization of
the space of m-currents Wm from the spatial velocity space V . Keeping in mind
that fast point evaluation of the wind is essential for performance, we consider
adaptive hexahedral grids for Ω with hanging nodes saved as an octree. Over
such hexahedral grids we construct either C1 conforming Hermite finite elements
of third order or simpler C0 conforming Lagrange finite elements of first order.
The wind for fixed time t ∈ [0, T ] in the FE basis {ϕj}j takes the form

vt(x) =
∑n

j=1
ϕj(x)αj,t . (5)
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In contrast to radial basis functions, locally constant functions are contained in
the ansatz space and allow to represent local or even global translations with
few degrees of freedom (DOF). Due to the compactly supported basis functions
there is no need for an approximate evaluation like FGT with further unknown
tolerance parameters. Since the basis functions are fixed in space, the underlying
mesh provides a natural clustering which can be exploited via a smart parallel
octree search algorithm for point evaluation. Furthermore this approach pro-
vides a multilevel wind hierarchy with a fraction of DOFs on the coarsest mesh
level completely decoupled from the m-current discretization.

A difficulty arises in the computation of the L2([0, T ], V )-gradient. It per-
manently involves the solution of a second (k = 1) or fourth (k = 2) order
elliptic PDE in every time-step and every iteration. It is clear that one should
employ suited preconditioners and / or multigrid solvers. Using existing FE
libraries limits implementation overhead. We chose libMesh [9], which provides
conforming C1 finite elements on adaptive hexahedral meshes.

The development of adaptive mesh refinement is beyond the scope of this
work. Here, we provide a proof of concept that adaptive grids can easily be
incorporated. Therefore we simply geometrically refine near Sm ∪ T m consid-
ered as subsets of R

3 equally for all times. More sophisticated error indicators
suggesting refinements could be the scalar fields |Km

W (Sm
T − T m) ◦ φv

tT |, |vt|
or |L∗Lvt|. The latter one measures the smoothness of vt. Moreover thinking
of hierarchical error estimators one could compute ‖v1

t − Ihv1
t ‖L2(Q) or even

‖v1
t − v0

t ‖L2(Q) on hexahedrons Q, where vi denote the numerical solutions for
the Ci conforming FE discretization and Ih is the usual Lagrange interpolation
operator.

All appearing ODEs are numerically integrated via the explicit method of
Heun on an equidistant decomposition of the time interval [0, T ]. For the cou-
pling of temporal and spatial discretization in terms of the Courant-Friedrich-
Levy stability condition within our context we refer to [1, 2].

3.2 Current Compression and Direct Evolution

For approximating a m-current Sm ∈ Wm as Ŝm =
∑sm

i=1 δai
xi

∈ Wm we use the
Orthogonal Matching Pursuit (OMP) proposed in [5]. This method iteratively
selects the most important points xi and computes corresponding attributes ai

(i.e. ci, τi, ni, ρi) of a general m-current via a greedy algorithm. It has the
advantage of compressing the current information for a characteristical spectral
length σm > 0 towards a fraction. This enables the design of highly efficient
numerical solution algorithms. The approximation error in OMP is controlled
by a threshold parameter and the grid size of a uniform testgrid.

The obvious drawback of loosing the connectivity between vertices (for m ≥
1) can be compensated by applying the obtained optimal diffeomorphism to all
connected vertices whenever it is required. This only requires one additional
forward flow computation at the end.

In [16, Sec. 3.2] two methods to deform a 2-current Ŝ2 under a family of
diffeomorphisms (φv

t )t are described. In contrast to all previous work, we will
pursue the direct approach motivated by Theorem 2.2. For 2-currents, only 1
instead of 3 trajectories is needed to evolve the normal n0 (Fig. 1). In general,
the direct approach requires only one trajectory per attribute, hence decreasing
the number of variables in the computation.
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t = 0 t = T t = 0

x0

n0
xt

t = T

xT
nT

Figure 1: Usual discrete 2-current deformation (left) versus the direct approach
(right)

Remark 3.1. To quote Rem. 4.13 in [4] the direct evolution of current at-
tributes is closer to the analytical concept of currents and is particularly suited
for OMP, where no connectivity between the points is provided. But [4] in-
dicates the need of Jacobi matrices (as they arise in Theorem 2.2) as a dis-
advantage for numerical implementation. Here we benefit from the simpler
structure of vt in (5), which in Lemma 3.4 enables easy computations of dxt

vt =
∑n

j=1 αj,t∇ϕj(xt)
∗ and hence tr(dxt

vt), (dxt
vt)w and (dxt

vt)
∗w for a vector

w ∈ R
3. Note that all sums over j are local sums due to the compact support

of the basis functions ϕj .

3.3 Discrete Optimization Problem and its Gradient

Let a(·, ·) denote the bilinear form corresponding to the elliptic differential
operator S from (2). We define the sparse symmetric, positive definite ma-
trix S := [a(ϕi, ϕj)]

n
i;j=1 using the FE basis {ϕj}j from Sect. 3.1. Moreover

we introduce the block vectors αt := [αi,t]
n
i=1, xt := xm

t := [xi,t]
sm

i=1 and
at := am

t := [ai,t]
sm

i=1. This notation allows to write the matching terms as

Em = Em(xT ,aT ) = ‖φv
T (Ŝm) − T̂ m‖2

Wm
= ‖

∑sm

i=1 δ
ai,T

xi,T −
∑rm

j=1 δ
bj

yj‖
2
Wm

.

Finally the discrete form of the current matching problem (3) is

Ĵ(αt) := γ

∫ T

0

‖vt(αt)‖
2
V dt +

3∑

m=0

ωm‖φv
T (Ŝm) − T̂ m‖2

Wm
→ min

or even shorter via (5) and ‖vt(αt)‖
2
V = a(vt(αt), vt(αt)) = α∗

t Sαt

Ĵ(αt) = γ

∫ T

0

α∗
t Sαt dt +

3∑

m=0

ωmEm(xT ,aT ) → min . (6)

The analytical computation of the gradient at given αt becomes manageable
though the simpler wind representation (5). Numerically the computation is
more involved due to presence of Hessians of basis functions. But these are
easily provided via the already mentioned libMesh library.

Theorem 3.2. The gradient of Ĵ in the L2-metric is

(∇Ĵ)t = 2γSαt +
3∑

m=0

ωm((ϕm
t )∗ηm

t + (∂αgm
t )∗ζm

t ), (7)
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with ϕm
t = [ϕj(xi,t)Idm

]
i=1...sm;j=1...n

ζm
t = ∇aT

Em +

∫ T

t

(∂ag
m
s )∗ζm

s ds

ηm
t = ∇xT

Em +

∫ T

t

(∂xg
m
s )∗ζm

s ds .

Proof. First we consider the variation of the kinetic energy, i.e. ωm = 0 for all
m. One directly calculates

(∇Ĵ)t = 2γSαt . (8)

Let us now consider the contrary case, i.e. γ = 0. We aim to compute ∇αEm

for some fixed m. Variation of E = Em w.r.t. αt in direction α̃t gives

Ẽm = (∂xT
E)x̃T + (∂aT

E)ãT . (9)

There holds

x̃t =

∫ t

0

ṽs(xs) ds =

∫ t

0

ϕsα̃s ds . (10)

From Theorem 2.2 the evolution of m-current attributes can be written as

a′
t = g(αt,xt,at) = gt with a(0) = a0 . (11)

Its variation in direction α̃t satisfies

ã′
t = (∂αgt)α̃t + (∂xgt)x̃t + (∂agt)ãt with ã(0) = 0 .

It remains to express ãt. We therefore introduce the flow dFst

dt
= (∂agt)Fst with

Ftt = I and get

ãt =

∫ t

0

Fut((∂αgu)α̃u + (∂xgu)x̃u) du

=

∫ t

0

Fut(∂αgu)α̃u du +

∫ t

0

∫ u

0

Fut(∂xgu)ϕsα̃s ds du

=

∫ t

0

(

Fut(∂αgu) +

∫ t

u

Fst(∂xgs) ds ϕu

)

α̃u du .

In particular there holds

ãT =

∫ T

0

(

FtT (∂αgt) +

∫ T

t

FsT (∂xgs) ds ϕt

)

α̃t dt . (12)

Combining (9), (10) and (12) we have

Ẽm =

∫ T

0

(∂xT
E)ϕtα̃t + (∂aT

E)

(

FtT (∂αgt) +

∫ T

t

FsT (∂xgs) ds ϕt

)

α̃t dt

=

∫ T

0

([

(∂xT
E) +

∫ T

t

(∂aT
E)FsT (∂xgs) ds

]

︸ ︷︷ ︸

=:η∗

t

ϕt + (∂aT
E)FtT

︸ ︷︷ ︸

=:ζ∗

t

(∂αgt)

)

α̃t dt

=

∫ T

0

(
η∗

t ϕt + ζ∗
t (∂αgt)

)
α̃t dt . (13)
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Since FstFts = I and
dF∗

st

ds
= −(∂ags)

∗F ∗
st we have in particular the integral

form F ∗
ts = I +

∫ s

t
(∂agu)∗F ∗

us du. This helps to simplify

ζt = F ∗
tT (∇aT

E) =
(

I +

∫ T

t

(∂ags)
∗F ∗

sT ds
)

(∇aT
E)

= ∇aT
E +

∫ T

t

(∂ags)
∗F ∗

sT (∇aT
E) ds = ∇aT

E +

∫ T

t

(∂ags)
∗ζs ds (14)

ηt = ∇xT
E +

∫ T

t

(∂xgs)
∗F ∗

sT (∇aT
E) ds = ∇xT

E +

∫ T

t

(∂xgs)
∗ζs ds . (15)

Collecting (8), (13), (14) and (15) yields the assertion.

The remaining quantities ∇xT
Em,∇aT

Em, ∂αgm
t , ∂xg

m
t and ∂ag

m
t from The-

orem 3.2 for each m are specified in the next two lemmas.

Lemma 3.3. Let fm(x) =
∑sm

i=1 km(xi,T , x)ai,T −
∑rm

j=1 km(yj , x)bj. There hold

∇xT
Em = [2(dxi,T

fm(xi,T ))∗ai,T ]sm

i=1 and ∇aT
Em = [2fm(xi,T )]sm

i=1 .

Proof.

(∂xT
Em)η = 2

[(
∂xT

∑sm

i=1 δ
ai,T

xi,T

)
η
]
(fm) = 2a∗

T (dxT
fm(xT )) η

∇xT
Em = 2(dxT

fm(xT ))∗aT

= 2
(
∑sm

i=1(∇2km(xi,T , xT ))a∗
i,T −

∑rm

j=1(∇2km(yj , xT ))b∗j

)

aT

(∂aT
Em)η = 2

[(
∂aT

∑sm

i=1 δ
ai,T

xi,T

)
η
]
(fm) = 2η∗fm(xT ) .

Lemma 3.4. For gm
t in (11) their sparse Jacobians are given via

g0
t = 0

∂αg1
t =

[
(τ∗

i,t∇ϕj(xi,t))I3

]

i=1...s1;j=1...n

∂αg2
t =

[
ni,t∇ϕj(xi,t)

∗ −∇ϕj(xi,t)n
∗
i,t

]

i=1...s2;j=1...n

∂αg3
t = [ρi,t∇ϕj(xi,t)

∗]
i=1...s3;j=1...n

∂xg
1
t = diag

[
∑n

j=1 αj,tτ
∗
i,tHϕj

(xi,t)
]s1

i=1

∂xg
2
t = diag

[
∑n

j=1 ni,t(α
∗
j,tHϕj

(xi,t)) − (α∗
j,tni,t)Hϕj

(xi,t)
]s2

i=1

∂xg
3
t = diag

[
∑n

j=1 ρi,tα
∗
j,tHϕj

(xi,t)
]s3

i=1

∂τg1
t = diag

[
∑n

j=1 αj,t∇ϕj(xi,t)
∗
]s1

i=1

∂ng
2
t = diag

[
∑n

j=1(α
∗
j,t∇ϕj(xi,t))I3 −∇ϕj(xi,t)α

∗
j,t

]s2

i=1

∂ρg
3
t = diag

[
∑n

j=1 α∗
j,t∇ϕj(xi,t)

]s3

i=1
,

where Hϕj
(xi,t) denote the Hessian of ϕj at xi,t.
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Figure 2: S (dark green), T (light red) Figure 3: Ŝ (green), T̂ (red), grid

Proof. The proof for all cases of m can easily be adapted from the case m = 2.
For this choice the derivatives of g2

t follow from direct calculations starting with

g2
t = g2(αt,xt,nt) = diag

[
tr(dxi,t

vt)I3 − (dxi,t
vt)

∗
]s2

i=1
nt

= diag
[
∑n

j=1(α
∗
j,t∇ϕj(xi,t))I3 −∇ϕj(xi,t)α

∗
j,t

]s2

i=1
nt

=
[
∑n

j=1 ni,t(α
∗
j,t∇ϕj(xi,t)) −∇ϕj(xi,t)(α

∗
j,tni,t)

]s2

i=1
,

where diag[v] = [δijvi]
s
i;j=1 for v ∈ R

s and δij denotes the Kronecker delta.

Corollary 3.5. If ωm = 0 for m > 0 Theorem 3.2 simply provides

(∇Ĵ)t = 2γSαt + ω0(ϕ
0
t )

∗∇xT
E0 .

Remark 3.6. The L2([0, T ], V )-gradient of Ĵ is immediately obtained by ap-
plying S−1 from the left in equation (7).

4 Numerical Experiments

Since the numerical implementation is not yet fully tested, we postpone the
investigation of the cases m > 0 and only consider the case m = 0, i.e. ωi = δi0.
The surfaces S and T are depicted in Fig. 2. To both of them we apply the
OMP with σ0 = 8 towards Ŝ with s0 = 1746 points and T̂ with r0 = 2141
points, which are sketched as set of spheres of diameter 8 in Fig. 3.

We solve the discrete matching problem (6) on Ω = (0, 346.56)×(0, 205.76)×
(0, 256.96) with γ = 0 and tuned σV . For Lagrange FE (k = 1) on a hexahedral
adaptive grid from Fig. 3 having 568 nodes (133 of them are hanging nodes) we
choose σV = 100. The result ST is shown in Fig. 4. Secondly we solve problem
(6) with Hermite FE (k = 2) on a uniform coarse grid having 120 nodes, whose
solution is shown in Fig. 5 for σV = 15. Finally in Fig. 6 we compare our results
with the software ExoShape1, generating C∞ wind via ansatz (4) with σV = 30.
The greyscale highlights the term distx∈ST

(x, T ).
A quantitative comparison between all different wind discretizations is issue

of Table 2. Therein the column DOFs denote the number of freely choosable
vectors αj,t for fixed t. All methods provide acceptable matches with respect
to the fixed level of detail σ0 = 8. Especially the surface ST corresponding to

1http://www-sop.inria.fr/asclepios/projects/Health-e-Child/ShapeAnalysis/
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Figure 4: ST for C0 wind Figure 5: ST for C1 wind Figure 6: ST for C∞wind

Table 2: One-sided surface distances between ST and T for m = 0

vt DOFs mean stddev rms max

C0 1·(568-133) = 435 1.18 1.14 1.64 11.33
C1 8·120 = 960 0.95 0.91 1.32 9.16
C∞ 1746 0.97 0.93 1.34 9.70

no wind, distx∈S(x, T ) 5.08 3.87 6.39 21.05

C1 wind is also visually closest to T although it is obtained via less wind DOFs
compared to the approach from Exoshape. This fact stresses the potential of
decoupling the discretization of the spaces Wm from V .

Acknowledgement. We thank Stanley Durrleman from the University of
Utah for the fruitful discussion and helpful suggestions at the initial phase of
this paper. We further acknowledge support by DFG-Matheon Project F2.
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