
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TOBIAS ACHTERBERG? J. CHRISTOPHER BECK?? (EDS.)

CPAIOR 2011
Late Breaking Abstracts

? IBM, Software Group, CPLEX Optimization
?? Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Canada

ZIB-Report 11-20 (May 2011)

Preface

The Eighth International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CPAIOR
2011) was held in Berlin, Germany, May 23-27, 2011.

The conference is intended primarily as a forum to focus on the integration
and hybridization of the approaches of Constraint Programming (CP), Artificial
Intelligence (AI), and Operations Research (OR) technologies for solving large
scale and complex real life combinatorial optimization problems. CPAIOR is
focused on both theoretical and practical, application-oriented contributions.

As part of the conference a call was made for late breaking abstracts for
presentation at the conference. These abstracts were meant to represent work in
process, recent work, or work appearing in other academic areas but of interest
to the CPAIOR community. A total of 19 submissions were received of which
16 were selected by the program chairs for presentation. This document is a
compilation of the presented abstracts.

The submissions were not peer-reviewed but rather selected on the basis of
interesting ideas. The authors of the individual abstracts retain all rights and
copyrights.

The formal proceedings of CPAIOR 2011, which do not include the abstracts
in this technical report, can be found in the following publication:

Achterberg, T. & Beck, J.C., Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems: Pro-
ceedings of the 8th International Conference, Lecture Notes in Computer
Science 6697, Springer, 2011.

Thanks to the Department of Scientific Information of the Zuse Institute
Berlin, video recordings of the presentations of CPAIOR 2011 were made. They
can be found on the CPAIOR 2011 webpage at http://cpaior2011.zib.de.
We would like to specially thank Wolfgang Dalitz and the Web Technology and
Multimedia group for creating this valuable record of the conference.

The staff at Zuse Institute Berlin did an outstanding job providing adminis-
trative support, making sure the money was in the right place at the right time,
and in handling the registrations. In particular, we would like to thank Annerose
Steinke, Sylke Arencibia, Sybille Mattrisch, Bettina Kasse.

A special thanks goes to the conference chairs, Timo Berthold, Ambros
Gleixner, Stefan Heinz, and Thorsten Koch for the organization and substantial
efforts on sponsorship, publicity, logistics, and all the other things that have to
happen behind the scenes to make a conference work.

http://cpaior2011.zib.de

Finally, we would like to thank the sponsors who make it possible to organize
this conference:

DFG Research Center Matheon, Zuse Institute Berlin, the Association
for Constraint Programming, SAS, IBM, AIMMS, Gurobi Optimization,
FICO, the Institute for Computational Sustainability, GAMS, IVU Traf-
fic Technologies AG, MOSEK Optimization, National ICT Australia,
Jeppesen, the ABB Group, atesio GmbH, and ProCom GmbH.

May 2011 Tobias Achterberg
J. Christopher Beck

Table of Contents

Satisfiability Test for the energy Constraint . 1

Christian Artigues, Pierre Lopez, William Mangoua Sofack

Learning Graphical Models for Algorithm Configuration 4

Mauro Birattari, Marco Chiarandini, Marco Saerens, Thomas Stützle

Comparing Integer Programming and Constraint Programming for a Flow
Shop Lot Streaming Problem . 6

Rahime Sancar Edis, Emrah B. Edis, Ceyda Oguz

Three ideas for the Quadratic Assignment Problem . 9

Matteo Fischetti, Michele Monaci, Domenico Salvagnin

Explanation Algorithms for Cumulative Scheduling . 14

Stefan Heinz, Jens Schulz

Which Mixed Integer Programs could a million CPUs solve? 17

Thorsten Koch, Yuji Shinano

Neuron Constraints to Model Complex Real-World Problems 20

Michele Lombardi, Michela Milano

A Constraint Programming Approach for a Batch Processing Problem with
Non-identical Job Sizes . 23

Arnaud Malapert, Christelle Guéret, Louis-Martin Rousseau

Exact Branch-and-price for Fair-share Airline Crew Rostering 27

Ranga Muhandiramge

Benders Decomposition for the Full-Truckload Pickup-and-Delivery Vehicle
Routing Problem . 28

Jenny Nossack, Erwin Pesch

Multimodal Home Healthcare Scheduling using a novel CP–VND–DP
Approach . 30

Andrea Rendl, Matthias Prandtstetter, Jakob Puchinger

Search Combinators . 33

Tom Schrijvers, Guido Tack, Pieter Wuille, Horst Samulowitz, Peter J.
Stuckey

Towards a Characterization of Adaptiveness for Constraint Programming
Search Design . 36

Thiago Serra

Using column generation to solve the edge coloring problem 38
J.M. van den Akker, J.A. Hoogeveen, W. Lauret

The Aimms Interface to Constraint Programming . 41
Willem-Jan van Hoeve, Marcel Hunting, Chris Kuip

Solving the no-wait job shop problem: an ILP and CP approach 44
H.M. Vermeulen, J.A. Hoogeveen, J.M. van den Akker

Satisfiability Test for the energy Constraint

Christian Artigues, Pierre Lopez, and William Mangoua Sofack

CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France
Université de Toulouse ; UPS, INSA, INP, ISAE ; UT1, UTM, LAAS ; F-31077

Toulouse Cedex 4, France

We define a general energy constraint1 abstracted from an industrial ap-
plication considering electricity modulation for scheduling of melting operation
[1]. We consider a set of n tasks A = {1, 2, . . . , n} and a resource of constant
capacity B. Let T denote a continuous or discrete scheduling horizon. Each
task has a required energy Wi, a minimum resource requirement bmin

i and a
maximum resource requirement bmax

i , a release date ri, and a due date di. The
global energy constraint holds iff one can find for each task i ∈ A, a start time
sti, a finish time fti and a resource usage profile bi(t), ∀t ∈ T verifying:

sti ≥ ri ∧ fti ≤ di ∀i ∈ A, (1)

bmin
i ≤ bi(t) ≤ bmax

i ∀i ∈ A, t ∈ [sti, fti[, (2)∑
i∈A

bi(t) ≤ B ∀i ∈ A, t ∈ T , (3)

∫ fti

t=sti

bi(t) = Wi. (4)

The energy constraint states that each task has to be scheduled inside its time
window (1) and, once started, must respect at each time the boundaries on its
resource usage (2). Moreover, the integral of its resource profile must be equal to
the required energy (4), while, at each time, the cumulative resource usage of
the tasks must respect the resource capacity (3). We define the task duration as
pi = fti − sti. In the discrete time case, assuming unit time periods, (4) can be

written
∑fti−1

t=sti
bi(t) = Wi. If T is discrete, bmin

i = bmax
i = bi and Wi = pibi, we

have the particular case of the cumulative constraint [3]. The consequence is
that deciding whether the energy constraint is satisfiable is NP-complete. If T
is discrete and bmin

i = 0, bmax
i = B we obtain the (polynomially solvable) fully

elastic constraint [2]. If starting and finishing times are fixed and for a discrete
time horizon, we have the following results.

Theorem 1. For fixed (sti, fti)i∈A and discrete T , satisfiability of the energy

constraint can be checked polynomially in function of |T | and n.

Proof (sketch). If bi(t) takes continuous values, (2-4) become a linear program.
Otherwise, the problem can be solved as a maximum flow problem. ut
1 This paper is an abstract version of the short paper that was submitted to CPAIOR

2011 (and rejected). Theorems 1 and 2 were added as a partial answer to a question
of a referee.

2 Christian Artigues, Pierre Lopez, and William Mangoua Sofack

Theorem 2. For fixed (sti, fti)i∈A, discrete T and continuous bi(t), satisfiability
of the energy constraint can be checked polynomially in function of n.

Proof (sketch). Consider the increasing series (tq)q=1,...,Q of distinct start and
end time values (Q ≤ n2) and a feasible solution bi(t). For each t, we have∑

i∈A bi(t) ≤ B . Summing over all t ∈ {tq, . . . , tq+1 − 1} yields

tq+1−1∑
t=tq

∑
i∈A

bi(t) ≤ (tq+1 − tq)B

and consequently, ∑
i∈A

tq+1−1∑
t=tq

bi(t)/(tq+1 − tq) ≤ B.

Hence for each t ∈ {tq, . . . , tq+1−1}, bit can be replaced by b′it =
∑tq+1−1

t=tq
bi(t)/(tq+1−

tq) while keeping the solution feasible. It follows there is no need to change the
amount of resource allocated to a task at time point that does not coincide with
the start or the end of another task. It follows that by replacing bi(t) by decision
variable biq/(tq+1 − tq) for t ∈ {tq, . . . , tq+1 − 1}, in the linear program (2-4),
where biq is the amount of energy allocated to i in interval q, yields a linear
program with a number of variables and constraints polynomial in n. ut

When starting and finishing times must be determined, as the energy con-
straint generalizes the cumulative constraint, deciding whether an energy con-
straint has a solution is NP-complete. It is consequently of interest of establishing
necessary feasibility conditions, i.e. an incomplete satisfiability such we are sure
the constraint cannot be satisfied is the test returns false while we can not con-
clude on the constraint satisfiability the test returns true. For the cumulative

constraint, the energetic reasoning is a successful incomplete satisfiability test
used in commercial solvers [2,3]. It can be stated as follows. Consider the mini-
mum energy consumption of a task i over an interval [t1, t2], ignoring other tasks.
This value is denoted by w(i, t1, t2). Clearly, the energy constraint cannot be
satisfied if

∃t1, t2 ∈ T 2, t2 > t1,
∑
i∈A

w(i, t1, t2) > B(t2 − t1) (5)

In [2], it was shown that test (5) can be restricted for the cumulative constraint
to a set of dominant intervals of polynomial cardinality. We generalize below
these results to the energy constraint.

Theorem 3. For the energy constraint, test (5) can be performed in strongly
polynomial time.

Proof (sketch). First, we show that for all i ∈ A, w(i, t1, t2) is a 2D continuous
piecewise linear function: ∃q ∈ {0, 1, 2, 3, 4, 5}, w(i, t1, t2) = fq(i, t1, t2) where
linear functions fq(i, t1, t2) are defined below.

Satisfiability Test for the energy Constraint 3

q fq(i, t1, t2) q fq(i, t1, t2)
0 0 3 Wi − bmax

i (t1 − ri)
1 Wi 4 Wi − bmax

i (t1 − ri)− bmax
i (di − t2)

2 Wi − bmax
i (di − t2) 5 bmin

i (t2 − t1)

We now define the slack of an interval SL(t1, t2) = B(t2−t1)−
∑

i∈A w(i, t1, t2).
Equivalently to (5), the energy constraint is not satisfiable if ∃[t1, t2] such that
SL(t1, t2) < 0. SL(t1, t2) is also a 2D continuous piecewise linear function and
its inflexion lines are the union of the inflexion lines of individual task functions
w(i, t1, t2). For each task i, there is a constant number of inflexion lines. Hence
there are O(n) inflexion lines for SL(t1, t2). Inside the polytopes defined by the
inflexion lines, the slack is linear. The minimum of SL(t1, t2) is reached on an
extreme point of one of these polytopes, i.e. an intersection of two inflexion lines.
Hence there are O(n2) extreme points to which test (5) can be restricted. ut

From Theorem 3, an O(n3) algorithm can be derived to perform test (5) for
all tasks. When bmin

i = bmax
i = bi, the dominant intervals for the cumulative

constraint [2] are obtained. An open question is whether the test is also a sufficient
feasibility condition when start and end time are fixed, i.e. if it subsumes the
linear program. These preliminary results are interestingly general as Theorem 3
makes no hypothesis for functions bi(t). More precisely, the resource demands
and the time horizon can be continuous or discrete. Furthermore, for the discrete
time case, Theorems 1 and 2 provide in addition a way of restricting the search to
feasible start and end times since the bi(t) can be obtained (pseudo-)polynomially
(and even polynomially for continuous bi(t)) for fixed sti and fti. For continuous
bi(t), Theorem 2 provide also a dominance rule for resource amount change times.
As a short-term follow-up of this work, we are working in two research directions.
The first one consists in designing an intelligent method for enumerating the
extreme points of the slack polytopes to obtain an efficient energy reasoning
algorithm. For the second direction, a complete tree-search method embedding
energy reasoning, linear programming and/or network flow algorithms will be
proposed to obtain a feasible solution or to prove that no solution exists.

References

1. C. Artigues, P. Lopez, and A. Hait: The energy scheduling problem: Industrial case
study and constraint propagation techniques. International Journal of Production
Economics, doi:10.1016/j.ijpe.2010.09.030.

2. P. Baptiste, C. Le Pape, and W. Nuijten: Satisfiability tests and time-bound ad-
justments for cumulative scheduling problems. Annals of Operations research, 92,
305–333 (1999)

3. P. Lopez and P. Esquirol: Consistency enforcing in scheduling: A general formulation
based on energetic reasoning. In: 5th International Workshop on Project Management
and Scheduling, pp. 155–158, Poznan, Poland (1996)

Learning Graphical Models for Algorithm
Configuration

Mauro Birattari1, Marco Chiarandini2,
Marco Saerens3, and Thomas Stützle1

1 IRIDIA, Université Libre de Bruxelles, mbiro|stuetzle@ulb.ac.be
2 IMADA, University of Southern Denmark, marco@imada.sdu.dk

3 Machine Learning Group, Université catholique de Louvain,
marco.saerens@uclouvain.be

Algorithms for solving optimization problems have typically a large number
of inherent parameters, often related to heuristic choices, that cannot be assessed
by theoretical analysis only. Examples are branching rules in a branch and
bound algorithm, the type of neighborhood in a local search heuristic, the rate
of evaporation of pheromone in ant colony optimization or algorithmic modules
and their order in hybrid solvers. Moreover, the choice of parameter settings
depends on the input data and may vary from one type of input data to another.
The configuration of these parameters is carried out by executing computational
experiments on simulated or real-life data. This procedure can be burdensome
due to the large number of possible candidate configurations to test and the high
cost in time the process may require.

In the recent years, a considerable amount of research within computer
science has been concerned with the development of appropriate methods for the
automatic configuration of optimization algorithms. Given a problem, a set of
solution algorithms with relevant parameters exposed and a description of the
input data, the goal is finding the setting of parameter values that is most likely
to perform best.

The main stream of this research is an interdisciplinary approach with the
field of statistics. The aspects of statistics that are appealing in this context are
the objectivity provided by the mathematical framework and the existence of
methods for estimating the contribution of factors while minimizing the number
of experiments to execute. In this latter category we find: advanced techniques
for experimental designs, response surface modelling and sequential testing.

In this work, we study a different approach to the task of automatic con-
figuration based on probabilistic graphical models. Graphical models are well
known abstractions for representing knowledge developed in the field of ma-
chine learning. This representation in computer readable form is manipulated
by various algorithms to learn and make inference. Graphical models are well
suited to handle uncertainty due to different causes, such as lack of knowledge or
inherent stochasticity of events. Moreover, they can cope with situations where
all possibilities cannot be considered because they are simply too many. This is
achieved by shifting the analysis of the different possibilities into the framework
of probability calculus and focusing on their likelihood.

Learning Graphical Models for Algorithm Configuration 5

In algorithm configuration, the nodes of the graphical model represent the
parameters to tune and connections the dependencies between these parameters.
Each node is a random variable with a probability distribution that reflects
the knowledge on the parameter that it represents. We learn the configuration
of parameter values that is most likely to perform the best, in the same way
as expert systems learn the most probable explanation to the input evidence.
In our specific context, this requires a further step: recognizing a stochastic
optimization problem and solving it by rare event simulation. In other terms, we
modify the joint probability distribution of the model in order to make more likely
to infer good configurations of parameter values. We achieve this by sampling
configurations from the network and learning on those that perform above an
adaptive threshold. Bayesian calculus is used to learn the joint distribution
revising previous knowledge on the basis of new evidence.

The method proposed can treat all types of parameters arising in algorithm
design: categorical, discrete and continuous. Moreover, it can deal with proba-
bilistic dependencies as well as deterministic dependencies, that is, nesting of
parameters under choices of parent parameters.

We tested the method on heuristics for the traveling salesman problem,
including combinations of construction heuristic, local search and ant colony
optimization. Preliminary results seem to indicate that the performance of the
proposed method is competitive against iterated F-race, a previously proposed
configuration procedure that received wide interest in the literature. In addition,
it provides information on which parameters affect most the results and on their
interaction.

Future work includes testing the configuration procedure on exact methods
such as constraint programming and integer programming. Some features of the
method make it appealing in these contexts. It is possible to embed a priori
knowledge provided by experts and/or learned from initial tests on input data of
small size. The knowledge inferred is then tested and corrected on larger instances
that are computationally more expensive. Further, a parallel implementation of
the configuration procedure makes it possible to truncate runs of configurations
as soon as a desired number of configurations on which we want learning to occur
have found a solution.

Comparing Integer Programming and Constraint
Programming for a Flow Shop Lot Streaming

Problem

Rahime Sancar Edis1, Emrah B. Edis2, and Ceyda Oguz3

1 Celal Bayar University-Department of Industrial Engineering
Muradiye, 45140, Manisa, Turkey

rahime.edis@bayar.edu.tr
2 Dokuz Eylül University – Department of Industrial Engineering

Buca, 35160, Izmir, Turkey
emrah.edis@deu.edu.tr

3 Koç University – Department of Industrial Engineering
Sariyer, 34450, Istanbul, Turkey

coguz@ku.edu.tr

Lot streaming (LS) is a technique that splits the production lot into sublots,
and schedules these sublots in an overlapping way on the machines in order to
accelerate the process of orders and to improve the overall system performance.
In this study, an LS problem in a multi product, multi machine flow shop is
considered with equal sublot type, i.e., all the sublots of a product are of the
same size. The objective is to minimize the makespan, i.e., completion time of all
sublots on all machines.

Since the sublot sizes are known a priori in equal sublot case, the considered
multi product LS problem requires only sequencing the products through the
machines. In this study, we first give a mixed integer programming (MIP) model
of the entire problem. However, this MIP model could not give efficient results
especially for large problem sizes. On the other hand, it is well known that con-
straint programming (CP) techniques may provide efficient results for sequencing
and scheduling problems [1]. Therefore, for the considered problem, a CP model
is developed in IBM OPL IDE 6.3TM [2] using its special structures designed
for scheduling problems, e.g., interval variables, noOverlap constraints etc. In
the proposed CP model, we use interval variables to identify the sublots and
products processed on each machine. In order to obtain efficient results, a number
of different search phases are also identified and evaluated in the CP model. The
search phases constructed based on the interval variables have provided better
performance than the ones based on sequencing variables.

For the computational study, we classified the test instances into three groups:
small, medium and large problems. The number of products was taken as 5 and 7,
10 and 15, 20 and 30, for small, medium and large sized problems, respectively. For
all experimental points, both the number of machines and the number of sublots
were taken as 5 and 10. Since the MIP model could not produce even feasible
results for medium and large sized problems; to evaluate the performance of the
proposed CP model, we adapted a well known heuristic algorithm, i.e., Nawaz,
Encore and Ham (NEH) [3], to the LS problem on hand [4]. All three solution

CIP and CP for a Flow Shop Lot Streaming Problem 7

approaches were run on a Core 2 Duo 2.2 GHz, 2 GB RAM computer. For each
experimental point, we solved 10 test instances of small sized test problems, and 5
test instances for the medium and large sized problems. A run-time limit of 1000
seconds was set for all solution approaches. Figure 1 illustrates the performance
of the solution approaches for each experimental point in terms of the average
deviation from the corresponding best makespan values.

In Figure 1, the experimental points are given in the x-axis. For example,
15-5-10 represents the experimental point with 15 products, five machines and
10 sublots.

For the small sized test problems for which the MIP model is able to produce
optimal results, the proposed CP model performs as good as the MIP model
in terms of the solution quality, while the adapted NEH algorithm results in
considerable deviations from the optimal values.

On the other hand, for the medium and large problem sizes where the MIP
model could not handle the test instances, the computational results generally
indicate that the proposed CP model produces better results than the adapted
NEH algorithm. For medium sized problems, CP model outperforms the NEH
algorithm in all experimental points. In terms of large sized problems, CP model
also provides better performance for almost all experimental points. For only
30-product and 10-machine test problems, the performance of the NEH algorithm
is slightly better than the proposed CP model. This may be due to a significant
increase in the number of variables as well as their domain ranges.

Consequently, for the considered LS problem, the proposed CP model generally
provides efficient solutions.

For the ongoing research, we are studying to improve the performance of the
proposed CP model and to extend this study to the consistent sublot types in
which the sublots of a product may take different sizes on the same machine. Since
this extension incorporates sublot allocation decisions along with the sequencing
ones, decomposition based solution techniques may provide efficient results.

Keywords: lot streaming, flow shop, integer programming, constraint program-
ming.

References

1. J.J. Ahire, S.L. Kanet, and M.F. Gorman: Constraint programming for scheduling. In:
J.Y-T. Leung (Ed.) Handbook of Scheduling: Algorithms, Models, and Performance
Analysis (Chapter 47). USA: CRC Press (2004).

2. IBM ILOG OPL V6.3, IBM ILOG OPL Language User’s Manual, IBM Corporation,
(2009).

3. M. Nawaz, E.E. Encore, and I. Ham: A heuristic algorithm for the m-machine, n-job
flowshop sequencing problem. OMEGA, 11, 91-95 (1983).

4. R.S. Edis: Tabu search based solution approaches for lot streaming problems in
flow shops. PhD. Thesis, Dokuz Eylül University, Graduate School of Natural and
Applied Sciences, Izmir, Turkey (2009).

8 Rahime Sancar Edis, Emrah B. Edis, and Ceyda Oguz

Comparison of Solution Approaches

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

5-
5-

5

5-
5-

10

5-
10

-5

5-
10

-1
0

7-
5-

5

7-
5-

10

7-
10

-5

7-
10

-1
0

(a) Small Sized Problems

A
v

e
ra

g
e

 D
e

v
ia

ti
o

n
 (

%
)

NEH

MIP

CP

Comparison of Solution Approaches

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

10
-5

-5

10
-5

-1
0

10
-1

0-
5

10
-1

0-
10

15
-5

-5

15
-5

-1
0

15
-1

0-
5

15
-1

0-
10

(b) Medium Sized Problems

A
v

e
ra

g
e

 D
e

v
ia

ti
o

n
 (

%
)

NEH

CP

Comparison of Solution Approaches

-1.0%

-0.5%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

20
-5

-5

20
-5

-1
0

20
-1

0-
5

20
-1

0-
10

30
-5

-5

30
-5

-1
0

30
-1

0-
5

30
-1

0-
10

(c) Large Sized Problems

A
v

e
ra

g
e

 D
e

v
ia

ti
o

n
 (

%
)

NEH

CP

Fig. 1. Comparison of the solution approaches

Three ideas for the
Quadratic Assignment Problem

Matteo Fischetti, Michele Monaci, and Domenico Salvagnin

DEI, University of Padova, via Gradenigo 6/A, 35131 Padova, Italy
{matteo.fischetti,michele.monaci,domenico.salvagnin}@unipd.it

1 The challenge

The NP-hard (and notoriously very difficult in practice) Quadratic Assignment
Problem (QAP), in its Koopmans and Beckmann [9] form, can be sketched as
follows; see, e.g., Burkard, Dell’Amico and Martello [4] for details.

We are given a complete directed graph G = (V,A) with n nodes and n2 arcs
along with a set of n facilities to be assigned to its nodes. In what follows, indices
i, j ∈ V always correspond to nodes, indices u, v = 1, · · · , n to facilities, bij ≥ 0
is a given distance from node i to node j, auv ≥ 0 is a given required flow from
facility u to facility v, and ciu is a given fixed cost for assigning facility u to node
i. By using binary variables xiu = 1 iff facility u is assigned to node i, QAP can
be stated as the following quadratic 0-1 problem:

min
∑

i

∑
u

∑
j

∑
v auv bij xiu xjv +

∑
i

∑
u ciuxiu (1)∑

i xiu = 1 ∀u∑
u xiu = 1 ∀i

xiu ≥ 0 and integer ∀i, u (2)

In spite of its simple definition, QAP is among the most difficult optimization
problems arising in practice, and its study attracted a large amount of research.
A QAP feature that challenged us is that a collection of (apparently very small)
test-cases is available in the QAPLIB [5], that cannot be solved by the current
state-of-the-art algorithms even by allowing for tremendous computing power.
E.g., an instance with just n = 30 such as tho30 was solved only recently
and required the equivalent of 8,997 days of computation on a distributed grid
[3]—and many similar instances are still unsolved nowadays.

Among the difficult cases, we concentrated on the so-called esc instances
introduced in [7]. As reported in QAPLIB, instances esc32a, esc32b, esc32c,
esc32d, esc32h, esc64a, and esc128 are still unsolved by using any published
method. It is fair however to mention that the “What’s new” QAPLIB section at
http://www.seas.upenn.edu/QAPLIB/ states that in January 2011 Axel Nyberg
and Tapio Westerlund at Abo Akademi University in Finland announced the
solution of esc32a, esc32c, esc32d, and esc64a (plus tai64c). Instance esc32c
took 9 hours on a single PC using gurobi 3.0 (default settings), whereas esc32d
took about 35 hours. As far as we know, however, no paper describing this

http://www.seas.upenn.edu/QAPLIB/

10 Matteo Fischetti, Michele Monaci, and Domenico Salvagnin

method is available nor circulated in any way, so no comparison with our own
approach can be made.

We next mention very briefly the three main steps that qualified as a break-
through for our approach, namely (1) exploiting symmetries, (2) using a man-
ageable MILP formulation, and (3) designing an ad hoc branch-and-cut solution
algorithm.

So far our method was able to solve, in a matter of seconds or minutes on
a single PC, all the easy cases (all esc16* plus esc32e and esc32g). The three
previously-unsolved esc32c, esc32d and esc64a were solved in roughly half an
hour, all together, on a single quadcore PC. We also report the solution of the
previously-unsolved tai64c, again within reasonable computing time. We are
currently attacking the remaining cases, including “the big fish” esc128 for which
we found an improved lower bound of 56 out of 64 (the previous best lower bound
was 2).

LATEST NEWS. We finally succeeded in solving esc128 to proven optimality—
to our great surprise, by exploiting a facility-decomposition argument this task
took just a few seconds of our quadcore PC. According to [5], esc128 is the
largest QAP instance ever solved by an exact method.

Step One: Exploiting symmetry

In his survey [2], Anstreicher observed that “careful consideration of the
structure present in the larger esc instances is likely to be important in attempts
to solve these problems to optimality”. Indeed, esc instances are known to be
highly symmetrical, and important attempts to deal with this property have
been made in the literature, including those in [8] and [6]. Of course, one could
cope with symmetry by imposing additional conditions in the model, or by
using a modified branching strategy such as isomorphism pruning [10] or orbital
branching [11]. But can one actually take advantage of symmetry?

We will give a positive answer to the above question, and we will describe a
new procedure to remove a main source of symmetry by actually reducing the
instance size. Our technique can be viewed a generalization of a method proposed
by Kaibel [8] for dealing with the case where k ≤ n facilities have to be assigned
to n nodes, and leads to a dramatic performance improvement on certain types
of instances such as the esc ones.

Step Two: Working with a handy MILP model

Most MILP models for QAP work with additional 0-1 variables yiu jv = xiuxjv
that are used to linearize the quadratic objective function—the Adams-Johnson
model [1] being perhaps the best-known such formulation. These kinds of models
require about n4 variables and n3 constraints, so they become huge even for
medium-size instances.

As our ultimate goal is to solve esc128, we decided to address more scal-
able models that do not become hopeless for large instances. We exploited a

Three ideas for QAP 11

MILP formulation with just O(n2) variables and constraints that gives a good
compromize between bound quality and solution speed of its LP relaxation.

Our first quick shot was just to generate our MILP model to solve it through
a black-box commercial MILP solver—IBM Cplex 12.2 in our case. We provided
a branching-priority input file where the branching priority of variable xiu is
defined as a measure of the impact of xiu into our model, as recently suggest by
Chinneck and co-authors [12,13]. This feature turned out to be instrumental for
the success of our method.

Table 1 reports results obtained by using Cplex 12.2 for solving to proven
optimality some easy and hard esc instances (plus tai64c). The experiments
were performed on a single quadcore PC Intel i7-860 running at 2.8 GHz and
equipped with 8GB ram. According to preliminary tests, Cplex has no difficulty
in finding the optimal solution (within negligible computing time), while cuts
seem to be counterproductive. Hence both cuts and heuristics were disabled in
our final runs, and no upper cutoff was set. Instead, we found highly beneficial
to use the most aggressive setting for symmetric reductions (level 5). In all cases,
the optimal solutions turned out to be of the same value as those reported in
QAPLIB.

Table 1. Optimality proved by IBM Cplex 12.2 in interactive mode (8 threads
on a quadcore Intel i7-860 PC@2.8GHz with 8GB RAM). Instances marked by
∗ are reported as unsolved in QAPLIB.

Instance n OPT CPU sec.s #nodes

esc16a 16 68 0.48 5,427
esc16b 16 292 4.54 71,109
esc16c 16 160 170.81 2,633,093
esc16d 16 16 0.55 8,793
esc16e 16 28 0.06 412
esc16f 16 0 0.00 0
esc16g 16 26 0.09 484
esc16h 16 996 0.23 2,849
esc16i 16 14 0.19 3,122
esc16j 16 8 0.05 112
esc32c∗ 32 642 9,383.88 68,300,086
esc32d∗ 32 200 6,264.67 21,316,779
esc32e 32 2 0.05 64
esc32g 32 6 0.05 585
esc64a∗ 64 116 613.40 1,644,709
tai64c∗ 64 1,855,928 20,512.23 1,216,074,081

12 Matteo Fischetti, Michele Monaci, and Domenico Salvagnin

Step Three: Designing a branch-and-cut algorithm

Our next (still ongoing) attempt has been the design of an ad-hoc Branch&Cut
code where additional cuts are generated, on the fly, to improve lower bound
quality at some branching nodes. In addition, a specialized orbital branching [11]
scheme has been implemented. Table 2 reports results when using a preliminary
version of our code. Note that for esc128 we were able to prove a lower bound
of 56 (out of 64 or less), which is much tighter than the previous bound of 2
reported in the literature.

Table 2. Optimality proved by our specialized Branch&Cut code built on top
of IBM Cplex 12.2 (8 threads on a quadcore Intel Xeon PC@3.2GHz with 16GB
RAM). All these instances are reported as unsolved in QAPLIB.

Instance n OPT CPU sec.s #nodes

esc32c 32 642 1375.3 4,094,331
esc32d 32 200 495.9 719,887
esc64a 64 116 82.5 142,945

Table 3. Lower and upper bounds for still unsolved esc instances. LB and UB
are from QAPLIB, ourLB is the current lower bound available after about 3
wall-clock days of enumeration through our Branch&Cut code (16 threads on a
IBM Power7 CPU @3.07GHz with 128GB RAM).

Instance n LB ourLB UB

esc32a 32 103 108 130
esc32b 32 132 134 168
esc32h 32 424 380 438
esc128 128 2 56 64

Acknowledgments

Ongoing research supported by the Progetto di Ateneo on “Computational Integer
Programming” of the University of Padova. We thank Gianfranco Bilardi and

Three ideas for QAP 13

Enoch Peserico for the use of the computers of the Center of Excellence “Scientific
and Engineering Applications of Advanced Computing Paradigms”.

References

1. W.P. Adams and T.A. Johnson. Improved linear programming-based lower bounds
for the quadratic assignment problem. In Proceedings of the DIMACS Workshop on
Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science, pages 43–75. American Mathematical
Society, 1994.

2. K. M. Anstreicher. Recent advances in the solution of quadratic assignment
problems. Mathematical Programming, 97(1–2):27–42, 2003.

3. K.M. Anstreicher, N.W. Brixius, J.-P. Goux, and J. Linderoth. Solving large
quadratic assignment problems on computational grids. Math. Program., 91(3, Ser.
A):563–588, 2002.

4. R.E. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM, 2009.
5. R.E. Burkard, S. Karisch, and F. Rendl. QAPLIB – A quadratic assignment problem

library. ejor, 55:115–119, 1991. www.opt.math.tu-graz.ac.at/qaplib/.
6. E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite programming

relaxations of the quadratic assignment problem. Mathematical Programming,
122(2):225–246, 2010.

7. B. Eschermann and H. J. Wunderlich. Optimized synthesis of self-testable finite
state machines. In 20th International Symposium on Fault-Tolerant Computing
(FFTCS 20), 1990.

8. V. Kaibel. Polyhedral combinatorics of quadratic assignment problems with less
objects than locations. In Robert Bixby, E. Boyd, and Roger Ros-Mercado, editors,
Integer Programming and Combinatorial Optimization, volume 1412 of Lecture
Notes in Computer Science, pages 409–422. Springer Berlin / Heidelberg, 1998.

9. T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of
economic activities. Econometrica, 25:53–76, 1957.

10. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming,
94(1):71–90, 2002.

11. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. Mathe-
matical Programming, 126(1):147–178, 2011.

12. J. Patel and J.W. Chinneck. Active-constraint variable ordering for faster feasibility
of mixed integer linear programs. Mathematical Programming, (110(3)):445–474,
2007.

13. J. Pryor and J.W. Chinneck. Faster integer-feasibility in mixed-integer linear
programs by branching to force change. Computers & OR, 38(8):1143–1152, 2011.

Explanation Algorithms for Cumulative
Scheduling?

Stefan Heinz1 and Jens Schulz2

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
heinz@zib.de

2 Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136,
10623 Berlin, Germany

jschulz@math.tu-berlin.de

1 Introduction

In cumulative scheduling, conflict analysis is one of the key ingredients to solve
these problems efficiently, see [2,5,7]. Thereby, the computational complexity of
explanation algorithms that ‘explain’ infeasibilities or bound changes plays an
important role. Their role is even more substantial when we are faced with a
backtracking system where explanations need to be constructed on the fly.

In this talk we present complexity results for computing minimum-size expla-
nations for the propagation algorithms time-tabling, edge-finding, and energetic
reasoning. Due to the hardness results, we present optimal and heuristic ap-
proaches to deliver explanations. Our computational results show that minimum-
size explanations drastically decrease the number of nodes in a branch-and-bound
tree search and reduce the computation times by one-half.

2 Problem Description

In cumulative scheduling we are given a set of jobs that require a certain amount
of resources. In our case, the resources are renewable with a constant capacity
and each job is non-interruptible with a fixed processing time and demand request
for one or several resources. A resource can be, for example, a group of workers
with the same specialization, a set of machines, or entities like power supply.
Additionally, each job has an earliest start time and a latest completion time. The
goal is to find a feasible start time for each job such that the available capacities
of the resources are respected at any point in time.

Cumulative scheduling problems have been tackled with techniques from
constraint programming (CP), integer programming, or satisfiability testing
(SAT). Hybrid approaches have been developed which combine methods from
these areas. Currently, the best results are reported by a hybrid solver which
uses CP and SAT techniques [7]. However, there are still instances with 60 jobs
and four cumulative constraints published in the PSPLib [6] that resist to be
solved to proven optimality.

? Supported by the DFG Research Center Matheon Mathematics for key technologies
in Berlin.

Explanation Algorithms for Cumulative Scheduling 15

3 Conflict Analysis

Various exact approaches use a branch-and-bound approach to solve these NP-
hard problems. Among them are SAT solvers that make explicit use of infeasible
subproblems. They perform non-chronological backtracking or derive no-goods to
speed up the search. As can be seen in recent publications, this conflict analysis
plays an important role to solve cumulative scheduling problems efficiently [2,5,7].

Conflict analysis takes place under the following circumstances. During branch-
and-bound search the lower and upper bounds of variables are updated by various
propagation algorithms or simply by branching decisions. A subproblem becomes
infeasible, e.g., because the lower bound of the start time variable of some job
can be updated to a value larger than the current upper bound, because the
resource demand of all jobs for some interval is larger than the available capacity,
or because a relaxation, such as the linear programming relaxation, becomes
infeasible. Analyzing such infeasibilities means to explain them and learn from
them. An explanation of an infeasibility or of a bound update is a set of lower
and/or upper bounds of variables that, whenever they occur in that combination,
lead to an infeasible state or to that bound update. During conflict analysis the
goal is to learn further constraints to detect similar infeasible subproblems earlier.
To this end, cuts in a so-called conflict graph are computed. This graph consists
of the initial explanation, which states a reason for the infeasibility. During the
process of the conflict analysis this graph is extended by explanations for bound
changes which are part of previous bound explanations. In the end each variable
bound in that graph is connected via edges to the elements of its explanation.
For a detailed description of the conflict analysis we refer to [1].

When considering propagation algorithms in cumulative scheduling, these
explanations are in general not unique and bear a huge potential to optimize the
solvers behavior.

The task of an explanation algorithm is to explain bound changes or infeasible
states, i.e., state a set of variable bounds that lead to the deduction, under certain
objective criteria. Minimum-size explanations are such a well-suited objective
function [4]. Since for each variable multiple bound changes may have been
discovered, not only the current bounds can be part of the explanation, but
also earlier bound changes. This technique is called bound-widening and leads to
multiple alternatives per variable that can be reported. Here, theoretical questions
about the complexity of computing optimal explanations arise.

4 Results

We show that it is possible to compute in polynomial time minimum-size explana-
tions for bound changes which result from energetic reasoning and edge-finding.
In case of time-tabling, we prove that an important special case is already weakly
NP-hard. To this end, we establish a relation to unsplittable flow problems on the
path [3]. We evaluate different heuristic approaches and an exact mixed integer
programming approach to explain bound changes derived by that algorithm.

16 Stefan Heinz and Jens Schulz

%

3815

none

2008

V1

1759

V2

1510

V3

nodes

20.0

40.0

60.0

80.0

100.0

%

10.6

none

7.1

V1

5.7

V2

5.6

V3

time [s]

20.0

40.0

60.0

80.0

100.0

Fig. 1. Comparison of the average number of nodes and average running times
for 60 non-trivial and solvable instances from PSPLib J60 are shown. More so-
phisticated methods (variants V1 to V3) decrease the number of nodes and the
average running times. More detailed results and the different variants can be
found in [4].

Using these minimum-size explanations pays off in total compared to using
faster but weaker explanation algorithms. In the context of bound-widening, the
problems all become NP-hard.

Overall we experience a huge reduction in the number of nodes and in the
computation times when using conflict analysis. Figure 1 visualizes the results
of [4]. These computational results also reveal the strength of bound-widening
techniques, where a widening of minimum-size explanations decreases the running
time and the number of nodes additionally.

References

1. Tobias Achterberg. Conflict analysis in mixed integer programming. Discrete
Optimization, 4(1):4–20, 2007.

2. Timo Berthold, Stefan Heinz, Marco E. Lübbecke, Rolf H. Möhring, and Jens
Schulz. A constraint integer programming approach for resource-constrained project
scheduling. In Andrea Lodi, Michela Milano, and Paolo Toth, editors, Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR 2010), volume 6140 of LNCS, pages 313–317. Springer, 2010.

3. Paul Bonsma, Jens Schulz, and Andreas Wiese. A constant factor approximation
algorithm for unsplittable flow on paths. CoRR, abs/1102.3643, 2011.

4. Stefan Heinz and Jens Schulz. Explanations for the cumulative constraint: An exper-
imental study. In Panos M. Pardalos and Steffen Rebennack, editors, Experimental
Algorithms (SEA 2011), volume 6630 of Lecture Notes in Computer Science, pages
400–409. Springer, 2011.

5. Andrei Horbach. A boolean satisfiability approach to the resource-constrained project
scheduling problem. Annals of Operations Research, 181:89–107, 2010.

6. PSPLib. Project Scheduling Problem LIBrary. http://129.187.106.231/psplib/.
7. Andreas Schutt, Thibaut Feydy, Peter Stuckey, and Mark Wallace. Explaining the

cumulative propagator. Constraints, pages 1–33, 2010. 10.1007/s10601-010-9103-2.

http://129.187.106.231/psplib/

Which Mixed Integer Programs could a million
CPUs solve?

Thorsten Koch and Yuji Shinano

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{koch,shinano}@zib.de

1 Extended Abstract

There is a trend in supercomputing to employ evermore computing cores. Today,
the current top 10 machines have on average 150,000 cores and it is likely that a
million cores will be available soon. The question arises how to harness these vast
computing capabilities to solve new classes of mixed integer programs (MIP).

In the following we will make a few assumptions, namely: Computers having
a million cores will use distributed memory. We designate by processing element
(PE) one shared memory node within this distributed system. One PE might have
one or more cores. Furthermore, MIP solvers will be branch-and-cut based, i.e.,
build a tree with branch-and-bound (B&B) nodes, compute linear programming
(LP) relaxations of these nodes and derive cutting-planes. See, e.g. [1] for details
regarding general MIP solving and [6,5,2] about distributed memory solution
techniques.

What are the reasons why MIPs cannot be solved by today’s solvers and
would using bigger computers help? (See also [3])

1. Genuine bad formulation, e.g. Sudoku with integer variables. Obviously, this
is due to improper modeling and the way to solve this is by improving the
formulation.

2. Bad dual bounds. Here again improving the formulation would be the solution
of choice. Unfortunately, no better or different formulation might be known.
In this case using more cycles might allow to solve the instance. Often only
improved solvers with better cutting planes, or an improved model will help.

3. Solving LPs is difficult or slow, especially reoptimizing takes long. In the
absence of a better way to solve the linear subproblems, this can be resolved
by using more cores, once enough open B&B nodes are available.

4. Bad numerical properties. Typically, this needs either an improved model
or an improved solver. There are two possibilities to improve the situation
by hardware. One is the use of quad-precision floating point arithmetic,
which will increase the computational burden. The other is solving numerical
difficulties by increased branching instead of solving subproblems. This will
increase the search tree.

5. Difficult to find primal solutions. Since more B&B nodes can be evaluated
per second and more heuristics can be run, using more cores is likely to be
helpful.

18 Thorsten Koch and Yuji Shinano

6. Large enumeration trees, e.g. due to symmetry. Here the ability to solve more
B&B nodes per second clearly helps, even though it is difficult to impossible
to predict or estimate the number of B&B nodes that is needed to solve
an instance [4]. Basically, a large enumeration tree means that the lower
and the upper bound will not converge fast enough. Given that the gap
between the bounds is not unreasonably big, as in cases (2) and (5), it is very
unclear how many more instances could be solved if 10, 100, 1000 times the
number of nodes can be evaluated. Additionally, the maximum number of
open B&B nodes that may be encountered during the solution process might
get unreasonably big. All non-fathomed nodes have to be stored. It might
become necessary to store the majority of those nodes in secondary storage.

7. Too much memory needed for a single B&B node. Here again using bigger
computers might help, though the question arises whether it is possible to
distribute the processing of one B&B node to more than one shared memory
PE. Even how to employ multiple cores to one subproblem is not clear. To
solve the LP subproblems, currently, either the Simplex, the Barrier, and
variants of sub-gradiant algorithms can be used. We will investigate in detail
how much potential and which problems are connected to each of these
methods.

8. Nobody knows. In this case computing more nodes should be at least no
disadvantage.

In the talk we will concentrate on items (3), (6), and (7).
When using a large number of cores further questions arise:

– Most of the current MIP solvers are designed under the assumption that
computing cycles are the main bottleneck. This is not true any more if a
million cores are available. What implications does this have to the solver
algorithms?

– During the solution of a MIP there are typically several phases, e.g., until
the first feasible solution is found, or after an optimal solution has been
discovered but not yet proved. Especially in case of (6) the distribution of
time between the phases might substantially change. Again the question
arises, which implications this has on the MIP solver?

– Typically the time until 1 million active B&B nodes are available is consider-
able. A similar effect occurs at the end of the computation. How to design
these so called, ramp-up and ramp-down phases?

– Decomposition has always been a topic with much potential that is difficult
to realise. Does this change?

We will investigate the above questions in detail during the talk.

References

1. T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Program-
ming Computation, 1(1):1–41, 2009.

Which Mixed Integer Programs could a million CPUs solve? 19

2. D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, USA, 2007.

3. R. E. Bixby. Lectures about LP and MIP solving at Combinatorial Optimization at
Work II, 2009.

4. O. Y. Özaltin, B. Hunsaker, and A. J. Schaefer. Predicting the solution time of
branch-and-bound algorithms for mixed-integer programs. INFORMS Journal on
Computing, 2010. DOI: 10.1287/ijoc.1100.0405.

5. Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP – a
parallel extension of SCIP. Technical Report ZR 10-27, Zuse Institute Berlin, 2010.

6. Y. Xu, T. K. Ralphs, L. Ladányi, and M. J. Saltzman. Computational experience
with a software framework for parallel integer programming. The INFORMS Journal
on Computing, 21:383–397, 2009.

Neuron Constraints to Model Complex
Real-World Problems

Michele Lombardi and Michela Milano

DEIS, University of Bologna
{michele.lombardi2,michela.milano}@unibo.it

Late Breaking Abstract

The benefits of combinatorial optimization techniques for the solution of real-world
industrial problems is a widely acknowledged evidence, sitting of an ever-growing
collection of success stories [1,2,3]. Yet, the application of optimization approaches
to many practical domains still encounters active resistance by practitioners.
Some examples the authors are familiar with are policy making, environmental
engineering and software design for complex hardware platforms.

A considerable part of the issue stems from the difficulty to come up with
accurate declarative representations for those domains; this (1) may be due to the
presence of factors admitting no obvious numerical assessment (e.g. biodiversity,
people preferences), or (2) it may be a result of the interaction of a very large
number of elements with known behavior (e.g. complex hardware systems). What-
ever the cause, such a representation difficulty has deep practical implications: an
over-simplified model may threat the successful application of the most advanced
optimization method.

We propose a simple and effective technique to bring remarkably hard-to-
handle systems within the reach of Constraint Optimization methods; the goal is
achieved by embedding into a combinatorial model a soft-computing paradigm,
namely Neural Networks, properly trained before their insertion. Those can
provide a reliable approximation for the behavior of complex systems and can
learn user preferences or other difficult-to-measure domain elements.

From this perspective, a Neural Network can be thought of as a generic,
modular model based on the composition of a single type of non-linear function
with vector input. Hence, the integration of such a technique within a combinato-
rial optimization framework requires from the host technology the capability to
handle non-linear expressions; this is provided in CP via global constraints. We
therefore proceed by introducing a novel and yet simple class of so-called Neuron
(global) Constraints, directly modeling a single artificial neuron with a specific
activation function, i.e. the expression:

f(x) = g

(
n−1∑
i=0

wixi − wn

)
(1)

where f is the function representing the artificial neuron and x is the n size input
vector; values w0 to wn are weights, obtained via a learning stage prior to the

Neuron Constraints to Model Complex Real-World Problems 21

network use; note wn corresponds to a constant factor. Finally, g is a non-linear
function (referred to as activation function) squashing the output value in the
interval [−1, 1] (or [0, 1]). Different types of neurons are distinguished by the
adopted type of activation function.

Real valued variables (or finite domain variables via integer approximation)
can be associated to the output and to each component of the input vector; hence
a neuron constraint has the following signature:

actfunction(y, [x] , [w])

where “actfunction” denotes the activation function type — i.e. function g in
Equation (1) —, y is the output variable, [x] is the vector of input variables
and [w] is the vector of weights. The integration of a fully-fledged (i.e. trained)
neural network into a CP model is as straightforward as introducing a Neuron
Constraint for each node in the network, connecting input/outputs variables and
setting arc weights. Using a global constraint for each single neuron rather than
for a whole network provides a fine grain modeling approach, allowing complex
networks (even recurrent ones) to be defined with a limited number of basic
components, i.e. a constraint for each type of activation function.

As a motivating example for the proposed approach we consider a temperature
aware scheduling problem over Multi-Processor Systems on Chip (MPSoC) with
Dynamic Frequency Scaling (DFS) capabilities. DFS allows one to slow down one
or more processor and let the system cool, so as to become ready to accept more
demanding tasks later on. The thermal behavior of an MPSoC device is the result
of the interaction of many concurrent factors (heat conduction, heat generation
due to processor workload, chip layout. . .). Moreover, the device quite often
embeds low-level thermal controllers making use of DFS during execution to avoid
chip overheating: this prevents failures, but may cause unexpected execution
delays and result in violations of deadline requirements. Despite the dynamic of
the single phenomena is known, the complexity of the overall system makes it
very hard to devise a declarative thermal model.

In such a context, a Neural Network can be designed and trained to approx-
imate the behavior of thermal controllers with known input. Specifically, each
Neuron Constraint mimics the slow down induced by a single thermal controller
and takes into account this approximated behavior into the model. The resulting
network can then be embedded in a combinatorial model and used to produce
an optimized schedule, avoiding resource over-heating as well as over-usage. Such
a temperature friendly schedule improves the system performance and reliability
by preventing the unexpected activation of low-level controllers.

References

1. IBM Press Release. Netherlands Railways Realizes Savings of 20 Million Eu-
ros a Year With ILOG Optimization Technology. http://www-03.ibm.com/
press/us/en/pressrelease/27076.wss#release, 2009.

22 Michele Lombardi and Michela Milano

2. INFORMS. Operations Research Success Stories. http://www.scienceofbetter.org/
can do/success alpha.php, 2011.

3. Helmut Simonis. Constraint Application Blog. http://hsimonis.wordpress.com/,
2011.

A Constraint Programming Approach for a
Batch Processing Problem with Non-identical

Job Sizes

Arnaud Malapert1,3, Christelle Guéret2, and Louis-Martin Rousseau3

1 École des Mines de Nantes, LINA UMR CNRS 6241
2 École des Mines de Nantes, YRCCyN UMR CNRS 6597

3 École Polytechnique de Montréal, CIRRELT
{arnaud.malapert,christelle.gueret}@mines-nantes.fr

louis-martin.rousseau@polymtl.ca

1 Introduction

This paper presents a constraint programming approach for a batch processing
machine on which a finite number of jobs of non-identical sizes must be sched-
uled. A batch processing machine can process several jobs simultaneously. Such
machines are encountered in chemical, pharmaceutical, aeronautical and semi-
conductor wafer industries where an oven, a drier or an autoclave is used during
the process. These machines are often bottleneck because of their long processing
times. Several papers have been proposed for identical job sizes and due date
related performance measures. However, papers on problems with non-identical
job sizes, concern mostly completion time related performance measures. For an
extensive review on scheduling with batching, we refer the reader to Potts and
Kovalyov [4]. Surprisingly, although they have been successfully used to solve
various scheduling problems, only one constraint programming approach has
been developed for this kind of problem (with sequence dependent setup times
and job families).
In this paper, we propose a new constraint programming approach for a problem
derived from a real application in aeronautical industry. To our knowledge, only
two papers [3,2] concern the resolution of this problem: the minimization of
the maximum lateness of a batch processing machine with non-identical job
sizes. In these papers, the authors propose a mathematical formulation and a
branch-and-price. More formally, the problem can be described as follows. A set J
of n jobs and one single batching machine with capacity b are given. Each job j is
characterized by an integer triplet (pj , dj , sj), where pj is its processing time, dj
is its due date, and sj is its size. The batch processing machine can process several
jobs simultaneously as a batch as long as the sum of the sizes of the jobs that are
in the batch does not exceed the capacity b of the machine. The processing time
of a batch is equal to the longest processing time among the jobs in the batch.
The completion time Cj of a job j is the completion time of the batch to which it
belongs. The machine and jobs are assumed to be continuously available from time
zero onwards, or equivalently, they have equal releases dates. Once the processing

24 Arnaud Malapert, Christelle Guéret, and Louis-Martin Rousseau

of a batch has been initiated, no job can be removed from or added to the batch.
The objective is to minimize the maximum lateness Lmax = max1≤j≤n(Cj − dj).
This problem, denoted by 1|p − batch, b < n, non − identical|Lmax, is unary
NP-hard since Brucker et al. [1] proved that the same problem with identical job
sizes is unary NP-hard.

2 Constraint programming approach

The constraint programming formulation relies on the decomposition of the
problem into finding an assignment of the jobs to the batches, and then minimizing
the maximal lateness of the batches on a single machine.
The problem of assigning the jobs to the batches is equivalent to the one-
dimensional bin packing problem defined as follows: given n indivisible items
(jobs), each of a known non-negative size sj , and m bins (batches), each of
capacity b, can we pack the n items into the m bins such that the sum of the
sizes of the items in any bin is not greater than b ? This problem has been shown
NP-complete. Our formulation uses a global constraint inspired by Shaw[5].
Then, once the jobs are packed into the batches, the problem of scheduling
the batches is equivalent to minimizing the maximal lateness of a set of jobs
(batches) on a single machine. This problem, known as 1||Lmax, is polynomially
solvable: an optimal schedule is obtained by applying Jackson’s scheduling rule,
also known as the earliest due date (EDD-)rule which schedules the tasks in
order of non decreasing due dates. When coping with optimization problems,
pruning can be done also on the basis of costs, i.e. optimality reasoning. The
new constraint sequenceEDD uses a relaxation of the problem that yields a lower
bound for the objective function to prune portions of the search space. The
general idea is to infer primitive constraints on the basis of information on costs.
We use optimization components within a global constraint representing a proper
relaxation of the problem, which consists of minimizing the maximal lateness of
batches on a single machine. The optimization components provide the optimal
solution of the relaxed problem, its value and a gradient function computing the
cost to be added to the optimal solution for some variable-value assignments.
The optimal value of this solution improves the lower bound of the objective
function and prunes portions of the search space whose lower bound is bigger
than the best solution found so far.

At each node in the search tree, the branching selects a job, and assigns
this job to a batch. We chose the variable selection heuristic called complete
decreasing which packs jobs in order of non-increasing size. We propose a new
value selection heuristic called batch fit which selects an available bin having the
least impact on the schedule of the batches.

3 Experimental results

This section summarizes computational experiments conducted to evaluate our
approach. Our algorithm has been tested on randomly generated instances ranging

A CP Approach for 1|p-batch, b < n, non-identical|Lmax 25

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

c
p

le
x

batch fit

Fig. 1. Comparison to the mathematical formulation.

from 10 to 100 jobs. Our implementation is based on the choco solver. All the
experiments were conducted on a cluster of Linux machines, each node with 48
GB of RAM and two quad core 2.4 GHz processor. A first set of experiments
(not detailed here) show that the use of the constraint sequenceEDD as well as
the use of the value selection heuristic batch fit reduce the computation time and
improve solution quality.
Then, our approach is compared to a mathematical formulation solved by IBM

Ilog Cplex 11.2.1. For small instances (n ≤ 50), our approach outperforms the
mathematical formulation: it solves more instances with solution times that are
orders of magnitude lower. Figure 1 compares the quality gap on instances with
strictly more than 50 jobs. The quality gap of a solution ub for a given instance is
estimated by (ub+dmax)÷(lb+dmax). The time limit of choco is 1 hour, whereas
it is increased until 12 hours for Ilog Cplex. Each point represents one instance
and its x coordinate is the quality gap that we obtained, whereas its y coordinate
is the quality gap obtained with Ilog Cplex. All points located above the line
(x = y) are upper bounds improved by the use of our approach. Despite a smaller
time limit, the constraint programming approach provides better solution than
the mathematical formulation on the vast majority of instances. Furthermore,
the difference between the two upper bounds is very tight when the mathematical
formulation found the best upper bound, whereas it can be significant when the
constraint approach did.

4 Conclusion

We have presented a constraint programming approach to schedule a batch
processing machine on which a finite number of jobs of non-identical sizes must
be scheduled. This approach exploits an optimization constraint based on a
relaxed problem which applies cost based domain filtering rules and is enhanced
with a dedicated branching heuristics.
Computational results demonstrate the positive effect of each component and

26 Arnaud Malapert, Christelle Guéret, and Louis-Martin Rousseau

give better solution with computation times that are orders of magnitude lower
than a mathematical formulation based on bin packing and sequencing models.

In further research, we will apply our approach to problems with completion
time related measures (Cmax,

∑
Cj ,

∑
wjCj). In addition, subsequent research

topics include the study of parallel batching machines and additional constraints,
for instance job release dates that remain incompatible with our approach.

References

1. P. Brucker, A. Gladky, H. Hoogeveen, M. Koyalyov, C. Potts, T. Tautenham, and
S. van de Velde. Scheduling a batching machine. Journal of Scheduling, 1(1), June
1998.

2. D. Daste, C. Gueret, and C. Lahlou. A Branch-and-Price algorithm to minimize
the maximum lateness on a batch processing machine. In Proceedings of the 11th
international workshop on Project Management and Scheduling PMS’08, pages 64–69,
IStanbul Turquie, 2008.

3. D. Daste, C. Gueret, and C. Lahlou. Génération de colonnes pour l’ordonnancement
d’une machine à traitement par fournées. In 7ième conférence internationale de
modélisation et simulation MOSIM’08, volume 3, pages 1783–1790, Paris France,
2008.

4. C.N. Potts and M.Y. Kovalyov. Scheduling with batching: A review. European
Journal of Operational Research, 120(2):228–249, January 2000.

5. P. Shaw. A constraint for bin packing. In M. Wallace, editor, Principles and Practice
of Constraint Programming - CP 2004, 10th International Conference, CP 2004,
Toronto, Canada, September 27 - October 1, 2004, Proceedings, volume 3258 of
Lecture Notes in Computer Science, pages 648–662. Springer, 2004.

Exact Branch-and-price for Fair-share Airline
Crew Rostering

Ranga Muhandiramge

Monash University
Melbourne, Australia

ranga.muhandiramge@monash.edu

Abstract. In airlines, assigning staff to flights in generally done in two
phases. The first is to group flights into anonymous groups called pairings.
The second stage is rostering, that is, to assign these pairings to individual
crew members. Traditionally, pairing is concerned mostly with minimizing
costs (per diems, hotels, etc.) while rostering is done to optimize the
quality of life of, and fairness to, the crew.
We use SCIP to create an exact branch-and-price algorithm for the second,
rostering stage. We call our particular model the Fair-share Airline Crew
Rostering Problem. A problem instance consists of a set of crew members
with preassigned carry-ins and annual leave and a set of pairings that
must be assigned. Each pairing and leave shift also has an associated
non-negative allowance.
The problem is, firstly, to minimize the number of days contained in
unassigned pairings and, secondly, to make the sum of the allowances of
the tasks in each crew member’s rosterline as close to the given fair-share
target as possible; all while respecting the given rostering rules. Examples
of rostering rules are a required minimum number of days off after each
pairing, dependent upon a pairing’s length, and a restriction on to which
pairings a pairing of calendar length one day may be prepended.
The problem is formulated as a set partitioning master problem with a
pricing subproblem which consists of two Weight Constrained Shortest
Path Problems on an acyclic rostering graph. There is one subproblem
for rosterlines with an allowance greater than the fair-share target and
another for rosterlines with allowance less than or equal the fair-share
target.
Our data set, created by our industry partner Constraint Technologies,
is constructed to have an ideal optimal solution. That is, one in which
each pairing is assigned and the sum of the allowances of each rosterline
exactly equal the fair-share target. We also create perturbations of the
problem with the same task set but with fewer or more crew to test the
robustness of our algorithms.
We examine various combinations of heuristic intialization, exact and
heuristic pricing methods and variations on follow-on branching to solve
this problem. We also present the results of computational tests from this
ongoing work.

Benders Decomposition for the Full-Truckload
Pickup-and-Delivery Vehicle Routing Problem

Jenny Nossack and Erwin Pesch

Department of Management Information Sciences, University of Siegen,
Hölderlinstraße 3, 57068 Siegen, Germany

{jenny.nossack,erwin.pesch}@uni-siegen.de

We address a generalization of the well-known vehicle routing problem (VRP)
in which the set of customers is divided into pickup and delivery customers and
where the former supplies and the latter demands one unit of a given commodity.
A fleet of homogeneous vehicles has to be routed such that the supply and the
demand of the customers is satisfied while minimizing the total distance traveled.
We call this routing problem Full-Truckload Pickup-and-Delivery Vehicle Routing
Problem (FTPDVRP). It belongs to the class of many-to-many pickup and deliv-
ery problems, where each unit of a pickup customer can be used to accommodate
the demand of any delivery customer [2]. The term full-truckload implies unit
capacity and unit demand/supply of vehicles and customers, respectively [5].
Besides the exchange of commodities from pickup customers to delivery cus-
tomers, the depot may additionally fulfill the customers’ supply and demand. An
extension to the FTPDVRP is the Full-Truckload Pickup-and-Delivery Vehicle
Routing Problem with Time Windows (FTPDVRPTW) where customers impose
hard time window constraints to denote the time intervals in which commodities
have to be picked up/delivered.

One important application of the FTPDVRP arises in the pre- and end-haulage
of intermodal container transportation. Macharis and Bontekoning [4] define
intermodal container transportation as the movement of containers by two or
more transportation modes (rail, maritime, and road) in a single transport chain.
The change of modes is thereby performed at bi- and tri-modal terminals without
handling the freight itself. The route of intermodal transport is namely subdivided
into the pre-, main-, and end-haulage, denoting the route segments from customer
to terminal, terminal to terminal, and terminal to customer, respectively. The
fundamental transportation assignments arising in the pre- and end-haulage
are the movements of containers between customers (shippers or receivers) and
container terminals and vice versa. These transportation assignments are typically
carried out by a truck company to enable house-to-house transports. In some
applications it is further the case that the containers are owned by the truck
company. Here, a shipper customer demands an empty container and a receiver
customer supplies an empty container. Problems of this type can be modeled as
a FTPDVRP.

We model the FTPDVRP as an integrated nonlinear programming problem
that simultaneously solves an assignment and a routing problem, linked via
coupling constraints. It is part of the assignment problem to fulfill the demand
and the supply of the customers by determining where to deliver the commodities

Benders Decomposition for the FTPDVRP 29

that are collected from the pickup customers and where to pick up the commodities
that are required by the delivery customers. The routing problem evaluates in
which order and by which vehicle the customers are visited by taking into account
the decisions of the assignment problem. If the variables of the routing problem are
fixed, the remaining assignment problem is easy to solve. This particular property
points to a (generalized) Benders decomposition approach for solving instances
of the FTPDVRP. Hence, we solve the nonlinear programming problem of the
FTPDVRP by the generalized [3] and its linearization by the classical Benders
decomposition [1] approach. For the FTPDVRPTW we suggest a two-phase
heuristic that solves an assignment problem in the first phase and constructs
vehicle routes in the second phase. The performance of the algorithms were tested
on randomly generated instances.

References

1. Benders, J.F.: Partitioning Procedures for Solving Mixed-Variables Programming
Problems. Numerische Mathematik 4, 238-252 (1962)

2. Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., Laporte, G.: Static Pickup and
Delivery Problems: A Classification Scheme and Survey. Top 15, 1-31 (2007)

3. Geoffrion, A.M.: Generalized Benders Decomposition. Journal of Optimization The-
ory and Applications 10, 237-260 (1972)

4. Macharis, C., Bontekoning, Y.M.: Opportunities for OR in Intermodal Freight
Transport Research: A Review. European Journal of Operational Research 153,
400-416 (2004)

5. Parragh, S.N., Doerner, K.F., Hartl, R.F.: A Survey on Pickup and Delivery Problems.
Journal für Betriebswirtschaft 58, 81-117 (2008)

Multimodal Home Healthcare Scheduling
using a novel CP–VND–DP Approach

Andrea Rendl, Matthias Prandtstetter, and Jakob Puchinger

Mobility Department, Austrian Institute of Technology, Vienna, Austria
{andrea.rendl,matthias.prandtstetter,jakob.puchinger}@ait.ac.at

1 Overview

Healthcare services, especially home healthcare services (HHC), are of great
significance in today’s western world, where the average age is steadily increasing.
HHC services are particularly popular, since patients prefer being nursed at home
than at retirement homes. However, finding a good schedule is challenging:

– Nurses need to arrive at the patients’ homes in certain time windows
– Each service requires a qualification that the nurse must hold (e.g. a nurse

for cleaning may not perform a medical service)
– The schedule should meet preferences of patients, nurses and employer
– All legal and contractual issues (such as sufficient resting periods) should

be satisfied

We consider a real-world setting, where the objective is to find a schedule with
minimal travel time (to reduce operational costs), such that all patients are
assigned a nurse, satisfying as many side constraints from the above as possible.
Our goal is to construct a flexible framework that generates efficient nurse
schedules for different home care companies.

Real-world HHC problems are challenging for many reasons. First, the HHC
problem constitutes a combination of two NP-hard problems: vehicle routing with
time windows [4,5] and nurse rostering [6]. Therefore, we need to employ a heuris-
tic approach since exact solving methods can typically only tackle small instances.
Second, real-world instances include many side constraints that vary greatly be-
tween different service providers (e.g. different nurse contracts). Hence we require
a flexible solving architecture, where constraints can be easily added/removed.
Third, to provide accurate schedules, it is crucial to use accurate travel time
estimations, regarding different modes of transport. Therefore, we include travel
time estimations from a large set of historical data for different transport modes
(car, public transport, bike, foot) into our system.

2 A Hybrid Approach for Solving the HHC Problem

We propose a hybrid meta-heuristic for the HHC problem where constraints can
be easily added and/or removed, and different transport modes are considered.
The solution approach consists of three parts: (1) an initialization step, (2) an
improvement phase and (3) a constraint checking and subproblem solution phase.
Three core components are used during those steps: a constraint programming
(CP) [11] formulation, a variable neighborhood descent (VND) [8] improvement
phase and a dynamic programming (DP) [2] method.

Multimodal Home Healthcare Scheduling 31

1. Initialization Step First, an initial solution is generated using a CP approach,
where we use an extension of the vehicle routing problem model from [11]. The
advantages of using CP are threefold: first, the CP model is flexible, since
constraints can be easily added and/or removed from the model. Second, CP is
efficient in finding good first solutions, if adequate search strategies are chosen.
Third, the CP model can be reused to check if a modified solution still satisfies
all constraints.

2. Solution Improvement Second, the initial solution is improved by VND, a
fast local search method, where various neighborhoods, which are generated by
‘moves’ such as ‘swap-nurses’, are systematically searched for better solutions.
Candidate solutions are verified by reloading the store of the CP model. This
approach guarantees that the system is kept flexible, yet accurate, since constraints
can be easily added/removed without any major implementation tasks.

3. Tour Planning Phase In a third step, we improve the tours of the schedule:
as soon as all patients are assigned to a nurse, planning tours can be considered
an independent subproblem, a TSP with time windows. First, we reduce the
TSP with time windows to a generalized TSP by applying the algorithm from
Albiach et al [1]. Second, we solve the TSP using an extended DP-approach based
on [9]. The main benefit of using DP is that we obtain an exact solution in little
time due to the instance dimensions (limited number of nodes per tour).

Multimodality Nurses typically travel by (a combination of) different transport
modes (car, bike, foot, public transport) which has an effect on the overall travel
time. Currently, the transport mode of each nurse is given in advance and
therefore constitutes a feature (such as qualification) that affects travel time.
Thus, multimodality results in additional side constraints. The travel times are
computed from time-dependent historical data for each transport mode. In future
work, we want to select the best transport mode for each nurse.

3 Related Work
The main difference to other approaches lies within our objective to provide a
flexible framework to tackle real-world HHC problems of different flavor. Hence,
our hybrid setup is tailored to this requirement. Other meta-heuristical ap-
proaches [7,3,12,10] use different setups and do not consider multimodality.

4 Discussion and Conclusions
In this abstract, we propose a new hybrid meta-heuristic to solve real-world
HHC instances in a flexible framework for different homecare companies. The
contributions of this work are twofold: first, we motivate a flexible, novel, hybrid
approach to tackle HHC problems. Second, we introduce the issue of multimodality
in HHC: in our current setting, we investigate the case where nurses select their
preferred mode of transport in advance. However, we are interested in the
extension of this problem, where we optimize the transport mode for each nurse
wrt different objectives (minimization of travel time, travel costs, etc). Can we
obtain better nurse schedules by additionally choosing the mode of transport for
each nurse?

32 Andrea Rendl, Matthias Prandtstetter, and Jakob Puchinger

Acknowledgments

This work is part of the project CareLog, partially funded by the Austrian Federal
Ministry for Transport, Innovation and Technology (BMVIT) within the strategic
programme I2VSplus under grant 826153. The authors thankfully acknowledge
the CareLog project partners Verkehrsverbund Ost-Region GmbH (ITS Vienna
Region), Sozial Global AG, and ilogs mobile software GmbH.

References

1. Albiach, J., Sanchis, J.M., Soler, D.: An asymmetric tsp with time windows and
with time-dependent travel times and costs: An exact solution through a graph
transformation. European Journal of Operational Research 189(3), 789–802 (2008)

2. Bellman, R.: Dynamic programming. Princeton University Press (1957)
3. Bertels, S., Fahle, T.: A hybrid setup for a hybrid scenario: combining heuristics for

the home health care problem. Computers & Operations Research 33, 2866–2890
(October 2006)

4. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i: Route
construction and local search algorithms. Transportation Science 39(1), 104–118
(2005)

5. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part ii:
Metaheuristics. Transportation Science 39(1), 119–139 (2005)

6. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state
of the art of nurse rostering. Journal of Scheduling 7, 441–499 (November 2004),
http://portal.acm.org/citation.cfm?id=1029473.1029477

7. Eveborn, P., Flisberg, P., Rnnqvist, M.: Laps Care–an operational system for staff
planning of home care. European Journal of Operational Research 171(3), 962–976
(2006)

8. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Glover, F.W., Kochen-
berger, G.A. (eds.) Handbook of Metaheuristics, pp. 145–184. Kluwer Academic
Publisher, New York (2003)

9. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210
(1962)

10. Rasmussen, M.S., Justesen, T., Dohn, A., Larsen, J.: The home care crew scheduling
problem: Preference-based visit clustering and temporal dependencies. Tech. Rep.
11-2010, DTU Management Engineering (May 2010)

11. Rossi, F., Beek, P.v., Walsh, T.: Handbook of Constraint Programming (Foundations
of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA (2006)

12. Steeg, J., Schröder, M.: A hybrid approach to solve the periodic home health care
problem. In: Kalcsics, J., Nickel, S. (eds.) OR. pp. 297–302. Springer (2007)

http://portal.acm.org/citation.cfm?id=1029473.1029477

Search Combinators

Tom Schrijvers1, Guido Tack2, Pieter Wuille2,
Horst Samulowitz3, and Peter J. Stuckey4

1 Universiteit Gent, Belgium
2 Katholieke Universiteit Leuven, Belgium

3 IBM Research, USA
4 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia

This work introduces search combinators, an approach to modeling search in
constraint solvers that enables users and system developers to quickly design
complex efficient search heuristics.

Search heuristics often make all the difference between effectively solving a
combinatorial problem and utter failure. Heuristic enable a search algorithm to
become efficient for a variety of reasons, e.g., incorporation of domain knowledge,
or randomization to avoid heavy tailed runtimes. Hence, the ability to swiftly
design search strategies that are tailored towards a problem domain is essential
to performance improvement.

While we focus on systematic tree search in the area of Constraint Program-
ming (CP), we believe that the results can be adapted to other search-driven areas
in the field of Artificial Intelligence (AI) and related areas such as Operations
Research (OR) (e.g., for Mixed Integer Programming (MIP) solvers). In fact, we
also believe that our approach anticipates the challenges that will surface when
one needs to control search in the context of hybrid systems that are composed
of a variety of solvers (e.g., a mix of CP and MIP). In CP, much attention has
been devoted to facilitating the modeling of combinatorial problems. A range of
high-level modeling languages, such as Zinc [2] and OPL [4], enable quick devel-
opment and exploration of problem models. However, we see very little support
on the side of formulating accompanying search heuristics. Either the design of
search is restricted to a small set of predefined heuristics (e.g., MiniZinc [3]), or it
is based on a low-level general-purpose programming language (e.g., Comet [5]).
The former is clearly too confining, while the latter leaves much to be desired
in terms of productivity, since implementing a search strategy quickly becomes
a non-negligible effort. This also explains why the set of available heuristics is
typically small: it takes a lot of time for CP system developers to implement
heuristics, too – time they would much rather spend otherwise improving their
system.

In this work we show how to resolve this stand-off between solver developers
and users with respect to a high-level search language.

For the user, we provide a compositional approach for expressing complex
search heuristics based on an (extensible) set of primitive combinators. Even if
the users are only provided with a small set of combinators, they can already
express a vast range of combinations. Moreover, programming search in terms of
combinators is far more productive than resorting to a low-level language.

34 T. Schrijvers, G. Tack, P. Wuille, H. Samulowitz, P.J. Stuckey

The following heuristic briefly demonstrates the conciseness of our search
combinators. This search heuristic can be used to solve radiotherapy treatment
planning problems [1]. The heuristic minimizes a variable obj using branch-and-
bound (bab), first searching the variables N , and then verifying the solution by
partitioning the problem along the row i variables, one row at a time. Failure on
one row must be caused by the search on the variables in N , and consequently
search never backtracks into other rows (exh once). This is a good example of
integrating domain knowledge in search:

bab(obj , and([int search(N, input order, bisect low),
exh once(int search(row1, input order, bisect low)),
. . . ,
exh once(int search(rown, input order, bisect low))]))

Here we assume that a basic search construct like the following is available:
s = int search(vars, var-select, value-select)

which specifies a systematic search over the variables vars, applying var-select
and value-select as variable- and value-selection strategies respectively. Another
primitive combinator is and, with the obvious meaning. The remainders, bab and
exh once, are themselves defined in terms of other primitive combinators.

For the system developer, we show how to design and implement modular
combinators. Developers do not have to cater explicitly for all possible combinator
combinations. Small implementation efforts result in providing the user with a
lot of expressive power. Moreover, the cost of adding one more combinator is
small, yet the return in terms of additional expressiveness can be quite large.

In summary, the tough technical challenge we face is to bridge the gap be-
tween conceptually simple specification language (high-level, purely functional
and naturally compositional) and efficient implementation (typically low-level,
imperative and highly non-modular). We overcome this challenge with a system-
atic approach that disentangles different primitive concepts into separate modular
components, search combinators, that interact through a message protocol. This
protocol dictates how the combinators should collaborate to process a node in
the search tree. Overall search then consists of a queue of unprocessed nodes
that are fed one by one to the combinators, which in turn may produce new
(child) nodes for the queue. The message-based combinator approach lends itself
well to different implementation strategies. We have developed two diametrically
opposed approaches for the Gecode C++ library: dynamic composition (inter-
pretation) and static composition (compilation). Experimental evaluation shows
that both implementation approaches have competitive performance and match
the performance of the native implementation of the same search heuristics in
Gecode.

References

1. Baatar, D., Boland, N., Brand, S., Stuckey, P.: CP and IP approaches to cancer
radiotherapy delivery optimization. Constraints (2011)

Search Combinators 35

2. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M., Wallace,
M.: The design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

3. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: Minizinc:
Towards a standard CP modelling language. In: Bessire, C. (ed.) CP. LNCS, vol.
4741, pp. 529–543. Springer (2007)

4. Van Hentenryck, P.: The OPL optimization programming language. MIT Press
(1999)

5. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press (2005)

Towards a Characterization of Adaptiveness for
Constraint Programming Search Design

Thiago Serra

Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Brazil
tserra@ime.usp.br

Objective and Motivation The aim of this work is to propose a new charac-
terization of adaptive search methods for Constraint Programming (CP). It is
motivated by the large number of previous works on the topic, which altogether
indicate certain patterns for search design decisions. Most of these previous
approaches share several unexplored similarities, usually disregarded by the lack
of a standard categorization. Hence, a review on the current classification scheme
could potentially facilitate the use and future development of CP adaptive search,
helping practitioners to identify the search procedures that best suit their needs.

Background and Related Work The recent success of Constraint Program-
ming (CP) can be largely attributed to its expressive modeling capabilities.
Nevertheless, this increased modeling power is only meaningful if associated
with a robust search algorithm [3]. Besides, search automation is regarded as an
important step towards broadening the community of CP users [4]. In particular,
many researchers have been tackling constraint satisfaction problems (CSPs)
through adaptive mechanisms that guide the choice of the most appropriate
procedure for each occasion.

Adaptive strategies modify the search behavior based on a mapping of static
and dynamic information onto performance metrics. This information is derived
through an inference process that takes into account the problem model, available
instances, and particular algorithmic structures. It requires learning how the
subtleties of each case explains the observed performance variations so that
search is adapted accordingly. Such learning task is known as algorithm selection
in the field of meta-learning, which has been recently a subject on many CSP
approaches [5]. A formal taxonomy to classify these adaptive search mechanisms
according to their design has been first proposed in [2]. It defines an hierarchical
scheme consisting of three layers, described as follows: (i) when search modifica-
tions occur, (ii) which information induces them, and (iii) how search is being
modified. Furthermore, an introduction to the topic and its design issues with a
focus on stochastic local search algorithms is given in [1].

Approach This work intends to deepen on the characterization of decision classes
for designing adaptive search procedures. It decouples the layered architecture
presented in [2] into independent functional patterns, emphasizing the usual

Towards a Characterization of Adaptiveness for CP Search Design 37

CP structure and search design particularities. Each of those patterns is briefly
described as follows.

Learning Patterns The adaptation of search relies on some learning process
whose outcome is the information that will endorse its choices. There are three
variations in timing and frequency of such process within the overall system
execution. Batch: Search is tuned once and prior to use through the analysis
of what-if scenarios over a set of initial instances, which are expected to be a
meaningful sample of the real case usage. Online: At each run, search is tuned
from scratch according to information gathered during its execution. Offline:
Between consecutive runs, search is progressively tuned according to tests on
data from previous instances.

Decision Patterns The outlining of search procedures is made through the
degrees of freedom purposely left on search design. They can be placed at three
abstraction levels, which varies from selection of algorithms down to their inner
assembly. Algorithm Portfolio: Processing power is split among procedures and
each of them is expected to explore the search space in a different order. Algorithm
Selector: A single procedure is selected to perform the entire search, what is also
called a “winner take all”. Algorithmic Framework: Search is decomposed into
components with distinct responsibilities, some of which with more than one
available strategy. In CP, such framework usually corresponds to a combination
of propagation, retraction and branching heuristics.

Discrimination Patterns The way in which problem data is used to learn
and to outline the search creates explanatory theories for such choices. They
differ by extension of details and specificity of domain in three ways. Atomic:
The problem is used as a basic unit upon which search performance must be
improved, ignoring inner details. General Profile: General properties of search
algorithms and CSPs are used to characterize performance variations. Domain-
Specific: Specific problem structures are used to control the search, such as global
constraints.

References

1. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.
Springer, New York (2008)

2. Hamadi, Y., Monfroy, E., Saubion, F.: What is Autonomous Search? Technical
Report MSR-TR-2008-80, Microsoft Research, Cambridge (2008)

3. Lustig, I.J., Puget, J. -F.: Program Does Not Equal Program: Constraint Pro-
gramming and Its Relationship to Mathematical Programming. Interfaces, 31, 6
(2001)

4. Puget, J. -F.: Constraint Programming Next Challenge: Simplicity of Use. In: Pro-
ceedings of CP 2004, pp. 5-8, Toronto (2004)

5. Smith-Miles, K. A.: Cross-Disciplinary Perspectives on Meta-Learning for Algorithm
Selection. ACM Comput. Surv., 41, 1, Article 5 (2008)

Using column generation to solve the edge
coloring problem

J.M. van den Akker, J.A. Hoogeveen, and W. Lauret

Department for Information and Computing Sciences
Utrecht University

Princetonplein 5, 3584 CC Utrecht, The Netherlands
{J.M.vandenAkker,J.A.Hoogeveen}@cs.uu.nl

wouter.lauret@gmail.com

Introduction

The edge coloring problem is defined as follows. Given an undirected graph
G = (V,E), color the edges of the graph with a minimum number of colors such
that all edges containing the same vertex get a different color.

Obviously, since each vertex incident to a given vertex v must get a different
color, we need at least d(v) colors, where d(v) is equal to the degree of vertex v.
Hence, we find that the maximum degree dmax is a lower bound to the number of
colors needed in a feasible coloring. Vizing (1964) showed that, either dmax colors
are sufficient, or we need dmax + 1 colors. Holyer (1981) showed nonetheless that
the edge coloring problem is NP-hard.

Our solution method

We want to attack the edge coloring problem using ILP-techniques. Our formula-
tion is based on partitioning the graph into as few as possible subsets of edges
that get the same color. In this way, we circumvent the symmetry problems that
would arise if we would assign colors to individual edges. It is well-known that
a one-colorable subset corresponds to a matching. Note that we cannot limit
ourselves to maximum cardinality matchings, as can be seen from the simple
example of a path consisting of three edges.

Suppose that we know the set S containing all matchings. We introduce for
each matching s ∈ S a binary decision variable xs. We define aes as a binary
parameter that indicates whether matching s contains edge e ∈ E (aes = 1 if it
does, and aes = 0, otherwise). Then the ILP-formulation becomes

minimize
∑
s∈S

xs

subject to ∑
s∈S

aesxs ≥ 1, for each e ∈ E.

xs ∈ {0, 1}, for each s ∈ S.

Using column generation to solve the edge coloring problem 39

The first constraint enforces that each edge should belong to at least one of the
selected matchings; if an edge belongs to more than one, then we remove it from
all chosen matchings but one.

There are two well-known problems with this approach: we do not know
all matchings, and if we would, then solving the ILP-formulation would last
for ever. Therefore, we take the LP-relaxation, which is obtained by replacing
the constraint that xs should be binary by the constraint that xs should be
nonnegative (we do not need to enforce the upper bound of 1, since this is clearly
sub-optimal). We solve the LP-relaxation using column generation. To start the
procedure, we initialize with all matchings consisting of a single edge. Suppose
that we have found the optimal solution of the LP-relaxation for a given set of
matchings. Let πe be the dual multiplier for the constraint corresponding to edge
e ∈ E. The reduced cost of a matching s is then equal to

c′s = 1−
∑
e∈E

aesπe.

Hence, our pricing problem, in which we search for a column with minimum
reduced cost, becomes a maximum weight matching problem; if the weight of the
matching is more than one, then we add it; if it is no more than one, then we have
solved the LP-relaxation to optimality. The maximum weight matching problem
is solvable in O(nm + n2 log n) time using Gabow’s (1976) implementation of
Edmonds’s (1965) algorithm, where m and n correspond to the number of edges
and vertices in the graph, respectively.

Since we only want to distinguish between the values dmax and dmax + 1,
and since the LP-relaxation gives a lower bound to the value of the ILP, we
don’t care about the exact optimum, if we know that it exceeds dmax. To prevent
that we have to wait until termination of the column generation algorithm, we
use an intermediate lower bound, which has been described by Van den Akker,
Hoogeveen, and van Kempen (2006). Let c∗ denote the value of the maximum
weight matching. Then ∑

e∈E πe

c∗

is a lower bound on the outcome value of the LP-relaxation. If this value exceeds
dmax, then we know that we need dmax + 1 colors.

If we find that the optimum to the LP-relaxation is equal to dmax, then we
solve the ILP-formulation with the set of columns that we have determined when
solving the LP-relaxation. If we find a solution using dmax colors then, then
we have solved the problem. If we do not succeed in this, then the problem is
currently undecided, and we may proceed using branch-and-price (see Barnhart
et al., 1998).

Computational results

We have tested our approach to some benchmark instances available in the
literature like the DIMACS graphs. Unfortunately, these all are colorable using

40 J.M. van den Akker, J.A. Hoogeveen, and W. Lauret

dmax colors, which is discovered when we solve the ILP-formulation with the set of
columns determined in the column generation phase. We will apply perturbations
to these graphs, such that we may need dmax + 1 colors, to test whether the
LP-relaxation is able to decide these graphs.

References

1. J.M. van den Akker, J.A. Hoogeveen, and J.W. van Kempen (2006). Parallel
Machine Scheduling Through Column Generation: Minimax Objectives. In Y.
Azar and T. Erlebach (eds.), Algorithms ESA 2006, Lecture Notes in Computer
Science, volume 4168, Springer-Verlag Berlin Heidelberg, Volume, 648–659.

2. C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P.H. Vance (1998). Branch-and-price: column generation for solving huge integer
programs. Operations Research 46, 316–329.

3. J. Edmonds (1965). Paths, trees, and flowers. Canadian Journal of Mathematics
17, 449–467.

4. H.N. Gabow (1976). An efficient implementation of Edmonds’s maximum matching
on graphs. Journal on the ACM 23, 221–234.

5. I. Holyer (1981). The NP-completeness of edge-coloring. SIAM Journal on
Computing 10, 718–720.

6. V.G. Vizing (1964). On an estimate of the chromatics class of a p-graph. Diskret.
Analiz. 3, 23–30.

The Aimms Interface to Constraint
Programming

Willem-Jan van Hoeve1, Marcel Hunting2, and Chris Kuip2

1 Tepper School of Business, Carnegie Mellon University
2 Paragon Decision Technology

Abstract. We present an extension of the modeling system Aimms to
handle constraint programming problems. Our goal is to provide a more
accessible interface to CP technology than current systems offer. We first
present basic CP modeling constructs that can be realized with minimum
changes to the existing syntax. We then discuss the handling of global
constraints. Lastly, we present our extensions to modeling scheduling
problems, based on the now-classical representation as activities and
resources. An important benefit of the Aimms interface to CP is the ease
with which hybrid CP/OR solution methods can be developed.

1 Introduction

From its inception, the academic field of Constraint Programming (CP) has
been coupled with well-engineered solvers that were applied to challenging, often
large-scale, industrial problems (e.g., CHIP, Cosytec, ILOG Solver, SICStus,
Eclipse, Choco, Kalis, Gecode, Comet). Most, if not all, of these solvers require
a considerable amount of training before they can be used by an engineering
student or Operations Research practitioner, let alone an MBA student. One
reason for this is that each of these solvers has its own specific modeling language,
for example in the style of Prolog or C++. Another reason is that CP requires
a different modeling style than mathematical programming, to the extent that
even a dynamic search strategy can be modeled in most systems. Finally, even
though most available solvers share the most important characteristics of CP, each
comes with its own library of global constraints, associated filtering algorithms,
modeling concepts (e.g., resource constrained scheduling, set variables, local
search), and specialized search techniques. Consequently, a problem may be
modeled and solved in entirely different ways by different solvers. All of this
limits the accessibility of CP to typical Operations Research practitioners.

One of the main goals of the project described in this abstract is to make CP
more accessible to a wider range of practitioners, from industrial OR experts
to MBA students. In order to achieve this, we have developed a Constraint
Programming extension of the modeling system Aimms, keeping the following
requirements and targets in mind. First, we would like the difference between
standard mathematical programming models and CP models to be minimal for
a user, and in particular for an Aimms user. Second, we must offer the most

42 Willem-Jan van Hoeve, Marcel Hunting, and Chris Kuip

powerful CP technology that is available (e.g., access to advanced algorithms
for resource-constrained scheduling), as well as all common global constraints.
Third, the system should be designed for solving hard industrial problems. Note
that these targets can be conflicting, e.g., the support of global constraints for
their filtering power does not align with standard mathematical programming
terminology.

2 Background and Related Work

Several other industrial and academic modeling languages/systems have been
developed to make the use of CP and hybrid methods more accessible. Academic
systems focusing on the integration of solvers include Zinc [9] and SIMPL [13].
Industrial systems include IBM ILOG CPLEX Optimization Studio (with the OPL
language [11]), Fico Xpress Optimization Studio (with the Mosel language [4]),
and Comet [12]. Even though these systems are powerful and provide advanced
interfaces, they mostly appeal to specialized developers, and suffer from the
aforementioned shortcomings with respect to accessibility to non-specialists,
in our opinion. Our goal is to contribute to these developments by focusing
specifically at a solver-independent, intuitive graphical modeling interface, as
offered by the Aimms system, in order to attract non-experts to use CP technology.

The modeling language underlying Aimms [2,10] was originally developed
in a similar spirit as GAMS [3] or AMPL [6]. Similar to those systems, it is
based on an algebraic syntax and offers access to (at least) ILP, QP, and NLP
technology. The main difference with these other languages, however, is that
model development in Aimms revolves around a graphical modeling interface
depicting the hierarchical structure in a model formulation. This enables the
user to formulate a problem in an intuitive and naturally decomposed manner.
A second important feature of Aimms is that it offers user-developed ‘pages’,
that can be used to graphically depict solutions and even to build entire end-user
applications that can be deployed in practice.

3 Contributions

The Aimms extension to CP supports all common global constraints, ranging from
AllDifferent to Sequence and BinPacking. In addition, it supports advanced
scheduling concepts based on the classical representation using ‘activities’ and
‘resources’ [1], as well as specialized global scheduling constraints as introduced
recently in [8]. Interestingly, many modeling concepts from CP were already
present in the existing Aimms syntax, albeit restricted to non-variable identifiers.
Namely, Aimms already offers all standard arithmetic, logical, and set related
operators. This allowed us to provide CP functionality with minimal changes to
the existing syntax in many cases. Finally, we have built an interface to the CP
solvers IBM ILOG CP Optimizer and Gecode. We refer to [7] for more details.

In summary, the most important contribution of our extension to the practice
of CP is that less-experienced users can access CP technology in a more intuitive

The Aimms Interface to Constraint Programming 43

way, and furthermore make use of all standard features of Aimms including its
advanced graphical interface. In addition, we remark that the related modeling
systems GAMS and AMPL do not support CP technology,1 while OPL, Mosel,
and Comet do not provide access to NLP solvers such as CONOPT, KNITRO,
IPOPT and LGO. With the addition of our CP interface, Aimms is currently the
only industrial-strength optimization modeling system that provides access to
LP, MIP, QP, NLP, and CP solvers, which makes it possible to build integrated
models combining all these technologies.

References

1. P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-Based Scheduling: Applying
Constraint Programming to Scheduling Problems. Kluwer Academic Publishers,
2001.

2. J. Bisschop and R. Entriken. AIMMS: The modeling system. Paragon Decision
Technology, 1993.

3. J. Bisschop and A. Meeraus. On the development of a general algebraic modeling
system in a strategic planning environment. Mathematical Programming Study,
pages 1–29, 1982.

4. Y. Colombani and S. Heipcke. Mosel: An Extensible Environment for Modeling and
Programming Solutions. In Proceedings of the Fourth International Workshop on
Integration of AI and OR techniques in Constraint Programming for Combinatorial
Optimisation Problems (CPAIOR), 2002.

5. R. Fourer and D.M. Gay. Extending an algebraic modeling language to support
constraint programming. INFORMS Journal on Computing, 14:322–344, 2002.

6. R. Fourer, D.M. Gay, and B.W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Management Science, 36:519–554, 1990.

7. W.J. van Hoeve, M. Hunting, and C. Kuip. Constraint programming. In AIMMS
3.12: The Language Reference, chapter 21. Paragon Decision Technology, 2011.

8. P. Laborie. IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three
Problems. In Proceedings of CPAIOR, volume 5547 of LNCS, pages 148–162.
Springer, 2009.

9. K. Marriott, N. Nethercote, R. Rafeh, P.J. Stuckey, M. Garcia De La Banda, and
M. Wallace. The design of the Zinc modelling language. Constraints, 13(3):229–267,
2008.

10. M. Roelofs and J.J. Bisschop. AIMMS 3.11: The Language Reference. Paragon
Decision Technology, 2010. http://www.aimms.com/downloads/manuals/language-
reference.

11. P. Van Hentenryck. The OPL Optimization Programming Language. The MIT
Press, 1999. With contributions by I. Lustig, L. Michel, and J.-F. Puget.

12. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press,
2005.

13. T. Yunes, I.D. Aron, and J.N. Hooker. An integrated solver for optimization
problems. Operations Research, 58(2):342–356, 2010.

1 We note that the AMPL language extensions to CP, as described in [5], have not yet
been implemented.

Solving the no-wait job shop problem:
an ILP and CP approach

H.M. Vermeulen, J.A. Hoogeveen, and J.M. van den Akker

Department for Information and Computing Sciences
Utrecht University

Princetonplein 5, 3584 CC Utrecht, The Netherlands
vermeulen99@yahoo.com

{J.A.Hoogeveen,J.M.vandenAkker}@cs.uu.nl

Introduction

In the traditional job shop scheduling problem, we have a set of n jobs that have
to be executed by a set of m machines. Each job consists of a set of operations,
and for each job it is given by which machine it has to be executed and how long
this takes. Moreover, there is a strict order between these operations, and the kth
operation in job j can only start when the (k − 1)th operation of job j has been
completed. The objective is to minimize the time by which each job has been
completed, which is called the makespan. The job shop problem has received a
lot of attention during the last fifty years. It is not only NP-hard, but also it is
hard to solve the problem to optimality for instances with more than 20 jobs and
machines. These enumerative algorithms were traditionally based on applying
branch-and-bound to the disjunctive graph model, but in the last decade we have
seen attempts to solve these problems through constraint satisfaction (see for
instance Baptiste et al., 2001).

The no-wait job shop problem is a variant of the traditional job shop scheduling
problem, where the time between operations of the same job is fixed. These time
differences between the completion time of the (k − 1)th operation and the kth
operation do not have to be zero; these can even be negative, implying that the
operations overlap in their execution. As a result, we know the start times of
all operations, as soon as the start time of the job gets fixed. Since we assume
that the machines can handle only one job at a time, we must choose the start
times of the jobs such that no two operations that must be executed by the same
machine overlap in their execution. Hence, we can compute for each pair of jobs
the values of the differences of their start times such that these two jobs do not
collide in their execution. Therefore, our problem boils down to finding for each
job its start time, such that the last job gets completed as soon as possible, and
such that each start-time difference must fall into a fixed set of intervals, which
can be easily calculated. This deceivingly simple-looking problem turns out to be
quite hard to solve within a reasonable amount of time.

Solving the no-wait job shop problem: an ILP and CP approach 45

Our solution methods

We have developed exact solution methods using Integer Linear Programming
(ILP) and a combination of binary search with Constraint Programming (CP) to
find an optimal makespan. Below we shortly summarize the methods we have
applied, and we end with some conclusions.

We have applied several ILP formulations. The first ones we tested were based
on the time-indexed formulation, where we have a binary variable xjt for each job
j and possible start time t. Modeling the forbidden start-time differences requires
many constraints, which resulted in very large run times, even for instances with
5 jobs. Next, we applied models with variables Sj to model the start times. We
further introduced binary variables xijk to model that Sj − Si should fall in the
kth interval of the allowed set of start time differences. We have strengthened
this formulation by adding constraints based on the allowed start time differences
for triples of jobs, which can be determined using a three-job propagator we
used in the CP methods. Finally, we attempted models in which the non-overlap
constraints were modeled using a disjunctive formulation. It turned out in our
experiments that the disjunctive formulation where we explicitly used the allowed
set of start time differences worked best.

To start CP, we put an upper bound on the makespan and check whether
there exists a feasible solution; the optimum can then be determined through
binary search. This upper bound can easily be translated into a deadline on
the start time of each job. The variables we used were the starting times of all
jobs. We used the so-called two-job propagator to restrict the domains as far
as possible. The two-job propagator modifies the domain of the starting time
of job j given the domains of the starting time of job i and the allowed start
time differences. A nice property of the two-job propagator is that it maintains
the so-called arc-consistency. The two-job propagator dominates the so-called
Time-Table and Disjunctive propagators, which are very successful in solving
the standard job-shop scheduling problem. Another start time variable based
propagator that we employed is the three-job difference propagator, which works
on the domains of the start time differences; this propagator does not maintain
full path consistency.

We derive two simple but effective propagators which maintain full arc
consistency and partial path-consistency on the start-time variables.

We performed extensive experiments using different ILP formulations, lower
bounds, constraint propagation strategies and branching strategies. We show that
the edge-finding and not-first, not-last propagators used in solving the traditional
job shop problem are ineffective in the presence of no-wait constraints. We also
show that it is hard to combine ILP and CP to give a better algorithm than both
separately.

Our best CP strategy outperformed our best ILP method by a factor of 5
to 50. For medium-sized problem instances of 10 jobs the performance of our
best CP strategy is comparable to that of the best exact algorithm (Van den
Broek, 2009) for the no-wait job shop problem, which uses branch and bound,
but its running time increases much faster than that of the branch-and-bound

46 H.M. Vermeulen, J.A. Hoogeveen, and J.M. van den Akker

method as the number of jobs increases. However, at a fixed number of jobs,
our CP method is better in handling an increase in the number of machines
and operations per job by exploiting the fact that overlap between jobs on any
machine can be detected by only using the start-time difference. We are hopeful
that in the future this can be incorporated into a branch-and-bound algorithm
with a much better performance for a larger number of machines and operations
per job.

References

1. P. Baptiste, C. le Pape, and W. Nuijten (2001). Constraint-Based Scheduling,
Kluwer.

2. J.J.J. van den Broek (2009). MIP-based approaches for complex planning prob-
lems. PhD Thesis, Eindhoven University of Technology, The Netherlands.

	Satisfiability Test for the energy Constraint
	Learning Graphical Models for Algorithm Configuration
	Comparing Integer Programming and Constraint Programming for a Flow Shop Lot Streaming Problem
	Three ideas for the Quadratic Assignment Problem
	Explanation Algorithms for Cumulative Scheduling
	Which Mixed Integer Programs could a million CPUs solve?
	Neuron Constraints to Model Complex Real-World Problems
	A Constraint Programming Approach for a Batch Processing Problem with Non-identical Job Sizes
	Exact Branch-and-price for Fair-share Airline Crew Rostering
	Benders Decomposition for the Full-Truckload Pickup-and-Delivery Vehicle Routing Problem
	Multimodal Home Healthcare Scheduling using a novel CP–VND–DP Approach
	Search Combinators
	Towards a Characterization of Adaptiveness for Constraint Programming Search Design
	Using column generation to solve the edge coloring problem
	The Aimms Interface to Constraint Programming
	Solving the no-wait job shop problem: an ILP and CP approach

