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Abstract. We present Undercover, a primal heuristic for mixed-integer nonlinear programming

(MINLP). The heuristic constructs a mixed-integer linear subproblem (sub-MIP) of a given

MINLP by fixing a subset of the variables. We solve a set covering problem to identify a minimal
set of variables which need to be fixed in order to linearise each constraint. Subsequently, these

variables are fixed to approximate values, e.g. obtained from a linear outer approximation. The
resulting sub-MIP is solved by a mixed-integer linear programming solver. Each feasible solution

of the sub-MIP corresponds to a feasible solution of the original problem.

Although general in nature, the heuristic seems most promising for mixed-integer quadrat-
ically constrained programmes (MIQCPs). We present computational results on a general test

set of MIQCPs selected from the MINLPLib [12].

1. Introduction

For mixed-integer programming (MIP) it is well-known that, apart from complete solving methods,
general-purpose primal heuristics like the feasibility pump [2, 14, 16] are able to find high-quality
solutions for a wide range of problems. Over the years, primal heuristics have become a substantial
ingredient of state-of-the-art MIP solvers [5, 8]. For mixed-integer nonlinear programming (MINLP)
there have only been a few publications on general-purpose primal heuristics [7, 10, 20, 11].

At the heart of many recently proposed primal MIP heuristics, such as Local Branching [15],
RINS [13], DINS [17], and RENS [6], lies large neighbourhood search, hence the paradigm of
solving a small sub-MIP which promises to contain good solutions. In this paper, we introduce
Undercover, a large neighbourhood search start heuristic that constructs and solves a sub-MIP of a
given MINLP. We demonstrate its effectiveness on a general test set of mixed-integer quadratically
constrained programmes (MIQCPs) taken from the MINLPLib [12].

An MINLP is an optimisation problem of the form
min dTx

s.t. gi(x) 6 0 for i = 1, . . . ,m,
Lk 6 xk 6 Uk for k = 1, . . . , n,
xk ∈ Z for k ∈ I,

(1.1)

where I ⊆ {1, . . . , n} is the index set of the integer variables, d ∈ Rn, gi : Rn → R for i = 1, . . . ,m,
and L ∈ (R∪{−∞})n, U ∈ (R∪{+∞})n are lower and upper bounds on the variables, respectively.
Note that a nonlinear objective function can always be reformulated by introducing one additional
constraint, hence form (1.1) is general.

2. A generic algorithm

The paradigm of fixing a subset of the variables of a given mixed-integer programme in order to
obtain subproblems which are easier to solve has proven successful in many primal MIP heuristics
such as RINS [13], DINS [17], and RENS [6]. The core difficulty in MIP solving are the integrality
constraints, thus in MIP context “easy to solve” usually takes the meaning of few integer variables.
While in MINLP integralities do contribute to the complexity of the problem, a specific difficulty
are the nonlinearities. Hence, “easy” in MINLP can be understood as few nonlinear constraints.
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the European Workshop on Mixed Integer Nonlinear Programming, April 2010, Marseille, France.

This research was partially funded by the DFG Research Center Matheon, Project B20. We thank GAMS Develop-
ment Corp. for providing us with evaluation licenses for BARON. Many thanks to Stefan Vigerske for his valuable

comments and to Mark Wallace for his proofreading.

Keywords: MINLP, MIQCP, primal heuristic, large neighbourhood search, set covering.

1



Timo Berthold & Ambros M. Gleixner

Our heuristic is based on the simple observation that by fixing certain variables (to some value
within their bounds) any given mixed-integer nonlinear programme can be reduced to a mixed-
integer linear subproblem (sub-MIP). Every feasible solution of this sub-MIP is then a feasible
solution of the original MINLP.

Whereas in general it holds that many or even all of the variables might need to be fixed
in order to arrive at a linear subproblem, our approach is motivated by the experience that for
several practically relevant MIQCPs fixing only a comparatively small subset of the variables
already suffices to linearise the problem. The computational effort, however, is usually greatly
reduced since we can apply the full strength of state-of-the-art MIP solving to the subproblem.
Before formulating a first generic algorithm for our heuristic, consider the following definitions.

Definition 1 (cover of a function). Let a function g : D → R, x 7→ g(x) on a domain D ⊆ Rn

and a point x? ∈ D be given. We call a set C ⊆ {1, . . . , n} of variable indices an x?-cover of g if
and only if the set

{(x, g(x)) | x ∈ D,xk = x?
k for all k ∈ C} (2.1)

is affine. We call C a (global) cover of g if and only if C is an x?-cover of g for all x? ∈ D.

Definition 2 (cover of an MINLP). Let P be an MINLP of form (1.1), let x? ∈ [L,U ],
and C ⊆ {1, . . . , n} be a set of variable indices of P . We call C an x?-cover of P if and only if C
is an x?-cover for g1, . . . , gm. We call C a (global) cover of P if and only if C is an x?-cover of P
for all x? ∈ [L,U ].

A first generic algorithm for our heuristic is given in Figure 1. The hinge of the algorithm is
clearly found in Line 5: finding a suitable cover of the given MINLP. Section 3 elaborates on this
in detail with special emphasis on the case of MIQCPs.

Figure 1. Generic algorithm

Input: MINLP P as in (1.1)1

begin2

compute a solution x? of an approximation or relaxation of P3

round x?
k for k ∈ I4

determine an x?-cover C of P5

solve the sub-MIP of P given by xk = x?
k, k ∈ C6

end7

To obtain suitable fixing values for the selected variables, an approximation or relaxation of
the original MINLP is used. For integer variables the approximate values are rounded. Most exact
solvers for MINLP are based on branch-and-bound. If the heuristic is embedded within a branch-
and-bound solver, using its (linear or nonlinear) relaxation appears as a natural choice for obtaining
approximate variable values.

Large neighbourhood search heuristics which rely on fixing variables typically have to trade off
between eliminating many variables in order to make the sub-MIP tractable versus leaving enough
degrees of freedom such that the sub-MIP is still feasible and contains good solutions. Often their
implementation inside a MIP solver demands a sufficiently large percentage of variables to be fixed
to arrive at an easy to solve sub-MIP [5, 6, 13, 17].

For our heuristic, the situation is different since we do not aim at eliminating integrality con-
straints, but nonlinearities. In order to linearise a given MINLP, in general we may be forced to
fix integer and continuous variables. Especially the fixation of continuous variables in an MINLP
can introduce a significant error, even rendering the subproblem infeasible. Thus our heuristic will
aim at fixing as few variables as possible to obtain as large a linear subproblem as possible.

Remark 1. Note that in general a minimum cover does not necessarily yield a dimension-wise
largest sub-MIP that can be obtained by fixing variables in a given MINLP. First, this is because
in our definition we do not look at the feasible region given by a constraint, but at the graph of
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its left hand side. Second, we do not take into account the interrelation of constraints with each
other and with variable bounds and integrality constraints. Through these interrelations, fixing one
variable may lead to further domain reductions and variable fixations which can not immediately
be foreseen when looking at each nonlinearity separately.

Hence, searching for a minimum cover may be understood as an approximate method for de-
termining dimension-wise maximal sub-MIPs. Propagation routines using these interrelations can,
however, be very effectively integrated within the heuristic, see “fix-and-propagate” in Section 4.

Remark 2. We point out the links of our general-purpose approach for MINLP to the works on bi-
linearly constrained bilinear programmes in global optimization. These are defined as quadratically
constrained quadratic programmes which allow for a partition of the variable set into two parts
such that each quadratic term is bilinear with one variable from each part. Holding the variables
in either set fixed, per definition one obtains a linear programme, a simple property which has
been used extensively in various solution approaches.

3. Finding minimum covers

This section describes our method for determining a minimum cover of an MINLP, i.e. a minimal
subset of variables to fix in order to linearise each constraint. The idea for Undercover originated
from our work on solving MIQCPs. Since its application also appears most promising for this class
of problems, we start by presenting conditions for covers of quadratic constraints.

Covering quadratic functions. Suppose we are given a quadratic function g : Rn → R, x 7→
xTQx, with Q ∈ Rn×n symmetric. Let x? ∈ Rn and C ⊆ {1, . . . , n}. Fixing xk = x?

k for all k ∈ C
transforms xTQx into yT Q̃y + q̃Ty + c̃ with variable vector y = (xk)k 6∈C ∈ Rn−|C|, the restricted
matrix Q̃ = (Quv)u,v 6∈C of dimension (n − |C|) × (n − |C|), the vector q̃ = (2

∑
u∈C Qukx

?
u)k 6∈C ∈

Rn−|C|, and offset c̃ =
∑

u,v∈C Quvx
?
ux

?
v. Thus, the set (2.1) is affine if and only if Q̃ vanishes, i.e.

if quv = 0 for all u, v 6∈ C. In reverse, this means that for C to be a cover of g, it is necessary and
sufficient to contain at least one out of u or v for all nonzero matrix entries Quv.

This can be interpreted as a set covering problem, where items are given by those (u, v) ∈
{1, . . . , n} × {1, . . . , n} with nonzero Quv, and sets are given by S(k) := {(u, v) | u = k or v = k}
for each variable index k = 1, . . . , n.

Remark 3. Note that in the quadratic case, any x?-cover is already a global cover, thus the dis-
tinction made in Definitions 1 and 2 is void.

Covering MIQCPs. An MIQCP is an MINLP as in (1.1) where each constraint i = 1, . . . ,m
takes the form gi(x) = xTAix + bi

Tx + ci 6 0 with Ai ∈ Rn×n symmetric, bi ∈ Rn, and ci ∈ R.
Matrices Ai are not required to be positive semidefinite, i.e. we allow for nonconvex constraints.

In order to find a cover of a given MIQCP P , we solve the set covering problem outlined above,
taking into account all constraints. We introduce auxiliary binary variables αk, k = 1, . . . , n, equal
to 1 if and only if xk is fixed in P . As explained above, C(α) := {k | αk = 1} is a cover of P if and
only if

αk = 1 for all i ∈ {1, . . . ,m}, k ∈ {1, . . . , n}, Ai
kk 6= 0, Lk 6= Uk, (3.1)

αk + αj > 1 for all i ∈ {1, . . . ,m}, k 6= j ∈ {1, . . . , n}, Ai
kj 6= 0, Lk 6= Uk, Lj 6= Uj , (3.2)

i.e. we require all square terms and one variable in each bilinear term to be fixed. Our heuristic
tries to identify as large a linear subproblem as possible. Therefore, we solve the binary programme

min
{ n∑

k=1

αk : (3.1), (3.2), α ∈ {0, 1}n
}
. (3.3)

The following lemma summarises our discussion from above:

Lemma 1. Let an MIQCP P be given. Then α 7→ C(α) = {k | αk = 1} gives a one-to-one
correspondence between the feasible solutions of (3.3) and covers of P . A solution α? of (3.3) is
optimal if and only if C(α?) is a minimum cardinality cover of P .
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Remark 4. Note that the above covering problem is an optimisation version of 2-SAT, hence
there is a polynomial-time algorithm for its solution. In our computational experiments the binary
programme (3.3) could always be solved within a fraction of a second by a general MIP solver,
hence we did not employ a specialised polynomial-time algorithm. Moreover, in the case of general
MINLP, a cover generating problem contains more involved constraints.

Covering general MINLPs. Our approach for computing covers of quadratic constraints
can be applied to more general nonlinearities. The immediate generalisations are multilinear
and polynomial constraints. Sufficient conditions for a global cover of a monomial xp1

1 · · ·xpn
n ,

p1, . . . , pn ∈ N0, are αk = 1 for all k ∈ {1, . . . , n}, pk > 2, Lk 6= Uk, and
∑

k:pk=1,Lk 6=Uk
(1−αk) 6 1,

similar to (3.1) and (3.2).
As can be seen from this example, with more and more general nonlinearities present, more

and more variables need to be fixed to arrive at a linear subproblem. However, note that now the
notion of an x?-cover may be much weaker than that of a global cover.1

4. Variants and extensions

The generic algorithm in Figure 1 can be extended and modified in several ways in order to make
Undercover more efficient in practise. This section outlines a few of them, with main focus on
avoiding infeasibility of the sub-MIPs.

Fix-and-propagate. Fixing a variable can have great impact on the original problem and the
approximation we use. Therefore, we do not fix the variables simultaneously, but sequentially one
by one, propagating the bound changes after each fixing. If by that, the approximation solution
falls outside the feasible domain of a variable, we instead fix it to the closest bound.2 This fix-and-
propagate method resembles a method described in [16]. Additionally, we apply it for continuous
variables and apply backtracking in case of infeasibility.

Backtracking. If the fix-and-propagate procedure deduces some variable domain to be empty,
hence the subproblem to be infeasible, we apply a one-level backtracking, i.e. we undo the last
bound change and try other fixing values instead.3

Recovering. During the fix-and-propagate routine, variables outside the precomputed cover may
also be fixed. In this case, the fixing of some of the yet unfixed variables in the cover might become
redundant and recomputing the cover may yield a smaller number of variable fixings still necessary.

Different covers. Our initial motivation for fixing as few variables as possible was to minimise
the impact on the orginal MINLP. Other measures for the impact of fixing a variable could be
used in the objective function of (3.3), such as domain size, appearance in nonlinear terms or
nonlinear constraints violated by the approximation solution, variable type, or hybrid measures.
In particular, if a minimum cardinality cover yields an infeasible sub-MIP, we may try a cover
minimising a different impact measure.

NLP postprocessing. In the spirit of the QCP local search heuristic described in [7], we try
to further improve the best sub-MIP solution x̃ by solving the NLP which results from fixing all
integer variables to their values in x̃.

Convexification. The main idea of Undercover is to reduce the computational effort by finding
easier to solve subproblems. While here we have focused on sub-MIPs, for nonconvex MINLPs,
already a convex sub-MINLP may be significantly easier to solve and contain more and better
solutions than a sub-MIP. This modification of Undercover only requires to weaken the constraints
in the cover generating problem (3.3) suitably.

1As a simple example consider the multilinear term x1 · · ·xn with no variable bounds. The minimum cardinality
of an x?-cover is 1 as soon as x?

k = 0 for some k. In contrast, the smallest global cover has size n − 1.
2Alternatively, we could recompute our approximation to obtain values within the current bounds.
3In our implementation, we try the bounds of the variable, if finite, and the midpoint between the approximation

value and each finite bound. For unbounded variables, we try zero and twice the approximation value.
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Domain reduction. Instead of fixing the variables in a cover, we could also merely reduce
their domains. Especially on continuous variables this leaves significantly more freedom to the
subproblem. Since domain propagation is an essential ingredient in MINLP solvers, this might still
reduce the computational effort significantly on some problems.

5. Computational experiments

Only few solvers exist that handle general nonconvex MINLPs, such as BARON [21], Couenne [4],
and LindoGlobal [19]. Others, such as BONMIN [9] and SBB [3], guarantee global optimality only
for convex problems, but can be used as heuristic solvers for nonconvex problems. Recently, the
solver SCIP [1] was extended to solve nonconvex MIQCPs to global optimality [7].

The target of our computational experiments is to demonstrate the potential of Undercover as
a start heuristic for MINLPs applied at the root node. We implemented Undercover within the
branch-cut-and-price framework SCIP [1] and used SCIP’s linear outer approximation solution for
the fixing values. We incorporated the fix-and-propagate, backtracking, and NLP postprocessing
features described in Section 4. To perform the fix-and-propagate procedure, we used the stan-
dard propagation engine of SCIP. Secondary SCIP instances were used to solve both the cover
generating problem and the Undercover sub-MIP.

In our experiments, we ran SCIP with all heuristics other than Undercover switched off, set a
node limit of 1, and deactivated cut generation. We set a node limit of 500 both for the covering
problem and the sub-MIP. For solving the sub-MIP, we used “emphasis feasibility” and “fast
presolving” settings. We used SCIP 1.2.0.4 with CPLEX 12.1 [18] as LP solver and Ipopt 3.7 [22]
as NLP solver for the postprocessing. This configuration we refer to as UC.

For comparison, we ran SCIP 1.2.0.4 with CPLEX 12.1 and Ipopt 3.7 in default mode, which
applies ten primal heuristics at the root node. We further compared with the state-of-the-art solvers
BARON [21] (commercial) and Couenne [4] (open source). For all solvers, we used node limit 1.
Our goal is thus not to compare the Undercover heuristic with SCIP, BARON, and Couenne
as complete solvers – a comparison rather insignificant –, but specifically with the performance of
their root heuristics.

As test set we used a selection of 33 MIQCP instances from MINLPLib [12]. We excluded
lop97ic, lop97icx, pb302035, pb351535, qap, and qapw, which are linear after the default pre-
solving of SCIP. On the nuclear instances, the root LP relaxation of SCIP is often unbounded
due to unbounded variables in nonconvex terms of the constraints. In this case, we cannot apply
Undercover since no fixing values are available. Due to this, we only included two of those instances,
nuclear14a and nuclear14b, for which the root LP of SCIP is bounded.

Results. The results are shown in Table 1. In column “nnz/var” we state the average number
of nonlinear nonzeros, i.e. the number of quadratic terms, per variable as an indication of the
nonlinearity of the problem.4 In column “% cov” we report the relative size of the cover used by
UC as percentage of the total number of variables after preprocessing, and the objective value of
the best solution found by Undercover. A star indicates that the sub-MIP was solved to optimality.
For all other solvers, we provide the objective value of the best solution found during root node
processing. The best solution among the four solvers is marked bold.

The computational results seem to confirm our expectation that often a low fixing rate suffices
to obtain a linear subproblem: 12 of the instances in our test set allow a cover of at most 5% of the
variables, further 10 instances of at most 15%. On the remaining third of the test set, a minimum
cover contains 19–96% of the variables.

UC found a feasible solution for 21 test instances: on 16 out of the 22 instances with a cover
of at most 15% of the variables, and on 5 instances in the remaining third of the test set. In
comparison, BARON found a feasible solution in 15 cases, Couenne in 9, SCIP in 14. We note
that on 7 instances UC found a solution, although none of BARON, Couenne, and SCIP did.
UC could solve ex1266 to optimality and util to 0.1% primal-dual gap.

4Note that since the cover generating problem contains one constraint for each nonlinear nonzero, this corresponds

to the ratio of items to sets of the set covering problem solved.
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Table 1. Computational results on MIQCP instances.

instance nnz/var % cov UC SCIP BARON Couenne

du-opt 0.95 95.24 4233.8709∗ 4233.8709 108.331477 41.3038865
du-opt5 0.95 94.74 3407.05415∗ 14.1684489 – 1226.02232
ex1263 0.34 3.88 30.1∗ – – –
ex1264 0.36 4.26 15.1∗ – – –
ex1265 0.38 3.52 15.1∗ – – 15.1
ex1266 0.40 3.03 16.3∗ – – –
fac3 0.81 78.26 130653857∗ – 38328601.6 –
feedtray2 10.70 3.26 – 0 0 –
meanvarx 0.19 23.33 16.9968975∗ 14.3692129 14.3692321 18.701873
netmod dol1 0.00 0.30 0∗ -0.317294979 0 –
netmod dol2 0.00 0.38 -0.0780227488∗ -0.50468289 0 –
netmod kar1 0.01 0.88 0∗ -0.132809562 0 –
netmod kar2 0.01 0.88 0∗ -0.132809562 0 –
nous1 2.39 19.44 – – – 1.567072
nous2 2.39 19.44 – 1.38431729 0.625967412 1.38431741
nuclear14a 4.98 6.43 – – – –
nuclear14b 2.42 6.43 – – – -1.11054393
nvs19 8.00 88.89 – 0 -1098 –
nvs23 9.00 90.00 – 0 -1124.8 –
product 0.17 30.87 – – – –
product2 0.37 26.15 – – – –
sep1 0.40 10.53 -510.080984∗ – -510.080984 -510.080984
space25 0.12 1.04 – – – –
space25a 0.29 5.84 – – – –
spectra2 3.43 35.71 26.6076018∗ 23.2840887 119.8743 –
tln5 1.39 9.09 15.1∗ – – 14.5
tln6 1.47 7.69 32.3∗ – – –
tln7 1.53 6.67 30.3∗ – – –
tln12 1.70 3.99 – – – –
tloss 1.47 7.89 27.3∗ – – –
tltr 1.10 12.50 61.1333333∗ – – –
util 0.07 3.13 999.578743∗ 1000.48517 1006.50609 –
waste 1.10 5.65 693.392795 693.290675 712.301232 –

To evaluate the solution quality of Undercover, for each other solver consider the instances
on which both UC and this solver found a solution: On those instances the solution found by
Undercover is better than the one found by SCIP in 1 case (equal in 1, worse in 8), better than
BARON 4 times (equal 4, worse 3), and better than Couenne in 1 case (equal in 2, worse in
3 cases).

The overall time for SCIP preprocessing, solving the root LP and applying Undercover was
always less than two seconds. Thereof, the time for applying Undercover was always less than
0.2 seconds, except for the instance waste, where Undercover ran for 1.1 seconds. The major
amount of time was usually spent in solving the sub-MIP. Although the polytope described by
(3.3) is not integral, the covering instance could always be solved to optimality in the root node
by SCIP’s default heuristics and cutting plane algorithms. We note that in 10 out of the 14 cases
where the resulting sub-MIP was infeasible, the infeasibility was already detected during the fix-
and-propagate stage. Thus in most cases, no time was invested in vain to try and find a solution to
an infeasible subproblem. Also, except for instance waste, all feasible sub-MIPs could be solved to
optimality within the imposed node limit of 500, which indicates that – with a state-of-the-art MIP
solver at hand – the generated subproblems are indeed significantly easier than the full MINLP.
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6. Conclusion and future work

Altogether, Undercover seems to be a fast start heuristic, that often produces feasible solutions
of reasonable quality. On the chosen test set, the experiments confirmed our expectation that a
low fixing rate often suffices to obtain a feasible linear subproblem which is easy to solve. The
computational results indicate, that it complements nicely with existing root node heuristics in
different solvers.

Future research will focus on fully implementing and testing the described features and variants
in Section 4 and experimenting with fixing values from other approximations, especially solutions
of standard NLP relaxations.
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