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Abstract

We consider an optimal control problem from hyperthermia treatment planning and
its barrier regularization. We derive basic results, which lay the groundwork for the
computation of optimal solutions via an interior point path-following method. Further,
we report on a numerical implementation of such a method and its performance at an
example problem.
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1 Hyperthermia treatment planning

Regional hyperthermia is a cancer therapy that aims at heating up deeply seated tumors
in order to make them more susceptible to an accompanying chemo or radio therapy [12].

We consider a treatment modality where heat is induced by a phased array microwave
ring-applicator containing 12 antennas. Each antenna emits a time-harmonic electromag-
netic field the amplitude and phase of which can be controlled individually. The linearly
superposed field acts as a heat source inside the tissue.

†Supported by the DFG Research Center Matheon ”Mathematics for key technologies”

Figure 1: Hybrid magnetic resonance hyperthermia treatment system in Berlin (Charité)
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Figure 2: Computational model of a patient

We are interested in controlling the resulting stationary heat distribution, which is
governed by a semi-linear elliptic partial differential equation, the bio-heat transfer equation
(BHTE), see [7]. The aim is to heat up the tumor as much as possible, without damaging
healthy tissue. We thus have to impose constraints on the temperature, and mathematically,
we have to solve an optimization problem subject to a PDE as equality constraint and
pointwise inequality constraints on the state.

The aim of this note is to derive basic results for an interior point path-following al-
gorithm that has been applied to this problem. In order to treat the state constraints
algorithmically, the inequality constraints are replaced by a sequence of barrier function-
als, which turn the inequality constrained problem into a sequence of equality constrained
problems.

1.1 The Bio-Heat Transfer Equation

The stationary bio-heat transfer equation was first introduced in [7] to model the heat-
distribution T in human tissue. This partial differential equation is a semi-linear equation
of elliptic type, which can be written as A(T ) − B(u) = 0, where A(T ) is a differential
operator, applied to the temperature distribution, and B(u) is a source term, which can be
influenced by complex antenna parameters u ∈ C12.

More concretely, we set v := (T, u) and consider the following equation in the weak form
on a domain Ω ⊂ R3, which is an individual model of a patient:

〈c(v), ϕ〉 := 〈A(T )−B(u), ϕ〉 = 0 ∀ϕ ∈ C∞(Ω),

〈A(T ), ϕ〉 :=
∫

Ω

〈κ(x)∇T,∇ϕ〉R3 + w(T, x)(T − T0)ϕdx+
∫

∂Ω

h(x)(T − Tout)ϕdS,

〈B(u), ϕ〉 :=
∫

Ω

σ(x)
2

|E(u, x)|2C3 ϕdx,

where x is the spacial variable,

E(u, x) =
12∑

k=1

Ek(x)uk

is the superposition of complex time-harmonic electro-magnetic fields, and uk are the com-
plex coefficients of the control. Further, κ(x) is the temperature diffusion coefficient, σ(x)
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is the electric conductivity and w(T, x) denotes the blood perfusion. By T0, we denote the
temperature of the unheated blood, e.g. 37◦C. The domain Ω consists of a number of sub-
domains Ωi, corresponding to various types of tissue. All coefficients depend on the tissue
type and are chosen piecewise constant on each subdomain, associated with a tissue type.
They may vary significantly from tissue type to tissue type. For a more detailed description
of the parameters we refer to [2].

We study this PDE as an equality constraint under the following set of assumptions:

Assumption 1.1. Assume that κ, σ ∈ L∞(Ω) are strictly positive on Ω. Similarly, let
h ∈ L∞(∂Ω) be strictly positive on ∂Ω. Further, assume that w(T, x)(T − T0) is strictly
monotone, bounded and measurable for bounded T , and twice continuously differentiable
in T . Assume also that each electric field Ek is contained in LqE

(Ω,C3) for some qE > 3.

Remark 1.2. The assumptions on the regularity of the fields Ek ∈ LqE
, qE > 3 are

motivated by the requirement that the temperature distribution inside the body is bounded
and continuous. For the generic regularity Ek ∈ L2 this cannot be guaranteed a-priori. In
clinical practice, of course, pointwise unbounded temperature profiles do not occur. Overly
large intensity peaks are avoided by construction of the applicator. In particular, the
microwave antennas are placed in a certain distance to the patient. However, it is observed
that near tissue boundaries so called hot spots occur: small regions, where the temperature
is significantly higher than in the surrounding tissue due to singularities in the electro-
magnetic fields at tissue boundaries. One of the challenges of optimization is to eliminate
these hot spots.

Under these assumption we can fix our functional analytic framework. As usual in
state constrained optimal control, we have to impose an ‖·‖∞-topology on the space of
temperature distributions. To this end, let q be in the range qE > q > 3, and q′ = q/(q−1)
its dual exponent. We define V = C(Ω)× C12 and

c : (C(Ω) ⊃ Dq)× C12 → (W 1,q′)∗,

where Dq is the set of all T , such that A(T ) ∈ (W 1,q′)∗, i.e. 〈A(T ), ϕ〉 ≤M ‖ϕ‖W 1,q′ ∀ϕ ∈
C∞(Ω). Under suitable regularity assumptions Dq = W 1,q(Ω), a result, which we will,
however, not need.

It is well known (cf. e.g. [11, 4]) that A has a continuous inverse A−1 : (W 1,q′)∗ → C(Ω),
and even ‖T‖Cβ ≤ c ‖A(T )‖(W 1,q′)∗ for some β > 0 locally, where Cβ is the space of Hölder
continuous functions. Moreover, it is straightforward to show that Dq only depends on the
main part of A, and is thus independent of T .

In the next two lemmas we gather basic properties of the state equation and its lin-
earization.

Lemma 1.3. The mapping c(v) : (C(Ω) ⊃ Dq)× C12 → (W 1,q′(Ω))∗ is twice continuously
Fréchet differentiable. Its linearization is given by

〈c′(v)δv, ϕ〉 = 〈A′(T )δT −B′(u)δu, ϕ〉
〈A′(T )δT, ϕ〉 =

∫

Ω

〈κ(x)∇δT,∇ϕ〉R3 + (w′(T, x)(T − T0) + w(T, x))δTϕ dx+
∫

∂Ω

h(x)δTϕ dS

〈B′(T )δT, ϕ〉 =
∫

Ω

σ(x)Re

〈
12∑

k=1

Ek(x)uk,

12∑

k=1

Ek(x)δuk

〉

C3

ϕdx
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and its second derivative reads

〈c′′(v)(δv)2, ϕ〉 = 〈A′′(T )(δT )2 −B′′(u)(δu)2, ϕ〉 =

=
∫

Ω

(w′′(T, x)(T − T0) + 2w′(T, x))δT 2ϕ− σ(x)Re

〈
12∑

k=1

Ek(x)δuk,

12∑

k=1

Ek(x)δuk

〉

C3

ϕdx.

Proof. Since all other parts are linear in T , it suffices to show Fréchet differentiability
of T → w(T, x)(T − T0) and u → |E(u, x)|2. Since by assumption, w(T, ·) ∈ C1(Ω),
differentiability of T → w(T, x)(T − T0) : C(Ω) → Lt(Ω) for every t < ∞ follows from
standard results of Nemyckii operators (cf. e.g. [3, Prop. IV.1.1], applied to remainder
terms). By the dual Sobolev embedding Lt(Ω) ↪→ (W 1,q′(Ω))∗ for sufficiently large t,
differentiability of T → w(T, x)(T − T0) : C(Ω) ⊃ Dq → (W 1,q′(Ω))∗ is shown.

Similarly, differentiability of the mapping u → |E(u, x)|2 : C12 → Ls(Ω) for some
s > 3/2 follows by the chain rule from the linearity of the mapping u → E(u, x) : C12 →
LqE

(Ω,C3) and the differentiability of the mapping w → |w|2 : Lp(Ω,C3) → LqE/2(Ω,C3)
with qE/2 = s > 3/2. Again, by the dual Sobolev embedding Ls(Ω) ↪→ (W 1,q′(Ω))∗ we
obtain the desired result.

Similarly, one can discuss the second derivatives. We note that (|E(u, x)|2)′ is linear in
u, and thus it coincides with its linearization.

Remark 1.4. Note that A′ : C(Ω) ⊃ Dq → W 1,q′(Ω) is not a continuous linear operator,
but since it has a continuous inverse, it is a closed operator. Moreover, since the main part
of A is linear, A′(T )−A′(T̃ ) contains no differential operator. Hence ‖T̃ −T‖∞ → 0 implies∥∥∥A′(T )−A′(T̃ )

∥∥∥
C(Ω)→(W 1,q′ )∗

→ 0. These facts allow us to apply results, such as the open

mapping theorem and the inverse function theorem to A.

Lemma 1.5. For each v ∈ Dq × C12 the linearization

c′(v) = A′(T )−B′(u) : Dq × C12 → (W 1,q′(Ω))∗

is surjective and has a finite dimensional kernel.
For each v with c(v) = 0 there is a neighborhood U(v) and a local diffeomorphism

ψv : ker c′(v) ↔ U(v) ∩ {v : c(v) = 0},
satisfying ψ′v(0) = Id and c′(v)ψ′′v (0) = −c′′(v).
Proof. It follows from the results in [4] that A′(T ) has a continuous inverse A′(T )−1 :
(W 1,q′(Ω))∗ → C(Ω). Since A′ is bijective, also c′(v) = (A′(T ),−B′(u)) is surjective, and
each element δv = (δT, δu) of ker c′ can be written in the form (A′(T )−1B′(u)δu, δu). Since
δu ∈ C12, ker c′(v) is finite dimensional. Via the inverse function theorem we can now
conclude local continuous invertibility of A, and also that A−1 is twice differentiable.

Let (δT, δu) = δv ∈ ker c′(v). Then we define

ψv(δv) :=
(

(A−1 ◦B)(u+ δu)
u+ δu

)

and compute

(A−1 ◦B)′(v)δu = A′(T )−1B′(u)δu = δT

(A−1 ◦B)′′(v)(δu)2 = −A′(T )−1A′′(T )A′(T )−1(B′(u)δu)2 +A′(T )−1B′′(u)(δu)2

= −A′(T )−1
(
A′′(T )(δT )2 −B′′(u)(δu)2

)
.
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It follows

ψ′v(0)δv = (δT, δu) = δv

c′(v)ψ′′v (0)(δv)2 = (A′(T ),−B′(u))ψ′′v (0)(δv)2

= −(A′′(T )(δT )2 −B′′(u)(δu)2) = −c′′(v)(δv)2.

1.2 Inequality constraints and objective

As for inequality constraints, we impose upper bounds on the amplitudes of the controls to
model the limited power of the microwave applicator:

|uk| ≤ umax, k = 1 . . . 12.

Moreover, crucially, we impose upper bounds on the temperature inside the healthy tissue.
These are state constraints, which pose significant practical and theoretical difficulties.
These constraints are necessary to avoid excessive heating of healthy tissue, which would
result in injuries of the patient. We have

T ≤ Tmax(x),

where Tmax is chosen as a piecewise constant function on each tissue type, depending on
the sensitivity of the tissue with respect to heat.

Algorithmically, we treat the inequality constraints by a barrier approach (cf. [10])
and replace the inequality constraints by a sequence of barrier functionals, depending on a
parameter µ (setting again v = (T, u)):

b(v;µ) =
∫

Ω

l(Tmax − T ;µ) dx− µ

12∑

i=1

ln(umax − |uk|)

here l may be a sum of logarithmic and rational barrier functionals of the form

l(·;µ; k) : R+ → R := R ∪ {+∞}

t 7→ l(t;µ; k) :=





−µ ln(t) : k = 1
µk

(k − 1)tk−1
: k > 1

A straightforward computation shows that b(v;µ) is a convex function (as a composition
of convex and convex, monotone functions), and it is also clear that for strictly feasible
v, b : C(Ω) × C12 is twice continuously differentiable near v, and thus locally Lipschitz
continuous there. It has been shown in [10] that b is also lower semi-continuous.

Finally, we consider an objective functional J : C(Ω) × C12 → R, which we assume to
be twice continuously differentiable, and thus locally Lipschitz continuous.

Summarizing, we can write our regularized optimal control problem in the short form

min
v∈V

Jµ(v) := J(v) + b(v;µ) s.t. c(v) = 0. (1)
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2 Barrier minimizers and first order optimality condi-
tions

Next we study existence and basic properties of solutions of the barrier problems. For this
purpose, we impose the assumption that there is at least one strictly feasible solution. This
is fulfilled, for example by u = 0, if the upper bounds Tmax are chosen reasonably.

Theorem 2.1. For every µ > 0 the barrier problem (1) has an optimal solution, which is
strictly feasible with respect to the inequality constraints.

Proof. Since the set of feasible controls is closed and bounded, the set of all feasible pairs
(T, u) is compact. By assumption, there is at least one strictly feasible solution, for which
J + b takes a finite value. Hence, existence of an optimal solution follows immediately from
the Theorem of Weierstraß (its generalization for lower semi-continuous functions).

Since all solutions of our PDE are Hölder continuous, strict feasibility for sufficiently
high order of the barrier functional follows from [10, Lemma 7.1].

Lemma 2.2. If vµ is a locally optimal solution of (1), then δv = 0 is a minimizer of the
following convex problem:

min
δv

J ′(vµ)δv + b(vµ + δv;µ) s.t. c′(vµ)δv = 0 (2)

Proof. For given, δv ∈ ker c′(vµ), and t > 0 let ṽ = v + tδv. By Lemma 1.5 there are
v̂ = ψvµ(δv), such that c(v̂) = 0 and v̂ − ṽ = o(t). Further, by strict feasibility of vµ, J + b
is locally Lipschitz continuous near vµ with Lipschitz constant LJ+b. We compute

J ′(vµ)(tδv) + b′(vµ;µ)(tδv) = (J + b)(ṽ;µ)− (J + b)(vµ;µ) + o(t)
= (J + b)(v̂;µ)− (J + b)(vµ;µ) + (J + b)(v̂;µ)− (J + b)(ṽ;µ) + o(t)
≥ 0 + LJ+bo(t) + o(t).

it follows J ′(vµ)δv + b′(vµ;µ)δv ≥ 0, and by linearity J ′(vµ)δv + b′(vµ;µ)δv = 0. By
convexity of b we have b′(vµ;µ)δv ≤ b(ṽ;µ)− b(vµ;µ) and thus

J ′(vµ)δv + b(vµ + δv;µ)− b(vµ;µ) ≥ 0

which proofs our assertion.

Theorem 2.3. If vµ is a locally optimal solution of (1), then there exists a unique p ∈
H1(Ω), such that

0 = F (v, p;µ) :=
{
J ′µ(vµ) + c′(vµ)∗p,
c(vµ). (3)

Proof. Clearly, the second row of (3) holds by feasibility of vµ.
By Lemma 2.2 δv = 0 is a minimizer of the convex program (2). Hence, we can apply

[10, Thm. 5.4] to obtain first order optimality conditions for this barrier problem with
p ∈ W 1,p′(Ω). Taking into account strict feasibility of vµ with respect to the inequality
constraints, all elements of subdifferentials in [10, Thm. 5.4] can be replaced by Fréchet
derivatives, so (3) and p ∈ H1(Ω) follow.
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3 Second order optimality conditions and the Newton
system

Before we turn to second order conditions we perform a realification of the complex vector
u ∈ C12. Since |E(u, x)| only depends on the the relative phase shifts of the antenna
parameters, optimal controls of our problem are non-unique. This difficulty can be overcome
easily by fixing Im(u1) = 0. After that, realification (x+ iy → (x, y)) yields a new control
vector u ∈ R23 (dropping the component that corresponds to Im(u1)), which we will use in
the following.

We define the Hessian of the Lagrangian H(v; p) by

H(v, p)δv2 = J ′′µ (v)δv2 + 〈p, c′′(v)δv2〉

Theorem 3.1. Let (vµ, pµ) be a solution of (3). Then,

1
2
H(vµ, pµ)δv2 = Jµ(ψvµ

(δv))− Jµ(vµ) + o(‖δv‖2). (4)

Further, we have

(i) H(vµ, pµ) is positive semi-definite on ker c′(vµ), if vµ is a minimizer of (1).

(ii) H(vµ; pµ) is positive definite on ker c′(vµ), if and only if vµ is a local minimizer of
(1) and Jµ satisfies a local quadratic growth condition.

Then for each (r1, r2) ∈ ((H1(Ω))∗ × R23)× (W 1,q′(Ω))∗ the linear system
(
H(vµ, pµ) c′(vµ)∗

c′(vµ) 0

) (
δv
δp

)
=

(
r1
r2

)
(5)

has a unique solution (δv, δp) ∈ V ×H1(Ω), depending continuously on (r1, r2).

Proof. Let δv ∈ ker c′(vµ), and ψvµ be defined as in Lemma 1.5. We show (4) by Taylor
expansion:

Jµ(ψvµ(δv))− Jµ(vµ)

= J ′µ(vµ)ψ′vµ
(0)δv +

1
2

(
J ′′µ (vµ)(ψ′vµ

(0)δv)2 + J ′µ(vµ)ψ′′vµ
(0)(δv)2

)
+ o(‖δv‖2).

(6)

Since J ′µ(vµ)δv = 0∀δv ∈ ker c′(vµ), ψ′vµ
= Id, it follows J ′µ(vµ)ψ′vµ

(0)δv = 0. Further, by
J ′µ(vµ)δv + 〈pµ, c

′(vµ)δv〉 = 0 ∀δv ∈ V and c′(vµ)ψ′′vµ
= −c′′(vµ) we deduce

J ′µ(vµ)ψ′′vµ
(0)(δv)2 = −〈pµ, c

′(vµ)ψ′′vµ
(0)(δv)2〉 = 〈pµ, c

′′(vµ)(δv)2〉.

Inserting these two results into (6) yields (4).
All other assertions, except for solvability of (5) then follow directly, using the fact that

∣∣ ‖δv‖ − ‖ψ(δv)− vµ‖
∣∣ ≤ ‖vµ + δv − ψ(δv)‖ = o(‖δv‖).

Let us turn to (5). If H(vµ; pµ) is positive definite on kerc′(vµ) (which is finite dimensional),
then the minimization problem

min
c′(vµ)δv=r2

−〈r1, δv〉+H(vµ; pµ)δv2
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is strictly convex and has a unique solution δv. The first order optimality conditions
for this problem yield solvability of the system (5) at (vµ, pµ). Since we have assumed
r1 ∈ (H1)∗ × R23 and A′(Tµ)∗ : H1 → H−1 is an isomorphism, we obtain δp ∈ H1. Thus,
the matrix in (5) is surjective, and we may deduce its continuous invertibility by the open
mapping theorem.

Corollary 3.2. If H(vµ, pµ) is positive definite on ker c′(vµ), then, locally, there is a dif-
ferentiable path µ → zµ of local minimizers of the barrier problems, defined in some open
interval ]µ, µ[⊃ µ.

Proof. We note that F (v, p;µ) is differentiable w.r.t. µ, and w.r.t. (v, p). Since F ′ =
dF/d(v, p), given by (5) is continuously invertible, local existence and differentiability fol-
lows from the implicit function theorem.

Corollary 3.3. If H(vµ, pµ) is positive definite on ker c′(vµ), Newton’s method, applied to
F (v, p;µ) converges locally superlinearly to (vµ, pµ).

Proof. Since F ′(v, p;µ) depends continuously on (v, p), we can use a standard local conver-
gence result for Newton’s method (cf. e.g. [6, Thm. 10.2.2]).

Remark 3.4. Since all these results depend on the positive definiteness of H, we cannot
expect to obtain global convergence results of barrier homotopy paths. From a global point
of view, several branches may exist, and if H is only positive semi-definite at a point of one
such branch, it may cease to exist or bifurcate. As a consequence, a local Newton path-
following scheme should be augmented by a globalization scheme. It is subject to current
research to develop such a scheme for nonlinear state constrained problem, using ideas from
nonlinear programming.

4 Numerical results

For the optimization of the antenna parameters we use an interior point path-following
method, applying Newton’s method to the system (3). As barrier functional we use the
sum of rational barrier functionals, and the reduction of the barrier parameter is chosen
adaptively in the spirit of [1, Chapt. 5] by an affine covariant estimation of the non-linearity
of the barrier subproblems. Further, Newton’s method is augmented by a pointwise damping
step. A more detailed description of this algorithm can be found in [9]. This algorithm
can be applied safely in a neighborhood of the barrier homotopy path, as long as positive
definiteness of H(vµ, pµ) holds. In practice, this works well, as long as a reasonable starting
guess is available for the antenna parameters. After the homotopy path is found, the
algorithm manages to stay inside the region of convergence, and on can even observe fast
local convergence of this algorithm (cf. Figure 3, left). Moreover, just as predicted by the
theory in the convex case (cf. [10]) the error in the function value decreases linearly with µ
(cf. Figure 3, right).

The discretization of the Newton steps was performed via linear finite element spaces
Xh for T and p (cf. [5]). Discretization and assembly were performed with the library
KASKADE 7.

In view of Newton’s method this gives rise to the following block matrix, which has to
be factorized at each Newton step:

F ′(vh, ph;µ) =




H1(Th, ph;µ) 0 A′(Th)∗

0 H2(u, ph;µ) B′(u)∗

A′(Th) B′(u) 0


 ,
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Figure 3: Left: µ-reduction factors σk = µk+1/µk. Right: error in functional values.

where

H1(Th, ph;µ)(vh, wh) = J ′′(Th)(vh, wh) + b′′(Th;µ)(vh, wh) + 〈ph, A
′′(T )(vh, wh)〉L2(Ω)

H2(u, ph;µ)(v, w) = b′′(u;µ)(v, w) + 〈ph, B
′′(u)(v, w)〉L2(Ω).

Note that H2 : R23 → R23, and B′ : R23 → X∗
h are dense matrices, while A′, H1 : Xh → X∗

h

are sparse. The factorization of this matrix is performed via building a Schur complement
for the (2, 2)-block, so that essentially only a sparse factorization of A′ and a couple of
back-solves have to be performed via a direct sparse solver. As an alternative one can use
an iterative solver, preconditioned by incomplete factorizations as proposed in [8].

Let us consider the development of the stationary heat distribution during the algorithm
in Figure 4. We observe the effect of the barrier regularization. The algorithm starts with
a very conservative choice of antenna parameters, an tends to a more and more aggressive
configuration, as µ decreases. This may be of practical value for clinicians. They might
be interested in intermediate solutions, which are safely below the temperature bounds.
Further, it is interesting to observe that already at a relatively large value of µ = 0.1,
we are rather close to the optimal solution. This is reflected by the choice of steps (cf.
Figure 3).
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