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The Steiner Connectivity Problem§

Ralf Borndörfer∗ Marika Karbstein∗ Marc E. Pfetsch∗∗

Abstract

The Steiner connectivity problem has the same significance for line planning in public
transport as the Steiner tree problem for telecommunication network design. It
consists in finding a minimum cost set of elementary paths to connect a subset
of nodes in an undirected graph and is, therefore, a generalization of the Steiner
tree problem. We propose an extended directed cut formulation for the problem
which is, in comparison to the canonical undirected cut formulation, provably strong,
implying, e.g., a class of facet defining Steiner partition inequalities. Since a direct
application of this formulation is computationally intractable for large instances, we
develop a partial projection method to produce a strong relaxation in the space of
canonical variables that approximates the extended formulation. We also investigate
the separation of Steiner partition inequalities and give computational evidence that
these inequalities essentially close the gap between undirected and extended directed
cut formulation. Using these techniques, large Steiner connectivity problems with
up to 900 nodes can be solved within reasonable optimality gaps of typically less
than five percent.

1 Introduction

The Steiner connectivity problem (SCP) can be described as follows. We are given an
undirected graph G = (V,E), a set of terminal nodes T ⊆ V , and a set of elementary
paths P in G. The paths have nonnegative costs c ∈ RP

+. The problem is to find a
set of paths P′ ⊆ P of minimal cost

∑
p∈P′ cp that connect the terminals, i.e., such

that for each pair of distinct terminal nodes t1, t2 ∈ T there exists a path q from t1
to t2 in G such that each edge of q is covered by at least one path of P′. We can
assume w.l.o.g. that every edge is covered by a path, i.e., for every e ∈ E there is a
p ∈ P such that e ∈ p; in particular, G has no loops. Figure 1 gives an example of a
Steiner connectivity problem and a feasible solution.

The SCP is a generalization of the Steiner tree problem (STP), see, for example,
[31, 33, 34], in which all paths contain exactly one edge. The STP is nowadays well
investigated: A hierarchy of strong formulations is known and large scale instances
can be solved, see [27] and the references therein. Steiner trees are fundamental for
network design; see [2] for an overview. The STP can be seen as the prototype of
all problems where nodes are connected by installing capacities on individual edges
or arcs. Significant progress has been made in dealing with basic network design
§Supported by the DFG Research Center Matheon “Mathematics for key technologies”
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Figure 1: Example of a Steiner connectivity problem. Left: A graph with four terminal nodes
(T = {a, d, e, f}) and six paths

(
P = {p1 = (a, b, c, d), p2 = (e, f, g), p3 = (a, e), p4 = (e, f, c), p5 =

(g, d), p6 = (f, g, c, d)}
)
. Right: A feasible solution with three paths (P′ = {p3, p4, p6}).

problems. In particular, large scale Steiner tree, uncapacitated and hierarchical
network design problems can nowadays be solved effectively, see [34].

These advances carry over to more complex real world applications in telecom-
munications, supply chain, and utility networks, see again [2] for a survey; however,
“more general situations continue to pose significant challenges to the optimization
community” [2].

One such case is the line planning problem in public transport. Here, transporta-
tion capacities have to be installed on a set of paths (corresponding to bus, tram,
and train lines), instead of individual arcs, such that all passengers can reach their
destinations. These problems can be modeled as integer programs which integrate
line and passenger routing [5, 29, 35, 36, 39]. They are computationally very dif-
ficult and despite of significant research efforts large scale problems with hundreds
of nodes and thousands of lines have not been solved until very recently [6, 7]. A
main challenge is the derivation of high quality lower bounds. The knowledge of
the polyhedral structure is currently limited to only a few classes of valid and facet
defining inequalities [17], see also [10, 11, 12, 14] for related work. To make progress
in this direction, we provide a polyhedral analysis of the Steiner connectivity prob-
lem in this paper. Similar to the STP in network design, the SCP is a prototype
for line planning: It captures the connectivity aspect. This problem has not been
investigated yet.

Although the STP and the SCP look very similar at first glance, it is not possible
to generalize structural results and algorithms from the Steiner tree problem directly
to the Steiner connectivity problem. In fact, the SCP is NP-hard even for T = V
(see Proposition 2.4 below). Moreover, a formulation based on the corresponding
directed graph as it is proposed by Chopra and Rao [13] for the STP does not
exist for the SCP. Chopra and Rao showed that the LP relaxation of the undirected
IP formulation of the STP, including all so-called Steiner partition inequalities, is
dominated by a certain family of directed formulations; see also Polzin [31] and
Polzin and Daneshmand [33]. For the SCP, analogous results can instead be derived
from an extended formulation based on a suitably constructed directed Steiner tree
problem. We show that this formulation is provably strong, including, e.g., a class
of facet defining generalized Steiner partition inequalities, but often too large to be
solved directly. However, it can be used to produce a strong relaxation of the Steiner
connectivity problem via projection to the original space of variables.
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Extended formulations have recently drawn considerable attention in the liter-
ature, see, e.g., Vanderbeck and Wolsey [40] and Conforti, Cornuéjols, and Zam-
belli [15] for surveys. They have high theoretical relevance for the analytic deriva-
tion of strong inequalities and tight descriptions, see Pochet and Wolsey [30] and the
references therein for applications to production planning problems and Lovász and
Schrijver [28] for applications to the stable set problem. Beyond these analyses and
some direct applications, there are only a few examples of successful computational
uses of extended formulations. These include the lift-and-project method, see Balas
et. al. [3], and, recently, the work of Giandomenico et. al. [21] on the derivation of
strong cutting planes for the stable set problem using the Lovász-Schrijver M(K,K)
operator. We investigate a similar approach, the partial projection method, to derive
strong inequalities including facet defining cuts from a combinatorially motivated
subsystem of an extended formulation. In our application, the extended directed
cut formulation for the SCP is often too time consuming to be solved or even not
solvable at all for large instances. However, the partial projection method can be
used to produce a computationally tractable, strong approximation. We provide a
computational comparison of this approach with a shrinking heuristic, which gives a
very effective way to improve the canonical undirected cut formulation using Steiner
partition inequalities. The comparison gives evidence that these inequalities close
most of the gap between the canonical undirected and the extended directed cut for-
mulation. The Steiner partition inequalities are therefore indeed very important for
the solution of large scale Steiner connectivity problems with 1 000 and more nodes
and several thousand paths.

The article is structured as follows. It starts with a combinatorial discussion of
the Steiner connectivity problem in Section 2. We show that the SCP is equivalent
to a suitably constructed but very large directed Steiner tree problem. This gives
rise to an extended formulation and yields polynomial time algorithms for the SCP
in some cases. In Section 3, we give two integer programming formulations for the
SCP based on the transformation in Section 2, namely, an undirected cut formula-
tion and an extended directed cut formulation. We compare these formulations and
their LP relaxations. An analysis of the polytope associated with the undirected
cut formulation follows in Section 4. We state necessary and sufficient conditions
for the Steiner partition inequalities to be facet defining. We show that a super
class of the Steiner partition inequalities can be separated in polynomial time. This
shows that extended formulations provide tight relaxations for the SCP. We show
in Section 5 that a shrinking-based separation of Steiner partition inequalities yields
strong bounds for Steiner connectivity problems on large scale real-world transporta-
tion networks. In most cases, and with respect to a given time limit, these bounds
are as strong as or even stronger than the bounds arising from the extended directed
cut formulation or the bounds derived by a polynomial time algorithm to separate
cuts from the extended formulation by projection.

2 Relation to Directed Steiner Trees & Complexity

We show in this section the equivalence of the SCP and a suitably constructed
directed Steiner tree problem. The directed Steiner tree problem (DSTP) is the
following: Given a directed graph and a set of terminal nodes T , we have to find a
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Figure 2: A Steiner connectivity problem and its associated directed Steiner tree problem. Left:
Graph G with four paths and three terminal nodes. The numbers on the paths indicate costs. Right:
Associated Steiner connectivity digraph D′. The numbers on the arcs are the costs; the default
value is zero.

minimum cost set B of arcs that connect a root node r ∈ T to each other terminal
t ∈ T\{r}, i.e., there exists a directed path from r to t in B. If the costs of the arcs
are nonnegative, which we assume, there exists a solution that is a directed tree (an
arborescence).

Consider an SCP with undirected graph G = (V,E), a set of paths P, terminals
T ⊆ V , and nonnegative costs c ∈ RP

+. Define nodes vp, wp for each path p ∈ P and
a digraph D′ = (V ′, A′), which we call Steiner connectivity digraph. Its node set is

V ′ := T ∪ {vp, wp : p ∈ P}.

We choose some terminal node r ∈ T as root node and define the following arcs
a ∈ A′ and costs c′a:

a = (r, vp), c′a := 0, ∀ p ∈ P with r ∈ p,
a = (vp, wp), c′a := cp, ∀ p ∈ P,
a = (wp̃, vp), c′a := 0, ∀ p, p̃ ∈ P, p 6= p̃, p and p̃ have

a node v ∈ V in common,
a = (wp, t), c′a := 0, ∀ p ∈ P, ∀ t ∈ T\{r} with t ∈ p.

Figure 2 illustrates our construction. Note that choosing different root nodes re-
sults in different Steiner connectivity digraphs and hence different associated DSTPs.
However, we will show in Proposition 2.2 that the solutions of an SCP and any as-
sociated DSTP are all equivalent, independent of the choice of the root node. For
ease of notation, we will therefore omit the root node whenever the results are in-
dependent of r. Polyhedral results can depend on the choice of the root node, see
Remark 3.9 below. In such cases we will include the root node in the notation.

A DSTP associated with an SCP has the following properties.

Observation 2.1. 1. The only arc with target node wp is (vp, wp), for all p ∈ P.
2. The only arc with source node vp is (vp, wp), for all p ∈ P.
3. Each elementary directed (r, t)-path, t ∈ T\{r}, has the general form (r, vp1 , wp1 , . . . ,

vpk , wpk , t), k ≥ 1.
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Proposition 2.2. The following holds for an SCP and an associated DSTP: For each
solution of one problem there exists a solution of the other problem with the same
objective value. In particular, the optimal objective value of an associated DSTP is
independent of the choice of the root node.

Proof. Assume P̃ is a solution of SCP. Then let

Ã := A′ \ {(vp, wp) : p /∈ P̃}.

The arcs in Ã connect the root r with each terminal t ∈ T \ {r} via a directed path.
Moreover,

∑
a∈Ã c

′
a =

∑
p∈P̃ c

′
vpwp =

∑
p∈P̃ cp.

For the converse, assume that Ã is a solution of the DSTP. We show that

P̃ := {p ∈ P : (vp, wp) ∈ Ã}

is a solution of the corresponding SCP with the same cost. To this purpose, consider
the root node r and some terminal t ∈ T\{r}; these nodes are connected by an
elementary directed path in D′ using only arcs in Ã. Each such path has the form
(r, vp1 , wp1 , . . . , vpk , wpk , t), k ≥ 1 (see Observation 2.1), with (vpi , wpi) ∈ Ã, i =
1, . . . , k, that is, pi ∈ P̃, i = 1, . . . , k. Due to the construction of D′, p1 contains r,
pi and pi+1, i = 1, . . . , k − 1, have at least one node in common, and pk contains t.
Hence, we can find a path from r to t in G that is covered by p1, . . . , pk ∈ P̃. Since
the paths are undirected, every two terminals t1, t2 ∈ T , t1, t2 6= r, can be connected
via r, i.e., P̃ connects T . Furthermore,

∑
p∈P̃ cp =

∑
p∈P̃ c

′
vpwp =

∑
a∈Ã c

′
a.

These arguments hold for every root node.

Since the Steiner connectivity problem is a generalization of the Steiner tree
problem, it is strongly NP-hard in general. The relation to the associated DSTP,
however, exhibits a number of polynomially solvable cases.

Corollary 2.3. SCP is solvable in polynomial time for |T | = k, k constant.

Proof. This follows from the complexity results for the directed Steiner tree problem,
see Feldman and Ruhl [20].

Note that the SCP for |T | = 2 can be solved by a directed shortest path compu-
tation in the Steiner connectivity digraph.

In contrast to the STP, however, we can show the following.

Proposition 2.4. SCP is strongly NP-hard for T = V , even for unit costs.

Proof. We reduce the set covering problem to the Steiner connectivity problem. In
a set covering problem we are given a finite set S and a setM⊆ 2S . The problem is
to find a subsetM′ ⊆M of minimal cardinality |M′|, such that for all s ∈ S there
exists an M ∈M′ with s ∈M .

Given a set covering instance, we define a Steiner connectivity instance in a graph
G = (V,E) as follows: The nodes are V = S ∪{v} = T with v being one extra node.
Let us write V = {s0, s1, s2, . . .}, where v = s0. All nodes are terminals. We first
assume that G is a complete graph and later remove all edges that are not covered
by paths after their construction. For each set M ∈ M order the elements in M

5



arbitrarily and construct a path beginning in node v and passing through all nodes
of M in the given order. The cost of each such path is 1.

It is easy to see that a coverM′ with at most k elements exists if and only if a
set of paths exists that connects all nodes with cost at most k, k ≥ 0.

Corollary 2.5. SCP is strongly NP-hard for |T | = |V | − k, k constant.

Proof. We add k isolated nodes to the graph G in the proof of Proposition 2.4.

Proposition 2.6. Unless P = NP , there exists no polynomial time α-approximation
algorithm for SCP with α = γ · log |V |, γ ≤ 1.

Proof. The transformation in Proposition 2.4 is approximation preserving, since
there exists a cost preserving bijection between the solutions of a set covering instance
and its corresponding Steiner connectivity instance. It has been shown that the set
covering problem is not approximable in the sense that there exists no polynomial
time approximation algorithm with approximation factor smaller than logarithmic
(in the number of nodes) unless P = NP , see Feige [19].

3 Integer Programming Formulations

We propose in this section two integer programming formulations for the SCP.
The first one (SCPcut) is the canonical undirected cut formulation, the second one
(SCPrarc+) is a directed cut formulation based on the equivalence between the SCP
and its associated DSTP. It will turn out that (SCPrarc+) dominates (SCPcut).

We use the following notation. For a vector x ∈ Rn and an index set I ⊆
{1, . . . , n}, let x|I = xI be the restriction of x onto the subspace indexed by I. Let
PLP (F ) be the polyhedron associated with the LP relaxation of an IP formulation F .
Then PLP (F )|I is the orthogonal projection of PLP (F ) on the subspace of variables
indexed by I.

3.1 Cut Formulation

The cut formulation is as follows:

(SCPcut) min
∑
p∈P

cp xp

(i) s.t.
∑

p∈Pδ(W )

xp ≥ 1 ∀W ⊆ V, ∅ 6= W ∩ T 6= T

xp ∈ {0, 1} ∀ p ∈ P.

Here, xp is a 0/1-variable that indicates whether path p is chosen (xp = 1) or not
(xp = 0). Furthermore, Pδ(W ) := {p ∈ P : δ(W ) ∩ p 6= ∅} is the set of all paths that
cross the cut δ(W ) = {{u, v} ∈ E : |{u, v} ∩W | = 1} at least one time. If δ(W ) is
an (s, t)-cut for some terminal nodes s, t ∈ T , i.e., if s /∈W, t ∈W , we call Pδ(W ) an
(s, t)-Steiner path cut or shortly a Steiner path cut ; a Steiner path cut Pδ(W ) with
|Pδ(W )| = 1 is a Steiner path bridge. For a given x, the capacity of a Steiner path cut
Pδ(W ) is

∑
p∈Pδ(W )

xp, and we denote the inequalities (SCPcut)(i) as Steiner path cut
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constraints; they state that the capacity of each Steiner path cut must be at least
one. It is easy to see that (SCPcut) is a valid formulation for the SCP.

If each path has length 1, i.e., contains only one edge, the sets δ(W ) and Pδ(W )

are equal. In this case the Steiner connectivity problem reduces to a Steiner tree
problem, and the Steiner path cut constraints reduce to the so-called Steiner cut
constraints.

Replacing the Steiner path cut constraints by a weaker version produces a second
integer program

(SCPwcut) min
∑
p∈P

cp xp

(i) s.t.
∑

e∈δ(W )

∑
p:e∈p

xp ≥ 1 ∀W ⊆ V, ∅ 6= W ∩ T 6= T

xp ∈ {0, 1} ∀ p ∈ P.

This weak cut formulation is also a correct IP formulation of the SCP. Note that
the left hand side of a weak Steiner path cut constraint (SCPwcut) (i) counts how
often each path crosses the cut δ(W ). These inequalities can be seen as a direct
generalization of the Steiner cut constraints for the STP. However, they are clearly
dominated by the Steiner path cut constraints.

Some Steiner path cut constraints are themselves dominated by others. In fact,
the non-dominated ones correspond to minimal disconnecting sets. A set P′ ⊆ P

is a disconnecting set if there exist two terminal nodes which are not connected via
P \ P′.

Lemma 3.1. Minimal disconnecting sets are minimal Steiner path cuts (w.r.t. in-
clusion) and vice versa.

Proof. “⇒”: Let P′ ⊆ P be a minimal disconnecting set, and let s, t ∈ T be two
terminal nodes that are disconnected. Define W to be the nodes reachable from t
via P \ P′. Note that s /∈ W and t ∈ W , and hence Pδ(W ) is an (s, t)-Steiner path
cut. We claim that Pδ(W ) = P′.
◦ Assume p ∈ Pδ(W ) \ P′. Hence, p connects some node u in V \W to some node
v ∈W . By definition of W , P\P′ connects v and t, and since p ∈ P\P′ connects
u and v, P \ P′ connects u and t. It follows that u ∈W , a contradiction. Hence,
Pδ(W ) ⊆ P′.

◦ Conversely, assume p ∈ P′ \ Pδ(W ). Since Pδ(W ) ⊆ P′ is a disconnecting set for s
and t, it follows that P′ is not minimal, another contradiction.
Finally, Pδ(W ) is minimal w.r.t. inclusion, because otherwise P′ = Pδ(W ) would

not be minimally disconnecting.
“⇐”: LetW ⊆ V with ∅ 6= W∩T 6= T , such that Pδ(W ) is minimal w.r.t. inclusion.

Then Pδ(W ) is a disconnecting set, because no terminal in W is connected to a
terminal in V \W via P\Pδ(W ). We claim that Pδ(W ) is also a minimal disconnecting
set. Suppose not; then there is some smaller disconnecting set P′ ( Pδ(W ), which we
can assume to be minimal. By the forward direction of the proof, P′ = Pδ(W ′) for
some set W ′ ⊆ V , ∅ 6= W ′ ∩ T 6= T . It follows that Pδ(W ′) = P′ ( Pδ(W ), i.e., Pδ(W )

was not minimal w.r.t. inclusion, a contradiction.
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Figure 3: Left: Graph G with four paths (p1 = (s, d), p2 = (c, t), p3 = (d, c, a, b, t), p4 = (s, a))
with value 0.5 and two terminal nodes s and t. Right: Corresponding directed graph D′. Here,
each arc has capacity 0.5. The minimum directed (s, t)-cut has value 0.5 and corresponds to the
Steiner path cut P′ = {p3} in G.

Formulation (SCPcut) has |P| variables and O(2|P|) constraints, i.e., the number
of Steiner path cut constraints can be exponential in the size of the input. However,
the associated separation problem, i.e., to decide whether a given point x̂ is feasible
for the LP relaxation of (SCPcut) or to find a violated Steiner path cut constraint, can
be solved in polynomial time. Namely, this problem can be formulated as a family
of max flow/min cut problems in the Steiner connectivity digraph D′ = (V ′, A′) that
was defined in Section 2. Consider some nonnegative vector x̂ ∈ RP

+. We define the
following standard arc capacities κ = κ(x̂) for D′:

a = (r, vp), κa := x̂p, ∀ p ∈ P with r ∈ p,
a = (vp, wp), κa := x̂p, ∀ p ∈ P,
a = (wp̃, vp), κa := min{x̂p, x̂p̃}, ∀ p, p̃ ∈ P, p 6= p̃, p and p̃ have

a node v ∈ V in common,
a = (wp, t), κa := x̂p, ∀ p ∈ P, ∀ t ∈ T \ {r} with t ∈ p.

Figure 3 illustrates this construction. The following holds.

Lemma 3.2. Let t ∈ T \ {r} be a terminal node and x̂ ∈ RP
+ be a non-negative

vector. If the Steiner connectivity digraph D′ has standard capacities κ = κ(x̂), there
exists a directed (r, t)-cut with minimum capacity in D′ such that all arcs over this
cut are of the form (vp, wp), p ∈ P.

Proof. Let δ−(W ) be a directed (r, t)-cut with W ⊆ V \ {r}. We show that we can
derive an alternative cut set W̃ with smaller or equal capacity where all arcs are of
the form (vp, wp). Thus, if δ−(W ) has minimum capacity, then δ−(W̃ ) has minimum
capacity as well.
◦ Assume (r, vp) ∈ δ−(W ), i.e., vp ∈ W . We set W̃ = W \ {vp} ∪ {wp} and get
δ−(W̃ ) ⊆ δ−(W ) \ {(r, vp)} ∪ {(vp, wp)}, because (vp, wp) is the only arc with
source node vp and target node wp, recall statements 1 and 2 of Observation 2.1.
Furthermore, (vp, wp) ∈ δ−(W̃ ) and κrvp = κvpwp . Hence, δ−(W̃ ) has capacity
not larger than δ−(W ).
◦ If (wp, t) ∈ δ−(W ), we set W̃ = W \ {vp} ∪ {wp} and argue as above.
◦ Assume (wp̃, vp) ∈ δ−(W ), p 6= p̃, and x̂p ≤ x̂p̃. In this case, we set W̃ =
W \{vp}∪{wp} and get δ−(W̃ ) ⊆ δ−(W )\{(wp̃, vp)}∪{(vp, wp)}, again because
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of statements 1 and 2 of Observation 2.1. Furthermore, (vp, wp) ∈ δ−(W̃ ) and
κvpwp = κwp̃vp . Hence, δ

−(W̃ ) has capacity not larger than δ−(W ).
◦ Assume (wp̃, vp) ∈ δ−(W ), p 6= p̃, and x̂p̃ ≤ x̂p. In this case we set W̃ =
W \ {vp̃} ∪ {wp̃} and argue similarly.
In all cases, the set W changes in such a way that nodes wp enter W and nodes

vp leave W . Hence all steps can be repeated until the cut has the desired form.

We call a cut of the form stated in Lemma 3.2 a standard cut ; then Lemma 3.2
can be rephrased as stating that there exists a minimum capacity directed (r, t)-cut
in a Steiner connectivity digraph with standard capacities which is a standard cut.

Proposition 3.3. Let κ ∈ RA′+ and x̂ ∈ RP
+ be capacities for D′ and G, respectively,

such that κa = x̂p for all a = (vp, wp) ∈ A′, p ∈ P. Then there is a one-to-
one correspondence between minimal directed (r, t)-standard cuts in D′ (w.r.t. root
node r) and minimal (r, t)-Steiner path cuts in G, and the capacities are equal.

Proof. “⇒”: Consider a directed (r, t)-standard cut δ−(W ′) in D′. We first show
that δ−(W ′) gives rise to an (r, t)-disconnecting set

P′ = {p ∈ P : (vp, wp) ∈ δ−(W ′)}

in G. Assume there exists a path from r to t in G that is covered only by paths in
P\P′ (i.e., P′ is not a disconnecting set). Let p1, . . . , pk be the paths that are used
in this order when traversing the path. Then (r, vp1 , wp1 , . . . , vpk , wpk , t) is a path
from r to t in D′ that uses only arcs in A′ \ δ−(W ′). This is a contradiction to the
assumption that δ−(W ′) is a directed (r, t)-standard cut in D′.

Now let δ−(W ′) be minimal and suppose P′ is not. Then there exists a smaller
(r, t)-disconnecting set P′′ ⊂ P′. Consider for some path p ∈ P′\P′′ the arc (vp, wp) ∈
δ−(W ′). As δ−(W ′) is a minimal disconnecting set in D′, there is an (r, t)-path
(r, vp1 , wp1 , . . . , vpk , wpk , t) in A′ \ δ−(W ′) ∪ {vp, wp}. But then p1, . . . , pk is a set of
paths in P \ P′ ∪ {p} ⊆ P \ P′′ that connect r and t in G, i.e., P′′ is not an (r, t)-
disconnecting set. This is a contradiction. Therefore P′ is minimally disconnecting
and, by Lemma 3.1, P′ is a minimal (r, t)-Steiner path cut.

“⇐”: Let P′ be an (r, t)-Steiner path cut. Then P′ is an (r, t)-disconnecting set
in G. Define

W ′ = {t} ∪ {wp : p ∈ P′} ∪W ′′,

where W ′′ is the set of nodes from which t can be reached using arcs in the set
A′ \ {(vp, wp)|p ∈ P′}. Then we show that δ−(W ′) is a directed (r, t)-standard cut
in D′, namely,

δ−(W ′) = {(vp, wp) : p ∈ P′}.

It is clear that δ−(W ′) ⊇ {(vp, wp) : p ∈ P′}, because the only node that can be
reached from vp is wp. To show equality, consider the following cases:
◦ Assume (r, vp) ∈ δ−(W ′) for some p ∈ P. If p ∈ P′, then vp /∈W ′, a contradiction.

If p /∈ P′ then t can be reached from vp via arcs in A′ \ {(vp, wp)|p ∈ P′}. Hence,
there is an (r, t)-path covered by p ∈ P \ P′, a contradiction.
◦ Assume (wp, t) ∈ δ−(W ′) for some p ∈ P. For both cases p ∈ P′ and p /∈ P′ we

have wp ∈W ′, a contradiction.
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◦ Assume (vp, wp) ∈ δ−(W ′) for some p ∈ P \ P′. Then wp ∈ W ′, i.e., t can be
reached from wp via arcs in A′ \ {(vp, wp)|p ∈ P′}, but vp /∈W ′, a contradiction.
◦ Assume (wp̃, vp) ∈ δ−(W ′) for some p, p̃ ∈ P. Then wp̃ /∈ W ′ and vp ∈ W ′. This

implies that t can be reached from vp via arcs in A′\{(vp, wp)|p ∈ P′}. But then t
can also be reached from wp̃ via arcs in A′ \ {(vp, wp)|p ∈ P′}, a contradiction.
Now assume that P′ is a minimal (r, t)-Steiner path cut (i.e., a minimal (r, t)-dis-

connecting set via Lemma 3.1) and δ−(W ′) is not, i.e., there exists a standard cut
δ−(W ′′) ⊂ δ−(W ′) = {(vp, wp) : p ∈ P′}. Then by the forward argument of the
proof there exists a disconnecting set P′′ ( P′, a contradiction.

“⇔”: It is easy to see that in both cases P′ and δ−(W ′) have the same capacity,
and that the constructions in the two directions of the proof pair the same cuts.

Remark 3.4. Note that Proposition 3.3 holds for all capacities such that κa = x̂p
for all a = (vp, wp) ∈ A′, p ∈ P, not only for standard capacities.

Theorem 3.5. The separation problem for Steiner path cut constraints can be solved
in polynomial time.

Proof. Computing for every two terminals s, t ∈ T a minimum (s, t)-cut in D′ with
respect to standard capacities, using s as root node, can be done in polynomial time.
If and only if the value of this cut is smaller than 1, we can find a violated Steiner
path cut constraint by transforming this cut into a standard cut via Lemma 3.2 and
then apply Proposition 3.3. This can also be done in polynomial time.

3.2 Directed Cut Formulation

Our second formulation of the SCP is the well-known directed cut formulation for
the associated DSTP in D′ [13]:

(SCParc) min
∑
a∈A′

c′a ya

(i) s.t.
∑

a∈δ−(W ′)

ya ≥ 1 ∀W ′ ⊆ V ′\{r}, W ′ ∩ T 6= ∅

ya ∈ {0, 1} ∀ a ∈ A′.

Compared to the undirected cut formulation, the number of variables of (SCParc)
is quadratic, i.e., |A′| ∈ O(|P|2), and the number of constraints is quadratically
exponential, i.e., O(2(|P|2)). The separation problem for the directed Steiner cut
constraints (SCParc) (i) consists of solving |T | − 1 min-cut problems, i.e., for each
t ∈ T\{r} one has to find a minimum (r, t)-cut in D′. This can be done in polynomial
time.

(SCParc) can be interpreted as an extended formulation of (SCPcut) by identifying
arcs (vp, wp) and paths p ∈ P. We define

A′P = {(vp, wp) ∈ A′ : p ∈ P}

and write y|P = y|A′
P
to simplify the notation. Then, Proposition 2.2 states that if y

is an integer solution of (SCParc), its projection on the subspace of path-arcs gives
rise to a solution x = y|P of (SCPcut) via xp = yvpwp , p ∈ P, and vice versa. This
relation also holds for the LP relaxations of (SCPcut) and (SCParc).
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Lemma 3.6. PLP (SCPcut) = PLP (SCParc)|P.

Proof. “⊇”: Let ŷ ∈ PLP (SCParc), i.e., ŷ satisfies all directed (r, t)-Steiner cuts for
some root r and every terminal t ∈ T\{r}. By Proposition 3.3 and Remark 3.4, the
vector x̂ = ŷ|P satisfies all (r, t)-Steiner path cuts for every terminal t ∈ T\{r}. Since
any (s, t)-Steiner path cut is either an (r, s)- or an (r, t)-Steiner path cut, ŷ|P also
satisfies the (s, t)-Steiner path cuts for all s, t ∈ T \{r}, i.e., ŷ|P = x̂ ∈ PLP (SCPcut).

“⊆”: Let x̂ ∈ PLP (SCPcut), in particular, x̂ satisfies the (s, t)-Steiner path cuts
for all s, t ∈ T and hence all (r, t)-Steiner path cuts for some fixed root r. We define
ŷ ∈ RA′ by setting ŷ = κ(x̂) according to the standard capacity definition, i.e., in
particular, ŷ|P = x̂. By Proposition 3.3, the vector ŷ satisfies all directed (r, t)-
standard cuts, and by Lemma 3.2, all directed (r, t)-cuts, i.e., ŷ ∈ PLP (SCParc).

Corollary 3.7. The optimal objective values of the LP relaxations of (SCParc) and
(SCPcut) are equal. In particular, the objective value of the LP relaxation of (SCParc)
is independent of the choice of the root node r.

Proof. This follows from Lemma 3.6, since c′|P = c and c′|A′\A′
P

= 0.

Lemma 3.6 and Corollary 3.7 show a difference between the Steiner connectivity
and the Steiner tree problem: In contrast to the STP, where the directed formu-
lation dominates the undirected formulation immediately, the undirected and the
directed cut formulation for the SCP are equivalent in terms of quality and tractabil-
ity. However, it is known that directed cut formulations for the STP can easily be
strengthened by a small number of inequalities that one can write down explicitly.
It will turn out that in our case such a strengthening dominates a large class of facet
defining Steiner partition inequalities for the undirected formulation of the SCP, as
we will see in Section 4.

The added inequalities are as follows. Since we assume nonnegative costs, there
is always an optimal solution of the associated DSTP that is a directed tree. Each
non-terminal node that is contained in such a cost minimal directed Steiner tree has
at least one outgoing arc and at most one incoming arc. Therefore, the so-called flow
balance inequalities can be added to (SCParc):∑

a∈δ−(v)

ya ≤
∑

a∈δ+(v)

ya ∀ v ∈ V ′\T.

In the context of the Steiner tree problem these inequalities were first considered by
Duin [18] and later studied by Koch and Martin [27] and Polzin [31, 32]. Because
of the special form of the Steiner connectivity digraph and the objective function, it
suffices to consider the flow balance constraints only for the nodes vp, p ∈ P. The
lower right of Figure 4 shows an example of a typical violation of these constraints:
Setting the y-variables associated with the thick arcs to 0.5 produces a solution that
satisfies all directed Steiner cut constraints, but violates the flow balance constraint at
node 2. Appending the flow balance constraints produces the following strengthened
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b c

a

d
3 3̄
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Figure 4: An SCP instance showing that choosing different roots leads to different solutions of the
LP relaxation of (SCPrarc+). Choosing node a as root allows to set all path values to 0.5 in the LP
relaxation of (SCPaarc+). This solution is not possible for the LP relaxation of (SCPbarc+), when b
is chosen as root.

directed cut formulation for the SCP:

(SCPrarc+) min
∑
a∈A′

c′a ya

s.t.
∑

a∈δ−(W ′)

ya ≥ 1 ∀W ′ ⊆ V ′\{r}, W ′ ∩ T 6= ∅

yvpwp ≥
∑

a∈δ−(vp)

ya ∀ (vp, wp) ∈ A′ (p ∈ P)

ya ∈ {0, 1} ∀ a ∈ A′.

The optimal objective values of (SCPrarc+) and (SCParc) are equal, but the LP
relaxation of the first might be stronger.

Corollary 3.8. PLP (SCPcut) = PLP (SCParc)|P ⊇ PLP (SCPrarc+)|P.

Remark 3.9. The objective value of the LP relaxation of (SCPrarc+) is not indepen-
dent of the choice of the root node, see Figure 4.

Remark 3.10. The size of the Steiner connectivity digraph can be slightly reduced
by contracting the path-arcs (vp, wp), modifying the directed cut inequalities and the
flow balance constraints appropriately. One can show that the contracted directed
cut formulation arising in this way is equivalent to (SCPrarc+). However, the number
of variables is still quadratic in P, and it is easier to relate (SCPrarc+) to (SCPcut).
For this reason, we will not investigate this model further.

4 Polyhedral Analysis

In this section, we investigate the polytope that is associated with the cut formulation
of the Steiner connectivity problem. We analyze a class of facet defining Steiner
partition inequalities, and discuss the corresponding separation problem. Let

PSCP := conv
{
x ∈ {0, 1}P : x satisfies all Steiner path cut constraints

}
12



be the Steiner connectivity polytope. We assume that the Steiner connectivity poly-
tope is non-empty, i.e., the graph G is connected, and each edge is covered by at
least one path of P. In the two-terminal case, a complete description can be given.

Proposition 4.1. The polytope associated with (SCPcut) is integral for |T | = 2.

Proof. This follows from Lemma 3.6 and the fact that the polytope associated with
(SCParc) is integral for two terminal nodes (see, e.g., Cornuéjols [16]).

Formulation (SCPcut) is a special set covering problem. Therefore, the results of
Balas and Ng [4] imply the following two lemmas.

Lemma 4.2. PSCP is full dimensional if and only if there exists no Steiner path
bridge.

Lemma 4.3. The polytope associated with a Steiner connectivity problem without
Steiner path bridges has the following properties:
1. The inequality xp ≥ 0 defines a facet of PSCP if and only if |Pδ(W )| ≥ 3 for all W

with p ∈ Pδ(W ) and ∅ 6= W ∩ T 6= T .
2. All inequalities xp ≤ 1 define facets of PSCP.
3. All facet defining inequalities αTx ≥ α0 for PSCP have α ≥ 0 if α0 > 0.
4. A Steiner path cut inequality for ∅ 6= W ∩ T 6= T is facet defining if and only if

the following two properties are satisfied:

(a) There exists no W ′, ∅ 6= W ′ ∩ T 6= T , such that Pδ(W ′) ( Pδ(W ), i.e., Pδ(W )

is not dominated.

(b) For every two W1,W2, ∅ 6= Wi ∩ T 6= T , with |Pδ(Wi)\Pδ(W )| = 1, i = 1, 2
and Pδ(W1)\Pδ(W ) = Pδ(W2)\Pδ(W ), we have

|Pδ(W1) ∩ Pδ(W2) ∩ Pδ(W )| ≥ 1.

5. The only nontrivial facet defining inequalities for PSCP with integer coefficients
and right hand side equal to 1 are Steiner path cut constraints.

In the sequel, we assume PSCP to be full dimensional.

4.1 Steiner Partition Inequalities

Lemma 4.3 characterizes completely which inequalities of the IP formulation (SCPcut)
define facets of the Steiner connectivity polytope. We investigate in this section in-
equalities arising from node partitions as one important example of an additional
class of facets.

Let P = (V1, . . . , Vk) be a Steiner partition of the node set V , i.e., P partitions V
and Vi ∩ T 6= ∅ for i = 1, . . . , k and k ≥ 2. Let GP = (VP , EP ) be the graph that
arises from contracting each node set Vi ⊆ V to a single node Vi ∈ VP (let us denote
by Vi a node set in a partition of G as well as a node in the shrunk graph GP ). Note
that GP can have parallel edges but no loops; loops are contracted. Consider a path
p ∈ P: p gives rise to a contracted (not necessarily elementary) path in GP , which
we also denote by p. We say that p contains Vi, in formulas Vi ∈ p, if p contains a
node of Vi (even if a path p ∈ P contains only a single node of GP ). Furthermore,
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x1

x2 x3

x4

Figure 5: The Steiner partition inequality 2x1 + x2 + x3 + x4 ≥ 2 is facet defining (node sets of
the Steiner partition encircled).

let PP denote the set of paths p ∈ P that contain at least two distinct shrunk nodes
in GP , in formulas

PP = {p ∈ P : ∃Vi, Vj ∈ VP , Vi 6= Vj , Vi ∈ p, Vj ∈ p},

and P := P\PP its complement. Finally, G[Vi] is the graph induced by the nodes Vi.

Lemma 4.4. The Steiner partition inequality∑
p∈PP

ap xp ≥ k − 1, (1)

ap := |{i ∈ {1, . . . , k} : Vi ∈ VP , Vi ∈ p}| − 1

is valid for the Steiner connectivity polytope PSCP.

The coefficient ap, p ∈ P, counts the number of shrunk nodes that p contains
minus one, i.e., ap is the maximum number of edges that p can contribute to a
spanning tree in GP . The number ap can be smaller than the number of times that
p crosses the multi-cut induced by the Steiner partition.

Note that the inequality can also be stated as
∑

p∈P ap xp ≥ k−1, because ap = 0
for p /∈ PP . If k = 2, the partition inequality is a Steiner path cut constraint. An
example of a (facet defining) Steiner partition inequality can be seen in Figure 5.

Proof of Lemma 4.4. We have to show that each 0/1-solution x∗ of the Steiner con-
nectivity problem satisfies ∑

p∈PP

ap x
∗
p ≥ k − 1.

Consider the solution x∗ on the shrunk graph GP . Since each node set Vi, i =
1, . . . , k, contains a terminal node, the shrunk graph GP has to be connected by the
solution x∗, i.e., the (paths of the) support of x∗ must contain a spanning tree in GP .
This means that the support of x∗ contains at least k − 1 edges in GP .

The following two propositions give sufficient and necessary conditions for a
Steiner partition inequality to be facet defining for the SCP. The sufficient conditions
are analogous to those for the Steiner tree polytope, see Grötschel and Monma [23].
Recall P = P \ PP .

Proposition 4.5. A Steiner partition inequality is facet defining if the following
properties are satisfied.
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Figure 6: Examples of facet defining Steiner partitions that do not satisfy properties 1 (left) and 2
(right) of Proposition 4.5. In both examples the Steiner partition consists of three node sets which
are marked gray. The square (terminal) nodes have to be connected.

1. G[Vi] is connected by P, i = 1, . . . , k.
2. G[Vi] contains no Steiner path bridge in P, i.e., there is no Steiner path cut

Pδ(W ) ⊆ P with |Pδ(W )| = 1 for W ⊆ Vi, ∅ 6= W ∩ T 6= T ∩ Vi, i = 1, . . . , k.
3. Each path contains at most two nodes in GP , i.e., ap ∈ {0, 1} for all p ∈ P.
4. GP is 2-node-path-connected, i.e., if we remove any node with all adjacent paths,

the resulting graph is connected. (An edge is removed if it is no longer covered by
paths.)

Proof. Let P = (V1, . . . , Vk) be a Steiner partition in G and consider the correspond-
ing partition inequality aTx =

∑
p∈PP apxp ≥ k − 1. Assume that properties 1 to 4

are satisfied. Let bTx = β be an equation such that

Fa = {x ∈ PSCP : aTx = k − 1} ⊆ Fb = {x ∈ PSCP : bTx = β}

and such that Fb is a facet of PSCP.
We first show that bp = 0 for all p ∈ P. Since p ∈ P, p is completely contained in

G[Vj ] for some j ∈ {1, . . . , k}. Let P′ ⊆ PP be a minimal set of paths connecting GP ,
i.e., for each two nodes in GP there exists a path that is completely covered by paths
in P′ and if we remove any path of P′ then there are at least two nodes in GP
that are not connected. Since all paths contain at most two different nodes of GP
(property 3), we have |P′| = k − 1. Set M = P′ ∪ P and M ′ = M \ {p}. Since each
G[Vi], i = 1, . . . , k, is connected by paths of P (property 1) and p is not a Steiner
path bridge for G[Vj ] (property 2), χM , χM ′ ∈ PSCP and aTχM = aTχM

′
= k − 1,

where χM is the incidence vector of M . Thus, bTχM = bTχM
′ which implies bp = 0.

Let p, q ∈ PP , p 6= q. Consider the graph ĜP = (VP ,PP ) in which p is an edge
between Vi and Vj if it contains Vi and Vj (recall that p ∈ PP contains exactly two
nodes, see property 3). Since GP is 2-node-path-connected, ĜP is 2-node-connected
and there exists a cycle C in ĜP containing p and q. Let P′ be a tree in ĜP containing
C\{p}. Then P′′ = P′\{q}∪{p} is also a tree in ĜP . SetM = P′∪P andM ′ = P′′∪P.
Then χM , χM ′ ∈ Fa and 0 = bTχM − bTχM ′ = bq− bp. This implies that b ∈ {0, λ}P,
λ ≥ 0, using part 3 of Lemma 4.3. Hence, bTx is a multiple of aTx. This proves that
aTx ≥ k − 1 defines a facet of PSCP.

Different from the Steiner tree case (cf. [23]), properties 1 to 3 are not necessary
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in the Steiner connectivity case, see Figure 5 (property 3), Figure 6 (left: property 1,
right: property 2) for examples. Property 4 is necessary, see Proposition 4.6 below.

We now derive necessary conditions. Let ΦVi(P) be the Vi-contraction of P, i.e.,
contract every path p ∈ P iteratively in the following way until no reduction is
possible anymore:
◦ If p contains the edges {u, v} and {v, w}, and v /∈ Vi then contract {u, v} and
{v, w} to {u,w}.
◦ If p = ({u1, u2}, {u2, u3}, . . . , {ur−1, ur}), r ≥ 2, with u1 /∈ Vi then contract p to
p = ({u2, u3}, . . . , {ur−1, ur}).
◦ If p = ({u1, u2}, {u2, u3}, . . . , {ur−1, ur}), r ≥ 2, with ur /∈ Vi then contract p to
p = ({u1, u2}, {u2, u3}, . . . , {ur−2, ur−1}).

Proposition 4.6. If the Steiner partition inequality (1) is facet defining for a Steiner
partition P with at least three partition sets, then the following properties have to be
satisfied:
1. The shrunk graph GP is 2-node-path-connected.
2. Either G[Vi] is connected or for each two subsets V ′i and V ′′i of Vi such that

V ′i ∪̇V ′′i = Vi and V ′i is disconnected from V ′′i , there exists a path p ∈ PP which
contains at least one node of V ′i and one node of V ′′i for all i = 1, 2, . . . , k.

3. For each G[Vi] the set of paths ΦVi(P) does not contain a Steiner path bridge with
respect to G[Vi], i.e., if we remove any p̃ ∈ ΦVi(P) then every two terminal nodes
in G[Vi] are still connected by paths of ΦVi(P) \ {p̃}.

4. If two terminal nodes s and t in some G[Vi] are connected by a path p′ ∈ PP , then
these terminals must be also connected by P or we can subdivide Vi into V ′i and
V ′′i , Vi = V ′i ∪̇V ′′i , such that s ∈ V ′i , t ∈ V ′′i , and V ′i and V ′′i are not connected by
P. In the second case for each Vj ∈ p′, Vj 6= Vi, there exists a path p′′ ∈ PP with
Vj /∈ p′′, and V ′i ∈ p′′, V ′′i ∈ p′′.

Proof. In the following let P = (V1, . . . , Vk), k ≥ 3, be a Steiner partition with
corresponding partition inequality

∑
p∈PP apxp ≥ k − 1.

1. Assume GP is not 2-node-path-connected. In this case there exists a node Vi
in GP which is an articulation node in the following sense: If Vi and all paths
incident to Vi are removed from GP , then the resulting graph is not connected
(by the remaining paths). Suppose w.l.o.g. that Vi separates V1, . . . , Vi−1 from
Vi+1, . . . , Vk. Let G1 = GP [V1, . . . , Vi] and G2 = GP [Vi, . . . , Vk], see Figure 7.
Let k1 be the number of nodes of G1 and k2 be the number of nodes of G2.
Recall that the number of nodes of GP is k. Note that Vi is a node of G1 and G2.
Therefore we have k = k1 + k2 − 1.
We construct a smaller Steiner partition P ′ = {V1∪ . . .∪Vi−1∪Vi, . . . , Vk} which
contains all nodes of G2\{Vi} and all nodes of G1 as a single node. Let the
resulting Steiner partition inequality be

∑
p∈PP ′

a′pxp ≥ k2 − 1.
Similarly, we construct a Steiner partition P ′′ = {V1, . . . , Vi ∪ Vi+1 ∪ . . . ∪ Vk}
which contains all nodes of G1\{Vi} and all nodes of G2 as a single node. We get
the partition inequality

∑
p∈PP ′′

a′′pxp ≥ k1 − 1.
The sum of these two partition inequalities is equal to the partition inequality
for P . Indeed, k1 − 1 + k2 − 1 = k1 + k2 − 2 = k − 1, and a′p + a′′p = ap, see
Figure 7. Hence, Inequality (1) does not define a facet.
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G2

G1
Vi

path contains Vi

Figure 7: The graph GP in the proof of Proposition 4.6 part 1 is not 2-node-path-connected and Vi
is an articulation node. Each path that connects G1 and G2 (dashed in the picture) contains Vi.

2. Assume w.l.o.g. G[V1] is not connected and there exists no path connecting dif-
ferent components of G[V1]. Let V ′1 ⊂ V1 be the node set of one connected
component of G[V1] such that (V1\V ′1) ∩ T 6= ∅. Since G is connected (and ev-
ery edge is covered by at least one path) there is a node set Vj , j ∈ {2, . . . , k},
say V2, such that V ′1 and V2 are connected by a path. We construct a new
Steiner partition P ′ = (V1\V ′1 , V ′1 ∪ V2, V3, . . . , Vk) and get the partition inequal-
ity
∑

p∈PP ′
a′pxp ≥ k − 1. Let P̂ = {p ∈ PP : V ′1 ∈ p, V2 ∈ p}, i.e., P̂ contains all

paths that connect V ′1 and V2. One can easily verify that

a′p =

{
ap − 1 if p ∈ P̂

ap otherwise (since V ′1 is not connected to (V1 \ V ′1)).

Since |P̂| ≥ 1, the partition inequality for P is the sum of the partition inequality
for P ′ and the inequalities xp ≥ 0 for all p ∈ P̂. Therefore, the partition inequality
for P is not facet defining.

3. Assume there is a Steiner path bridge p̃ ∈ ΦVi(P) with respect to G[Vi]. Let V ′i
and V ′′i := Vi \V ′i be two components of G[Vi] that contain terminal nodes which
are only connected by p̃ ∈ ΦVi(P). Then P ′ = (V1, . . . , V

′
i , V

′′
i , . . . , Vk) is a Steiner

partition. Let the corresponding partition inequality be
∑

p∈PP ′
a′pxp ≥ k. We

claim that this partition inequality plus the upper bound inequality −xp̃ ≥ −1
of p̃ is equal to the partition inequality for P .
The partition P ′ only differs from P in splitting the node set Vi. Because p̃ is
the only path that connects V ′i and V ′′i , we have PP ′ = PP ∪ {p̃}. Furthermore,
there is no path in PP (except p̃, if p̃ ∈ PP ) that contains V ′i and V ′′i . Therefore
the coefficients of all these paths stay the same: ap = a′p for all p ∈ PP ′\{p̃}. For
p̃ ∈ PP we get a′p̃ = ap̃ + 1.

4. Assume w.l.o.g. that there are two terminal nodes s and t in G[V1] that are
connected by a path p′ ∈ PP and not connected by paths in P. Let V ′1 be the
nodes reachable from s via paths in P and V ′′1 := V1 \ V ′1 . This shows that the
first or the second case of the first part of the statement must hold.
Furthermore, assume w.l.o.g. that V2 ∈ p′ and there is no path p′′ ∈ PP such
that V ′1 ∈ p′′, V ′′1 ∈ p′′, and V2 /∈ p′′. Consider the Steiner partitions P ′ :=
(V ′1 , V

′′
1 , V2, . . . , Vk) and P ′′ := (V1 ∪ V2, V3, . . . , Vk) with corresponding partition
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inequalities ∑
p∈PP ′

a′pxp ≥ k and
∑
p∈PP ′′

a′′pxp ≥ k − 2,

respectively. We show that 2 times the partition inequality for P is dominated
by the sum of the partition inequalities for P ′ and P ′′. For the right hand side,
we obtain:

k + k − 2 = 2 · k − 2 = 2 · (k − 1).

For the left hand sides and p ∈ P, we observe that

a′p =

{
ap + 1 if V ′1 ∈ p, V ′′1 ∈ p
ap otherwise

a′′p =

{
ap − 1 if V1 ∈ p, V2 ∈ p
ap otherwise.

We claim that 2 ·ap ≥ a′p +a′′p. Indeed, the only case in which this is not trivially
satisfied is when V ′1 ∈ p and V ′′1 ∈ p (and thus V1 ∈ p), but V2 /∈ p. But this case
contradicts our assumptions.

4.2 Separating the Steiner Partition Inequalities

Grötschel, Monma, and Stoer [24] showed that separating the Steiner partition in-
equalities for the Steiner tree problem is NP-hard. This implies that the separation
of the Steiner partition inequalities for the Steiner connectivity problem is also NP-
hard. However, we show in the following that the Steiner partition inequalities for
the SCP are satisfied by all points in PLP (SCPrarc+)|P. This implies that the sep-
aration problem for a superclass of Steiner partition inequalities can be solved in
polynomial time.

Theorem 4.7. PLP (SCPrarc+)|P satisfies all Steiner partition inequalities.

Proof. Let y∗ ∈ PLP (SCPrarc+). We show that the projection x∗p = y∗vpwp satisfies all
Steiner partition inequalities.

Consider an arbitrary Steiner partition P = (V1, . . . , Vk) in G and the corre-
sponding partition inequality

∑
p∈PP apxp ≥ k−1. W. l. o. g. we assume that r ∈ Vk.

Consider the following chain of inequalities

∑
p∈PP

apx
∗
p

(1)

≥
∑
p∈PP
r∈p

apy
∗
vpwp +

∑
p∈PP
r/∈p

ap
∑

a∈δ−(vp)

y∗a
(2)

≥
k−1∑
i=1

∑
a∈δ−(Wi)

y∗a
(3)

≥ k − 1,

where Wi := {t ∈ T\{r} : t ∈ Vi} ∪ {wp : Vi ∈ p} ∪ {vp : Vi ∈ p, r /∈ p}, for
i = 1, . . . , k − 1.

Inequality (1): Identifying x∗p = y∗vpwp and scaling the flow balance constraints
x∗p = y∗vpwp ≥

∑
a∈δ−(vp) y

∗
a by ap for the paths that do not contain the root node

and summing up gives (1).
Inequality (3): Each node set Wi (i = 1, . . . , k−1) contains at least one terminal

node, but not the root node r. Hence, the arc set δ−(Wi) is a directed Steiner cut
between root r and Wi. Therefore,

∑
a∈δ−(Wi)

y∗a ≥ 1 must hold. Summing over all
these cuts gives (3).
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Inequality (2): The Steiner connectivity digraph D′ contains arcs of the form (i)
(r, vp), (ii) (vp, wp), r ∈ p, (iii) (vp, wp), r /∈ p, (iv) (wp̃, vp), and (v) (wp, t). We
show that all arcs in the cuts δ−(Wi), i = 1, . . . , k − 1, are of the form (ii) and (iv).
Indeed, arcs of the other forms cannot appear in the cuts δ−(Wi), i = 1, . . . , k − 1:
(i) Arcs of the form (r, vp) only exist if r ∈ p. But then, vp /∈Wi due to the definition

of Wi, i.e., (r, vp) /∈ δ−(Wi).
(iii) The nodes vp and wp are either both members or both not members of Wi. In

any case, (vp, wp) /∈ δ−(Wi).
(v) Arcs of the form (wp, t) only exist if t ∈ p. If t ∈ Wi, then t ∈ Vi, and therefore

Vi ∈ p. Hence wp ∈Wi, i.e., (wp, t) /∈ δ−(Wi).
Denote by Vp := {Vi : Vi ∈ p, i = 1, . . . , k} the set of shrunk nodes contained in

p; then |Vp| − 1 = ap. The proof proceeds by establishing a relation between ap and
the number of times an arc entering vp appears in the cuts δ−(Wi), i = 1, . . . , k− 1.

Consider an arc (vp, wp) ∈ A′. Then the following chain of equations holds:

ap = |Vp| − 1 = |Vp \ {Vk}| = |{Wi : (vp, wp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. (2)

Here, (vp, wp) ∈ δ−(Wi) implies r ∈ p , i.e., Vk ∈ p (r ∈ Vk) and this yields |Vp|−1 =
|Vp \ {Vk}|. Moreover, (vp, wp) ∈ δ−(Wi) implies Vi ∈ p. Taking the union for
i = 1, . . . , k − 1 yields |Vp \ {Vk}| = |{Wi : (vp, wp) ∈ δ−(Wi), i = 1, . . . , k − 1}|.
Multiplying Equation (2) with y∗vpwp gives

ap y
∗
vpwp = |{Wi : (vp, wp) ∈ δ−(Wi), i = 1, . . . , k − 1}| · y∗vpwp

=
k−1∑
i=1

∑
(vp,wp)∈δ−(Wi)

y∗vpwp .
(3)

Consider an arc (wp̃, vp) ∈ A′. Then the following chain of equations and in-
equalities holds

ap = |Vp| − 1 ≥ |Vp \ Vp̃| ≥ |{Wi : (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. (4)

Here, (wp̃, vp) ∈ A′ implies Vp∩Vp̃ 6= ∅ and this yields |Vp|−1 ≥ |Vp \Vp̃|. Moreover,
(wp̃, vp) ∈ δ−(Wi) implies Vi ∈ p and Vi /∈ p̃. Taking the union for i = 1, . . . , k −
1 yields |Vp \ Vp̃| ≥ |{Wi : (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}|. Multiplying
Inequality (4) by y∗wp̃vp gives

ap y
∗
wp̃vp

≥ |{Wi : (wp̃, vp) ∈ δ−(Wi), i = 1, . . . , k − 1}| · y∗wp̃vp

=
k−1∑
i=1

∑
(wp̃,vp)∈δ−(Wi)

y∗wp̃vp .
(5)

Summing (3) and (5) over all arcs (vp, wp) and (wp̃, vp) gives Inequality (2):∑
p∈PP
r∈p

apy
∗
vpwp +

∑
p∈PP
r/∈p

ap
∑

a∈δ−(vp)

y∗a =
∑
p∈P
r∈p

apy
∗
vpwp +

∑
p∈P
r/∈p

ap
∑

a∈δ−(vp)

y∗a

=
∑

(vp,wp)∈A′
r∈p

ap y
∗
vpwp +

∑
(wp̃,vp)∈A′

r/∈p

ap y
∗
wp̃vp

(3) and (5)
≥

k−1∑
i=1

∑
a∈δ−(Wi)

y∗a.

This shows the claim.
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Remark 4.8. Note that the proof of Theorem 4.7 uses only the flow balance con-
straints for (vp, wp) ∈ A′ with r /∈ p, i.e., the flow balance constraints for paths
that contain the root are not necessary to derive the Steiner partition inequalities.
Moreover, it is not hard to show that they have no impact on the value of the LP
relaxation of (SCPrarc+).

Proposition 4.9. The separation problem for PLP (SCPrarc+)|P can be solved in poly-
nomial time.

Proof. Let P = {y ∈ Rn : Ay ≥ b, y ≥ 0} be a polyhedron, I ⊆ {1, . . . , n}, and
x∗ ∈ RI be a vector. If the optimization problem for P is solvable in polynomial
time then the separation problem “x∗ ∈ P |I?” for the projection is solvable in
polynomial time. This follows from the equivalence of optimization and separation
and its consequences, see Grötschel, Lovász, and Schrijver [22] (intersect P with the
affine space y|I = x∗). In our case, the LP relaxation of (SCPrarc+) can be solved in
polynomial time. This implies the claim.

A direct method to solve the separation problem for PLP (SCPrarc+)|P will be
discussed in Subsection 5.2.

Corollary 4.10. If x∗ ∈ PLP (SCPcut) does not satisfy all Steiner partition inequali-
ties, one can construct a cutting plane that separates x∗ from the Steiner connectivity
polytope in polynomial time.

5 Solving the SCP

We have seen in the previous section that the extended formulation (SCPrarc+) im-
plies strong inequalities for the canonical undirected cut formulation (SCPcut), e.g.,
the facet defining Steiner partition inequalities. However, the extended formulation
(SCPrarc+) has a quadratic number O(|P|2) of variables and a quadratically exponen-
tial number O(2(|P|2)) of cuts and, as it will turn out, can therefore not be solved
directly for large-scale instances. This brings up the question of how the strength of
this formulation can be utilized for practical instances. In this section, we will give
evidence that a heuristic separation of Steiner partition inequalities (SPI) harvests
most of the potential. This SPI separation method is introduced in Section 5.1.
To demonstrate its efficiency, we compare the undirected cut model including SPI
separation with the strengthened directed cut formulation. Since the solution of the
extended formulation is very time consuming and for large instances not even possi-
ble, we propose a partial projection method to produce a strong approximation. The
idea is to lift an LP solution from the space of canonical variables to the extended
space, to separate there, and to project the cut back. This algorithm is described in
Section 5.2 in detail. A problem of this procedure is that the separation step is based
on an exponential system of inequalities. This is as difficult as working directly with
the extended formulation. We, therefore, consider a relaxation to separate cuts from
a subsystem of the extended formulation. This subsystem has to be chosen in such
a way that it is, on the one hand, of tractable size and, on the other hand, produces
strong cuts. We discuss a possible choice of a good subsystem (found after empirically
investigating several approaches) in Section 5.3. This partial projection method can
be used to approximate the extended formulation. Since the extended formulation
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includes not only Steiner partition inequalities but also other facet defining inequal-
ities, the partial projection method can in principle find other types of inequalities
that cannot be found by SPI separation, see the upcoming Example 5.1. However,
our computational results in Section 5.4 show that the Steiner partition inequalities
strengthen the undirected cut formulation as much as the partial projection cuts for
nearly all instances. Indeed, the undirected cut formulation augmented by separated
Steiner partition inequalities produces very strong bounds, typically with gaps less
than five percent in our experiments; in lots of cases even the strongest bounds than
can be computed in the given computation time.

5.1 SPI separation

We propose a heuristic to find a Steiner partition of the nodes that has a good chance
to yield a violated Steiner partition inequality. It is based on a graph shrinking
procedure that produces a promising Steiner partition of the nodes for the STP, see,
e.g., Grötschel et al. [24] and Günlük [25]. Let x∗ ∈ PLP (SCPcut) be some fractional
solution and ωe :=

∑
p∈P:e∈p x

∗
p, for all e ∈ E, be edge weights. Sort the edges

as e1, . . . , e|E| such that ωe1 ≥ · · · ≥ ωe|E| . We now recursively shrink the graph by
contracting edges in the order of decreasing weight. In a first step, we shrink edges as
long as the edge weight is greater than or equal to 1 or one end node of an edge is not
a terminal node. If an end node of an edge is a terminal node, the node that arises
from shrinking this edge is also defined as a terminal node. After this first shrinking
procedure each shrunk node contains at least one terminal node and is, therefore,
also a terminal node. If the resulting shrunk graph contains more than one node, the
weights of all remaining edges are smaller than 1. We then compute the resulting
Steiner partition inequality. If it is violated, we can add it to the problem. If it is
not violated, we shrink the edge with the largest weight in the shrunk graph and
consider the Steiner partition inequality associated with the resulting graph. This
procedure terminates as soon as we have found a violated cut or when the shrunk
graph contains only one node.

5.2 Separating Cuts from the Extended Formulation

A direct method to use the extended formulation (SCPrarc+) to separate cuts for the
undirected cut formulation (SCPcut) is as follows: Let x∗ ∈ [0, 1]P be the point to
be separated; denote Ã = A′P = {(vp, wp) ∈ A′ : p ∈ P} and A′′ = A′ \ A′P. The
separation problem is to find a vector y ∈ PLP (SCPrarc+) with y|P = x∗ or to find
a separating cutting plane. Consider the following reformulation of the inequality
system associated with (SCPrarc+) with y|P = x∗ =: y∗:∑

a∈δ−(W ),a∈A′′
ya ≥ 1−

∑
a∈δ−(W ),a∈Ã

y∗a ∀W ∈ W

−
∑

a∈δ−(vp)

ya ≥ −y∗vpwp ∀ (vp, wp) ∈ A′

ya ≥ 0 ∀ a ∈ A′′,

(6)

where W := {W ⊆ V ′ \ {r} : W ∩ T 6= ∅} is the set of all directed Steiner cuts
associated with root node r. By the Farkas lemma either inequality system (6) or
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the following inequality system has a solution:∑
W∈W

(
1−

∑
a∈δ−(W ),a∈Ã

y∗a

)
· µW −

∑
p∈P

y∗vpwpπp > 0∑
W∈W:a∈δ−(W )

µW −
∑

p∈P:a∈δ−(vp)

πp ≤ 0 ∀ a ∈ A′′

µW ≥ 0 ∀W ∈ W
πp ≥ 0 ∀ p ∈ P.

(7)

The first inequality of (7) gives rise to a violated cut. Namely, if y /∈ PLP (SCPrarc+)
for y|P = y∗ = x∗, then there exist π∗ and µ∗ which satisfy (7). In particular, we
have ∑

W∈W

(
1−

∑
a∈δ−(W ),a∈Ã

y∗a

)
· µ∗W −

∑
p∈P

y∗vpwpπ
∗
p > 0

⇐⇒
∑
W∈W

(
1−

∑
(vp,wp)∈δ−(W )

x∗p

)
· µ∗W −

∑
p∈P

x∗pπ
∗
p > 0.

Then ∑
W∈W

µ∗W ≤
∑
W∈W

∑
p:(vp,wp)∈δ−(W )

µ∗W xp +
∑
p∈P

π∗p xp

is a cutting plane that separates x∗ from the Steiner connectivity polytope.
The system (7) is a feasibility problem that can be solved by minimizing the left-

hand-side of the first inequality subject to the remaining system and the additional
constraint ||(µ, π)|| ≤ 1, where || · || is an arbitrary norm, to bound the variables.
There are |P| π-variables, which can be treated directly, and O(2|P|) µ-variables,
which have to be treated by a column generation procedure. In each iteration,
a subset of the cut system W is considered. When the subset produces a positive
objective value, we have found a violated cutting plane. Otherwise, we must increase
the subset by generating an improving variable µW . Associating dual variables y′′a ,
a ∈ A′′, with the constraints of the feasibility problem (7), the pricing problem is to
find W ∈ W such that ∑

a∈δ−(W ),a∈A′′
y′′a < 1−

∑
a∈δ−(W ),a∈Ã

y∗a

or to conclude that no such W exists. This is a minimum directed Steiner cut
problem.

5.3 Partial Projection

The system (6) is of exponential size and therefore difficult to handle. We consider
a partial projection that is based on a relaxation of (SCPrarc+) using a subset of
directed (r, t)-Steiner cut inequalities. After extensive computational experiments,
the following two types of directed (r, t)-Steiner cuts turned out to be most useful:
cuts that are associated with path neighborhoods of the terminals and of node sets
arising in a shrinking procedure similar to the one described in Section 5.1. It turns
out that the resulting subsystem is tractable and produces strong cuts. To this
purpose we construct a nested family of path neighborhood cuts δ−(W i

t ) where W i
t

is of the form of the node sets Wi in the proof of Theorem 4.7. The combinatorial
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motivation for the choice of these cuts is that they approximate the connectivity
requirement of the problem. The path neighborhoods of the first type are iteratively
constructed around each terminal node except the root node and are independent of
a fractional solution x∗. The path neighborhoods of the second type try to contract
the graph in order to identify directed (r, t)-Steiner cuts which likely have small
capacity with respect to the LP solution of the undirected formulation.

A formal description of the construction of the path neighborhoods of the first
type is as follows. We first choose arbitrarily a terminal node as root node r ∈ T .
Then we consider for each of the remaining terminal nodes t ∈ T \{r} the set P0

t ⊆ P

of paths that contain t, and we define the initial path neighborhood of t as the node
set

W 0
t := {t} ∪ {wp | p ∈ P0

t } ∪ {vp | p ∈ P0
t , r 6∈ p}.

Then δ−(W 0
t ) forms a directed (r, t)-cut in the Steiner connectivity digraph. In fact,

it is easy to see that

δ−(W 0
t ) = {(vp, wp) ∈ A′ : p ∈ P0

t , r ∈ p} ∪ {(wp̃, vp) ∈ A′ : p̃ /∈ P0
t , p ∈ P0

t , r /∈ p}.

We then choose a node v ∈ V , {t, v} ∈ E, such that the set of paths that contain t
or v is minimal, i.e., if Pv denotes the set of paths that contain node v then

P1
t := argminv∈V, {v,t}∈E |P0

t ∪ Pv|,

and we obtain the first path neighborhood

W 1
t := {t} ∪ {wp | p ∈ P1

t } ∪ {vp | p ∈ P1
t , r 6∈ p}.

Let V 1
t = {t, v} be the node set that produced the first path neighborhood. Re-

peating this construction, i.e., extending the node set V i
t by an adjacent node such

that the set of paths Pit has smallest size, until all nodes are considered, produces a
sequence of say j(t) + 2 path sets and path neighborhoods

P0
t ⊂ P1

t ⊂ · · · ⊂ P
j(t)+1
t = P and W 0

t ⊂W 1
t ⊂ · · · ⊂W

j(t)+1
t ,

with corresponding directed (r, t)-Steiner cuts

δ−(W i
t ) = {(vp, wp) ∈ A′ : p ∈ Pit, r ∈ p} ∪ {(wp̃, vp) ∈ A′ : p̃ /∈ Pit, p ∈ Pit, r /∈ p}

(8)
for each t ∈ T \ {r}, i = 0, . . . , |V |. Of course, we do not have to consider all nodes
for each terminal, i.e., we can choose i < |V |. This can be done to reduce the time
and memory consumption of the partial projection method.

A formal description of the path neighborhoods arising from the shrinking proce-
dure is as follows. Let x∗ ∈ PLP (SCPcut) be some fractional solution in the original
space of variables and ωe :=

∑
p∈P:e∈p x

∗
p, for all e ∈ E, be edge weights. Then we

consider for each node v ∈ V the set Pv of paths that contain node v, and define a
path neighborhood of v as

W ◦v :=

{
{wp | p ∈ Pv} ∪ {vp | p ∈ Pv, r 6∈ p} ∪ {v}, if v ∈ T,
{wp | p ∈ Pv} ∪ {vp | p ∈ Pv, r 6∈ p}, if v /∈ T.
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Sort the edges as e1, . . . , e|E| such that ωe1 ≥ · · · ≥ ωe|E| . We now recursively
perform two shrinking procedures. We first shrink the graph by contracting edges
in the order of decreasing weight until each shrunk node contains a terminal node.
Then we shrink the graph by contracting edges in the order of decreasing weight
until we arrive at a single node. If nodes u and v are shrunk to a new node w, we
define Pw := Pu ∪ Pv and W ◦w := W ◦u ∪W ◦v . Denote by V ◦ the set of all shrunk
nodes (during the shrinking procedure) that contain a terminal node, but not the
root node (the path neighborhoods of non-shrunk terminal nodes coincide with their
initial path neighborhoods of the first type). Note that we can obtain shrunk nodes
that do not contain a terminal node or that contain the root node, but we do not
consider them in V ◦. Each node v ∈ V ◦ contains a terminal t and therefore defines
a directed (r, t)-Steiner cut

δ−(W ◦v ) = {(vp, wp) ∈ A′ : p ∈ Pv, r ∈ p}
∪ {(wp̃, vp) ∈ A′ : p̃ /∈ Pv, p ∈ Pv, r /∈ p}.

(9)

We use these two types of path neighborhoods as follows. Let W ′ := {W i
t | t ∈

T \ {r}, i = 0, . . . , j(t)}∪{W ◦v | v ∈ V ◦}. We propose to approximate the inequality
system (6) by the subsystem∑

a∈δ−(W ),a∈A′′
ya≥ 1−

∑
a∈δ−(W ),a∈Ã

y∗a ∀W ∈ W ′

−
∑

a∈δ−(vp)

ya≥ −y∗vpwp ∀ (vp, wp) ∈ A′

ya≥ 0 ∀ a ∈ A′′,

(10)

i.e., instead of all directed (r, t)-Steiner cuts, we consider those arising from path
neighborhoods, i.e., we replace the setW byW ′. We bound the variables of the dual
of (10) by 1 in order to normalize.

The path neighborhood cut subsystem (10) is tractable because it contains a poly-
nomial number

∑
t∈T |V |+|V |−1 ∈ O(|T |·|V |) of cuts (each new path neighborhood

of the first type reaches a new node, and there are at most |V | − 1 shrunk nodes). It
is strong in the sense that it can produce facet defining inequalities. These include
Steiner partition inequalities such as the one shown in Figure 5. In general, a Steiner
partition inequality will be separated with our path neighborhood cut subsystem,
if each node set of the partition satisfies the following condition: The paths that
intersect the node set of a partition correspond to a path neighborhood. This is
always the case for T = V : The Steiner partition inequality corresponding to the
partition Vt = {t}, t ∈ T , can be efficiently separated. Another case is for the Steiner
tree problem, i.e., all paths have length one. Our path neighborhood cut subsystem
separates all Steiner partition inequalities where the node sets of the partitions cor-
respond to some path neighborhood of a terminal. The following example shows
that the path neighborhood cut subsystem implies also other types of facet defining
inequalities.

Example 5.1. Figure 8 shows a facet defining inequality which is not a Steiner
partition inequality. Consider the inequality x1 +x2 +x3 +x4 ≥ 2. Because the right
hand side is 2, a Steiner partition would consist of three node sets, each of which
must include at least one terminal node. However, in every possible partition at least
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Figure 8: The inequality x1 + x2 + x3 + x4 ≥ 2 is valid but not a partition inequality.

one path contains all three partition nodes. The SPI separation would, therefore,
never find this cut.

We show that this cut can be separated with our path neighborhood cut sub-
system as follows. Let x∗ ∈ PLP (SCPcut) with x∗1 = x∗2 = x∗3 = 0.5 and x∗4 = 0.
Obviously x∗ satisfies all Steiner cut inequalities but not x1 + x2 + x3 + x4 ≥ 2.
Consider the path neighborhood cut subsystem (10) for the two initial path neigh-
borhoods W 0

b := {1̄, 2, 2̄, 4̄, b} and W 0
c := {2, 2̄, 3̄, c}:

y3̄2 ≥ 1− y∗
11̄
− y∗

44̄
(W 0

b )
y1̄2 +y4̄2 ≥ 1− y∗

33̄
(W 0

c )
−ya1 −y2̄1−y3̄1−y4̄1 ≥ −y∗

11̄
−y1̄2 −y3̄2−y4̄2 ≥ −y∗

22̄
−ya3−y1̄3−y2̄3 −y4̄3 ≥ −y∗

33̄
−ya4−y1̄4−y2̄4−y3̄4 ≥ −y∗

44̄

(all other path neighborhood cuts are redundant) and the corresponding dual of the
path neighborhood cut subsystem (µt corresponds to W 0

t , t = b, c)

(1− y∗
11̄
− y∗

44̄
)µb + (1− y∗

33̄
)µc − π1 · y∗11̄

− π2 · y∗22̄
− π3 · y∗33̄

− π4 · y∗44̄
> 0

µb − π2 ≤ 0
µc − π2 ≤ 0
µb, µc ≥ 0

πi ≥ 0 i = {1, 2, 3, 4}.

A valid solution is µb = µc = 1, π2 = 1, and all other variables set to 0. Since
y∗

11̄
= x∗1 = 0.5, y∗

22̄
= x∗2 = 0.5, y∗

33̄
= x∗3 = 0.5, and y∗

44̄
= x∗4 = 0, the value of the

first inequality in this system is 0.5. This yields the cutting plane

(1− x1 − x4) + (1− x3)− x2 ≤ 0 ⇔ x1 + x2 + x3 + x4 ≥ 2.

It can be shown that this inequality defines a facet.

5.4 Computational Analysis

We will show now that the Steiner partition inequalities indeed significantly improve
the LP relaxation of the canonical undirected cut formulation and help to solve
Steiner connectivity problems. We have implemented the methods described in the
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preceding subsections and tested them on six transportation networks that we denote
as China, Dutch, SiouxFalls, Anaheim, Potsdam, and Chicago. Instances Anaheim,
SiouxFalls, and Chicago use the graphs of the street networks with the same names
from the Transportation Network Test Problems Library of Bar-Gera [38]. Instances
China, Dutch, and Potsdam correspond to public transportation networks. The
Dutch network was introduced by Bussieck [9] in the context of line planning. The
Potsdam data were provided to us in a joint project on line planning by the local
public transport company ViP Verkehrsgesellschaft Potsdam GmbH. The China in-
stance is artificial; we constructed it as a showcase example, connecting the twenty
biggest cities in China by the 2009 high speed train network.

All instances are associated with a so-called OD matrix that gives the number of
passengers who want to travel between each pair of nodes. We define as terminals
all stations with positive supply or demand, i.e., such that there exists a positive
entry in the corresponding row or column of the OD matrix. The paths can then
be interpreted as possible lines (e.g., bus lines in the street networks) to connect
the terminals/OD nodes. In the Potsdam instance we distinguish between edges of
different types, e.g., arcs for tram lines and arcs for bus lines. Solving the Steiner
connectivity problems with costs depending on the lengths of the lines amounts to
the construction of a connected line plan with minimum cost (where each line is
operated once). Such a solution can be used to estimate a lower bound on the cost
of a line plan.

For each network, we consider two benchmark instances of the Steiner connec-
tivity problem. These were constructed as follows. For each network we randomly
chose a set of node pairs and computed the shortest path between each pair (in-
stances with suffix 1) and the three shortest paths between each pair (instances with
suffix 2). In the Potsdam instances the edges of such a path have to be of the
same type (e.g., bus, tram). For the three smallest instances (China, Dutch, and
SiouxFalls) we restricted the lengths of the paths to 6 edges. For the three largest
instances (Anaheim, Potsdam, and Chicago) we considered paths with at most 20
edges. These restrictions were chosen in order to avoid that only very few paths
connect the whole network; very long lines are also not desired in public transport.
The costs of the paths correspond to the lengths of the paths in kilometers, which is
given by the lengths of the edges in the network data. The instances were reduced
by some preprocessing, see [5].

Table 1 gives some statistics on these instances. It shows the number of nodes,
edges, and arcs for the networks and the associated Steiner connectivity digraphs
as well as the number of paths for all instances. One can see that the number of
arcs of the Steiner connectivity digraph, which is the number of variables in the
strengthened directed cut formulation (SCPrarc+), is nearly quadratic in the number
of paths P.

Table 2 presents the performance of the undirected cut formulation including
SPI separation in comparison to the undirected cut formulation, the strengthened
directed cut formulation, and the undirected cut formulation extended by partial
projection. More precisely, the table shows the LP value and the computation time
in CPU seconds for solving the LP relaxation of
◦ the weak cut formulation (SCPwcut),
◦ the strengthened directed cut formulation (SCPrarc+),
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Table 1: Street and public transportation networks. The columns are as follows: name of the
instance, number of terminals, number of nodes, number of edges, number of paths, and number of
nodes and arcs of the associated Steiner connectivity digraph. (We inserted all terminals twice into
the Steiner connectivity digraph in order to use them as sources and sinks at the same time; this
speeds up the computations.) The last column gives the maximal length of a path.

name |T | |V | |E| |P| |V ′| |A′| max |p|

China1 20 20 98 130 300 9 621 6
China2 20 20 98 211 462 29 225 6
Dutch1 23 23 106 173 392 18 582 6
Dutch2 23 23 106 263 572 53 449 6
SiouxFalls1 24 24 124 186 420 14 650 6
SiouxFalls2 24 24 124 311 670 50 252 6
Anaheim1 38 454 1 344 1 713 3 502 777 466 20
Anaheim2 38 454 1 344 5 135 10 346 7 346 857 20
Potsdam1 107 885 3 572 2 401 5 016 949 440 20
Potsdam2 107 885 3 572 5 349 10 912 5 747 714 20
Chicago1 386 909 3 672 2 546 5 864 1 419 999 20
Chicago2 386 909 3 672 7 638 16 048 12 858 604 20

◦ the weak cut formulation improved by the SPI separation method (SCPw,SPI
cut ),

and
◦ the weak cut formulation improved by the partial projection method (SCPwcut+).
A ‘*’ in the time column indicates that the time limit of five hours was reached. A ‘–’
indicates that this formulation exceeds the memory limit of the used computer. All
computations were done with version 1.2.0 of scip [1, 37] on an Intel Quad-Core 2,
3.0 GHz computer (in 64 bit mode) with 6 MB cache, running Linux and 16 GB of
memory. By default, we use the simplex method of CPLEX 12.1 [26] for solving LPs
(in single core mode).

We initialize all formulations using the (directed) Steiner path cuts around the
terminal nodes plus the following cut∑

p∈P
apxp ≥ |T | − 1, ap = min{|{t ∈ T : t ∈ p}|, |p|}.

If all nodes are terminal nodes, this corresponds to the Steiner partition inequal-
ity where each node forms a single partition set. Then a cutting plane algorithm
depending on the formulation was run until no improvement could be made or the
time limit was exceeded. The partial projection method was stopped if we did not
find a cut or if the LP value did not change for ten rounds of cuts by more than 1%
(formulation (SCPwcut+)). For the bigger instances Anaheim, Potsdam, and Chicago,
we started the partial projection after the objective value could not be improved by
at least 1.5% in one round. This is done to get a better LP value for initializing
the path neighborhoods of the shrinking procedure, which is not necessary for the
smaller instances. To keep the path neighborhood cut subsystem within a tractable
size, we considered W ′ := {W i

t | t ∈ T \ {r}, 0 ≤ i ≤ max{3,
⌈ |V |
|T |
⌉
} for the path

neighborhoods of the terminals and stopped the procedure when |δ−(W i
t )| ≥ 100 000,

i = 0, . . . ,
⌈ |V |
|T |
⌉
. For the two big Chicago instances, we stopped the shrinking pro-

cedure for the path neighborhoods after the first shrinking step, i.e., after all nodes
are contained in a partition set with at least one terminal node, see Section 5.3.
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Table 2: LP values and computation time for four formulations of the Steiner connectivity problem.
A ‘*’ indicates that the time limit of five hours was reached. A ‘–’ indicates that the memory limit
was reached. For (SCPrarc+) we compared the running times with the barrier and with the simplex.
We took the best value of both computations, for instance Potsdam1 the barrier (b) computed the
best value. All other models were computed with the simplex method.

(SCPw
cut) (SCPr

arc+) (SCPw,SPI
cut ) (SCPw

cut+)
name value time value time value time value time

China1 7906.1 <1 8382.0 31 8382.0 <1 8329.5 <1
China2 7892.8 <1 8089.0 5 8089.0 <1 8089.0 <1
Dutch1 19250.0 <1 19755.7 * 19750.0 <1 19800.0 <1
Dutch2 19100.0 <1 19762.9 * 19750.0 <1 19800.0 <1
SiouxFalls1 104.3 <1 114.0 301 114.0 <1 114.0 1
SiouxFalls2 105.1 <1 112.0 365 112.0 <1 112.0 2
Anaheim1 960961.1 2 964046.3 * 966225.6 4 966834.0 95
Anaheim2 813194.1 45 – – 829451.0 76 820391.2 597
Potsdam1 260886.9 135 (b) 261459.3 * 261196.7 194 261846.3 412
Potsdam2 256106.4 1 242 250504.1 * 256200.2 799 256473.9 1 386
Chicago1 2642.8 378 2660.6 * 2642.9 778 2673.1 8 805
Chicago2 2198.3 652 – – 2329.2 * 2298.3 *

Let us now analyze the results in Table 2. The advantage of the weak cut for-
mulation (SCPwcut) is its compactness. This formulation has the smallest number of
variables and inequalities. Moreover, the separation problem for the weak Steiner
path cut constraints can be solved in the original undirected graph. The weak cut
formulation (SCPwcut), therefore, has the shortest computation times. We also com-
puted the values of the LP relaxation of the cut formulation (SCPcut), but we only
get a small increase of the LP value for few instances compared to the weak cut
formulation (SCPwcut), whereas the computation time of (SCPcut) always takes much
longer, since the separation problem requires the construction of the Steiner con-
nectivity digraph, see the preprint [8] for more details. We therefore do not present
results for (SCPcut). However, the Steiner connectivity digraph can be used to im-
prove the LP bound significantly via the strengthened cut formulation (SCPrarc+).
The weakness of this model are the long computation times and the memory con-
sumption, since it uses the arcs of the Steiner connectivity digraph as variables. Note
that the size of the Steiner connectivity digraph depends on the number and length
of paths in the original graph, which can become very large. For this reason, the
strongest formulation, the strengthened directed cut formulation (SCPrarc+), becomes
practically intractable for large problems. Its LP value could not be computed for
Anaheim2 and for Chicago2, because of the excessive memory consumption. Model
(SCPwcut+) combines the compactness of the weak cut formulation with the qual-
ity of the strengthened directed cut formulation. The results show that (SCPwcut+)
indeed approximates the strengthened directed cut formulation very well. Its mem-
ory consumption can be controlled via the definition of the considered cuts. Its LP
value can therefore be computed for all instances. Considering the LP value of model
(SCPw,SPI

cut ), it becomes apparent that most of the strength of the directed cut formu-
lation can also be achieved by separating Steiner partition inequalities as described
in Section 5.1. For seven instances the LP bounds of model (SCPw,SPI

cut ) are as good as
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Table 3: Solving (SCPwcut) with branch-and-cut using SCIP. The time is given in seconds; a ‘*’
indicates that the computation time of 10 hours was reached.

name bb nodes time dual bound primal solution gap

China1 49 <1 8382.0 8382 0.00%
China2 19 <1 8089.0 8089 0.00%
Dutch1 31 <1 198.0 198 0.00%
Dutch2 19 <1 198.0 198 0.00%
SiouxFalls1 2 903 23 114.0 114 0.00%
SiouxFalls2 497 7 112.0 112 0.00%
Anaheim1 235 48 976603.0 976603 0.00%
Anaheim2 52 657 * 824699.0 844237 2.37%
Potsdam1 13 910 * 261928.0 271988 3.84%
Potsdam2 4 385 * 256941.4 270179 5.15%
Chicago1 686 * 2689.0 2806 4.35%
Chicago2 184 * 2214.2 2778 25.47%

Table 4: Solving (SCPwcut+) with branch-and-cut using SCIP. The time is given in seconds; a ‘*’
indicates that the computation time of 10 hours was reached.

name bb nodes time dual bound primal solution gap

China1 1 <1 8382.0 8382 0.00%
China2 1 <1 8089.0 8089 0.00%
Dutch1 3 <1 198.0 198 0.00%
Dutch2 6 <1 198.0 198 0.00%
SiouxFalls1 1 2 114.0 114 0.00%
SiouxFalls2 1 2 112.0 112 0.00%
Anaheim1 150 280 976603.0 976603 0.00%
Anaheim2 3 635 11 683 831749.0 831749 0.00%
Potsdam1 10 342 * 262569.1 270530 3.03%
Potsdam2 2 933 * 257198.9 268467 4.38%
Chicago1 279 * 2703.1 2939 8.73%
Chicago2 6 * 2303.7 2980 29.35%

the LP bounds of (SCPrarc+) or (SCPwcut+); for two instances (SCPw,SPI
cut ) even yields

the best LP bounds that can be computed within the given time limit. The results
imply that the Steiner partition inequalities are the key to improve the undirected
cut formulation for most Steiner connectivity instances. Model (SCPw,SPI

cut ) provides
an easy and time-saving way to utilize them computationally, models (SCPrarc+) and
(SCPwcut+) provide quality certificates in terms of strong lower bounds.

We also used a branch-and-cut method to solve the Steiner connectivity problem
for the six test instances. We used the default heuristics of SCIP and the strong
branching rule, plus a greedy type heuristic for the Steiner connectivity problem
based on LP values. In this heuristic, we sort the paths in decreasing order of their
LP value. We then repeatedly choose the path with the smallest value and fix it
to zero if the network is still connected. Otherwise, the path is fixed to one. The
procedure terminates when all paths are fixed. We limit the computation time for
each instance to 10 hours. The results for the models (SCPwcut), (SCPwcut+), and
(SCPw,SPI

cut ) are shown in Table 3, 4, and 5.
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Table 5: Solving (SCPw,SPI
cut ) with branch-and-cut using SCIP. The time is given in seconds; a ‘*’

indicates that the computation time of 10 hours was reached.

name bb nodes time dual bound primal solution gap

China1 11 <1 8382.0 8382 0.00%
China2 1 <1 8089.0 8089 0.00%
Dutch1 32 <1 198.0 198 0.00%
Dutch2 15 <1 198.0 198 0.00%
SiouxFalls1 1 <1 114.0 114 0.00%
SiouxFalls2 1 <1 112.0 112 0.00%
Anaheim1 124 30 976603.0 976603 0.00%
Anaheim2 1 158 831749.0 831749 0.00%
Potsdam1 14 295 * 262027.8 269834 2.98%
Potsdam2 3 463 * 256993.5 269407 4.83%
Chicago1 584 * 2687.6 2806 4.41%
Chicago2 72 * 2332.5 2772 18.84%

The instances China, Dutch, SiouxFalls, and Anaheim1 can be solved by all
three formulations. (SCPw,SPI

cut ) and (SCPwcut+) need much less nodes than (SCPwcut).
Anaheim2 can also be solved by (SCPw,SPI

cut ) and (SCPwcut+) but not by (SCPwcut)

within the given time limit. (SCPw,SPI
cut ) performs best on Anaheim2, it solves the

problem in the root node within seconds. Model (SCPw,SPI
cut ) finds the best solutions

for nearly all instances; for Potsdam2 the partial projection method finds a better
solution. The gap for all instances can be reduced, for Potsdam1, Potsdam2, and
Chicago1 the gap is below 5%. This shows that indeed large scale Steiner connectivity
problems can be solved to optimality or near optimality.

6 Conclusions

This paper has discussed the relative strengths of different formulations of the Steiner
connectivity problem, namely, the undirected and the directed cut formulation in sev-
eral variants. If we take the corresponding LP relaxations as a measure of strength,
we obtain the following picture:

PLP (SCPwcut) ⊇ PLP (SCPcut) = PLP (SCParc)|P ⊇
PLP (SCPSPI

cut )

PLP (SCPcut+)
⊇ PLP (SCPrarc+)|P,

PLP (SCPwcut) ⊇
PLP (SCPw,SPI

cut )

PLP (SCPwcut+)
⊇ PLP (SCPrarc+)|P.

Here, (SCPSPI
cut ) and (SCPcut+) denote the cut formulation including SPI separation

and partial projection, respectively. As (SCPcut) is so hard to compute, we resorted
to the associated weak versions (SCPw,SPI

cut ) and (SCPwcut+), see the second line of
inclusions. SPI separation and partial projection lead to incomparable formulations:
The latter might produce only part of the or different SPIs, but some additional
inequalities not covered by the former. The tightest formulation is produced by the
extended formulation (SCPrarc+).
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In practice, however, the strongest formulation does not necessarily produce the
best results, because there is a tradeoff between the strength of a dual bound and
the time needed to compute it. The ranking depends on the time limit and whether
we compute an LP bound or an IP value. If the goal is to produce the best bound
(including branching) a good choice is formulation (SCPw,SPI

cut ). Neither the tightest
formulation (SCPrarc+) nor the related formulation (SCPwcut+) dominate the other
formulations – although (SCPwcut+) is close to (SCPw,SPI

cut ). In a sense, this result
confirms the general experience that extended formulations have strong theoretical
properties, but they do not necessarily provide formulations well suited for practical
computations – more research is needed to understand this behavior.

In the context of line planning, the Steiner connectivity problem corresponds
to computing a cost minimal line plan for a given line pool, ignoring capacities.
Variants of the problem in which the paths P are not given in advance, but are
defined implicitly via some side constraints, are interesting as well. In line planning,
this would correspond to a dynamic generation of lines.
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