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Abstract

It is well known that competitive analysis yields results that do not
reflect the observed performance of online paging algorithms. Many de-
terministic paging algorithms achieve the same competitive ratio, ranging
from inefficient strategies as flush-when-full to the well-performing least-
recently-used (LRU).

In this paper, we study this fundamental online problem from the
viewpoint of stochastic dominance. We give simple proofs that when
sequences are drawn from distributions modelling locality of reference,
LRU stochastically dominates any other online paging algorithm. As a
byproduct, we obtain simple proofs of some earlier results.

1 Introduction
The paging problem is one of the most fundamental problems in online opti-
mization. It models an optimization problem occurring in a two-level memory
system. The first level, called the slow memory, stores a fixed set M of pages
and the second level, which is the fast memory or cache, contains up to k pages
of the set M . We will also refer to k as the cache size. In paging, one needs to
serve a sequence of requests for pages σ ∈Mn, where n is the number of pages
requested. To serve a request for page p ∈ M , the system needs to have this
page in the cache. If a requested page is not in the cache a page fault occurs.
The requested page must then be loaded into the cache, and whenever the cache
contains k pages, at least one page must be evicted from it. A paging algorithm
needs to decide which page(s) will be evicted from the cache on a page fault.
The goal is to minimize the number of page faults. Standard paging strategies
include the following.
• Least recently used (LRU): whenever there is a page fault, evict the page

whose most recent request was earliest.
• First in first out (FIFO): on a page fault, evict the page that has been in

the cache the longest.
• Flush when full (FWF): On a page fault, when the cache is full, it evicts

all pages from the cache.
• Longest forward distance (LFD): On a page fault, LFD evicts the page

whose next request is farthest in the future.
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All these algorithms, except LFD, are online algorithms. That is, they decide
which page to evict without knowing future requests or the number of requests in
the sequence. As LFD needs to know the future, it cannot be used in practice.
However, LFD is an optimal page eviction strategy [6]. Both LRU as well
as FWF are marking algorithms. Marking algorithms label a page ‘marked’
whenever it is requested. On a page fault and when the cache contains k pages,
a marking algorithm evicts an unmarked page. As soon as the cache contains
k marked pages, a marking algorithm labels all pages as unmarked. Note that
FIFO is not a marking algorithm.

The standard yardstick for online algorithms has become competitive analysis
[23, 18]. An online algorithm is called c-competitive if, for all request sequences,
the cost of the algorithm, i. e., the number of page faults is at most c times the
optimal offline costs. The smallest c for which an algorithm is c-competitive is
also known as the competitive ratio. Sleator and Tarjan [23] showed that LRU
and FIFO have a competitive ratio of k and that this is the best possible. Karlin
et al. [18] gave a different proof for the same results and in addition they showed
that FWF also has a competitive ratio of k. Torng [24] extended these results
showing that all deterministic marking algorithms are k-competitive.

Related work. As FIFO, LRU and all other marking algorithms have the
same competitive ratio, competitive analysis obviously fails to distinguish be-
tween these algorithms although they empirically perform very differently. There-
fore, there has been research on the refinement of competitive analysis and
alternative models for assessing online paging algorithms. Young [25, 27] in-
troduced the notion of loose competitiveness, in which paging algorithms are
evaluated for varying sizes of the cache, ignoring input sizes that have a high
competitive ratio only for few cache sizes. He showed that several determinis-
tic paging strategies are loosely O(log k) competitive. The Max/Max ratio of
Ben-David and Borodin [7] compares the worst case amortized behavior of an
algorithm with that of an optimal offline algorithm. An algorithm is said to have
Max/Max ratio c if it is guaranteed that on no request sequence will it ever have
to pay more than c times the maximal cost that an optimal offline algorithm
pays on a sequence of the same length. Koutsoupias and Papadimitriou [20]
introduced the diffuse adversary. In the concept of diffuse adversary, an average
case competitive analysis is performed, but instead of selecting any probabil-
ity distribution on the input sequence the diffuse adversary may only select a
probability distribution from a prespecified class of distributions. Young [26]
also performed a diffuse adversary analysis for the paging problem, showing the
optimality of LRU against some specific diffuse adversary. In the relative worst-
order ratio [10] two algorithms are compared each on their respective worst-case
permutation of a request sequence. Boyar et al. [10] showed that LRU is better
than FWF, but LRU and FIFO are equally good according to this measure.
Recently, bijective analysis was introduced [3, 4]. In bijective analysis, one tries
to find a bijective mapping from the set of instances on itself such that the
preferred algorithm delivers on each instance a better objective function value
than the algorithm, to which it is compared, has on the mapped instance. An-
gelopoulos and Schweitzer [4] showed that LRU is an optimal algorithm under
this framework for a restricted class of sequences.

One of the reasons that competitive analysis is not able to make a distinc-
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tion between the performance of several paging algorithms is that it considers
arbitrary request sequences. In practice, however, request sequences have some
structure, for instance they often feature locality of reference. In a strict sense
this means that if a page is referenced, it is likely to be referenced again in the
near future, a fact that has been observed early and formalized by Denning with
his working set concept [12, 13]. Based on this concept, Torng [24] introduces
a model for locality of reference by lower bounding the length of a subsequence
containing a certain number of different pages. He shows that, among other
algorithms, LRU achieves a constant competitive ratio. Albers et al. [2] gave
another model for locality of reference, also based on Denning’s working set
concept. They showed that LRU is an optimal online algorithm in their model
and that FIFO and marking strategies are not optimal in general. Becchetti [5]
performs a diffuse adversary analysis, where the diffuse adversary is only al-
lowed to choose a probability distribution favoring recently over less recently
requested pages. He shows that in this model, LRU outperforms FWF. In fact,
this model was known as LRU-stack model for a long time [11].

There is also the broader sense of locality of reference, meaning that usually
“each time a page is referenced by a program, the next page to be referenced is
very likely to come from a small set of pages” [9]. To formalize this, Borodin et
al. [9] presented the access graph model, in which a graph models which pages
can be requested after a certain page has been asked. Using this model, they
showed that LRU is at least as good as FIFO. This approach was extended in
several ways in [17, 19, 15]. Panagiotou and Souza [22] introduce another model,
restricting the sequences such that successive references to the same page are
mostly close together or far apart.

Our results. One of the weaknesses of competitive analysis is that it fails to
distinguish between all kinds of algorithms. Therefore, alternative measures for
the performance of online algorithms are needed. In this paper, we compare
the performance of paging algorithms on random input sequences directly using
stochastic dominance. This method for comparing online algorithms has been
introduced in [16]. Given a probability distribution on all possible input se-
quences, we let XAlg denote the random variable of the number of pages faults
of an online algorithm Alg. We say that online algorithm Alg1 is stochastically
better than online algorithm Alg2 if the random variable XAlg1 is stochastically
dominated by XAlg2 , i. e., Pr

[
XAlg1 ≥ x

]
≤ Pr

[
XAlg2 ≥ x

]
for all x ∈ R.

We study two kinds of distribution functions on the input sequences which
both model locality of reference in the strict sense. The first kind of proba-
bility distributions are special LRU-stack model distributions also considered
by Becchetti [5], which give higher probability to pages recently asked than to
those asked further in the past. The second kind of distributions are uniform
distributions on input sequences that fulfill a very broad definition of locality
of reference. This class includes the f -consistent sequences according to Albers
et al. [2] and a generalization of the model by Torng [24] used in [14]. For both
kinds of distributions we give simple proofs that LRU is stochastically better
than any other online algorithm. As a byproduct, we obtain simple proofs for
various results known before, among them the bijective analysis result in by
Angelopoulos and Schweitzer [4].
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2 Mode of analysis and locality of reference mod-
els

We start by recalling some basic notions for paging algorithms. A standard tool
is the partitioning of a sequence into phases, see e. g., [8]. The first phase starts
with the first request. Phase ` starts with the (k + 1)st distinct request after
the start of phase `− 1. Each phase ends just before the start of the next phase
or at the end of the sequence, whichever comes first.

Given a request sequence σ, we say that a page p is marked w. r. t. σ if it
has been requested in the final phase of σ; otherwise, we say that p is unmarked
w. r. t. σ. Note that by definition of the phases, there cannot be more than k
marked pages w. r. t. a request sequence. Also note that all pages are unmarked
w. r. t. the empty sequence. Moreover, the partition into phases and the set of
marked pages at any point in the sequence do not depend on the algorithm.
Observe that a marking algorithm has, at any point in time, all marked pages
in its cache, which justifies the name.

A paging algorithm is called lazy if it evicts a page only on a page fault and
never evicts more than one page.

2.1 Stochastic dominance analysis of online algorithms
The competitive ratio as a measure of the performance of an online algorithm
has been criticized for failing to discriminate between algorithms that perform
very differently in practice.

In our approach [16] we compare the performance of algorithms on random
request sequences drawn according to certain probability distributions. In con-
trast to competitive analysis or diffuse adversary analysis, we directly compare
two algorithms to each other without refering to an optimal offline solution.
We compare the performance of online algorithms using stochastic dominance,
a well-known stochastic order. A random variable X is said to be stochastically
dominated by a random variable Y , written X ≤st Y , if

Pr [X ≥ x] ≤ Pr [Y ≥ x] for all x ∈ R. (1)

One way to think of this approach is that we compare the distributions of the
performances of two online algorithms instead of aggregate statistics like the
expected value or the maximum. We will later see that in some cases, there are
distribution-free interpretations of a stochastic dominance result.

Stochastic dominance has some interesting properties [21]. Abusing nota-
tion, we denote the random variable for the performance of an algorithm Alg
by the same symbol, Alg. The first interesting consequence of stochastic dom-
ination of the performance of one algorithm by another, i. e., Alg1 ≤st Alg2,
is that the expected performance of Alg1 is also better than that of Alg2, i. e.,
E [ Alg1 ] ≤ E [ Alg2 ]. This again implies that the average competitive ratio of
Alg1 is not worse than that of Alg2: E [ Alg1 ] /E [ Opt ] ≤ E [ Alg2 ] /E [ Opt ].
Finally, if we have an non-decreasing function f on the possible outcomes for
Alg1 and Alg2, then f(Alg1) ≤st f(Alg2). This can be used to conclude that
Alg1 is also better than Alg2 in the full access cost model [24], where a page in
the cache incurs cost 1, when requested, and a page fault incurs cost 1 + p for
some parameter p > 0.
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In case Alg1 ≤st Alg2 holds for the uniform distribution on (a subset of)
the sequences, this is equivalent to the existence of a bijective mapping φ on
the sequences such that Alg1(σ) ≤ Alg2(φ(σ)) for any σ. This strong way of
comparing online algorithms is called bijective analysis and has been introduced
in [3]. Thus stochastic dominance results for the uniform distribution share the
favorable properties of bijective analysis results discussed in [3].

2.2 Paging with locality of reference
We consider the three models for paging with locality of reference in the strict
sense that were mentioned in the introduction [24, 11, 2]. The main result of
this paper is that LRU is optimal w. r. t. stochastic dominance for sequences
exhibiting this kind of locality of reference. It is well known that LRU is not an
optimal online algorithm for sequences with locality of reference in the broader
sense, since e. g., the access graph model allows the k + 1 cycle as an access
graph.

The age model Coffman and Denning [11] introduced the following proba-
bilistic model which we call the age model. In the age model, the next request
for a prefix sequence σ is generated based on the age of the pages. For a prefix
sequence σ, the age of a page p ∈M is defined by

age(p, σ) :=

{
l if p is the lth most recently requested page,
∞ if p does not appear in σ.

We say that a probability distribution over the request sequences is an age
model distribution if it arises in the following way. Let ∆ be the set of probabil-
ity distributions over {1, . . . , |M |}. Given a prefix sequence σ, the probability
Pr [p |σ] is determined by an age distribution δ ∈ ∆. The age distribution δ
gives the age of the new request page p, i. e., if a is a realization according to δ,
the next page is p ∈M with age(p, σ) = a. If there is no page with age a one of
the pages with age ∞ is chosen arbitrarily.

Let D ⊆ ∆ be the set of distributions with monotone non-increasing distri-
bution functions. Note that considering age distributions from D models locality
of reference: Pages requested more recently have a high probability to be re-
quested next. Note that D contains two out of three classes of age distributions
studied by Becchetti [5].

The concave function model and the a-locality model In contrast to
the age model, the concave function model [2] and the a-locality model [24] are
deterministic models which restrict the set of request sequences.

Albers et al. [2] propose the concave function model which models working
sets. Locality of reference is modeled by an increasing concave function f : N→
R, which specifies the maximum number f(l) of distinct pages in a (contiguous)
subsequence of length l for any l ∈ N. A request sequence for which each
subsequence of length l has at most f(l) distinct pages is called f -consistent.

Torng [24] generalizes the partitioning of a sequence to m-phases, i. e., a
phase consists of m distinct pages. For any sequence σ, define the phase indices
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Ii,m(σ) recursively by

I0,m(σ) = 0,
Ii+1,m(σ) = max{j ≤ n | σ[Ii,m(σ), j] contains at most m distinct pages}.

Them-phases of σ are then given by σ[I0,m(σ)+1, I1(σ)], σ[I1,m(σ)+1, I2,m(σ)], . . . ,
where σ[i, j] = σi, . . . , σj denotes the corresponding subsequence of σ. Denote
by A(σ,m) the average length of the m-phases in σ. Torng argues that σ ex-
hibits significant locality of reference if A(σ,m)� m. To capture this formally,
we introduce the notion of a-locality for a function a : N → R ∈ Ω(1). A se-
quence σ is called a-local if A(σ,m) ≥ a(m)m holds for all m = 1, . . . , |σ|. Note
that this generalizes the notion of “a-local” used in [14].

3 Optimality of LRU for paging with locality of
reference

In this section we show that LRU is optimal w. r. t. to stochastic dominance,
i. e., incurs stochastically fewer page faults than any other paging algorithm,
for a certain class of request sequence distributions. This class includes all
distributions according to the age model as well as the uniform distribution over
all f -consistent sequences for any increasing concave function f and the uniform
distribution over all a-local sequences for any function a : N→ R ∈ Ω(1).

3.1 Preliminaries
For an online algorithm Alg, an integer j = 1, . . . , n and a sequence σ of length
|σ| = j−1, the random variable XAlg

j (σ) = 1 if the first j−1 requests are given
by σ and Alg encounters a page fault on the jth request; otherwise XAlg

j (σ) = 0.
The random variable Yj(σ) = 1 if |σ| = j and the first j requests are as in σ;
otherwise Yj(σ) = 0. Moreover, we define the random variable WAlg(σ) =(
XAlg
j (σ) |Yj−1(σ) = 1

)
, i. e., WAlg(σ) = 1 if the next request after processing

j − 1 requests from σ leads to a page fault in Alg, and WAlg(σ) = 0 otherwise.
Given a sequence σ of length |σ| ≥ j and an online algorithm Alg, the vari-

able ZAlg
j (σ) = 1 if the jth request leads to a page fault when Alg operates

on σ and ZAlg
j (σ) = 0 otherwise. Note that ZAlg

j (σ) is deterministically deter-
mined by Alg, j, and σ. On a sequence σ ∈ Mn, an online algorithm Alg has∑n
j=1 Z

Alg
j (σ) page faults. Therefore, the random variable Alg giving the total

number of page faults on a sequence of length n can be written as

Alg =
∑
σ∈Mn

n∑
j=1

ZAlg
j (σ)Yn(σ).

Finally, we denote by CAlg(σ) the set of pages in the cache after the sequence σ
has been processed by algorithm Alg.

Lemma 3.1 The value of an online algorithm Alg can be written as

Alg =
n∑
j=1

∑
σ∈Mj−1

XAlg
j (σ).
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Proof.

Alg =
∑
σ∈Mn

n∑
j=1

ZAlg
j (σ)Yn(σ) =

n∑
j=1

∑
σ∈Mn

ZAlg
j (σ)Yn(σ)

=
n∑
j=1

∑
σ1∈Mj−1

∑
p∈M

∑
σ2∈Mn−j

ZAlg
j (σ1pσ2)Yn(σ1pσ2)

as Alg is an online algorithm, we have

=
n∑
j=1

∑
σ1∈Mj−1

∑
p∈M

ZAlg
j (σ1p)

∑
σ2∈Mn−j

Yn(σ1pσ2)

due to the fact that Yj(σ1) =
∑
σ2∈Mn−j Yn(σ1σ2), we can write

=
n∑
j=1

∑
σ1∈Mj−1

∑
p∈M

ZAlg
j (σ1p)Yj(σ1p)

=
n∑
j=1

∑
σ1∈Mj−1

XAlg
j (σ1),

where the last equality follows from that fact that XAlg
j (σ1) = 1 for all realiza-

tions of the request sequence that start with σ1 and the jth request p leads to
a page fault, i. e., ZAlg

j (σ1p) = 1. 2

The following theorem is the main result underlying our stochastic domi-
nance proofs. We call a probability distribution over request sequences a prefix
distribution if they are completely described by the probability that page p is
requested given that the sequence up to this page is σ, Pr [p |σ]. Note that all
age model distributions are of this type.

Theorem 3.2 Let Alg1 and Alg2 be two online paging algorithms. Assume that
the request sequence is drawn according to a prefix distribution and denote by P
the random next request after prefix σ. Suppose that

Pr
[
P ∈ CAlg1(σ)

]
≥ Pr

[
P ∈ CAlg2(σ)

]
(2)

for any sequence σ. Then Alg1 ≤st Alg2.

Proof. By Lemma 3.1, it is sufficient to show

X
Alg1
j (σ) ≤st X

Alg2
j (σ),

for all j = 1, . . . , n, and all sequences σ ∈ M j−1. As the variables XAlg
j (σ) are

binary random variables, this is equivalent to

Pr
[
X

Alg1
j (σ) = 1

]
≤ Pr

[
X

Alg2
j (σ) = 1

]
. (3)
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For any online algorithm Alg, j ∈ {1, . . . , n}, and σ ∈M j−1, we can write

Pr
[
XAlg
j (σ) = 1

]
= Pr

[
Yj−1(σ) = 1 ∧ XAlg

j (σ) = 1
]

= Pr
[
XAlg
j (σ) = 1 |Yj−1(σ) = 1

]
· Pr [Yj−1(σ) = 1]

= Pr
[
WAlg(σ) = 1

]
· Pr [Yj−1(σ) = 1] .

Since Yj−1(σ) does not depend on the algorithm, (3) is equivalent to Pr
[
WAlg1(σ)

]
≤

Pr
[
WAlg2(σ)

]
. Moreover, Pr

[
WAlg1(σ)

]
≤ Pr

[
WAlg2(σ)

]
is equivalent to (2).2

3.2 Optimality results
Theorem 3.3 Suppose the request sequence is chosen according to the age
model with age distributions from D. Then the number of page faults of LRU
is stochastically dominated by that of any online algorithm.

Proof. Let Alg be any online paging algorithm. We show that condition (2) of
Theorem 3.2 is satisfied. Note that always |CLRU(σ)| ≥ |CAlg(σ)| holds. By
definition of LRU, there is an injective mapping φ : CAlg(σ) → CLRU(σ) that
maps a page from CAlg(σ) to a page in CLRU(σ) which is not older. Let p be
some page that Alg has in the cache and denote by P the random next request
generated according to the age model distribution. Clearly, Pr [P = φ(p)] ≥
Pr [P = p], which implies condition (2). 2

Remark i.) Coffman and Denning [11, p. 276] show that LRU achieves an
optimal expected number of page faults if the request sequence is generated
as in Theorem 3.3. This result is implied by Theorem 3.3. ii.) The result
actually holds for all age distributions (p1, . . . , p|M |) with min{p1, . . . , pk} ≥
max{pk+1, . . . , p|M |}. As the uniform distribution over all sequences belongs to
the family of age model distributions, we also have that iii.) LRU, as any other
lazy paging algorithm, is an optimal algorithm w. r. t. bijective analysis for the
set of all request sequences.

We will now prove similar optimality results for the deterministic locality of
reference models mentioned in Section 2.2, assuming the uniform distribution
over the feasible sequences. We start by explaining how we can use a prefix dis-
tribution to generate a uniform distribution. Denote by Sn the set of sequences
of length n that are feasible for the locality of reference model (i. e., f -consistent
or a-local). Moreover, for any σ, 0 ≤ |σ| < n, and p ∈M let Sn(σ, p) be the set
of extensions of σp to a feasible sequence of length n, i. e.,

Sn(σ, p) =
{
σ′ ∈Mn−|σ| ∣∣ σpσ′ ∈ Sn}.

Finally define Ln(σ, p) = |Sn(σ, p)| and Ln(σ) =
∑
p∈M Ln(σ, p). A uniformly

distributed random sequence Σ ∈ Sn may be generated as follows: after σ =
(σ1, . . . , σi−1) has been choosen, we set σi = p with probability Ln(σ, p)/Ln(σ)
for each p ∈M .

Lemma 3.4 Consider any online paging algorithm Alg and suppose that for
any sequence σ, 0 ≤ |σ| < n, and for any pages p ∈ CLRU(σ) \ CAlg(σ) =: P
and q ∈ CAlg(σ) \ CLRU(σ) =: Q we have

Ln(σ, p) ≥ Ln(σ, q). (4)
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Then LRU(Σ) ≤st Alg(Σ), where Σ is a random sequence distributed uniformly
over Sn.

Proof. For a sequence σ with |σ| = j < n let P denote the random request
that follows σ according to the distribution defined above, i. e., Pr [P = p] =
Ln(σ, p)/Ln(σ). By Theorem 3.2, it is sufficient to show Pr

[
P ∈ CLRU(σ)

]
≥

Pr
[
P ∈ CAlg(σ)

]
for any sequence σ. We have

Pr
[
P ∈ CLRU(σ)

]
=

∑
p∈CLRU(σ) Ln(σ, p)

Ln(σ)

=

∑
p∈CLRU(σ)∩CAlg(σ) Ln(σ, p) +

∑
p∈P Ln(σ, p)

Ln(σ)

≥
∑
p∈CLRU(σ)∩CAlg(σ) Ln(σ, p) +

∑
q∈Q Ln(σ, q)

Ln(σ)

= Pr
[
P ∈ CAlg(σ)

]
,

where we used (4) and the fact that |CLRU(σ)| ≥ |CAlg(σ)| which implies |P | ≥
|Q|. 2

In the following proofs we need the following notation borrowed from [4].
For a sequence σ and two distinctive pages p, q ∈ M , the complement sequence
of σ w. r. t. p and q, denoted by σ(p,q), arises from σ by exchanging p and q and
keeping all other requests. Note that the mapping σ 7→ σ(p,q) is bijective since
it is self-inverse.

Theorem 3.5 Let f : N→ R be an increasing concave function and let Σ be a
request sequence drawn uniformly at random from all f -consistent sequences of
length n. Then LRU(Σ) ≤st Alg(Σ).

Proof. We apply Lemma 3.4 and show Ln(σ, p) ≥ Ln(σ, q) for any sequence σ,
0 ≤ |σ| < n and for any pages p ∈ P and q ∈ Q by giving an injective map from
Sn(σ, q) to Sn(σ, p). In particular, we claim that for σ′ ∈ Sn(σ, q), σ′ 7→ σ′(p,q)

is such a map.
By definition of p and q, the last request for page p in σ was after the

last request for page q. Let ω = σqσ′ be the f -consistent extended sequence
corresponding to σ′. Lemma 1 from [4] states that either the sequence σpσ′(p,q)
is f -consistent or the first access to p after σ in ω is before the first access to
q. Since in ω, q is the first requested page after σ, the second case obviously
cannot be true and therefore σ′(p,q) must be an element of Sn(σ, p). 2

Theorem 3.6 Consider a function a : N → R ∈ Ω(1) and let Σ be a request
sequence drawn uniformly at random from all a-local sequences of length n. Then
LRU(Σ) ≤st Alg(Σ).

Proof. We use the same proof technique as in the last theorem, using again the
mapping σ′ 7→ σ′(p,q) for each σ′ ∈ Sn(σ, q). Let ω := σqσ′ be the original
sequence and ω̄ := σpσ′(p,q) be its mapping image. We establish A(ω̄,m) ≥
A(ω,m) for any m by showing Ii,m(ω̄) ≥ Ii,m(ω) by induction on i. Let ` be
the number of m-phases of σ. It is obvious that Ii,m(ω̄) = Ii,m(ω) for all i < `.
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Suppose |σ| = l and denote by D(σ, i, j) the set of distinct pages in the
subsequence σi, . . . , σj . We claim I`,m(ω̄) ≥ I`,m(ω), or equivalently,

|D(ω̄, I`−1,m(σ) + 1, I`,m(ω))| ≤ |D(ω, I`−1,m(σ) + 1, I`,m(ω))|. (5)

If q is referenced in σ[I`−1,m + 1, l], then so is p since p ∈ CLRU(σ) and q /∈
CLRU(σ). This implies that (5) holds with equality in this case. The same
is true if both p and q do not occur in σ[I`−1,m + 1, l]. In the case that p
occurs in σ[I`−1,m + 1, l] but q does not we have |D(ω̄, I`−1,m(σ) + 1, l + 1)| <
|D(ω, I`−1,m(σ) + 1, l + 1)| and (5) holds as well.

To finish the induction, assume we already established Ii,m(ω̄) ≥ Ii,m(ω).
Then Ii+1,m(ω̄) ≥ Ii+1,m(ω) follows by observing that

|D(ω̄, Ii,m(ω̄) + 1, Ii+1,m(ω))| ≤ |D(ω, Ii,m(ω) + 1, Ii+1,m(ω))|,

which follows from the fact that |D(σ, i, j)| = |D(σ(p,q), i, j)| for any sequence σ
and 1 ≤ i < j ≤ |σ|. 2

Remark i.) Theorem 3.5 is actually equivalent to Theorem 1 in [4], but we
believe that our proof is simpler and more straightforward; it is only half as
long, too. ii.) Theorem 3.5 also holds for the more general average concave
function model [2], as Lemma 1 from [4] holds for this as well. iii.) In fact,
LRU is optimal for each locality of reference model with the following property:
If the sequence σ1qσ2pσ3qσ4pσ5 with sequence σ3 containing neither p nor q is
feasible, then so is the sequence σ1qσ2pσ3pσ4qσ5, which is arguably more “local”
than the original one.

Remark Aho et al. [1] study random request sequences that are almost sta-
tionary in the sense that the page request probabilities maintain their relative
orders, i. e., the probability distribution is such that for pages p and q

Pr [p | σ] ≥ Pr [q | σ] =⇒ Pr [p | σσ′] ≥ Pr [q | σσ′] (6)

for all request sequences σ and σ′. They define a ranking relation < on the pages
with q < p meaning Pr [q | σ] ≤ Pr [p | σ] for all request sequences σ. Aho et al.
show that the algorithm A0 which on a page fault evicts a <-minimal page from
the cache is optimal w. r. t. to the expected number of page faults. From (6)
and Theorem 3.2 it is clear that A0 is optimal w. r. t. to stochastic dominance
of page faults, implying the result from [1]. Note that the almost stationary
random sequences include the independent reference model [11], in which each
requested page is drawn i. i. d. from a fixed distribution.

References
[1] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. Principles of

optimal page replacement. J. ACM, 18(1):80–93, 1971.

[2] S. Albers, L. M. Favrholdt, and O. Giel. On paging with locality of refer-
ence. Journal on Computer and System Sciences, 70(2):145–175, 2005.

[3] S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the separation and
equivalence of paging strategies. In Proceedings of the 18th ACM-SIAM
symposium on Discrete algorithms, pages 229–237, 2007.

10



[4] S. Angelopoulos and P. Schweitzer. Paging and list update under bijective
analysis. In Proceedings of the 20th ACM-SIAM symposium on Discrete
algorithms, 2009. To appear.

[5] L. Becchetti. Modeling locality: A probabilistic analysis of LRU and FWF.
In Proceedings of the 12th European Symp. on Algorithms (ESA), pages 98–
109, 2004.

[6] L.A. Belady. A study of replacement algorithms for virtual storage com-
puters. IBM Systems Journal, 5:78–101, 1966.

[7] S. Ben-David and A. Borodin. A new measure for the study of online
algorithms. Algorithmica, 11(1):73–91, 1994.

[8] A. Borodin and R. El-Yaniv. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

[9] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive pag-
ing with locality of reference. Journal of Computer and System Sciences,
50:244–258, 1995.

[10] J. Boyar, L. M. Favrholdt, and K. S. Larsen. The relative worst-order ratio
applied to paging. Journal on Computer and System Sciences, 73(6):818–
843, 2007.

[11] Edward G. Coffman, Jr. and Peter J. Denning. Operating Systems Theory.
Prentice-Hall, 1973.

[12] P. J. Denning. The working set model of program behavior. Communica-
tions of the ACM, 11:323–333, 1968.

[13] P. J. Denning. Working sets past and present. IEEE Transactions on
Software Engineering, 6:64–84, 1980.

[14] R. Dorrigiv and A. López-Ortiz. On certain new models for paging with
locality of reference. In WALCOM 2008, volume 4921 of Lecture Notes in
Computer Science, pages 200–209, 2008.

[15] A. Fiat and M. Mendel. Truly online paging with locality of reference. In
FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, pages 326–335, 1997.

[16] B. Hiller and T. Vredeveld. Probabilistic analysis of online bin coloring
algorithms via stochastic comparison. In Proceedings of the 16th Annual
European Symposium on Algorithms, Lecture Notes in Computer Science,
2008. to appear.

[17] Sandy Irani, Anna R. Karlin, and Steven Phillips. Strongly competitive al-
gorithms for paging with locality of reference. SIAM J. Comput., 25(3):477–
497, 1996.

[18] A. Karlin, M. Manasse, L. Rudolph, and D. Sleator. Competitive snoopy
paging. Algorithmica, 3:79–119, 1988.

11



[19] Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov
paging. SIAM J. Comput., 30(2):906–922, 2000.

[20] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis.
SIAM Journal on Computing, 30(1):300–317, 2000.

[21] A. Müller and D. Stoyan. Comparison Models for Stochastic Models and
Risks. John Wiley & Sons, 2002.

[22] Konstantinos Panagiotou and Alexander Souza. On adequate performance
measures for paging. In STOC ’06: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 487–496, 2006.

[23] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, 1985.

[24] E. Torng. A unified analysis of paging and caching. Algorithmica,
20(2):175–200, 1998.

[25] N. E. Young. The k-server dual and loose competitiveness for paging.
Algorithmica, 11(6):525–541, 1994.

[26] N. E. Young. On-line paging against adversarially biased random inputs.
Journal of Algorithms, 37(1):218–235, 2000.

[27] N. E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

12


