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Vickrey Auctions for Railway Tracks∗

Ralf Borndörfer† Annette Mura‡ Thomas Schlechte†

Abstract

We consider an auction of slots to run trains through a railway net-
work. In contrast to the classical setting for combinatorial auctions,
there is not only competition for slots, but slots can mutually exclude
each other, such that general conflict constraints on bids arise. This
turns the winner determination problem associated with such an auc-
tion into a complex combinatorial optimization problem. It also raises
a number of auction design questions, in particular, on incentive com-
patibilty. We propose a single-shot second price auction for railway
slots, the Vickrey Track Auction (VTA). We show that this auction is
incentive compatible, i.e., rational bidders are always motivated to bid
their true valuation, and that it produces efficient allocations, even in
the presence of constraints on allocations. These properties are, how-
ever, lost when rules on the submission of bids such as, e.g., lowest
bids, are imposed. Our results carry over to “generalized” Vickrey
auctions with combinatorial constraints.

1 Introduction

We consider in this paper the design of an auction-based allocation mech-
anism for railway slots in order to establish a fair and non-discriminatory
access to a railway network, see Borndörfer et al. [2006] and Mura [2006] for
more details and background information. In this setting, train operating
companies (TOCs) compete for the use of a shared railway infrastructure
by placing bids for trains that they intend to run. The trains consume
infrastructure capacity, such as track segments and stations, over certain
time intervals, and they can exclude each other due to safety and other op-
erational constraints, even if they would not meet physically (actually, to
make that sure). An infrastructure manager chooses from the bids a feasible
subset, namely, a timetable, that maximizes the auction proceeds. Such a
mechanism is desirable from an economic point of view because it can be
argued that it leads to the most efficient use of a limited resource.
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Vickrey argued in his seminal paper Vickrey [1961] for the importance of
incentive compatibility in auction design, and he showed that a second price
auction has this property. He, and independently Clarke Clarke [1971] and
Groves Groves [1973], also proposed a sealed-bid auction that generalizes
the simple Vickrey auction for a single item to the multi-item case, the
so-called Vickrey-Clarke-Groves (VCG) mechanism, which is also incentive
compatible. This classical result pertains to a combinatorial auction, in
which bids are placed for bundles of items, and two bundles can be allocated
iff they do not contain the same item. This is, however, not sufficient for a
railway track auction, in which more general constraints on the compatibility
of slots arise, e.g., from minimum headway constraints. Whatever these
constraints may be, a second price auction can of course also be conducted
in such a setting. However, it is a priori not clear if such an auction is
incentive compatible. Our main result is that this is indeed the case.

The article is organized as follows. Section 2 recapitulates the track
allocation or train timetabling problem, which is the winner determination
problem of the proposed auction. The VTA is introduced and analyzed in
Section 3.

2 Railway Track Allocation

The optimal track allocation problem, also called train timetabling problem
(TTP), is a major problem in the planning process of railway network oper-
ator. It can be informally described as follows: given an infrastructure and
a set of bids for slots to run specific trains, construct a timetable of max-
imum value. What makes the problem difficult are the many and complex
technical and operational requirements for the feasibility of a timetable.
Moreover, the value of a train depends on travel, arrival, and departure
times, see Borndörfer & Schlechte [2007] and Cacchiani [2007] for a detailed
description. The crucial point for our purpose of auction design is that slots
can mutually exclude each other for various technical and operational rea-
sons, e.g., because of headway constraints or station capacities. In such a
case, we say that two slots are in conflict, while a set of conflict-free slots is
called stable. With this terminology, the TTP can be restated as a set pack-
ing problem to find a stable set of slots of maximum value, or, if capacity
constraints are included, as a generalized set packing problem. This setting
generalizes the classical combinatorial auction, in which all conflicts arise
from competition for items.

At this high level, the TTP can formally be described as the following
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symbol description

M set of train operators or bidders
P set of railway slots or paths
B set of regular bids , i.e. tuple of (bidder, path, value)
bip bid of TOC i ∈M for slot p ∈ P
vi
p willingness to pay of TOC i ∈M for slot p ∈ P
ui

p utility of TOC i ∈M for slot p ∈ P
C set of conflicting slot sets
(Pq, κq) = q ∈ C tupel of conflicting sets Pq ∈ 2P and capacities κq ∈ N

Table 1: Railway slot auction notation.

integer program:

(TTP(M)) (i) max α(M) :=
∑
i∈M

∑
p∈P

bipx
i
p

(ii)
∑
i∈M

∑
p∈Pq

xi
p ≤ κq ∀q ∈ C

(iii) xi
p ∈ {0, 1}.

Here, M is a set of TOCs that place bids on a set P of slots (paths)
to run trains through some railway network. More precisely, TOC i places
bid bip on slot p (we set bip = −1 if TOC i does not bid for p). Constraints on
the feasibility of a timetable are expressed in terms of a set of cliques C ⊆ 2P

of bids and associated capacities κ, namely, by stating that at most κq of
the slots Pq of clique q can be allocated simultaneously. xi

p denotes a binary
decision variable, which takes value 1 if slot path p is allocated to TOC i and
0 otherwise. The objective function (i) maximizes the value of the assigned
slots; let us denote the optimum by α(M), and the problem by TTP(M),
depending on the set M of bidders. Constraints (ii) formulate generalized
clique constraints on conflicts on capacities that we have just discussed.
Finally, (iii) are the integrality constraints. Special purpose methods have
been designed that can solve TTPs of medium size, see again Borndörfer &
Schlechte [2007] and Cacchiani [2007].

The TTP can be used in a railway slot auction as the winner deter-
mination problem to compute an optimal allocation of slots to bidders. If
all bidders would submit their true willingness to pay (or valuation) vi

p as
bids, i.e., bip = vi

p, TTP would assign the resources to the users with the
highest utility. Such an allocation (i.e., the one that results from bip = vi

p)
is called efficient. Bidders do, however, in general not easily reveal their
true valuations. Hence, the problem arises to design an auction mechanism
that produces efficient allocations without knowing the bidders’ willingness
to pay. One way to approach this problem is to charge from a bidder i a
price p(i) smaller than

∑
p∈P b

i
px

i
p, the sum of the assigned bids, in such
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a way that it becomes attractive to bid truthfully, i.e., bip = vi
p. More for-

mally, let the utility u(i) of bidder i be defined as u(i) :=
∑

p∈P v
i
px

i
p− p(i),

i.e., willingness to pay minus price. Then a bidding strategy is dominant
if it maximizes u(i) no matter what any other bidder j ∈ M\{i} submits.
An auction mechanism in which truthful bidding is a dominant strategy
is called incentive compatible. For a standard combinatorial auction, the
Vickrey-Clarke-Groves mechanism is incentive compatible, and it will turn
out in the next section that an appropriate generalization, the VTA, is an in-
centive compatible railway slot auction. Table 1 summarizes the introduced
notation.

3 A Generalized VCG Auction

Definition 3.1 Consider the railway track allocation setting of Section 2.
A Vickrey track auction (VTA) is a single shot combinatorial auction of rail-
way slots in which the winner determination problem is solved using model
TTP(M) and, given an optimal allocation x̂, the price that bidder is charged
is defined in compliance with the Vickrey-Clarke-Groves mechanism as

pvta(i) := α(M\{i})−
(
α(M)−

∑
p∈P

bipx̂
i
p

)
.

Theorem 3.2 Truthful bidding is a dominant strategy for all bidders in a
VTA.

Proof 3.3 The proof is an extension of the standard one, see e.g., Cramton
et al. [2006], to constrained winner determination. Denote by X(M) the set
of feasible allocations, i.e. the set of vectors x that satisfy TTP(M) (ii)–(iii).
Focus on some bidder i and let the other bidders j ∈M\{i} choose arbitrary
bidding strategies bjp ∈ R+, ∀p ∈ P . Suppose bidder i bids truthfully, i.e.,
bip = vi

p, ∀p ∈ P , and denote by x̂ the optimal allocation, by p̂vta(i) the
resulting price, and by ûi the utility. For any alternative bidding strategy bip,
p ∈ P , there exists at least one p ∈ P with bip < vi

p. Suppose i makes such a
bid, and let x be the optimal solution of the associated winner determination
problem, α(M) its value, pvta(i) the associated price, and ui the utility of

4



bidder i in that alternative case. Then it holds:

u(i) : =
∑
p∈P

vi
px̂

i
p − p̂vta(i)

=
∑
p∈P

vi
px̂

i
p − α(M\{i}) + α(M)−

∑
p∈P

bipx̂
i
p

=
∑
p∈P

vi
px̂

i
p +

∑
m∈M\{i}

∑
p∈P

bmp x̂
m
p − α(M\{i})

= max
x∈X(M)

{
∑
p∈P

vi
px

i
p +

∑
m∈M\{i}

∑
p∈P

bmp x
m
p } − α(M\{i})

≥
∑
p∈P

vi
px

i
p +

∑
m∈M\{i}

∑
p∈P

bmp x
m
p − α(M\{i})

=
∑
p∈P

vi
px

i
p +

∑
m∈M\{i}

∑
p∈P

b
m
p x

m
p − α(M\{i})

=
∑
p∈P

vi
px

i
p − α(M\{i}) + α(M)−

∑
p∈P

b
i
px

i
p

=
∑
p∈P

vi
px

i
p − pvta(i)

= u(i).

ut
Note that this proof does not depend on the concrete structure of TTP, i.e.,
it generalizes to combinatorial Vickrey auctions with arbitrary combinatorial
winner determination problems.
For example, it follows that a VTA with additional constraints on the num-
ber of slots that can be alloted to a bidder is also incentive compatible,
because this rule can be dealt with by adding to TPP additional constraints
of the form ∑

p∈P

xm
p ≤ λ ∀m ∈M.

After these positive results on “winner determination constraints” or “al-
location constraints” we now investigate two types of “bidding constraints”
that are of interest in a railway auction.

3.1 Minimum Bids

Due to maintenance requirements, a railway network operator would be
interested in stipulating lower bounds µp, p ∈ P , on bids for slots in order
to generate a minimum cash flow. Consider an according redefinition of
auction prices as follows:

plb
vta(i) := max{

∑
p∈P

µpx
i
p, pvta(i)}.

Unfortunately, the following example shows that truthful bidding, i.e. bij =
vi
j , if vi

j ≥ µ(j), is not a dominant strategy for the resulting auction.
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Example 3.4 Consider the auction in Figure 1 for two conflict-free paths
A and B, and two bidders r and s. Figures 2–3 show that the pricing mecha-
nism plb

vta is not incentive compatible, because truthful bidding is not a dom-
inant strategy for bidder r.

r s

A 2 1
B 10 6

µ 3 3

Figure 1: Willingness to
pay.

r s

A -1 -1
B 10 9

plb
vta 9 0
u 1 0

Figure 2: Truthful bid-
ding.

r s

A 3 -1
B 10 9

plb
vta 9 0
u 3 0

Figure 3: Best strat-
egy.

3.2 Limited Number of Bids

Another reasonable auctioning constraint would be to limit number of bids
on individual slots per participant; this is because of handling costs for bids
for the auctioneer and because of the complexity to come up with these bids
for the bidders. Again, we can give an example that truthful bidding is not
a dominant strategy in such an auction.

Example 3.5 Consider the auction in Figure 4 for two conflict-free paths A
and B, and two bidders r and s. Imagine a limit on the number of submitted
bids of at most 1. Figures 5–6 show that such an auction is not incentive
compatible, because truthful bidding, i.e., in this case, bidding for the most
valuable slot, is not a dominating strategy for bidder s. The reason is clearly
that any bidder that wants to bid for more valuable slots than the upper limit
allows, cannot guess which of the subsets that he can bid on produces the
maximal utility (w.r.t. the other bids).

r s

A 1 8
B 10 9

Figure 4: Willingness to
pay.

r s

A -1 -1
B 10 9

pvta 9 0
u 1 0

Figure 5: Truthful bid-
ding.

r s

A -1 8
B 10 -1

pvta 0 0
u 10 8

Figure 6: Best strat-
egy.
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