
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TOBIAS ACHTERBERG1

TIMO BERTHOLD2

THORSTEN KOCH2

KATI WOLTER2

Constraint Integer Programming: a
New Approach to Integrate CP and MIP

1 ILOG Deutschland, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany, tachterberg@ilog.de
2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {berthold,koch,wolter}@zib.de

ZIB-Report 08-01 (January 2008)

Constraint Integer Programming: a New

Approach to Integrate CP and MIP

Tobias Achterberg, Timo Berthold, Thorsten Koch, Kati Wolter

January 4, 2008

Abstract

This article introduces constraint integer programming (CIP), which is
a novel way to combine constraint programming (CP) and mixed integer
programming (MIP) methodologies. CIP is a generalization of MIP that
supports the notion of general constraints as in CP. This approach is
supported by the CIP framework SCIP, which also integrates techniques
from SAT solving. SCIP is available in source code and free for non-
commercial use.

We demonstrate the usefulness of CIP on two tasks. First, we ap-
ply the constraint integer programming approach to pure mixed integer
programs. Computational experiments show that SCIP is almost com-
petitive to current state-of-the-art commercial MIP solvers. Second, we
employ the CIP framework to solve chip design verification problems,
which involve some highly non-linear constraint types that are very hard
to handle by pure MIP solvers. The CIP approach is very effective here:
it can apply the full sophisticated MIP machinery to the linear part of
the problem, while dealing with the non-linear constraints by employing
constraint programming techniques.

1 Introduction

In the recent years, several authors showed that an integrated approach of con-
straint programming (CP) and mixed integer programming (MIP) can help to
solve optimization problems that were intractable with either of the two methods
alone [16, 25, 39]. Different approaches to integrate general constraint and mixed
integer programming into a single framework have been proposed [6, 10, 15].

Our approach differs from the existing work in the level of integration. The
constraints of a CP usually interact through the domains of the variables. The
idea of constraint integer programming (CIP) is to offer a second communication
interface, namely the LP relaxation. This enables a CIP solver to exploit the
full power of sophisticated MIP techniques, provided that the majority of the
constraints in the problem instance can be reasonably linearized.

Therefore, CIP is well suited for problems that contain a MIP core comple-
mented by a small number of nonlinear constraints. As an example for such a
problem type, the property checking problem is presented in Section 5.

The concept of constraint integer programming is realized in the branch-
and-cut framework SCIP. It combines solving techniques for CP, MIP, and
satisfiability problems (SAT) such that all involved algorithms operate on a

1

single search tree, which yields a very close interaction. A detailed description
of the concepts and the software can be found in [2].

The development of SCIP started in October 2002. Most ideas and algo-
rithms of the then state-of-the-art MIP solver SIP of Alexander Martin [32]
were transferred into the initial version of SCIP. Since then, many new fea-
tures have been developed that further improved the performance and the us-
ability of the framework. SCIP is freely available in source code for academic
and non-commercial use and can be downloaded from http://scip.zib.de.
The current version 1.00—as of this writing—has interfaces to five different LP
solvers and consists of 223 178 lines of C code. The code is actively maintained
and extended, and we hope to be able to make further improvements.

The plugins that are provided with the standard distribution of SCIP suffice
to turn the CIP framework into a full-fledged MIP solver. In combination with
either SoPlex [41] or CLP [18] as LP solver, it is the fastest non-commercial
MIP solver that is currently available, see [33] and our results in Section 4.
Using Cplex [23] as LP solver, the performance of SCIP is even comparable
to the today’s best commercial codes.

As a library, SCIP can be used to develop branch-cut-and-price algorithms,
and it can be extended to support additional classes of non-linear constraints
by providing so-called constraint handler plugins. We present a solver for the
chip design verification problem as one example of this usage. SCIP has already
been used in various other projects and for teaching [3].

The article is organized as follows: in Section 2, we introduce constraint
integer programs. Section 3 presents the building blocks of the constraint integer
programming framework SCIP. In Sections 4 and 5, we demonstrate the usage
of SCIP on two applications. First, we employ SCIP as a stand-alone MIP
solver, and second, we use SCIP as a branch-and-cut framework to solve chip
verification problems. Computational results are given in the Sections 4 and 5.4.

2 Constraint Integer Programs

Most solvers for CP, SAT, and MIP are based on dividing the problem into
smaller subproblems and implicitly enumerating all potential solutions. Be-
cause MIP is a very specific case of CP, MIP solvers can apply sophisticated
techniques that operate on the subproblem as a whole, for example solving the
linear programming (LP) relaxation or generating cutting planes. In contrast,
due to the very general definition of CPs, CP solvers have to rely on constraint
propagators, each of them exploiting the structure of a single constraint class.
Usually, the only communication between the individual constraints takes place
via the variables’ domains. An advantage of CP is, however, the possibility
to model the problem more directly, using very expressive constraints, which
maintain the structure of the problem. On the other hand, SAT is also a very
specific case of CP with only one type of constraints, namely Boolean clauses.
Such a clause can easily be linearized, but the LP relaxation is rather useless,
as it cannot detect the infeasibility of subproblems earlier than domain propa-
gation. Therefore, SAT solvers mainly exploit the special problem structure to
speed up the domain propagation algorithm.

The hope of integrating CP, SAT, and MIP techniques is to combine their
advantages and to compensate for their individual weaknesses. We propose the

2

http://scip.zib.de

following slight restriction of a CP, which allows the application of MIP solving
techniques, to specify our integrated approach:

Definition. A constraint integer program CIP = (C, I, c) consists of solving

(CIP) c⋆ = min{cT x | Ci(x) = 1 for all i = 1, . . . , m,

x ∈ Rn, xj ∈ Z for all j ∈ I}

with a finite set C = {C1, . . . , Cm} of constraints Ci : Rn → {0, 1}, i = 1, . . . , m,
a subset I ⊆ N = {1, . . . , n} of the variable index set, and an objective function
vector c ∈ Rn. A CIP has to fulfill the following additional condition:

∀x̂I ∈ ZI ∃(A′, b′) : {xC ∈ RC | C(x̂I , xC)} = {xC ∈ RC | A′xC ≤ b′} (1)

with C := N \ I, A′ ∈ Rk×C , and b′ ∈ Rk for some k ∈ Z≥0.

Restriction (1) ensures that the remaining subproblem after fixing all integer
variables is always a linear program. This means that in the case of finite domain
integer variables, the problem can be—in principle—completely solved by enu-
merating all values of the integer variables and then solving the corresponding
LPs.

Note, that this does not forbid quadratic or even more involved expressions.
Only the remaining part after fixing (and thus eliminating) the integer variables
must be linear in the continuous variables. Furthermore, the linearity restriction
of the objective function can be compensated by introducing an auxiliary objec-
tive variable z that is linked to the actual non-linear objective function with a
constraint z = f(x). Analogously, general variable domains can be represented
as additional constraints.

Therefore, every CP that meets Condition (1) can be represented as a CIP.
Especially, the following proposition holds.

Proposition. The notion of constraint integer programming generalizes finite
domain constraint programming and mixed integer programming:

(a) Every CP with finite domains for all variables can be modeled as a CIP.

(b) Every MIP can be modeled as a CIP.

3 The SCIP Framework

SCIP is a framework for constraint integer programming. It is based on the
branch-and-bound procedure, which is a very general and widely used method
to solve optimization problems.

The idea of branching is to successively divide the given problem instance
into smaller subproblems until the individual subproblems are easy to solve.
The best of all solutions found in the subproblems yields the global optimum.
During the course of the algorithm, a branching tree is created with each node
representing one of the subproblems.

The intention of bounding is to avoid a complete enumeration of all potential
solutions of the initial problem, which are usually exponentially many. If a
subproblem’s lower (dual) bound is greater than or equal to the global upper
(primal) bound, the subproblem can be pruned. Lower bounds are calculated

3

with the help of a relaxation which should be easy to solve. Upper bounds
are found if the solution of the relaxation is also feasible for the corresponding
subproblem.

Good lower and upper bounds must be available for the bounding to be
effective. In order to improve a subproblem’s lower bound, one can tighten
its relaxation, e.g., via domain propagation or by adding cutting planes (see
Sections 3.2 and 3.4, respectively). Primal heuristics, which are described in
Section 3.5, contribute to the upper bound.

The selection of the next subproblem in the search tree and the branching
decision have a major impact on how early good primal solutions can be found
and how fast the lower bounds of the subproblems increase. More details on
branching and node selection are given in Section 3.6.

SCIP provides all necessary infrastructure to implement branch-and-bound
based algorithms for solving CIPs. It manages the branching tree along with all
subproblem data, automatically updates the LP relaxation, and handles all nec-
essary transformations due to presolving problem modifications, see Section 3.7.
Additionally, a cut pool, cut filtering, and a SAT-like conflict analysis mecha-
nism, see Section 3.3, are available. SCIP provides its own memory management
and plenty of statistical output.

Besides the infrastructure, all main algorithms of SCIP are implemented as
external plugins. In the remainder of this section, we will describe the most
important types of plugins and their role for solving CIPs.

3.1 Constraint Handlers

Since a CIP consists of constraints, the central objects of SCIP are the con-
straint handlers. Each constraint handler represents the semantics of a single
class of constraints and provides algorithms to handle constraints of the corre-
sponding type. The primary task of a constraint handler is to check a given
solution for feasibility with respect to all constraints of its type existing in the
problem instance. This feasibility test suffices to turn SCIP into an algorithm
which correctly solves CIPs with constraints of the supported types. To im-
prove the performance of the solving process, constraint handlers may provide
additional algorithms and information about their constraints to the framework,
namely

• presolving methods to simplify the problem’s representation,

• propagation methods to tighten the variables’ domains,

• a linear relaxation, which can be generated in advance or on the fly, that
strengthens the LP relaxation of the problem, and

• branching decisions to split the problem into smaller subproblems, us-
ing structural knowledge of the constraints in order to generate a well-
balanced branching tree.

The distribution of SCIP includes the constraint handler for linear constraints
that is needed to solve MIPs. Additionally, some specializations of linear con-
straints like knapsack, set partitioning, or variable bound constraints are sup-
ported by constraint handlers, which can exploit the special structure of these
constraints in order to obtain more efficient data structures and algorithms.

4

3.2 Domain Propagation

Constraint propagation is an integral part of every CP solver [9]. The task
is to analyze the set of constraints of the current subproblem and the current
domains of the variables in order to infer additional valid constraints and domain
reductions, thereby restricting the search space. The special case where only the
domains of the variables are affected by the propagation process is called domain
propagation. If the propagation only tightens the lower and upper bounds of
the domains without introducing holes it is called bound propagation.

In mixed integer programming, the concept of bound propagation is well-
known under the term node preprocessing. Usually, MIP solvers apply a re-
stricted version of the preprocessing algorithm that is used before starting
the branch-and-bound process to simplify the problem instance (see, e.g., [37]
or [21]).

Besides the integrality restrictions, there is only one type of constraints in a
MIP, namely the linear constraints. In contrast, CP models can include a large
variety of constraint classes with different semantics and structure. Thus, a CP
solver usually provides specialized constraint propagation algorithms for every
single constraint class.

Constraint based (primal) domain propagation is supported by the con-
straint handler concept of SCIP. In addition, SCIP features two dual domain
reduction methods that are driven by the objective function, namely the objec-
tive propagation and the root reduced cost strengthening [34].

3.3 Conflict Analysis

Current state-of-the-art MIP solvers discard infeasible and bound-exceeding
subproblems without paying further attention to them. Modern SAT solvers,
in contrast, try to learn from infeasible subproblems, which is an idea due to
Marques-Silva and Sakallah [31]. The infeasibilities are analyzed in order to
generate so-called conflict clauses. These are implied clauses that help to prune
the search tree. They also enable the solver to apply so-called non-chronological
backtracking. A similar idea in CP are no-goods, see e.g., [38].

SCIP generalizes conflict analysis to CIP and, as a special case, to MIP.
There are two main differences of CIP and SAT solving in the context of con-
flict analysis. First, the variables of a CIP do not need to be of binary type.
Therefore, we have to extend the concept of the conflict graph: it has to repre-
sent bound changes instead of variable fixings, see [1] for details.

Furthermore, the infeasibility of a subproblem in the CIP search tree usually
has its reason in the LP relaxation of the subproblem. In this case, there is no
single conflict-detecting constraint as in SAT or CP solving. To cope with
this situation, we have to analyze the LP in order to identify a subset of the
bound changes that suffices to render the LP infeasible or bound-exceeding.
Note that it is an NP-hard problem to identify a subset of the local bounds of
minimal cardinality such that the LP stays infeasible if all other local bounds are
removed. Therefore, we use a greedy heuristic approach based on an unbounded
ray of the dual LP, see [1].

After having analyzed the LP, we proceed in the same fashion as SAT solvers:
we construct a conflict graph, choose a cut in this graph, and produce a conflict
constraint which consists of the bound changes along the frontier of this cut.

5

3.4 Cutting Plane Separators

Besides splitting the current subproblem Q into two or more easier subproblems
by branching, one can also try to tighten the subproblem’s relaxation in order to
rule out the current solution x̌ and to obtain a different one. The LP relaxation
can be tightened by introducing additional linear constraints aT x ≤ b that
are violated by the current LP solution x̌ but do not cut off feasible solutions
from Q. Thus, the current solution x̌ is separated from the convex hull of integer
solutions QI by the cutting plane aT x ≤ b, i.e., x̌ /∈ {x ∈ R | aT x ≤ b} ⊇ QI .

The theory of cutting planes is very well covered in the literature. For an
overview of computationally useful cutting plane techniques, see [21, 30]. A
recent survey of cutting plane literature can be found in [27].

SCIP features separators for knapsack cover cuts [11], complemented mixed
integer rounding cuts [29], Gomory mixed integer cuts [22], strong Chvátal-
Gomory cuts [28], flow cover cuts [36], implied bound cuts [37], and clique
cuts [26, 37]. Detailed descriptions of the cutting planes algorithms integrated
into SCIP and an extensive analysis of their computational impact can by found
in [40].

Almost as important as finding cutting planes is the selection of the cuts
that actually should enter the LP relaxation. Balas, Ceria, and Cornuéjols [12]
and Andreello, Caprara, and Fischetti [7] proposed to base the cut selection
on efficacy and orthogonality. The efficacy is the Euclidean distance of the
cut hyperplane to the current LP solution, and an orthogonality bound makes
sure that the cuts added to the LP form an almost pairwise orthogonal set of
hyperplanes. SCIP follows these suggestions.

3.5 Primal Heuristics

Primal heuristics have a significant relevance as supplementary procedures inside
a MIP solver: they help to find good feasible solutions early in the search
process, which helps to prune the search tree by bounding and allows to apply
more reduced cost fixing and other dual reductions that can tighten the problem
formulation.

Overall, there are 23 heuristics integrated into SCIP. They can be roughly
subclassified into four categories:

• Rounding heuristics try to iteratively round the fractional values of an LP
solution in such a way that the feasibility for the constraints is maintained
or recovered by further roundings.

• Diving heuristics iteratively round a variable with fractional LP value and
resolve the LP, thereby simulating a depth first search (see Section 3.6)
in the branch-and-bound tree.

• Objective diving heuristics are similar to diving heuristics, but instead of
fixing the variables by changing their bounds, they perform “soft fixings”
by modifying their objective coefficients.

• Improvement heuristics consider one or more primal feasible solutions that
have been previously found and try to construct an improved solution with
better objective value.

6

Detailed descriptions of the primal heuristics implemented in SCIP and an
in-depth analysis of their computational impact can be found in [13], an overview
is given in [14].

3.6 Node Selection and Branching Rules

Two of the most important decisions in a branch-and-bound algorithm are the
selection of the next subproblem to process (node selection) and how to split
the current problem Q into smaller subproblems (branching rule).

The most popular branching strategy in MIP solving is to split the domain
of an integer variable xj , j ∈ I, with fractional LP value x̌j /∈ Z into two parts,
thus creating two subproblems Q1 = Q∩{xj ≤ ⌊x̌j⌋} and Q2 = Q∩{xj ≥ ⌈x̌j⌉}.
Methods to select such a fractional variable for branching are discussed in [2, 4].

SCIP implements most of the discussed branching rules, especially reliability
branching which is currently the most effective general branching rule for MIP.
Using SCIP, it is possible to implement arbitrary branching schemes such as
branchings that create more than two subproblems or branching on constraints.

SCIP offers several node selection strategies as default plugins. Depth first
search always chooses a child of the current node as the next subproblem to be
processed or backtracks to the most recent ancestor with an unprocessed child,
if the current node has been pruned. Depth first search is the preferred strategy
for pure feasibility problems like SAT. Additionally, it has the benefit that
successively solved subproblems are very similar, which reduces the subproblem
management overhead.

Best first search aims at improving the global dual bound as fast as possible
by always selecting a subproblem with the smallest dual bound of all remaining
leaves in the tree. Best first search leads to a minimal number of nodes that
need to be processed, given that the branching rule is fixed [1].

Best Estimate search was suggested by Forrest et al. [20]. It estimates the
minimum value of a rounded solution in each subproblem and chooses a node
with minimal estimate. The aim is to quickly find good feasible solutions.
However, this node selection strategy may perform very poor in improving the
global dual bound.

The default node selection strategy of SCIP is a combination of these three
strategies: it performs depth first search for a few consecutive subproblems after
which a node with best estimate is chosen. At a certain frequency, a node with
smallest dual bound is selected instead of a node with best estimate.

3.7 Presolving

Presolving is a way to transform the given problem instance into an equivalent
instance that is (hopefully) easier to solve. The most fundamental presolving
concepts for MIP are described in [37]. For additional information, see [21].

The task of presolving is threefold: first, it reduces the size of the model by
removing irrelevant information such as redundant constraints or fixed variables.
Second, it strengthens the LP relaxation of the model by exploiting integrality
information, e.g., to tighten the bounds of the variables or to improve coefficients
in the constraints. Third, it extracts information such as implications or cliques
from the model which can later be used, for example for branching or cutting

7

plane separation. SCIP implements a full set of primal and dual presolving
reductions for MIP problems, see [1].

Restarts differ from the classical presolving methods in that they are not
applied before the branch-and-bound search commences, but abort a running
search process in order to reapply other presolving mechanisms and start the
search from scratch. They are a well-known ingredient of modern SAT solvers,
but have not been used so far for solving MIPs.

It is often the case that cutting planes, strong branching [8], and reduced
cost strengthening in the root node identify fixings of variables that have not
been detected during presolving. These fixings can trigger additional presolve
reductions after a restart, thereby simplifying the problem instance and im-
proving its LP relaxation. The downside is that we have to solve the root LP
relaxation again, which can sometimes be very expensive.

Nevertheless, the above observation leads to the idea of applying a restart
directly after the root node processing if a certain fraction of the integer variables
has been fixed during the processing of the root node. In our implementation,
a restart is performed if at least 5% of the integer variables have been fixed.

4 SCIP as a MIP Solver

With the default plugins that are included in the distribution, SCIP can be
used as a stand-alone MIP solver. Some of the plugins have been described
in Section 3. In this section we evaluate the performance of SCIP for solving
MIPs.

We tested SCIP 1.00 running on a 3.00 GHz Intel Xenon with 8 GB RAM
and 4 MB cache, using Cplex 11.0 [23] as underlying LP solver. We set a
time limit of 2 hours and a memory limit of 4 GB. As a comparison we applied
the same test with Cplex 11.0 as stand-alone MIP solver, with SCIP 1.00
using SoPlex 1.3.2 [41] to solve the LPs, and CBC 2.0 with CLP 1.6 [18] as
LP solver. We used the provided default settings for all solvers. As test set
we chose the 60 instances of the Miplib 2003 [5]. We left out the instances
arki001, protfold, and timtab1 for which at least one of the solvers returned
a wrong answer or reported an error.

Tables 1 and 2 compare the results of the four solvers. The first part of
Table 1 lists the instances which were solved to optimality by all solvers, the
second part those which were solved by at least one solver, Table 2 those for
which all solvers reached a limit. For each instance listed in the “Name” column,
the tables show the number of nodes and the time in seconds needed to solve
it with each of the four solvers. For instances which could not be solved within
the time and memory limit, we report the primal-dual gap in percent instead
of the solving time. The primal-dual gap is defined as γ = (ĉ − č)/inf[č, ĉ] with
ĉ being the upper (primal) and č being the lower (dual) bound. The symbol
“—” indicates instances for which no feasible solution was obtained within the
limits.

There were 36 instances, given in Table 1, for which at least one solver
was able to prove optimality within the time and memory limit. For these
instances, the results are summarized at the bottom of the table. The rows
“≥ 10 % faster” and “≥ 10 % slower” give the number of instances for which the
solver was at least 10 % faster and at least 10 % slower, respectively, than SCIP-

8

SCIP/Cplex Cplex SCIP/SoPlex CBC/CLP

Name Nodes Time Nodes Time Nodes Time Nodes Time

10teams 671 20.3 1 0.4 564 77.7 190 24.9
aflow30a 2353 13.5 3054 7.9 4293 35.6 30577 79.0
air04 334 98.9 263 8.2 159 189.7 565 172.1
air05 384 49.4 467 7.3 314 134.6 548 95.4
cap6000 3455 4.1 4227 0.7 2647 6.4 3390 7.1
disctom 1 85.4 1 6.0 1 64.4 1 4.2
fiber 24 1.1 60 0.2 12 1.3 40 2.2
fixnet6 26 1.6 71 0.6 10 2.8 114 3.4
gesa2-o 108 6.5 482 0.8 155 11.1 5695 32.6
gesa2 132 5.7 147 0.2 251 7.4 275 6.7
manna81 2 5.5 1 0.1 1 5.7 1 0.7
mas74 3275993 783.9 2673089 281.8 3036576 1582.8 4887385 2390.2
mas76 349635 73.4 398167 37.4 313718 118.0 687061 180.3
misc07 19719 15.2 25645 20.2 19831 27.7 29130 64.1
mod011 1751 76.8 54 20.7 2034 636.2 6318 132.4
modglob 21 0.9 183 0.1 3573 50.1 12664 26.3
nw04 457 92.7 283 29.2 49 369.5 22 12.5
p2756 45 2.6 11 0.2 109 3.3 37 1.4
pk1 219292 71.9 186390 81.7 226525 165.5 204094 81.8
pp08a 139 1.3 567 0.4 199 2.5 5087 31.3
pp08aCUTS 77 1.1 1102 1.1 109 2.6 5928 26.5
qiu 12653 76.9 7233 29.3 12973 337.5 31866 295.2
rout 11967 15.3 5260 8.8 10991 36.2 1011908 2219.9
vpm2 297 0.9 1619 0.4 1077 2.2 459 4.3

aflow40b 347845 2067.6 491380 2342.5 427125 2.2% 1321287 4.0 %
danoint 1158489 4856.1 778939 4975.1 330296 3.5% 683171 2.0 %
fast0507 1350 395.2 2941 555.0 1380 2407.0 7770 1.6%
glass4 7335667 79.6% 8939059 6595.8 322356 125.0 % 1729411 95.8%
harp2 22481616 <0.1% 316170 144.8 5732001 0.1% 2589310 3448.6
mzzv11 3376 547.6 498 90.8 1545 0.6% 2899 4.8%
mzzv42z 761 302.9 298 33.5 1369 5243.8 5500 3.9%
net12 5501 2139.0 2603 28.3% 1411 — 12191 22.3%
noswot 1510640 6110.8 8158083 4.7% 495596 238.4 5713896 2.8 %
opt1217 3833790 16.3% 1 0.1 3558191 16.6% 20584953 17.7%
set1ch 27 1.4 330 0.2 8825 18.9 1317890 0.5%
tr12-30 909033 2600.7 212451 294.2 1259733 4433.7 506441 1.3%

Geom. Mean 4101 58.0 2455 11.3 4224 136.5 12609 183.8

Solved Instances 33 34 29 25
≥ 10% faster – 27 2 5
≥ 10% slower – 6 30 29

Table 1. Results of four MIP solvers on the Miplib 2003. If a solver hit one of the limits, we
report the primal-dual gap in percent instead of the solving time in seconds.

Cplex. Although SCIP supports the much more general concept of constraint
integer programming, it is still competitive to state-of-the-art MIP solvers. On
this test set, SCIP-Cplex can solve only one instance less than Cplex within
the limits.

5 Using SCIP for Property Checking

One of the key technologies in the design of integrated circuits is the verification
of the correctness of the design [24]. One important aspect of this process is the
so-called property checking problem, which means to verify that certain expected
inherent properties of the chip design hold.

Today’s techniques validate these properties on the so-called gate level by
transforming the properties into Boolean clauses and hence the property check-
ing problem into a SAT instance. However, complex arithmetic operations like
multiplication lead to SAT instances with quite involved interrelationships be-
tween the variables, which are hard to solve for current SAT solvers.

9

SCIP/Cplex Cplex SCIP/SoPlex CBC/CLP

Name Nodes Gap Nodes Gap Nodes Gap Nodes Gap

a1c1s1 426057 15.8% 491631 5.7% 115512 20.7% 143591 41.0%
atlanta-ip 11342 5.5% 4011 8.1% 10 — 350 —
dano3mip 9911 22.8% 5565 18.8% 123 24.1% 12898 30.5%
ds 4512 486.6% 5760 314.2% 310 511.3% 456 1482.5 %
liu 3146152 135.4% 319976 102.1% 347383 159.3% 157480 206.4 %
mkc 2396228 1.3% 140170 0.2% 1022181 0.9% 961565 2.5%
momentum1 6221 20.5% 23623 18.7% 1276 — 5158 20.2%
momentum2 6004 28.7% 6144 28.7% 1260 — 5529 152.4%
momentum3 11 — 140 466.5% 1 — 1 —
msc98-ip 10301 0.7% 1996 12.1% 67 — 324 —
nsrand-ipx 592996 6.5% 234970 1.1% 381553 8.8% 661104 2.0%
rd-rplusc-21 84288 >10 000% 35562 >10 000 % 71 — 11795 —
roll3000 1180987 0.6% 1253352 0.4% 201728 1.2% 133378 3.8%
seymour 103485 2.2% 146297 1.9% 2829 11.5% 33374 5.9%
sp97ar 86939 3.4% 210446 0.8% 36063 4.6% 180426 2.5%
stp3d 8 — 20 — 3 — 1 —
swath 429024 19.1% 262088 19.3% 257953 26.8% 2352638 40.7%
t1717 2665 50.2% 64721 60.4% 898 37.0% 13016 76.9%
timtab2 3095502 78.4% 1736172 52.5% 2420114 63.1% 639547 102.8%

markshare1 46M 5 31M 4 52M 6 42M 6
markshare2 42M 9 25M 12 40M 9 48M 10

Table 2. Results of four MIP solvers on the Miplib 2003 (continued). For the markshare

instances we report the upper bound instead of the primal-dual gap; the lower bound is zero
in all cases.

Our approach is to tackle the problem on a higher level, the register transfer
(RT) level. The property checking problem at RT level can be formulated as
CIP on bit vector variables ̺ ∈ {0, . . . , 2w̺−1} of width w̺. The constraints
ri = Ci(x

i, yi, zi) model the circuit operations.
For each bit vector variable ̺, we introduce single bit variables ̺b, b =

0, . . . , w̺ − 1, with ̺b ∈ {0, 1}, for which linking constraints

̺ =

w̺−1∑

b=0

2b̺b (2)

define their correlation. In addition, we consider the following circuit opera-
tions: add, and, concat, eq, ite, lt, minus, mult, not, or, read, shl,
shr, signext, slice, sub, uand, uor, uxor, write, xor, zeroext with the
semantics as defined in [17].

5.1 CP Techniques

For the bit linking constraints (2) and for each type of circuit operation we im-
plemented a specialized constraint handler which includes a domain propagation
algorithm that exploits the special structure of the constraint class. In addition
to considering the current domains of the bit vectors ̺ and the bit variables ̺b,
we exploit knowledge about the global equality or inequality of bit vectors or
bits, which is obtained in the preprocessing stage of the algorithm.

Some of the domain propagation algorithms are very complex. For example,
the domain propagation of the mult constraint uses term algebra techniques to
recognize certain deductions inside its internal representation of a partial prod-
uct and overflow addition network. Others, like the algorithms for shl, slice,
read, and write, involve reasoning that mixes bit- and word-level information.

10

Operation Linearization

r = and (x,y) rb ≤ xb, rb ≤ yb, rb ≥ xb + yb − 1

r = or (x,y) rb ≥ xb, rb ≥ yb, rb ≤ xb + yb

r = xor (x,y) xb − yb − rb ≤ 0, −xb + yb − rb ≤ 0,

−xb − yb + rb ≤ 0, xb + yb + rb ≤ 2

r = uand (x) r ≤ xb, r ≥
Pwx−1

b=0
xb − wx + 1

r = uor (x) r ≥ xb, r ≤
Pwx−1

b=0
xb

r = uxor (x) r +
Pwx−1

b=0
xb = 2s, s ∈ Z≥0

r = eq (x,y) x − y = s − t, s, t ∈ Z≥0,

p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},

q ≤ t, t ≤ q(uy − lx), q ∈ {0, 1},

p + q + r = 1

r = lt (x,y) x − y = s − t, s, t ∈ Z≥0,

p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},

r ≤ t, t ≤ r(uy − lx),

p + r ≤ 1

r = ite (x,y,z) r − y ≤ (uz − ly)(1 − x)

r − y ≥ (lz − uy)(1 − x)

r − z ≤ (uy − lz)x

r − z ≥ (ly − uz)x

r = add (x,y) r + 2wr o = x + y, o ∈ {0, 1}

r = mult (x,y) vbn ≤ uynxb, vbn ≤ yn, vbn ∈ Z≥0

vbn ≥ yn − uyn(1 − xb)

on +
P

i+j=n

PL−1

l=0
2lviL+l,j

= 2Lon+1 + rn, on ∈ Z≥0

Table 3. LP relaxation of circuit operations. l̺ and u̺ are the lower and upper bounds of a
bit vector variable ̺.

5.2 IP Techniques

Because property checking is a pure feasibility problem, there is no natural
objective function. However, the LP relaxation usually detects the infeasibility
of the local subproblem much earlier than domain propagation.

Table 3 shows the linearizations of the circuit operation constraints that are
used in addition to the bit linking constraints (2) to construct the LP relaxation
of the problem instance. Very large coefficients like 2wr in the add linearization
can lead to numerical difficulties in the LP relaxation. Therefore, we split the
bit vector variables into words of W = 16 bits and apply the linearization to
the individual words. The linkage between the words is established in a proper
fashion. For example, the overflow bit of a word in an addition is added to the
right hand side of the next word’s linearization. The relaxation of the mult

constraint involves additional variables yn and rn which are “nibbles” of y and
r with L = W

2 bits.
No linearization is generated for the shl, slice, read, and write con-

straints. Their linearizations are very complex and would dramatically increase
the size of the LP relaxation, thereby reducing the solvability of the LPs. For
example, a straight-forward linearization of the shl constraint on a 64-bit input
vector x that uses internal ite-blocks for the potential values of the shifting
operand y already requires 30944 inequalities and 20929 auxiliary variables.

11

register width
Prop Meth 5 10 15 20 25 30 35 40

muls SAT 0.5 — — — — — — —

CIP 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3

neg flag SAT 0.1 100.0 — — — — — —

CIP 0.8 3.6 11.6 36.3 81.8 136.6 218.4 383.5

zero flag SAT 0.0 0.0 0.1 0.1 0.2 0.4 0.5 0.6

CIP 2.3 0.6 1.6 4.0 6.2 10.7 15.6 379.7

Table 4. ALU properties. (time in seconds)

variant
Property Meth A B C

g checkgpre SAT 22.2 57.6 29.1

CIP 14.2 12.3 15.3

g2 checkg2 SAT — — —

CIP 213.9 204.8 257.6

g25 checkg25 SAT 0.0 2.4 2.5

CIP 29.7 22.4 24.2

g3 negres SAT 0.0 0.0 0.0

CIP 0.7 0.0 0.0

gBIG checkreg1 SAT 287.2 157.3 159.6

CIP 170.0 7.0 8.6

Table 5. Biquad properties. (time
in seconds)

register width
Layout Meth 6 7 8 9 10 11 12 13 14

booth SAT 0.4 3.3 21.0 135.4 935.1 — — — —

signed CIP 21.3 70.1 318.7 384.2 904.1 1756.2 2883.7 4995.9 3377.9

booth SAT 0.5 2.5 17.9 102.9 879.0 4360.4 — — —

unsgnd CIP 15.7 51.7 269.1 911.3 1047.6 2117.7 2295.1 4403.4 7116.8

nonbth SAT 0.4 3.4 21.8 134.1 1344.1 — — — —

signed CIP 12.8 31.2 100.6 265.9 569.8 690.8 1873.0 1976.3 4308.9

nonbth SAT 0.3 1.8 16.5 83.1 909.6 5621.5 — — —

unsgnd CIP 3.6 22.4 111.2 214.0 335.4 1040.1 1507.5 2347.7 4500.2

Table 6. Multiplier properties. (time in seconds)

5.3 SAT Techniques

Conflict Analysis is particular useful on feasibility problems like property check-
ing. By applying reverse propagation, one or more conflict constraints can be
extracted from the conflict graph of an infeasible subproblem. In our implemen-
tation, we use the 1-FUIP [42] rule for generating conflict constraints. In ad-
dition to the 1-FUIP conflict constraints we extract clauses from reconvergence
cuts [42] in the conflict graph to support non-chronological backtracking [31].

5.4 Computational Results

We examined the computational effectiveness of the described CIP techniques
on industrial benchmarks obtained from verification projects conducted together
with Infineon and OneSpin Solutions. The specific chip verification algo-
rithms were incorporated into SCIP 0.90i using Cplex 10.0.1 [23] as LP solver.
All calculations were performed on a 3.8 GHz Pentium-4 workstation with 2 GB
RAM. In all runs, we used a time limit of 2 hours. For reasons of comparison,
we also solved the instances with SAT techniques on the gate level. We used
MiniSat 2.0 [19] to solve the SAT instances obtained after a preprocessing step.

The experiments were conducted on the valid properties included in the fol-
lowing sets of property checking instances: ALU (an arithmetical logical unit
which performs add, sub, shl, shr, and signed and unsigned mult operations),
Biquad (a DSP/IIR filter core obtained from [35] in different representations),
and Multiplier (gate level net lists for Booth and non-Booth encoded architec-

12

tures of signed and unsigned multipliers).
Tables 4–6 compare the results of MiniSat and our CIP approach on the

valid properties. For each property or layout and each input register width or
variant, the tables show the time in seconds of the two algorithms needed to
solve the instance. Results marked with ‘—’ could not be solved within the time
limit. The experiments show that our approach outperforms SAT techniques for
proving the validity of properties on circuits containing arithmetics. For invalid
properties, which are not shown in the tables, our algorithm is usually inferior
to SAT for finding counter-examples. This is due to the much more involved
procedures employed in the CIP approach.

References

[1] T. Achterberg. Conflict analysis in mixed integer programming. Discrete
Optimization, 4(1):4–20, 2007. Special issue: Mixed Integer Programming.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische
Universität Berlin, 2007.
http://opus.kobv.de/tuberlin/volltexte/2007/1611/.

[3] T. Achterberg, M. Grötschel, and T. Koch. Teaching MIP modeling and
solving. ORMS Today, 33(6):14–15, 2006.

[4] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Opera-
tions Research Letters, 33:42–54, 2005.

[5] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research
Letters, 34(4):1–12, 2006. http://miplib.zib.de.

[6] E. Althaus, A. Bockmayr, M. Elf, M. Jünger, T. Kasper, and K. Mehlhorn.
SCIL – symbolic constraints in integer linear programming. Technical Re-
port ALCOMFT-TR-02-133, MPI Saarbrücken, May 2002.

[7] G. Andreello, A. Caprara, and M. Fischetti. Embedding cuts in a
branch&cut framework: a computational study with {0, 1

2}-cuts. IN-
FORMS Journal on Computing, 2007. to appear.

[8] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook. The Traveling
Salesman Problem. Princeton University Press, Princeton, 2006.

[9] K. R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[10] I. D. Aron, J. N. Hooker, and T. H. Yunes. SIMPL: A system for integrat-
ing optimization techniques. In J.-C. Régin and M. Rueher, editors, Inte-
gration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, First International Conference, CPAIOR
2004, volume 3011 of Lecture Notes in Computer Science, pages 21–36,
Nice, France, April 2004. Springer.

[11] E. Balas. Facets of the knapsack polytope. Mathematical Programming,
8:146–164, 1975.

13

http://opus.kobv.de/tuberlin/volltexte/2007/1611/
http://miplib.zib.de

[12] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework. Management Science, 42:1229–
1246, 1996.

[13] T. Berthold. Primal heuristics for mixed integer programs. Master’s thesis,
Technische Universität Berlin, 2006.

[14] T. Berthold. Heuristics of the Branch-Cut-and-Price-Framework SCIP.
ZIB-Report 07-30, Zuse Institute Berlin, 2007.

[15] A. Bockmayr and T. Kasper. Branch-and-infer: A unifying framework for
integer and finite domain constraint programming. INFORMS Journal on
Computing, 10(3):287–300, 1998.

[16] A. Bockmayr and N. Pisaruk. Solving assembly line balancing problems
by combining IP and CP. Sixth Annual Workshop of the ERCIM Working
Group on Constraints, June 2001.

[17] R. Brinkmann and R. Drechsler. RTL-datapath verification using integer
linear programming. In Proceedings of the IEEE VLSI Design Conference,
pages 741–746, 2002.

[18] COIN-OR. Computational infrastructure for operations research.
http://www.coin-or.org.

[19] N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and
A. Tacchella, editors, Proceedings of SAT 2003, pages 502–518. Springer,
2003.

[20] J. J. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large
scale mixed integer programming problems with UMPIRE. Management
Science, 20(5):736–773, 1974.

[21] A. Fügenschuh and A. Martin. Computational integer programming and
cutting planes. In K. Aardal, G. L. Nemhauser, and R. Weismantel, editors,
Discrete Optimization, volume 12 of Handbooks in Operations Research and
Management Science, chapter 2, pages 69–122. Elsevier, 2005.

[22] R. E. Gomory. Solving linear programming problems in integers. In R. Bell-
man and J. M. Hall, editors, Combinatorial Analysis, Symposia in Applied
Mathematics X, pages 211–215, Providence, RI, 1960. American Mathe-
matical Society.

[23] ILOG CPLEX. http://www.ilog.com/products/cplex.

[24] International technology roadmap for semiconductors, 2005.
http://public.itrs.net.

[25] V. Jain and I. E. Grossmann. Algorithms for hybrid MILP/CP models
for a class of optimization problems. INFORMS Journal on Computing,
13(4):258–276, 2001.

[26] E. L. Johnson and M. W. Padberg. Degree-two inequalities, clique facets,
and biperfect graphs. Annals of Discrete Mathematics, 16:169–187, 1982.

14

http://www.coin-or.org
http://www.ilog.com/products/cplex
http://public.itrs.net

[27] A. Klar. Cutting planes in mixed integer programming. Master’s thesis,
Technische Universität Berlin, 2006.

[28] A. N. Letchford and A. Lodi. Strengthening Chvátal-Gomory cuts and
Gomory fractional cuts. Operations Research Letters, 30(2):74–82, 2002.

[29] H. Marchand. A polyhedral study of the mixed knapsack set and its use to
solve mixed integer programs. PhD thesis, Faculté des Sciences Appliquées,
Université catholique de Louvain, 1998.

[30] H. Marchand, A. Martin, R. Weismantel, and L. A. Wolsey. Cutting planes
in integer and mixed integer programming. Discrete Applied Mathematics,
123/124:391–440, 2002.

[31] J. P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions of Computers, 48:506–521,
1999.

[32] A. Martin. Integer programs with block structure. Habilitations-Schrift,
Technische Universität Berlin, 1998.

[33] H. Mittelmann. Decision tree for optimization software: Benchmarks for
optimization software. http://plato.asu.edu/bench.html.

[34] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimiza-
tion. John Wiley & Sons, 1988.

[35] http://www.opencores.org.

[36] M. W. Padberg, T. J. van Roy, and L. A. Wolsey. Valid inequalities for
fixed charge problems. Operations Research, 33(4):842–861, 1985.

[37] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed
integer programming problems. ORSA Journal on Computing, 6:445–454,
1994.

[38] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency
directed backtracking in a system for computer-aided circuit analysis. Ar-
tificial Intelligence, 9:135–196, 1977.

[39] C. Timpe. Solving planning and scheduling problems with combined inte-
ger and constraint programming. OR Spectrum, 24(4):431–448, November
2002.

[40] K. Wolter. Implementation of cutting plane separators for mixed integer
programs. Master’s thesis, Technische Universität Berlin, 2006.

[41] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus.
PhD thesis, Technische Universität Berlin, 1996.

[42] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik. Efficient conflict
driven learning in boolean satisfiability solver. In ICCAD, pages 279–285,
2001.

15

http://plato.asu.edu/bench.html
http://www.opencores.org

	Introduction
	Constraint Integer Programs
	The SCIP Framework
	Constraint Handlers
	Domain Propagation
	Conflict Analysis
	Cutting Plane Separators
	Primal Heuristics
	Node Selection and Branching Rules
	Presolving

	SCIP as a MIP Solver
	Using SCIP for Property Checking
	CP Techniques
	IP Techniques
	SAT Techniques
	Computational Results

