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Abstract

This paper reviews George Dantzig’s contribution to integer programming, espe-
cially his seminal work with Fulkerson and Johnson on the traveling salesman problem.

1 Introduction

George Dantzig wrote only a few papers on integer programming, including two on integer
programming modeling [4, 5]; specifically, how a variety of nonlinear and nonconvex opti-
mization problems could be formulated as mixed-integer programs with 0-1 variables. For
example, he presented the use of 0-1 variables to model fixed charges and variable upper
bound constraints, semi-continuous variables, and nonconvex piecewise linear functions.

In [5] he also proposed a very simple cutting plane for separating a fractional basic optimal
solution from the convex hull of integer solutions in a pure integer program with nonnegative
variables. The cut simply says that at least one of the nonbasic variables must be a positive
integer, i.e., the sum of the nonbasic variables is at least one. While this is not a very strong
cut, since it does not yield a finitely convergent algorithm [10], a slightly tightened version
of it does yield a finite cutting plane algorithm [2].

However, Dantzig’s impact on integer programming is huge. His work in the 1950s with
D. Ray Fulkerson and Selmer Johnson [6, 7, 8] on the traveling salesman problem was the
precursor of the branch-and-cut algorithms that form the basis of modern mixed-integer
computational systems that are widely used in practice to solve optimization models in
supply chains, telecommunications, manufacturing, transportation, and many other areas.
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The NP-hard traveling salesman problem (TSP) has provided a remarkable source of
ideas for solving hard combinatorial optimization problems including cutting planes, branch-
and-bound, and Lagrangian duality. Dantzig, Fulkerson, and Johnson (DFJ from now on)
pioneered the idea of employing linear programming relaxation and valid inequalities to solve
integer programs by solving (including a proof of optimality) a 49-city TSP. Their paper also
has ideas about implicit enumeration. Moreover, the DFJ paper constitutes one of the first
serious computational studies of a hard combinatorial optimization problem. It is absolutely
astonishing that the three authors were able to find an optimal solution of such a large TSP
instance and to prove its optimality by manual computation.

Although DFJ’s seminal contribution of more than 50 years ago is acknowledged in books
and survey papers on integer programming and combinatorial optimization, it has not been
presented with any detail in recent literature except in a very recent book [1]. Therefore it
seems appropriate in this issue devoted to the contributions of George Dantzig to review the
work of DFJ, and to honor Ray Fulkerson (1924 - 1976) and Selmer Johnson as well. DFJ
all were at the Rand corporation through the 1950s as part of what may have been the most
remarkable group of mathematicians working on optimization ever assembled.

2 The TSP and Linear Programming

Given a set of n cities and the n(n− 1)/2 distances d(ij) between all unordered pairs i, j of
cities, the (symmetric) TSP is to find a shortest tour for a salesman starting from his home
city, then visiting all of the other cities, and finally returning to the home city. In graph
theory terms, we are given a complete undirected graph G = (V, E), where the node set V
corresponds to the set of cities, the edge set E corresponds to all pairs of cities, and where
the edge e = ij has length d(e) which is a number representing the “distance” (measured in
minutes, miles, or whatever is appropriate for the particular instance) between the nodes i
and j. The problem is to find a cycle C that contains all n nodes (i.e., a Hamiltonian cycle)
and whose total distance is minimum. It is well known that the TSP is NP-hard although,
of course, DFJ were unlikely to be thinking about complexity then.

DFJ studied an instance consisting of the road distances between 49 cities, the then 48
state capitals in the U.S. and Washington D.C. The data DFJ used came from a distance
table that was prepared by the Rand Corporation. Table 1 shows a copy of the table of
distances between the cities, hand written by Ray Fulkerson (we are indebted to Bob Bland
for making the original available). If d

′
ij denotes the original distance between the cities i and

j in miles then the entry dij of the DFJ table was obtained by dij :=
[

1
17

(d
′
ij − 11)

]
, where

the brackets [.] denote rounding to the next integer. This looks somewhat strange. The
authors remark that they wanted to obtain distances smaller than 256 to permit compact
storage in binary representation. However, it turned out that they made no use of it. DFJ’s
formulation of the TSP contains the variables x(e) = 1 or 0 to indicate whether edge e is in
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the tour or not and the obvious constraints that each node has degree 2 in a cycle. They
realized, of course, that this was not enough because the resulting solution might contain
subtours, i.e., cycles on subsets S ⊂ V . However, DFJ knew that subtours could be removed
by the subtour elimination constraints, which they stated in the following two forms

∑

e∈E(S)

x(e) ≤ |S| − 1,
∑

e∈δ(S)

x(e) ≥ 2,

where E(S) denotes the set of edges in G with both ends in the node set S, and δ(S) denotes
the set of edges with one end in S. DFJ observed the two versions of the subtour elimination
constraints are equivalent because they can be transformed into each other utilizing the
degree constraints.

Still, this would not be enough for solving TSPs by linear programming for any but the
smallest values of n. There are two reasons for this observation:

1. The number of subtour elimination constraints grows exponentially with n, and there-
fore, all of them could not be considered explicitly.

2. Even if a linear programming formulation of the form

min
∑
e∈E

d(e)x(e) (1)

x(e) ≥ 0 e ∈ E (2)

x(e) ≤ 1 e ∈ E (3)

∑

e∈δ(v)

x(e) = 2, v ∈ V (4)

∑

e∈δ(S)

x(e) ≥ 2 S ⊂ V, 2 ≤ |S| ≤ |V | − 2 (5)

could be solved, the solution would not necessarily correspond to a tour since the LP solution
might be fractional.
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Table 1
Road distances between cities in adjusted units
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Despite these difficulties, DFJ demonstrated that a linear programming approach to the
TSP was viable, and in the process gave the first steps towards a theory that we now call
polyhedral combinatorics that provides one of the main ingredients of successful modern
integer programming software.

Given a tour T of an n-city TSP, n ≥ 3, let us define the vector XT ∈ <|E| by setting
xT (e) = 1, if e ∈ T , and xT (e) = 0, if e /∈ T . Call XT the incidence vector of tour T . The
convex hull of the incidence vectors of all tours, i.e.,

Qn
T := conv{xT ∈ <|E||T a n-city tour}

is called the (symmetric) traveling salesman polytope. The study of Qn
T (and its asymmetric

companion) began in the mid-fifties and is still thriving today, see [1, 17].
In a Rand preprint [6] to the published paper [7], DFJ indicate that although Heller [14]

had shown that the constraints (2)-(5) are sufficient to describe Q5
T completely, the polytope

they define has fractional extreme point solutions for n ≥ 6. Just to formulate the TSP as
an integer program requires an exponential number of inequalities, and it was clear from
the work of Heller [14] and Kuhn [16] that a huge number of linear inequalities is needed to
characterize Qn

T for even modest values of n. The tremendous sizes of the LPs that may have
to be solved might lead one to give up on the linear programming approach to the TSP.

But rather than giving up, at this point DFJ made some key observations that have had
a big impact on the development of modern integer programming.

• To solve an LP with a huge number of constraints, you don’t need to begin with
all of them. It suffices to start with a relatively small subset as long as you have a
way of telling whether the solution to the relaxed problem satisfies all of the omitted
constraints, and if not, to find one that is violated by the current solution. Of course,
for the TSP, if the current LP solution is a tour, by definition it satisfies all of the
unknown inequalities that define Qn

T and therefore is an optimal solution to the TSP.
Hence the stopping rule for this approach to solving the TSP is obvious. Terminate
with an optimal tour if and only if the LP solution represents a tour. Otherwise tighten
the LP by adding another constraint that cuts off the current solution.

This observation is probably the earliest appearance of what we now call separation or
cutting plane recognition. Given a polyhedron P and a point y in <n, decide whether y ∈ P ,
and if not, find a hyperplane separating y from P . About twenty-five years later [12] it was
discovered that “separation” and “optimization” are equivalent with respect to polynomial
time solvability. More precisely, one can solve linear programs over a class of polyhedra (such
as the traveling salesman polytopes Qn

T ) in polynomial time if and only if the separation
problem for this class of polyhedra can be solved in polynomial time. Specifically, because
the TSP is known to be NP-hard, finding an inequality that is satisfied by all incidence
vectors of tours but not by a given point outside Qn

T is also NP-hard. We can assume that
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DFJ didn’t understand all of the formalities of separation, but they used their ingenuity to
take advantage of some properties of the TSP.

• For the TSP all the incidence vectors of tours are extreme points of a relaxation that
contains the nonnegativity constraints (2) and the degree constraints (4), and they give
a polytope all of whose extreme points correspond to tours, subtours, or isolated edges
of value 2. So if we begin with only constraints (2) and (4), it is trivial to recognize
if the optimal LP solution contains subtours or isolated edges, and it is also simple
to find an inequality (3) or (5) that separates the solution from Qn

T . Moreover, since
there is only a small number of upper bound constraints (3), we could add all of them
to begin with. DFJ didn’t do that, but remember that all of their computations were
done by hand. Once we begin to add subtour elimination constraints or upper bound
constraints, the polytope is no longer integral. Since any fractional extreme point
solution cannot be in Qn

T , whenever an optimal LP solution is fractional or is integral
and contains subtours, we know that we have to continue adding constraints. But how
do we find the right ones?

Before exploring DFJ’s use of valid inequalities further, we present some of their other
innovations that have become important in computational integer programming. DFJ used
what is now called warm start. That is, since the incidence vector of a tour is an extreme
point of the initial LP relaxation, it is possible to begin the simplex algorithm with a basic
solution corresponding to a good tour. For the given U.S. instance, DFJ simply guessed
what they thought might be an optimal tour and then, setting the constraints x(e) ≤ 1 to
equality for all edges in the tour to form a basis, obtained a basic solution corresponding to
that tour.

For a TSP on a complete graph with Euclidean distances, many long edges can be ex-
cluded from an optimal tour in a straightforward way. For example in the 49-city instance,
one can easily argue by bounds that it would not be optimal to go directly from an east coast
state capital to a west coast state capital, and therefore, such edges can be eliminated from
the instance. However, much more fixing of this type can be done using linear programming
in a more advanced manner. DFJ introduced the idea of what is now called reduced cost
fixing. Suppose we have solved an LP relaxation and an edge is currently nonbasic at value
zero with reduced cost r(e). Let z(LP ) be the value of the LP solution and z(T ) be the
value of the best known tour. Then if

z(LP ) + r(e) > z(T ), (6)

edge e is not in any optimal tour. Similarly, for a nonbasic edge at value 1, if (6) holds,
then edge e is in every optimal tour. DFJ observed that reduced cost fixing is a powerful
tool for reducing the size of a TSP and when the problem became small enough in the
number of remaining edges, they could use “combinatorial arguments” to establish an optimal
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solution. They were not very specific on how this was done, but it wouldn’t be surprising if
their combinatorial arguments were a type of tree search enumeration suggestive of implicit
enumeration or branch-and-bound. Finally, DFJ began the solution of the 49-city instance
by reducing it to a 42-city instance by observing that the shortest path between Washington
and Boston passed through 7 other state capitals, and therefore, these 7 cities could be
eliminated and replaced by a single edge. (That is why Table 1 shows only 42 cities.) Here
they were using a form of what we now call preprocessing.

DFJ do not give all of the iterative details on their solution to the 42-city capitals instance.
They luckily guessed the optimal solution at the outset. This tour provided their initial basis
for the LP relaxation. To solve the LP relaxation to obtain the provably optimal tour as a
basic feasible solution, they needed nonnegativity, the 42 degree constraints, 16 upper bound
constraints, 7 subtour elimination constraints and 2 other valid inequalities.

We mentioned that solving the separation problem for Qn
T is hard. However, that does not

exclude that, for some subclasses of the class of all facets of Qn
T , polynomial time separation

routines exist. Finding such algorithms is still an active research area, and the progress
in this respect is, to a large extent, responsible for the enormous success of the cutting
plane approach to the TSP, see [1]. The fact that one can solve the separation problem for
subtour elimination constraints by viewing it as a min-cut problem [11] was first observed
in [15] and [18]. DFJ did not know that, of course, and finding violated subtour elimination
constraints for fractional solutions by hand is not as straightforward as it may look nowadays.
Finally, the remaining two constraints, whose validity was proved using neat combinatorial
arguments given to DFJ by I. Glicksberg, a colleague at Rand, are essentially what is known
today as comb inequalities [3, 13]. See [1] for a detailed discussion of these two inequalities.

3 Conclusions

Although DFJ were not the first to develop a connection between linear programming and
combinatorial optimization, see, e.g., the work of Heller and Kuhn cited earlier, they were
the first to demonstrate that linear programming could be used to attack large-scale combi-
natorial optimization problems by actually solving such an instance. Let us recall from the
discussion above the concepts (in modern terminology) that were employed by DFJ in their
1954 study:

• preprocessing

• warm start

• variable fixing

• reduced cost exploitation
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• cutting plane recognition

• elements of branch and bound.

The authors were certainly not aware of the full power of their contribution. They close
their paper with the following remark:
“It is clear that we have left unanswered practically any question one might pose of a theoreti-
cal nature concerning the traveling-salesman problem; however, we hope that the feasibility of
attacking problems involving a moderate number of points has been successfully demonstrated,
and that perhaps some of the ideas can be used in problems of similar nature.”
which – compared to the marketing jargon one often reads today, even in the scientific
literature – appears to be a very modest self-assessment of their own work. Nevertheless, the
DFJ paper caught the interest of the public press. Newsweek Magazine published an article
on this “ingenious application of linear programming” on July 26, 1954.

Reviewing the development of integer programming in the last fifty years, the DFJ paper
of 1954 was a really remarkable contribution that considerably extended, among other things,
the “computational IP tool box.” It is even more remarkable that this has been done without
the help of computers. It seems that DFJ’s ideas were too advanced for their contemporaries
since, five years later, see [8], they were asked by the editor of Operations Research to revisit
their 1954 paper and explain its findings again, which they did in a somewhat simplified
form on a 10-city example. This was in the days when Ralph Gomory’s pioneering work [9]
showed how linear programming could be used in a finite algorithm to solve any pure integer
program. But in a certain sense, the work of DFJ is closer to the current branch-and-cut
systems.
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