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Abstract

We address the property checking problem for SoC design verifica-
tion at the register transfer level (RTL) by integrating techniques from
integer programming, constraint programming, and SAT solving. Special-
ized domain propagation and preprocessing algorithms for individual RTL
operations extend a general constraint integer programming framework.
Conflict clauses are learned by analyzing infeasible LPs and deductions,
and by employing reverse propagation. Experimental results show that
our approach outperforms SAT techniques for proving the validity of prop-
erties on circuits containing arithmetics.

Keywords: SoC design verification, property checking, constraint pro-
gramming, integer programming

1 Introduction

Formal verification techniques have to cope with the ever growing complexity
of new System-on-Chip (SoC) designs. One of the milestones in this chase is
the establishment of bounded model checking (BMC) [6] in industrial design
flows. The reduction of the property checking problem to a satisfiability (SAT)
problem facilitates formal verification of industrial circuit designs far beyond
the scope of classical model checking techniques. However, it is well known
that SAT solvers have problems when dealing with instances derived from the
verification of arithmetic circuits. Although SAT based property checking can
often be applied successfully to the control part of a design, it typically fails on
data paths with large arithmetic blocks. Verification engineers typically resort
to incomplete techniques such as constraint random simulation or bit-slicing in
order to find errors in arithmetic units. However, these methods cannot prove

correctness of a logic design. Especially, errors in corner cases are likely to be
missed.
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Therefore reasoning at higher levels of abstraction became an attractive field
of research in the recent past. A survey on various abstraction techniques that
can be applied at the RTL is given in [15]. These techniques are of great value
when the validity of the property at hand does not rely upon the exact func-
tionality of the datapath under verification. Unfortunately, this does not apply
to the verification problems considered in this work. Therefore the algorithms
presented in this paper can be considered as orthogonal to the abstraction tech-
niques summarized in [15].

Given a word-level representation of a decision problem at hand solvers for
integer programming (IP) [8, 11, 26] or constraint programming (CP) [25] have
been studied as promising candidate decision procedures. However, current IP
and CP solvers do not learn conflict clauses during the search like SAT solvers
do. They usually perform poorly on the control part of a design. A combination
of word level and Boolean solvers has to be developed. Two promising ways of
integrating IP and SAT have been proposed in [9] and [5]. The first one uses
pseudo-Boolean constraints (PBCs) as clauses in a DPLL-style solver, and the
second one uses linear equations as propositions. However, PBC solvers perform
the reasoning at the bit level and the benefit of the stronger search space pruning
due to learned PBCs usually does not justify the overhead for handling these
more complex constraints. On the other hand, using IP techniques at the leaves
of a decision tree without learning from infeasibilities sacrifices pruning potential
in the logic part of the circuit.

More recently, SAT-modulo-theory (SMT) solvers have gained significant
attention. In this category we consider two approaches called DPLL(T) [12] and
HDPLL [21, 22] as being most related to our work. The techniques presented
in these references are based on integration of different theories into a unified
DPLL-style decision procedure. DPLL(T) combines the theory of Boolean logic
with the theory of uninterpreted functions with equality (EUF). In fact, there
is no mechanism for learning across theories in DPLL(T). It can handle only
comparisons with equality, which makes it currently unsuitable for RT level
property checking. On the other hand, HDPLL combines the DPLL algorithm
with techniques from CP and IP, namely domain propagation and Fourier-
Motzkin elimination.

This paper presents a novel integration of techniques from SAT, IP and CP
into a unified decision procedure that tackles the property checking problem at
the RT level. For each RT operation, a specific domain propagation algorithm is
applied, using both, bit- and word-level representations. In addition, we provide
reverse propagation algorithms to support conflict analysis at the RT level.

In HDPLL the Fourier-Motzkin elimination step is only used as a last resort
to check the feasibility on the data path after all binary variables have been fixed.
In contrast, we solve a linear programming (LP) relaxation at every subproblem
in the search tree. Using the dual simplex algorithm the LPs can be resolved
efficiently after applying changes to the variables’ bounds. Due to the “global”
view of the LP, infeasibilities of a subproblem can be detected much higher in
the search tree than with constraint programming or SAT techniques alone. By
using dual information one can also derive conflict clauses out of infeasible LP
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relaxations [1]. In addition, a feasible LP solution can either yield a counter-
example for the property, or can be used to control the next branching decision,
thereby guiding the search.

We demonstrate the effectiveness of the proposed approach on industrial
benchmarks obtained from verification projects conducted using OneSpin 360 [19].

2 Concepts

Bounded interval property checking based on an iterative circuit model has
become an attractive alternative to classical simulation based verification tech-
niques for block-level verification of RTL designs. The property checking prob-
lems encountered in interval property checking can be formulated as constraint
satisfaction problem (CSP), which can be seen as a generalization of SAT to
arbitrary constraints and variables with arbitrary domains, see [4]. We model
the property checking CSP with variables ̺ ∈ {0, . . . , 2w̺−1} of width w̺ and
constraints ri = Ci(x

i, yi, zi), which resemble circuit operations with up to three
input bit vectors xi, yi, zi, and an output bit vector ri. For each bit vector vari-
able ̺, we introduce single bit variables ̺b, b = 0, . . . , w̺ − 1, with ̺b ∈ {0, 1},
for which linking constraints

̺ =

w̺−1∑

b=0

2b̺b (1)

define their correlation. In addition, we consider the following circuit opera-
tions: add, and, concat, eq, ite, lt, minus, mult, not, or, read, shl,
shr, signext, slice, sub, uand, uor, uxor, write, xor, zeroext with the
semantics as defined in [7].

We solve the property checking CSP with a branching algorithm, which suc-
cessively divides the problem instance into subproblems by splitting the domains
of the bit vector variables ̺ into two disjunctive parts: either by fixing a certain
bit of a bit vector to ̺b = 0 and ̺b = 1, respectively, or by introducing local
lower bounds ̺ ≥ l and local upper bounds ̺ ≤ u on the individual bit vectors.
At each node in the resulting search tree, different methods from constraint
programming (CP), integer programming (IP) and SAT solving are applied to
tighten the local subproblem and to prune the search tree. The algorithm ter-
minates if a solution has been found that satisfies all constraints, or if all nodes
of the search tree have been pruned, thereby proving the infeasibility of the
problem instance.

2.1 CP Techniques

The main engine of constraint programming is domain propagation: at each
node in the search tree, logical deductions on the current set of the variables’
domains are applied in order to exclude further values from the variables’ local
domains. Such a domain reduction can then trigger additional reductions. The
propagation is stopped if no more domain reductions can be found.
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For the bit linking constraints (1) and for each type of circuit operation we
implemented a specific domain propagation algorithm that exploits the special
structure of the constraint class. In addition to considering the current domains
of the bit vectors ̺ and the bit variables ̺b, we exploit knowledge about the
global equality or inequality of bit vectors or bits, which is obtained in the
preprocessing stage of the algorithm. For example, if we know already that for
certain bits the input vectors x and y in an equality constraint r = eq(x, y) are
equal, i.e., xb = yb for a few bits b, the value of the resultant r can already be
decided after the remaining input bits have been fixed.

Some of the domain propagation algorithms are very complex. For example,
the domain propagation of the mult constraint uses term algebra techniques to
recognize certain deductions inside its internal representation of a partial prod-
uct and overflow addition network. Others, like the algorithms for shl, slice,
read, and write, involve reasoning that mixes bit- and word-level information.

2.2 IP Techniques

The core of current state-of-the-art IP solvers is the LP relaxation of the prob-
lem instance which is solved at every node in the search tree. Typically, an
integer program contains an objective function. The LP relaxation yields a
dual objective bound which can be used to prune the search tree by means of
optimality considerations. Additionally, the LP relaxation can be strengthened
by adding so-called cutting planes which exploit the integrality restrictions on
the variables.

Because property checking is a pure feasibility problem, there is no natural
objective function. However, the LP relaxation usually detects the infeasibility
of the local subproblem much earlier than domain propagation. This is due
to the fact that the LP has a “global view” taking all constraints except the
integrality conditions into consideration at the same time, while domain prop-
agation is applied successively on each individual constraint.

Table 1 shows the linearizations of the circuit operation constraints that are
used in addition to the bit linking constraints (1) to construct the LP relaxation
of the problem instance. Very large coefficients like 2wr in the add linearization
can lead to numerical difficulties in the LP relaxation. Therefore, we split the
bit vector variables into words of W = 16 bits and apply the linearization to
the individual words. The linkage between the words is established in a proper
fashion. For example, the overflow bit of a word in an addition is added to the
right hand side of the next word’s linearization. The relaxation of the mult

constraint involves additional variables yn and rn which are “nibbles” of y and
r with L = W

2
bits.

The minus and sub operations can be replaced by an equivalent add opera-
tion as shown in the table. shr is replaced by the more general slice operator.
The operations concat, not, signext, and zeroext do not need an LP re-
laxation: their resultant bits can be aggregated with the corresponding operand
bits such that the constraints can be deleted in the preprocessing stage of the
algorithm. No linearization is generated for the shl, slice, read, and write
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Operation Linearization

r = and (x,y) rb ≤ xb, rb ≤ yb, rb ≥ xb + yb − 1

r = or (x,y) rb ≥ xb, rb ≥ yb, rb ≤ xb + yb

r = xor (x,y) xb − yb − rb ≤ 0, −xb + yb − rb ≤ 0,

−xb − yb + rb ≤ 0, xb + yb + rb ≤ 2

r = uand (x) r ≤ xb, r ≥
Pwx−1

b=0
xb − wx + 1

r = uor (x) r ≥ xb, r ≤
Pwx−1

b=0
xb

r = uxor (x) r +
Pwx−1

b=0
xb = 2s, s ∈ Z≥0

r = eq (x,y) x − y = s − t, s, t ∈ Z≥0,

p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},

q ≤ t, t ≤ q(uy − lx), q ∈ {0, 1},

p + q + r = 1

r = lt (x,y) x − y = s − t, s, t ∈ Z≥0,

p ≤ s, s ≤ p(ux − ly), p ∈ {0, 1},

r ≤ t, t ≤ r(uy − lx),

p + r ≤ 1

r = ite (x,y,z) r − y ≤ (uz − ly)(1 − x)

r − y ≥ (lz − uy)(1 − x)

r − z ≤ (uy − lz) x

r − z ≥ (ly − uz) x

r = add (x,y) r + 2wr o = x + y, o ∈ {0, 1}

r = mult (x,y) vbn ≤ uyn
xb, vbn ≤ yn, vbn ∈ Z≥0

vbn ≥ yn − uyn
(1 − xb)

on +
P

i+j=n

PL−1

l=0
2lviL+l,j

= 2Lon+1 + rn, on ∈ Z≥0

r = minus (x) replaced by 0 = add(x, r)

r = sub (x,y) replaced by x = add(y, r)

r = shr (x,y) replaced by r = slice(x, y)

r = concat (x,y)

r = not (x)

r = signext (x)

r = zeroext (x)

9

>

>

>

=

>

>

>

;

removed in preprocessing

r = shl (x,y)

r = slice (x,y)

r = read (x,y)

r = write (x,y,z)

9

>

>

>

=

>

>

>

;

no linearization

Table 1. LP relaxation of circuit operations. l̺ and u̺ are the lower and upper bounds of a
bit vector variable ̺.

constraints. Their linearizations are very complex and would dramatically in-
crease the size of the LP relaxation, thereby reducing the solvability of the
LPs. For example, a straight-forward linearization of the shl constraint on a
64-bit input vector x that uses internal ite-blocks for the potential values of
the shifting operand y already requires 30944 inequalities and 20929 auxiliary
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variables.
In addition to the infeasibility detection capabilities, the LP relaxation can

be used to tighten the variables’ domains, to find feasible solutions, and to se-
lect a branching variable, i.e., a variable whose domain is split into two parts
in order to create the two subproblems of the current node. Domain reduction
can be achieved by applying the so-called reduced cost strengthening mecha-
nism [18] which uses the dual solution as a proof that a variable cannot exceed
a certain value. Usually, only a very few variables have a fractional value in the
solutions of the LPs. If all values are integral and if the solution satisfies the
constraints that were not linearized, the LP solution is a feasible solution of the
property checking problem. On the other hand, variables with fractional values
are promising candidates to be used for branching.

2.3 SAT Techniques

One of the key ingredients in modern SAT solvers is conflict analysis [16]: in-
feasible subproblems are analyzed in order to learn deduced clauses that can
later be used to prune other nodes of the search tree. In addition, these conflict
clauses enable the solver to perform so-called non-chronological backtracking.
We briefly describe the generalization of conflict analysis to our integrated con-
straint integer programming (CIP) approach. Further details can be found
in [1].

The following differences of SAT and CIP have to be considered. First,
CIP involves non-binary variables. Like fixings of binary variables, changes in
the lower and upper bounds of non-binary variables can be reason and conse-
quence of a domain propagation. Therefore, we have to generalize the concept
of the conflict graph, which represents the deductions that lead to the proof of
infeasibility of the current subproblem. The nodes in the generalized conflict
graph represent bound changes instead of fixings. Note that a single non-binary
variable can now have multiple instead of a single appearance the conflict graph.

The analysis of the conflict graph consists of selecting a cut that separates
the branching decisions from the conflict vertex. The vertices on the frontier of
this cut yield the conflict clause. However, if one of these vertices is a bound
change on a non-binary variable, the resulting constraint is no longer a clause
(i.e., a disjunction of literals) but a disjunction of bound constraints.

The second difference is the fact that SAT solving only involves a single type
of constraints, namely clauses, while CIP consists of different constraint classes,
each of which is treated by a different domain propagation algorithm. Because
conflict analysis needs to know the reasons for the deductions that lead to the
conflict, we have to provide constraint specific reverse propagation algorithms.
This leads to a much more involved bookkeeping system, in particular if bounds
of non-binary variables are involved in the propagations.

While the first two differences between SAT and CIP are only technical
obstacles for generalizing conflict analysis to CIP, there is also a principle issue.
The conflict analysis of SAT relies on the fact that a single clause detected the
conflict by observing that all its literals are fixed to 0. This conflict detecting
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clause yields the starting point from which the conflict graph can be constructed
in a reverse fashion by applying reverse propagation on the literals that were
fixed to 0. In contrast, most of the the infeasibilities in CIP subproblems are
detected by the LP relaxation. In this case the LP as a whole is responsible for
the conflict, which in particular includes all local bounds. Therefore, we have to
identify a preferably small subset of the local bounds which—together with the
constraints and global bounds—suffice to render the LP infeasible. This subset
takes the role of the literals in the conflict detecting clause of SAT conflict
analysis. After identifying this starting set of local bounds, the conflict graph
can be generated and analyzed in a reverse fashion just like in SAT solving.

The problem of identifying a subset of the local bounds of minimal cardinality

such that the LP stays infeasible if all other local bounds are removed is NP-
hard [1, 3]. Thus, we use the following heuristic to remove local bounds.

Consider the local LP relaxation

max{cT x | Ax ≤ b, l ≤ x ≤ u, l̃ ≤ x ≤ ũ}

with l and u being the global bounds, and l̃ and ũ being local bounds added
by branching or domain propagation. First, we will only consider the case with
l = l̃ = 0. We further assume that each component of the global upper bounds
u was tightened at most once to obtain the local upper bounds ũ ≤ u. Thus,
the set of local bound changes consists of at most one bound change for each
variable. The general case will be discussed below.

Suppose the local LP relaxation

(P) max{cT x | Ax ≤ b, 0 ≤ x ≤ ũ}

is infeasible. Then its dual

(D) min{bT y + ũT r | AT y + r ≥ c, (y, r) ≥ 0}

has an unbounded ray, i.e., (ȳ, r̄) ≥ 0 with AT ȳ + r̄ ≥ 0 and bT ȳ + ũT r̄ < 0.
Note that the dual LP does not need to be feasible.

We can aggregate the rows and bounds of the primal LP with the non-
negative weights (ȳ, r̄) to get the following proof of infeasibility:

0 ≤ (ȳT A + r̄T )x ≤ ȳT b + r̄T ũ < 0. (2)

Now we try to relax the bounds as much as possible without loosing infeasibility.
Note that the left hand side of (2) does not depend on ũ. Relaxing ũ to some û

with ũ ≤ û ≤ u increases the right hand side of (2), but as long as ȳT b+r̄T û < 0,
the relaxed LP

(P̂ ) min{cT x | Ax ≤ b, 0 ≤ x ≤ û}

is still infeasible with the same infeasibility proof (ȳ, r̄). This leads to the follow-
ing heuristic to produce a relaxed upper bound vector û with the corresponding
LP still being infeasible, see [1].
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Algorithm 2.1 Let max{cT x | Ax ≤ b, 0 ≤ x ≤ ũ ≤ u} be an infeasible LP
with dual ray (ȳ, r̄).

1. Set û := ũ, and calculate the infeasibility measure d := ȳT b + r̄T û < 0.

2. Select a variable j with ûj < uj and dj := d + r̄j(uj − ũj) < 0. If no such
variable exists, stop.

3. Set ûj := uj, update d := dj , and go to 2.

In the general case of multiple bound changes on a single variable, we have
to process these bound changes step by step, always relaxing to the previously
active bound. In the presence of non-zero lower bounds the reduced costs r

may also be negative. In this case, we can split up the reduced cost values into
r = ru − rl with ru, rl ≥ 0. It follows from the Farkas lemma that ru · rl = 0.
The infeasibility measure d of the dual ray has to be defined in Step 1 as d :=
ȳT b +(r̄u)T û + (r̄l)T l̂. A local lower bound l̃ can be relaxed in the same way as
an upper bound ũ, where u has to be replaced by l in the formulas of Steps 2
and 3.

As mentioned above, the analysis of an infeasible LP with Algorithm 2.1
yields a set of local bound changes that form the starting point of the conflict
graph analysis. By applying reverse propagation, one or more conflict con-
straints can be extracted from the conflict graph. In our implementation, we
use the 1-FUIP [27] rule for generating conflict constraints. In addition to the
1-FUIP conflict constraints we extract clauses from reconvergence cuts [27] in
the conflict graph to support non-chronological backtracking [16].

2.4 Preprocessing

Before the actual branch-and-bound based search algorithm is applied we try to
simplify the given problem instance by employing the following preprocessing
techniques. The individual preprocessing algorithms are applied periodically
until no more reductions can be found.

2.4.1 Probing

Probing denotes a very time-consuming preprocessing technique which evolved
from the IP community [24]. It consists of successively fixing each binary vari-
able to zero and one and evaluating the corresponding subproblems by domain
propagation techniques. Let x ∈ {0, 1} be a binary variable (e.g., a bit ̺b of
a bit vector ̺), and let y ∈ {l, . . . , u} denote some other binary or non-binary
variable. Let l0 and u0 be the lower and upper bounds of y that were deduced
from x = 0. Let l1 and u1 be the corresponding bounds of y deduced from
x = 1. Now, the following observations can be made:

• If one of the fixings of x leads to an infeasible subproblem, x can be
permanently fixed to the opposite value and removed from the problem
instance.
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• If l0 = u0 and l1 = u1, y can be expressed as y = l0 + (l1 − l0)x and
removed from the problem instance.

• l̄ := min{l0, l1} and ū := max{u0, u1} are valid global bounds of y.

• x = 0 → l0 ≤ y ≤ u0 and x = 1 → l1 ≤ y ≤ u1 are valid implications
that can be stored in an implication graph and exploited during the solving
process, e.g., in other preprocessing algorithms or in the branching variable
selection.

2.4.2 Term Algebra Preprocessing

The signature defined by the circuit operations and strings of the constants 0
and 1 and the individual bits ̺b of bit vectors yields an extended term algebra.
By regarding the valid equations of terms defined by the semantics of the circuit
operations, we obtain a term replacement system.

Each constraint of the problem instance defines an additional equation be-
tween the resultant bit vector and the corresponding term including the operand
bit vector as variables. By substituting the operands with their defining terms
and by applying the semantical term replacement rules, we can extract equali-
ties of terms or subterms and thereby equalities of the corresponding resultant
bit vector or sub-vectors. Typical term replacement rules are, e.g., the com-
mutativity, associativity and distributivity laws of addition and multiplication,
and logical reasoning on and, or, xor, and not constraints.

In the current version of our code, we only process add and mult constraints
in the term algebra preprocessing, and we do not exploit the distributivity law.
However, due to the aggregations of bits ̺b found in other presolving algo-
rithms, we implicitly include other constraints in the term replacement system,
in particular concat, not, signext, zeroext, and slice with a fixed offset
operand. We expect further preprocessing improvements by incorporating other
constraints into the term algebra and by exploiting replacement rules like the
distributivity law which link different operations.

2.4.3 Irrelevance Detection

In order to prove the validity of a given property, often only a part of the circuit
has to be considered. For example, if a property on an arithmetic logical unit
(ALU) describes a certain aspect of the addition operation, the other operations
of the ALU are irrelevant. Suppose that ite constraints select the operation of
the ALU by routing the output of the desired operation to the output register
of the circuit. The calculated values of the other operations are linked to the
discarded inputs of the ite constraints and thereby do not contribute to the
output of the circuit. These irrelevant constraints and the involved intermediate
bit vectors have no influence on the validity of the property and can therefore
be removed from the problem instance.

The detection of irrelevant parts of the circuit can also be applied to the local
subproblems during the branch-and-bound search. In particular, irrelevant bit
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register width
Prop Meth 5 10 15 20 25 30 35 40

add fail SAT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

sub fail SAT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CIP 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1

muls SAT 0.5 — — — — — — —

CIP 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3

neg flag SAT 0.1 100.0 — — — — — —

CIP 0.8 3.6 11.6 36.3 81.8 136.6 218.4 383.5

zero flag SAT 0.0 0.0 0.1 0.1 0.2 0.4 0.5 0.6

CIP 2.3 0.6 1.6 4.0 6.2 10.7 15.6 379.7

Table 2. ALU invalid (top) and valid (bottom) properties.

vector variables need not to be considered as branching candidates. Disregarding
locally irrelevant variables in the branching decision can be seen as replacement
for the more indirect method of selecting the next branching variable under the
literals involved in the recent conflict clauses, which is employed in state-of-the-
art SAT solvers [13].

2.4.4 Domain Propagation

The constraint specific domain propagation algorithms, as described briefly in
Section 2.1, are also applied during preprocessing. Whenever a new fixing, ag-
gregation, domain reduction, or implication was found by one of the preprocess-
ing algorithms, domain propagation is applied again to the affected constraints.

3 Experimental Results

In this section we examine the computational effectiveness of the described
constraint integer programming techniques on industrial benchmarks obtained
from verification projects conducted using OneSpin 360 [19]. All calculations
were performed on a 3.8 GHz Pentium-4 workstation with 2 GB RAM. In all runs
we used a time limit of 7200 seconds. The specific chip verification algorithms
were incorporated into SCIP 0.90i, which is a framework for constraint integer
programming [2]. The LP relaxations were solved using CPlex 10.0.1 [14].

For reasons of comparison, we also solved the instances with SAT techniques
on the gate level. Before the SAT solver is called, a preprocessing step is exe-
cuted to simplify the instance at the gate level. We used MiniSat 2.0 [10] to
solve the resulting SAT instances. We also tried MiniSat 1.14, Siege v4 [23]
and zChaff 2004.11.15 [17], but MiniSat 2.0 turned out to perform best on
most of the instances of our test set.

3.1 Test Set

We conducted experiments on the following sets of property checking instances:
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register width
Prop Meth 5 10 15 20 25 30 35 40

#1 SAT 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1

CIP 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.4

#2 SAT 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1

CIP 0.1 0.1 0.2 0.3 0.3 0.4 0.6 0.7

#3 SAT 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1

CIP 0.1 0.1 0.2 0.2 0.2 0.5 0.4 0.7

#4 SAT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CIP 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.3

#5 SAT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CIP 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

#8 SAT 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1

CIP 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.2

#6 SAT 0.0 0.2 0.5 0.8 1.3 1.6 2.1 2.9

CIP 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1

#7 SAT 0.0 0.6 1.3 1.9 2.2 1.7 22.5 16.4

CIP 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2

#9 SAT 0.1 8.9 21.3 764.0 5554.4 81.6 177.1 4087.1

CIP 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.2

#10 SAT 0.0 0.2 0.5 0.8 1.3 1.6 2.1 2.9

CIP 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1

Table 3. PipeAdder invalid (top) and valid (bottom) properties.

ALU: an arithmetical logical unit which performs add, sub, shl, shr, and
signed and unsigned mult operations.

PipeAdder: adder with 4-stage pipeline to sum four values.

PipeMult: multiplier with a 4-stage pipeline.

Biquad: a DSP/IIR filter core obtained from [20] in different representations
with some valid and invalid properties.

Multiplier: Gate level netlists for Booth and non-Booth encoded architectures
of signed and unsigned multipliers, for which the correctness has to be proven.
These instances are rather equivalence checking instances than property check-
ing problems.

All test sets except the Multiplier set involve valid and invalid properties.
The width of the input bit vectors in the ALU, PipeAdder and PipeMult sets
range from 5 to 40 bits. For the Multiplier set they range from 6 to 14 bits.

3.2 Description of the Results

Tables 2–6 compare the results of MiniSat and our CIP approach. For each
property listed in the “Prop” column the tables show the time in seconds of the
two algorithms needed to solve instances of different input bit-widths. Results
marked with ‘—’ could not be solved within the time limit.
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register width
Prop Meth 5 10 15 20 25 30 35 40

#1 SAT 0.0 0.0 0.1 0.2 0.3 0.4 0.6 0.7

CIP 0.3 0.6 0.7 1.6 2.3 4.7 7.7 10.5

#2 SAT 0.0 0.0 0.1 0.2 0.3 0.4 0.6 0.8

CIP 0.2 2.2 1.2 2.8 3.5 4.6 7.7 9.4

#3 SAT 0.0 0.1 0.1 0.2 0.3 0.6 1.0 1.2

CIP 0.7 3.0 2.6 9.3 13.5 20.4 21.8 28.8

#4 SAT 0.0 0.0 0.1 0.2 0.2 0.3 0.5 0.7

CIP 0.5 2.8 6.2 11.1 23.1 33.0 6.3 7.3

#5 SAT 0.0 0.0 0.1 0.2 0.3 0.6 0.8 1.0

CIP 1.1 5.4 15.0 32.5 52.0 92.0 55.1 125.2

#8 SAT 0.0 0.1 0.1 0.2 0.3 0.6 0.7 1.1

CIP 1.2 8.1 19.8 43.1 45.5 89.9 118.9 91.4

#6 SAT 2.8 — — — — — — —

CIP 0.0 0.1 0.1 0.2 0.3 0.4 0.6 0.7

#7 SAT 8.3 — — — — — — —

CIP 0.1 0.2 0.5 1.0 1.8 2.9 4.8 6.8

#9 SAT 34.5 — — — — — — —

CIP 0.1 0.5 1.6 3.5 7.1 11.6 19.8 27.9

#10 SAT 2.2 — — — — — — —

CIP 0.1 0.1 0.2 0.4 0.6 0.8 1.1 1.5

Table 4. PipeMult invalid (top) and valid (bottom) properties.

The top parts of Tables 2 to 5 contain invalid properties (i.e., where the
corresponding SAT and CIP instances are feasible). One can see that SAT
clearly outperforms CIP to find counter-examples. This is due to the fact, that
SAT processes the nodes much faster than CIP and is thereby able to investigate
many more nodes in the same amount of time.

For most of the valid properties , as shown in the bottom parts of Tables 2
to 5, CIP dominates the SAT approach. Dramatic improvements can be ob-
served on the muls and neg flag properties of the ALU circuit (Table 2), on
the PipeMult instances (Table 4), and on the g2 checkg2 instance of the Biquad

circuit (Table 5).
There seems to be no clear winner on the equivalence checking Multiplier

examples (Table 6). SAT is faster on the smaller instances, but the running
time for the CIP approach increases to a lesser extent with the bit-width of the
inputs. The 10×10 multiplication circuits were verified with both techniques in
roughly the same time. For larger bit widths, the CIP approach is superior to
SAT.

In total, SAT failed on 58 out of 258 instances, while CIP was able to solve
all instances within the time limit.

12



variant
Prop Meth A B C

g3 checkreg1 SAT 0.0 0.0 0.0

CIP 1.2 0.9 0.9

g3 xtoxmdelay SAT 0.0 0.0 0.0

CIP 0.5 0.1 0.1

g3 checkgfail SAT 0.7 0.6 1.2

CIP 290.0 29.2 50.2

g checkgpre SAT 22.2 57.6 29.1

CIP 14.2 12.3 15.3

g2 checkg2 SAT — — —

CIP 213.9 204.8 257.6

g25 checkg25 SAT 0.0 2.4 2.5

CIP 29.7 22.4 24.2

g3 negres SAT 0.0 0.0 0.0

CIP 0.7 0.0 0.0

gBIG checkreg1 SAT 287.2 157.3 159.6

CIP 170.0 7.0 8.6

Table 5. Biquad invalid (top) and valid (bottom) properties.

register width
Layout Meth 6 7 8 9 10 11 12 13 14

booth SAT 0.4 3.3 21.0 135.4 935.1 — — — —

signed CIP 21.3 70.1 318.7 384.2 904.1 1756.2 2883.7 4995.9 3377.9

booth SAT 0.5 2.5 17.9 102.9 879.0 4360.4 — — —

unsgnd CIP 15.7 51.7 269.1 911.3 1047.6 2117.7 2295.1 4403.4 7116.8

nonbth SAT 0.4 3.4 21.8 134.1 1344.1 — — — —

signed CIP 12.8 31.2 100.6 265.9 569.8 690.8 1873.0 1976.3 4308.9

nonbth SAT 0.3 1.8 16.5 83.1 909.6 5621.5 — — —

unsgnd CIP 3.6 22.4 111.2 214.0 335.4 1040.1 1507.5 2347.7 4500.2

Table 6. Multiplier properties (all valid).

4 Conclusions

We described an algorithm for the property checking problem that combines
techniques from integer programming, constraint programming, and SAT solv-
ing. The algorithm includes solving the linear programming (LP) relaxation
at every node of the search tree, applying constraint specific domain propa-
gation algorithms using both, bit and word level representations, and learning
conflict constraints from infeasible LPs as well as from bit and word level deduc-
tions. Experimental results on industrial benchmarks showed that our approach
outperforms SAT techniques for proving the validity of properties on circuits
containing arithmetics. However, due to the much more involved procedures
employed in our algorithm it is inferior to SAT for finding counter-examples of
an invalid property.
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