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1

Introduction

In this diploma thesis we introduce a general framework for a new class of online problems featuring
a two-stage decision process, the Online Target Date Assignment Problem. We present general
online algorithms for instances of this problem. These algorithms are analyzed in two different
ways. On the on hand, competitive analysis is used to analyze the worst case behavior of these
algorithms. On the other hand, we develop a new approach, for approximating the optimal value
function of a discounted Markov decision problem locally. This method is used to analyze the
expected performance of the presented algorithms in special situations. In the sequel all necessary
definitions and used approaches are explained step-by-step.

The outline of this chapter is as follows. In the first section, we briefly describe the customer
service application arising at Hermes Technischer Kundendienst and illustrate its important features.
In Section 1.2 we generalize this application to the class of Online Target Date Assignment Prob-
lems, discuss different versions of it, and present the instances of Online Target Date Assignment
Problems considered in this work. A brief overview on previous work is given in Section 1.3. This
chapter is closed with Section 1.4 in which we present the contribution of this work and the structure
of this thesis.

1.1 The Customer Service Application arising at Hermes Technischer
Kundendienst

In this section we introduce a real-life problem arising at Hermes Technischer Kundendienst (HTK)
and point out its special features. The company HTK exists on the German market since more
than 25 years. Their main business is to repair electronic equipment such as brown1 and white2

1Household electrical entertainment appliances such as televisions and music systems. These appliances were tradi-
tionally finished with wood. This is now rather rare, but the name has stuck, even for goods that are unlikely ever to have
been provided in a wooden case (e.g. camcorders).

2Large household appliances such as ovens and refrigerators. These were formerly finished with white enamel. Today
they are often colored but the name has also stuck.

1



2 1. Introduction

goods. Depending on the size of the broken equipment, HTK developed two different types of
repair services. For devices such as a coffee maker or vacuum cleaner the company authorizes a
delivery service to pick up the broken device or ask the customer for sending it to a repair shop.
After the device has been fixed, they bring or send it back. However, if the device is “large” such
as a refrigerator or laundry machine, then a service technician has to visit the customer to fix the
problem at its location. The second workflow is the one of interest in this work.

1.1.1 The Application

The workflow of interest can be divided into two stages. In a first stage a customer calls in and
requests a repair service for a broken device which requires to be fixed at its location. Therefore, a
service technician has to visit this customer to repair this device. This service has to be done within
a certain time frame (usually within two weeks). The customer must be given the day and possibly
a more narrow time window when a service technician will arrive. This arrangement has to be made
while the customer is on the phone and without knowledge of future service requests. Moreover, this
appointment is irrevocable. By choosing the service day, several side constraints have to be taken
into account. For example:

• since the device has to be repaired at its location, it has to be ensured that possibly needed
spare parts are available at the day of service;

• it is to guarantee that a service technician is available on the service day which has the quali-
fication to repair the broken device.

However, until the promised service day arrives, the decision which service technician to send and
in which order the customer should be visited can be safely deferred. This desicion is made in a
second stage.

In the second stage exact schedules and routings of service technicians are computed. In detail,
in the end of each day all requests are known which have to be served at the following day. The
problem, which now arises, is to design a set of routes for fleets of vehicles (service technicians)
for the purpose of serving all requests assigned to the following day at minimum cost. Therefore,
the night before gives time to solve a large scale vehicle dispatching problem. Thereby, a lot of side
constraints have to be considered. For example:

• each request assigned to the following day has to be served;

• since the qualifications of service technicians differ, it has to be ensured that a schedule for a
service technician only contains requests which require skills this service technician has;

• necessary spare parts have to be available and reachable for the service technicians;

• if a customer received a more narrow time window as a day, it has be guaranteed that a service
technician visits this customer within the promised time window.
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The solution of the vehicle routing problem determines the schedules and routings for each service
technician for the next day.

1.1.2 Special Features of this Application

The customer service application exhibits a two-stage decision process. In a first stage, an appoint-
ment with a customer has to made immediately and irrevocably while he is on the phone and without
knowledge of future service requests. In the second stage process, exact schedules and routings of
service technicians for a fixed day are computed.

In particular, the first stage is an online assignment problem since assignment decisions have
to be made only with the information revealed so far which characterizes an online problem. The
second stage is an offline optimization problem, since all requests are known which have to be served
at the next days in such a way that an optimality criterion is satisfied, this is, to serve all requests at
a minimum cost.

Furthermore, this two-stage decision process has the following cost structure. At the point where
a customer has to receive an appointment, it is not known what each possible assignment decision
will cost. This is the case since in general future service requests are unknown and therefore, the
input instances for the second stage optimization problem are incomplete. The actual cost for as-
signment decisions are not known until the second stage optimization problem is solved with a
complete input instance. In general, the assignment decisions in the first stage influence the overall
cost because they determine the input and thus the optimal costs of the second stage optimization
problem.

1.2 Considered Problem Setting and its Versions

Many problems encountered in real-life involve a two-state decision process. In a first stage an
arising request has to be assigned immediately and irrevocably to a resource before the next request
is revealed, while in a second stage process, certain “sub-instances”, these are instances formed by
requests assigned to a particular resource, can be solved to optimality later.

In this work the resource which has to be assigned to requests is a target date, a date at which
the service should take place. This leads to the class of Online Target Date Assignment Problem
(ONLINETDAP) which are a generalized version of the real-world problem arising at HTK. Re-
quests for the ONLINETDAP become known at certain dates. An online algorithm has to assign a
target date to each arising request, this means, immediately after a request is revealed and without
knowledge about future requests. The assignment decision specifies the date on which a request has
to be processed, for instance on which day a service technician comes by to fix the broken laundry
machine. The cost at a target date is given by the downstream cost, the optimal cost of processing all
requests assigned to this particular date w. r. t. some fixed downstream offline optimization problem,
for example, the cost of an optimal dispatch for service technicians.
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There are different versions of this problem setting. If all arising requests are known in advance,
both stages can be integrated and solved offline to obtain an overall optimal solution, even in many
practical applications. However, if for each request the first assignment decision has to be made
immediately after this request is released and without knowledge about future requests, the situation
changes. In this case, the first stage has be handled as on online assignment problem. As long as
each request has to be assigned to a future target date the second stage can still be processed offline.
However, if the release date of a request is itself also a feasible target date, even the second stage is
an online problem. It would be also conceivable, that all requests on a single date might be collected,
and the target date for these requests are chosen and communicated at the end of this date. This is a
relaxation of the online requirement of the assignment decision.

In this thesis we considers the version where in the first stage each request has to be assigned
immediately after it is released and without knowledge about future requests, that is, the requests
have to be processed in an online fashion. The second stage can be carried out offline since only
future target dates can be assigned to each request. For this version we presents algorithms for the
ONLINETDAP independently of the particular downstream problem, when the overall objective is
to minimize either the sum or the maximum of all downstream costs. As the first basic examples,
we analyze these algorithms for the particular academic downstream problems of bin-packing and
non-preemptive scheduling on identical and parallel machines.

1.3 Related Work

In a joint work with Sven O. Krumke, Nicole Megow, Jörg Rambau, Andreas Tuchscherer, and Tjark
Vredeveld we introduced in [HKM+05] the novel concept of an Online Target Date Assignment
Problem as a general framework for online problems which exhibit a two-stage decision process. To
the best of our knowledge there was no previous work down which covers online problems with this
nature for the case where no stochastic information about future requests is available. However, the
subproblems are studied in the past.

There is a lot of research going on in the field online optimization. Important results from this
field are presented in the book of Fiat and Woeginger [FW98] as well as in the book of Borodin
and El-Yaniv [BEY98]. A survey on classical competitive analysis for online algorithms is given by
Albers in [Alb03].

The considered academic downstream problems bin-packing and non-preemptive scheduling on
identical and parallel machines are well known and considered in many different versions. Coffman,
Garey, and Johnson [CGJ96] published a survey which reviews the literature on worst-case and
average-case behavior of approximation algorithms for one-dimensional bin-packing. The book of
Leung [Leu04] provides a coverage on the recent and advanced topics on scheduling.

The downstream optimization problem arising at HTK is large scale vehicle dispatching problem.
These optimization problems are well studied in the past. The book of Toth and Vigo [TV02] gives
a review over this class of optimization problems.
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In the case where stochastic assumptions are considered for future requests, many stochastic
models, for example, Markov decision processes [Put94], are unsolvable for practical problem sizes.
In a joint work with Volker Kaibel, Matthias Peinhardt, Jörg Rambau, and Andreas Tuchscherer we
present in [HKP+05] a method for approximating the optimal value function of large scale dis-
counted Markov decision problem locally. The runtime complexity of this approach and the number
of touched states does not depend on the number of states of the whole system. There is a sparse
sampling algorithm for large scale Markov decision processes with performance guarantees and run-
time complexity similar to the ones that we state [KMN02]. Furthermore, neuro-dynamic program-
ming [Ber01] and similar ideas [SP04] lack the ability to produce guarantees for the approximation
quality.

1.4 Contribution and Outline

The contribution of this thesis is the following. First of all, we provide a mathematical framework
for general ONLINETDAPs. Furthermore, we analyze instantiation of ONLINETDAPs where the
overall objective is to minimize either the sum or the maximum of all downstream costs. Within
the ONLINETDAP framework, our results are online algorithms and lower and upper bounds on
their performance guarantee, this is, the competitive ratio, for the particular downstream problems
bin-packing and parallel-machine scheduling. These results are partly form joint work [HKM+05]
and presented in more details as in this paper. We also present the method introduced in [HKP+05]
to approximate the optimal value function of a discounted Markov decision problem locally. This
approach is based on the classical linear programming formulation for discounted Markov decision
problems. We use this method to evaluate the expected performance of some online algorithms
applied to associated Markov decision processes of instances of ONLINETDAPs.

For ONLINETDAPs with the overall objective to minimize the sum of all downstream costs, we
call them MIN-TOTAL ONLINETDAPs, we present in particular the general online algorithm PACK-
TOGETHERORDELAY (PTD). It turns out that this algorithm is competitive for specific settings of
the academic downstream problems bin-packing and parallel-machine scheduling. Furthermore, we
introduce the online algorithm PACKFIRSTORDELAY (PFD) which seems to be even more promis-
ing for this problem setting than PTD. However, it is not possible to state this conjecture in any
satisfying result for the competitive ratio of PFD. Therefore, we use our new method for approx-
imating the optimal value function of a discounted Markov decision problem locally to analyze
these two algorithms w. r. t. their expected performance. This shows that in the case of the down-
stream problem bin-packing the conjecture that PFD has a better performs than PTD seems to be
true. However, in the case of parallel-machine scheduling the computational results do not support
this conjecture any more.

If the overall objective function is to minimize the maximum downstream cost over all tar-
get date, we call this problem MIN-MAX ONLINETDAPs, we state the general online algorithm
BALANCE (BAL). This algorithm is competitive for certain problem setting of the considered down-
stream problem bin-packing and parallel-machine scheduling.
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Furthermore, we observe for both objective functions that special profiles for the considered
downstream problem, as for example, bounded number of bins or unbounded number of machines
per target date, lead to trivial problems or prevent any deterministic online algorithm from achieving
a constant competitive ratio.

The outline of this thesis is as follows. Chapter 2 introduces briefly the field online optimization
as well as the field stochastic dynamic optimization. Standard analysis tools of these fields are pre-
sented which are useful to evaluate instantiations of ONLINETDAPs. Chapter 3 is devoted to the
mathematical problem formulation of ONLINETDAPs. Furthermore, elementary ONLINETDAPs
are introduced and analyzed using competitive analysis. Our new approach from the field stochastic
dynamic optimization is presented in Chapter 4. In Chapter 5 we use this new method to present
computational results for two online algorithms PTD and PFD applied to associated Markov decision
processes of instances of MIN-TOTAL ONLINETDAPs. Chapter 6 is devoted to a summary, conclu-
sion, and an outlook. Finally, the appendices include a short overview of mathematical symbols and
notations used in this thesis, a summary in German, and additional computational results.



2

Analysis Methods for Optimization with
Dynamic Input Data

In order to analyze the Online Target Date Assignment Problem there are different possible ap-
proaches. This chapter presents the two analysis methods used in this thesis to analyze policies for
Online Target Date Assignment Problems.

This chapter is organized as follows. The first two sections provide a basic overview on Online
Optimization and Stochastic Dynamic Optimization. Both methods deal with planning under un-
certainty, but still differ in the assumptions they make. Section 2.3 closes this chapter by reviewing
both approaches. This shows why we use these methods to analyze instances of Online Target Date
Assignment Problem.

2.1 Online Optimization

Classical optimization approaches assume complete knowledge about all problem data in advance.
These problems are also called offline optimization problems. The assumption concerning complete
information applies for certain applications. However, for the customer service application described
in Section 1.1 this assumption is obviously not satisfied.

Online optimization problems are a special class of optimization problems where the input in-
stances are not given completely in advance. Instead, an instance arises step-by-step and decisions
have to be made based only on the information revealed so far. Each decision leads to a cost or profit
and the task is to minimize the total cost or to maximize the gained profit. In this work only mini-
mization problems are considered. Therefore, all definitions in this section refer to minimization
problems. However, the definitions can easily be adapted for maximization problems.

Most online optimization problems can be formalized as a request-answer game which was in-
troduced in [BDBK+94].

7
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Definition 2.1 (Request-Answer Game)
A request-answer game consists of a request set R, a nonempty and finite answer set A, and cost
functions costn : Rn × An → R≥0 ∪ {∞} for n ∈ N. Let C denote the union of the func-
tions costn over all n ∈ N. An instance is given by a request sequence σ = r1, r2, . . . , rn of
n ∈ N requests from R. The task is to find an answer sequence (a1, a2, . . . , an) ∈ An such that
the cost costn(r1, r2, . . . , rn, a1, a2, . . . , an) is minimized. A request-answer game is given by the
triple (R,A, C). 4

A request-answer game itself does not define an online optimization problem since no restriction
is made on the way the answers have to be given. In the online setting an online algorithm has
compute the answers for a given request sequence. An online algorithm has to serve a request right
after it arises according to the specific rules of a request-answer game.

Definition 2.2 (Deterministic Online Algorithm)
Let (R,A, C) be a request-answer game. A deterministic online algorithm ALG is a sequence of
functions f1, f2, . . . , where fi : Ri → A. If σ = r1, r2, . . . , rn is a sequence of n ∈ N requests
fromR, then the output of ALG for this sequence is

ALG[σ] = (a1, a2, . . . , an) ∈ An, where ai = fi(r1, r2, . . . , ri).

The cost incurred by ALG on σ is denoted by ALG(σ) and defined as

ALG(σ) = costn(σ, ALG[σ]).

4

Note that the answer ai may only depend on the requests r1, r2, . . . , ri for i = 1, 2, . . . , n. There-
fore, the definition of a deterministic online algorithm meets the requirement that such algorithms
have to make decisions based only on partial information.

Besides the class of deterministic online algorithms there exists the class of randomized online
algorithms. These algorithms use a probability distribution over a set of deterministic online algo-
rithms to generate an answer for a given request. Therefore, the answer sequence as well as the cost
are random variables.

Definition 2.3 (Randomized Online Algorithm)
A randomized online algorithm RALG is a probability distribution over deterministic online algo-
rithms ALGx (x may be thought of as the coin tosses of the algorithm RALG). 4

Note that the definition points out that every deterministic online algorithm is a randomized
online algorithm with probability 1 on a certain outcome. Hence, the class of deterministic online
algorithms is included in the class of randomized online algorithms.

Online algorithms provide for each sequence of requests an answer sequence which comes along
with a cost. The task is to generate an answer sequence that minimizes this cost. The standard
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technique for analyzing the performance of an online algorithm is competitive analysis. This method
measures the performance of an online algorithm against an optimal offline algorithm. An optimal
offline algorithm has access to the complete input instance in advance and serves it at a minimum
cost, called optimal offline cost.

Definition 2.4 (Optimal Offline Cost)
Let (R,A, C) be a request-answer game and σ = r1, r2, . . . , rn a sequence of n ∈ N requests
fromR. Then the optimal offline cost is defined as

OPT(σ) = min{costn(σ, a) | a ∈ An}.

4

Using competitive analysis the performance of a deterministic online algorithm is measured as
follows.

Definition 2.5 (Competitive Deterministic Online Algorithm)
Let (R,A, C) be a request-answer game and c ≥ 1 a real number. A deterministic online algo-
rithm ALG is called c-competitive if

ALG(σ) ≤ c · OPT(σ)

holds for any request sequence σ. The competitive ratio of ALG is the infimum over all c such that
ALG is c-competitive. 4

Note that the definition does not make any restriction on the computational complexity a deter-
ministic online algorithm has. The only scarce resource in competitive analysis is information.

Competitive analysis is a worst case analysis for online algorithms since the performance guar-
antee must hold for each request sequence. Moreover, competitive analysis can be seen as a game
between the online algorithm and a malicious adversary. The malicious adversary tries to generate
a request sequence such that the online algorithm performs as “bad” as possible compared to the
optimal offline cost. In doing so, the malicious adversary has knowledge about the algorithm. That
is, he knows for any request sequence all answers of a deterministic online algorithms in advance.

The answer sequence as well as the cost of a randomized online algorithm are random variables.
Therefore, the competitive ratio of a randomized online algorithm depends on the amount of infor-
mation an adversary has access to. In the standard adversary model, the adversary has knowledge
about the probability distribution a randomized online algorithm uses but does not know the exact
outcome for each request sequence. Hence, an adversary has to choose an entire request sequence
before an online algorithm starts processing the chosen sequence. Such an adversary is called obliv-
ious adversary in the literature.

Definition 2.6 (Oblivious Adversary)
An oblivious adversary has to generate the entire request sequence in advance based only on the
description of the randomized online algorithm but before any request is served by the randomized
online algorithm. 4
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As mentioned before the definition of the competitive ratio of a randomized online algorithm
depends on the kind of adversary. For the purpose of introducing competitive analysis, we restrict
ourselves to an oblivious adversary which is the weakest of those introduced in [BDBK+94].

Definition 2.7 (Competitive Randomized Online Algorithm)
Let (R,A, C) be a request-answer game and c ≥ 1 a real number. A randomized online algo-
rithm RALG with a probability distribution X over a set {ALGx} of deterministic online algorithms
is said to be c-competitive against the oblivious adversary if

E[ALGx(σ)] ≤ c · OPT(σ)

holds for each sequence σ. Here the expression E[ALGx(σ)] denotes the expectation with respect to
the probability distribution X over {ALGx} which defines RALG. The competitive ratio of RALG is
the infimum over all c such that RALG is c-competitive against the oblivious adversary. 4

The above definition reduces to Definition 2.5 in the case of a deterministic online algorithm.
Since the adversaries are not as powerful as in the deterministic case, randomized online algorithms
usually provide a better competitive ratio than deterministic online algorithms.

Of course, lower bounds on the competitive ratio of online algorithms are also of interest. In
order to obtain such a lower bound for an online algorithm a request sequence has to be constructed
where this algorithm performs “bad” compared to the optimal offline cost. Besides a lower bound on
the competitive ratio of a certain online algorithm it is also of interest to find a lower bound which
holds for any online algorithm of the considered online optimization problem. In the deterministic
case it is comparatively easy to find suitable request sequences. Since the cost of a randomized
online algorithm is a random variable, it can be difficult to bound the competitive ratio from below.
In such cases Yao’s Principle is an approach to find lower bounds on the competitive ratio of any
randomized online algorithms for the considered online problem (see [BEY98, Chapter 8]).

This thesis focuses only on deterministic online algorithms. Therefore, we are not going further
into the theory of randomized online algorithms. For more details see [BDBK+94, BEY98, MR95].

2.2 Stochastic Dynamic Optimization

The field Stochastic Dynamic Optimization deals with optimization problems over stochastic pro-
cesses. Therefore, such problems consist of a stochastic process and an optimality criterion. The
sequential decision model is a common framework for these optimization problems. A decision
maker observes the current state of a system. Based on this state, a control from a set of feasible
controls has to be chosen. The control choice produces two results: the decision maker receives an
immediate cost or profit, and the system evolves to a new state according to a probability distribution
determined by the control choice.

This thesis focuses on a sequential decision model in discrete time over an infinite time horizon
where the set of feasible controls, the costs, and the transition probabilities depend only on the
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current state and chosen control but not on states occupied and controls chosen in the past. This
model is called Markov decision process or stationary discrete-time dynamic system. Moreover,
only problems are considered where a decision leads to a cost.

Before a formal definition for a Markov decision process is given, we want to point out that in
this section random variables are denoted by the capital letter X .

Definition 2.8 (Markov Decision Process)
A Markov decision process is a collection of objects (S, C, P, cost) where

• S is a finite set of states labeled by integers i = 1, 2, . . . , N (S = {1, 2, . . . , N});

• C is a finite set of controls where C(i) ⊆ C denotes the set of feasible controls for each
state i ∈ S;

• P is a transition probability matrix with pij : C(i)→ [0, 1] for i, j ∈ S where pij(u) gives the
probability that the system evolves to state j if in state i the control u is applied and∑

j∈S

pij(u) = 1 ∀ i ∈ S, u ∈ C(i);

• cost : S × C × S → R≥0 is a cost function where cost(i, u, j) determines the incurred cost
if the system evolves from state i to state j using the control u. The cost value cost(i, u, j) is
only defined if u ∈ C(i). 4

Note that a Markov decision process is a stationary process, that is, the feasible controls for a
state i ∈ S, the transition probability matrix, and the the cost function do not depend on the stage of
the process.

A policy for a Markov decision process defines the control to choose for each state of the process.
This decision may only depend on the current state of the system and the stage of the process.

Definition 2.9 (Policy)
A policy for a Markov decision process (S, C, P, cost) is a sequence π = µ1, µ2, . . . of func-
tion µk : S → C for k = 1, 2, . . . . The policy π is called admissible for the Markov decision pro-
cess (S, C, P, cost) if µk(i) ∈ C(i) for k = 1, 2, . . . and all i ∈ S. The set of all admissible policy
for a Markov decision process is denoted by Π. 4

An admissible policy of the form π = µ, µ, . . . is called stationary since the control chosen by
the policy π for a state does not depend on the stage of the process. A stationary policy π = µ, µ, . . .

is denoted by µ.

For a given Markov decision process (S, C, P, cost) and an admissible policy π = µ1, µ2, . . .

the total cost for an initial state i ∈ S is a random variable

Xπ(i) =

[ ∞∑
k=0

cost(Xk, µk(Xk), Xk+1) | X0 = i

]
.
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In this term Xk is the random variable specifying the state of the system at stage k ∈ N0. Since
the total costs for admissible policies are random variables, it necessitates a method for comparing
these random variables to classify the policies for a state i ∈ S. There are several approaches to
generate a stochastic order on random variables. In this thesis only the expectation is used to create
for each state i ∈ S a stochastic order on the total costs for admissible policies. For other examples
see [Put94]. Moreover, a discount factor α ∈ (0, 1) is used to take into account that future costs
matter to us less than the same costs incurred at the present time. That means, a unit cost at stage k

is worth only αk. Therefore, the expected total discounted cost for a given initial state i of a Markov
decision process (S, C, P, cost) and an admissible policy π = µ1, µ2, . . . is defined as

Jπ(i) = E

[ ∞∑
k=0

αk cost(Xk, µk(Xk), Xk+1) | X0 = i

]
with α ∈ (0, 1).

This expectation defines for each state i ∈ S a stochastic order on the random variables for the total
discounted costs of admissible policies. On this basis the policies for the given Markov decision
process are comparable if the expectations exist. This leads to the optimality criterion considered in
this work. For other optimality criteria see [Ber01, Put94].

Since the state set and the control set are finite, there exists a constant M ∈ R≥0 which
bounds the cost function of a Markov decision process (S, C, P, cost) from above, that is,
0 ≤ cost(i, u, j) ≤M for all i, j ∈ S and u ∈ C(i). Therefore, the expected total discounted
cost of an admissible policy π exists for any initial state i ∈ S since α ∈ (0, 1) and

Jπ(i) = E

[ ∞∑
k=0

αkcost(Xk, µk(Xk), Xk+1) | X0 = i

]

≤ E

[ ∞∑
k=0

αkM

]

≤ E
[

M

1− α

]
=

M

1− α
.

Moreover, this inequality proves that for any admissible policy π and initial state i ∈ S the expected
total discounted cost is bounded from above by

Jπ(i) ≤M/(1− α). (2.1)

Each decision leads to an immediate cost. For a given Markov decision process (S, C, P, cost)
the expected stage cost when control u ∈ C(i) is applied at state i ∈ S is given by

cost(i, u) =
∑
j∈S

pij(u) cost(i, u, j) ∀ i ∈ S, u ∈ C(i).
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Since the state space is finite and the cost function is bounded from above, it follows that the expected
stage costs exist. Note that these costs are greater than or equal to zero for all i ∈ S and u ∈ C(i).

A Markov decision process together with the optimality criterion minimizing the expected total
discounted cost is said to be a discounted Markov decision problem (see [Put94]).

Definition 2.10 (Discounted Markov Decision Problem)
A discounted Markov decision problem, or briefly an MDP, consists of a discount factor α ∈ (0, 1)
and a Markov decision process (S, C, P, cost). The task is to find for each i ∈ S an admissible
policy π∗ which minimizes the expected total discounted cost, that is,

Jπ∗(i) = min
π∈Π

Jπ(i).

This defines the optimal value function J∗ : S → R≥0 with J∗(i) = Jπ∗(i). The policy π∗ is called
an optimal policy. 4

Note that in general an optimal policy π∗ may depend on the initial state. However, in our case a
policy exists that is not only optimal for each initial state, but also a stationary policy. This follows
from the theorem below which provides main results for discounted Markov decision problems.
Therefore, the task of an MDP is reduced to find a stationary policy µ∗ which minimizes the ex-
pected total discounted cost for any state i ∈ S. Since the state space S is finite (S = {1, 2, . . . , N}),
a stationary policy µ can be seen as vector with N elements from C where the i-th element gives the
control to apply at the state with label i. Therefore, µ ∈ CN and

J∗(i) = Jµ∗(i) = min
µ∈CN

Jµ(i) ∀i ∈ S.

Definition 2.11 (Optimal Control)
Consider an MDP with state space S and control set C. A control u ∈ C(i) is called optimal for a
given state i ∈ S if an optimal policy µ∗ exists for the given MDP with µ∗(i) = u.

The following theorem taken from the book of Bertsekas [Ber01] provides a collection of im-
portant results for discounted Markov decision problems. For the proof and more details see [Ber01,
Volume I, Chapter 7].

Theorem 2.12 (Known Facts). The following statements hold for an MDP with discount factor
α ∈ (0, 1) and Markov decision process (S, C, P, cost) where S = {1, 2, . . . , N}:

(a) Given arbitrary real numbers J0(1), J0(2), . . . , J0(N), the sequence Jk(i) generated by the
iteration

Jk+1(i) = min
u∈C(i)

{cost(i, u) + α
∑
j∈S

pij(u)Jk(j)}, ∀ i ∈ S, (2.2)

converges to the optimal cost J∗(i) for each i ∈ S.
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(b) The optimal costs J∗(1), J∗(2), . . . , J∗(N) satisfy Bellman’s equation

J∗(i) = min
u∈C(i)

{cost(i, u) + α
∑
j∈S

pij(u)J∗(j)} ∀ i ∈ S (2.3)

and they are the unique solution of this equation.

(c) For any stationary policy µ the costs Jµ(1), Jµ(2), . . . , Jµ(N) are the unique solution of the
equations

Jµ(i) = cost(i, µ(i)) + α
∑
j∈S

pij(µ(i))Jµ(j) ∀ i ∈ S. (2.4)

Furthermore, given arbitrary real numbers J0(1), J0(2), . . . , J0(N), the sequence Jk(i) gener-
ated by the iteration

Jk+1(i) = cost(i, µ(i)) + α
∑
j∈S

pij(µ(i))Jk(j), ∀ i ∈ S,

converges to the cost Jµ(i) for each i ∈ S.

(d) A stationary policy µ is optimal if and only if for every state i ∈ S, the control µ(i) attains the
minimum in Bellman’s equation (2.3).

Remark. The iteration (2.2) Jk 7→ Jk+1 is contractive with contraction constant α, that is, for any
two vectors Jk, J̃k ∈ RN follows ‖Jk+1 − J̃k+1‖∞ ≤ α‖Jk − J̃k‖∞.

Theorem 2.12 provides the basics for the standard techniques value iteration, policy iteration,
and linear programming to compute the optimal value function J∗. These techniques are briefly
introduced below. For more details see [Ber01, Put94]. Note that, if the optimal value function J∗

is known, an optimal policy µ∗ is given by Theorem 2.12(d) as:

µ∗(i) ∈ argmin
u∈C(i)

{cost(i, u) + α
∑
j∈S

pij(u)J∗(j)} ∀ i ∈ S.

In particular, the standard techniques can also be used to compute an optimal policy.

Value Iteration. The value iteration algorithm is based on the iteration equation (2.2)

Jk+1(i) = min
u∈C(i)

{cost(i, u) + α
∑
j∈S

pij(u)Jk(j)}, ∀ i ∈ S.

Starting with arbitrary real numbers J0(1), J0(2), . . . , J0(N) this update step is done successively.
Theorem 2.12(a) states that this iteration converges to the optimal cost J∗(i) for each i ∈ S. Gener-
ally, value iteration requires an infinite number of iterations. There are approaches which use some
error bounds to strengthen the value iteration algorithm (see [Ber01]).
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Policy Iteration. The idea of policy iteration is to start with an arbitrary stationary policy µ0

and generate an improving sequence of stationary policies µ1, µ2, . . . , that is, Jµk+1(i) ≤ Jµk(i) for
all i ∈ S and k ∈ N0. The process stops if Jµk+1(i) = Jµk(i) for all i ∈ S. The improving sequence
is generated as follows:

µk+1(i) ∈ argmin
u∈C(i)

{cost(i, u) + α
∑
j∈S

pij(u)Jµk(j)} ∀ i ∈ S. (2.5)

Each iteration phase contains two steps. In the first step of the k-th iteration the linear system (2.4)
is used to compute the costs Jµk(1), Jµk(2), . . . , Jµk(N). In the second step a new stationary pol-
icy µk+1 is obtained which satisfies (2.5). It can be shown that this algorithm produces an improving
sequence of stationary policies and terminates with an optimal policy (see [Ber01]). There is only
a finite number of stationary policies since the state set and the control set are finite. Therefore, the
policy iteration ends after a finite number steps since an improving sequence of policies is generated
and the sequence stops after no improvement is made.

Linear Programming. It is possible to formulate a linear program to compute the optimal value
function J∗ and an optimal policy µ∗ of a given MDP. If the value iteration starts with an initial
vector J0 = (J0(1), J0(2), . . . , J0(N)) which satisfies

J0(i) ≤ min
u∈C(i)

{cost(i, u) + α
∑
j∈S

J0(j)}, ∀ i ∈ S

(J ≡ 0 satisfies these inequalities), it can be shown that the generated sequence of vectors J1, J2, . . .

is monotonously increasing, that is, Jk(i) ≤ Jk+1(i) for all i ∈ S and k ∈ N0. Therefore, J∗ is the
component-wise “largest” J that satisfies the constraints

J(i) ≤ cost(i, u) + α
∑
j∈S

pij(u)J(j) ∀ i ∈ S,∀u ∈ C(i).

Hence, the optimal value function J∗ can be derived as the optimal solution of the following linear
program:

max
∑
i∈S

J(i) (2.6)

subject to J(i) ≤ cost(i, u) + α
∑
j∈S

pij(u)J(j) ∀i ∈ S,∀u ∈ C(i)

Since cost(i, u) ≥ 0 for all i ∈ S and u ∈ C(i), it follows that J ≡ 0 is a feasible solution.
Therefore, this linear program is feasible. The optimal solution is also unique since Theorem 2.12(b)
states that the optimal value function J∗ is unique. Mine and Osaki show in [MO70] that the policy
iteration algorithm is closely related to this linear programming approach.
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2.3 Reviewing both Analysis Methods

This section reviews both analysis methods introduced in the last two sections. This will show
why we use these approaches in this thesis to analyze examples of Online Target Date Assignment
Problems.

The field of stochastic dynamic optimization provides frameworks which allow to make an aver-
age case analysis as well as a worst case analysis for known policies. It is assumed that a probability
distribution concerning further evens is given. In real-world applications such a probability distri-
bution is often gained out of collected statistics in the past. Therefore, it is often undetermined how
well the given probability distribution reflects the future. Furthermore, the methods for computing
the optimal value function are often computationally infeasible because of the complexity of the
problems. It also turned out that the approaches for a worst case analysis yield usually trivial results
which are often useless. Therefore, Sleator and Tarjan [ST85] introduced a style of worst case anal-
ysis which compares the cost of policy with the optimal cost. This method has come to be known as
competitive analysis.

Competitive analysis is a worst case analysis since the performance guarantee for an online al-
gorithm must hold for any possible request sequence. Therefore, a competitive online algorithm
gives an answer to the question: How “bad” can this algorithm be? The answer is often very pes-
simistic since sequences which forces an online algorithm to perform “bad” compared to the optimal
offline algorithm are often pathological constructions. This means, these sequences are usually to-
tally unlikely to appear in reality. A reason for this is that in a competitive analysis we typically
consider arbitrary request sequences whereas in practice only restricted classes of inputs occur. This
drawback partly results since competitive analysis makes no assumption concerning the future, that
is, after a request is assigned it is assumed that there is no information about the next request. In
real-world applications this assumption is sometimes too strong. Therefore, competitive online al-
gorithms often perform much better in practical use as the competitive ratio may imply. To reflect
this better performance a line of research suggested other measures for evaluating online algorithms
such as smoothed competitive analysis. The smooth competitive analysis is a hybrid between aver-
age case analysis and worst case analysis and tries to explain the good performance of algorithms
in practice which have a poor worst case behavior. For more details see [BLMS+03]. On the other
hand, competitive analysis does not make any restriction on the computational complexity of an on-
line algorithm. The only scarce resource in this approach is information. This means, a competitive
online algorithm does not have to be practical at all since online algorithms usually have to provide
a decision under real-time aspects and the competitive analysis does not make any restriction on the
algorithm’s computational complexity.

In this thesis, competitive analysis is used to detect competitive online algorithm for examples
of Online Target Date Assignment Problems. Moreover, for these problems we prove with this
approach lower bounds on the competitive ratio for any deterministic online algorithm. The traced
algorithms are analyzed concerning their average case behavior with a new method from the field
stochastic dynamic optimization which is based on the classical linear programming formulation.



3

The Online Target Date Assignment
Problem

This chapter is based on joint work with Sven O. Krumke, Nicole Megow, Jörg Rambau, Andreas
Tuchscherer, and Tjark Vredeveld [HKM+05]. In the following we formalize the class of online op-
timization problems introduced in Section 1.2. We consider elementary examples of these problems.
For these we present competitive online algorithms and also prove lower bounds on the competitive
ratio of any deterministic online algorithm.

The outline of this chapter is as follows. In Section 3.1 we provide a mathematical model for the
considered online problems. Elementary examples are presented in Section 3.2. These examples are
analyzed in Section 3.3 and Section 3.4 w. r. t. two different objective functions using competitive
analysis.

3.1 The Framework

The customer service application described in Section 1.1 is an example for online problems that
feature a two-stage structure. In the first stage requests arise one-by-one and have to be assigned
to target dates immediately and irrevocably, that is, the requests are processed in an online fashion.
Moreover, a request has to be served at a target date within a certain time window (for instance two
weeks). Instances for the second stage offline optimization problem are generated from requests
assigned to the same target date. We assume that these instances are solved offline to optimality.
This section provides a general framework for online problems of this type, the Online Target Date
Assignment Problem (ONLINETDAP).

The second stage of an ONLINETDAP is given by an offline optimization problem. This means,
the complete input instance of the second stage is specified in advance. It is asked to find for a given
input instance an optimal solution whenever this instance is feasible, that is, for the given input
instance exists a feasible solution. The following definition of an offline optimization problem is
from the online optimization lecture notes [KR02].

17
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Definition 3.1 (Offline Optimization Problem)
An offline optimization problem (over an alphabet Σ) is a quadruple (I, F, K,M) where

• I ⊆ Σ∗ is the set of all admissible input instances with

Σ∗ = {x1x2 . . . xn | n ∈ N ∧ xi ∈ Σ for i = 1, 2, . . . , n} ∪ {∅};

• F (I) ⊆ Σ∗ is the set of all feasible solutions for an input instance I ∈ I. We call F feasibility
function;

• K : I × Σ∗ → R≥0 is the objective function where K(I,O) denotes the objective value of a
feasible solution O for an input instance I . This value is only defined if O ∈ F (I);

• M ∈ {min,max} specifies the objective sense of the problem. 4

Offline optimization problems are not the focus of this thesis. Therefore, these problems are seen
as a black box or an oracle which provide for every admissible input instance an optimal solution as
output whenever the given input instance is feasible.

The first stage of an ONLINETDAP is an online assignment problem where requests have to
be assigned immediately and irrevocably to a target date which represents an offline optimization
problem. Therefore, a request r contains a specific offline optimization problem information I(r).
Moreover, a request r has a release date t(r) and deadline date T (r) which are both nonnegative
integers with t(r) < T (r).

Definition 3.2 (Request)
A request r is a triple (t(r), T (r), I(r)) where t(r) ∈ N0 is the release date, T (r) ∈ N ∪ {∞}
is the deadline date with t(r) < T (r), and I(r) ∈ I is the specific offline optimization problem
information of request r for an offline optimization problem Q = (I, F, K,M). This request r is
called compatible to Q. 4

Note that a request consists of relevant information for the first stage as well as for the second
stage. The release date and deadline date are only of interest in the first stage. In contrast, the specific
offline optimization problem information is useful for both stages since this specific information may
influence the assignment decision and is relevant for the offline optimization problem.

Definition 3.3 (Request Sequence)
Let R be a request set. A request sequence is a sequence σ = r1, r2, . . . , rn of n ∈ N requests
fromR which satisfies t(ri−1) ≤ t(ri) for all i ∈ {2, 3, . . . , n}. 4

The release date and the deadline date of a request define the set of target dates which are feasible
for this request. A target date is feasible for a request if this target date is later than the release date
and not later than the deadline date.
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Definition 3.4 (Feasible Target Date)
Let r be a request with release date t(r) and deadline date T (r). A target date d ∈ N for r is called
feasible if d ∈ {t(r) + 1, t(r) + 2, . . . , T (r)}. 4

Since the first feasible target date for a request r is d = t(r) + 1, it follows that at the end of
each target date the input instance for the second stage concerning the next target date is known
completely. Therefore, the second stage of an ONLINETDAP can be solved offline as considered in
this work. It could be also of interest that the release date of a request is itself a feasible target date.
In that case, a large portion of the input data for the current date is known. Since requests still can
be assigned to the this date, the second stage has to be handled as an online optimization problem.
Therefore, both stages have to be processed online. This case is not considered in this thesis.

As mentioned before an ONLINETDAP involves two stages. The first stage is an online assign-
ment problem where requests have to be assigned immediately and irrevocably to a target date. All
requests assigned to the same target date form an instance of an offline optimization problem solved
in the second stage. Therefore, the associated offline optimization problem is called downstream
problem of the ONLINETDAP. It is assumed that instances of the downstream problem are solved
offline to optimality whenever these instances are feasible. The assignment decisions of the first
stage influence the overall cost, since they determine the input instances of the downstream prob-
lem, and thus the optimal cost of the downstream optimization problem which affect the overall cost.
A formal definition of an ONLINETDAP is given below.

Definition 3.5 (Online Target Date Assignment Problem)
An Online Target Date Assignment Problem (ONLINETDAP) is given by a triple (Q,R, C) where

• Q is an offline optimization problem, called downstream problem of the ONLINETDAP;

• R is the set of all possible requests where each request is compatible to Q and each subset
ofR forms an admissible input instance for Q;

• C is the set of cost functions costm : Rm × Nm → R≥0 for m = 1, 2, . . . .

An instance is given by a request sequence σ = r1, r2, . . . rn of n ∈ N requests from R. The task
is to assign each request ri to a feasible target date di ∈ N for i = 1, 2, . . . , n such that the cost
costn(σ, d1, d2, . . . , dn) is minimized. In doing so, di may depend only on the requests r1, r2, . . . , ri

for i = 1, 2, . . . , n. 4

Remark. ONLINETDAPs are only of interest if the objective function of the downstream problem
influences the cost functions of the given ONLINETDAP. Otherwise, an ONLINETDAP is just a
specific request-answer game as defined in Definition 2.1.

The research goal is to find competitive online algorithms for various versions of ONLINE-
TDAPs. For a given ONLINETDAP and a given input instance σ = r1, r2, . . . , rn (n ∈ N), an
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online algorithm ALG has to generate an assignment as output according to Definition 2.2 of a deter-
ministic online algorithm. Therefore,

ALG[σ] = (d1, d2, . . . , dn) ∈ Nn

where di depends only on the requests r1, r2, . . . , ri for i = 1, 2, . . . , n. The cost incurred by ALG

is denoted by ALG(σ) and defined as

ALG(σ) = costn(σ, ALG[σ]).

Since subsequences of requests which are assigned to the same target date are of special interest
for the downstream problem, the following often used notation is introduced.

Notation. Let (d1, d2, . . . , dn) ∈ Nn be an assignment for a sequence σ = r1, r2, . . . , rn of n ∈ N
requests. The subsequence of σ which includes all requests assigned to the target date d ∈ N is
denoted with σd.

The task is to obtain an assignment according to the specific rules of the ONLINETDAP such
that the overall cost is minimized. Therefore, an assignment for a request sequence of an ONLINE-
TDAP is called feasible if all requests are assigned to feasible target dates and all resulting input
instances of the downstream problem are feasible.

Definition 3.6 (Feasible Solution / Feasible Assignment)
Let (Q,R, C) be an ONLINETDAP, σ = r1, r2, . . . , rn a sequence of n ∈ N requests from R,
and (d1, d2, . . . , dn) ∈ Nn an assignment for the request sequence σ. This solution (assignment) is
called feasible for σ and (Q,R, C) if the following two conditions are satisfied:

(i) Each request of σ is assigned to a feasible target date, that is, t(ri) < di ≤ T (ri)
for i = 1, 2, . . . , n;

(ii) The resulting input instances of the downstream problem Q = (I, F, K,M) are feasible, that
is, σd ∈ I and F (σd) 6= ∅ if |σd| 6= 0 for d = 1, 2, . . . , k where |σd| determines the number of
requests the sequence σd has and k = max{T (ri) | i = 1, 2, . . . , n}. 4

With the definition of a feasible assignment we are able to define a feasible online algorithm.

Definition 3.7 (Feasible Online Algorithm)
An online algorithm ALG is called feasible for an ONLINETDAP if ALG generates a feasible solution
for each request sequence σ whenever a feasible solution for σ exists. 4

As mentioned before, it is assumed that any input instance of a downstream problem can be
solved to optimality in the case this input instance is feasible. Therefore, the downcost function for
a downstream problem Q = (I, F, K,M) is defined as

downcost(I) =M{K(I,O) | O ∈ F (I)} ∀I ∈ I : F (I) 6= ∅.

Note that the downcost function is only defined for input instances which are feasible. Moreover,
the downcost function determines for such an input instance the optimal value. This value is called
downstream cost.
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3.2 Elementary ONLINETDAPs

Based on the given cost model, there are two intuitive objectives for an ONLINETDAP. One is to
minimize the total downstream cost over all target dates. Another is to minimize the maximum
downstream cost over all target dates. Each objective defines a special class of ONLINETDAPs, the
MIN-TOTAL ONLINETDAPs and the MIN-MAX ONLINETDAPs. This section introduces these
two classes of ONLINETDAPs. Moreover, two elementary downstream problems are considered and
presented in this section. One is the classical one-dimensional bin-packing problem and the other is
a parallel-machine scheduling problem. These downstream problems and classes of ONLINETDAPs
lead to the following instantiations:

• MIN-TOTAL ONLINETDAP w. r. t. bin-packing;

• MIN-TOTAL ONLINETDAP w. r. t. parallel-machine scheduling;

• MIN-MAX ONLINETDAP w. r. t. bin-packing;

• MIN-MAX ONLINETDAP w. r. t. parallel-machine scheduling.

These examples are analyzed using competitive analysis in Section 3.3 and Section 3.4, respectively.

3.2.1 Minimize the Total Downstream Cost (MIN-TOTAL ONLINETDAP).

The focus of optimization problems is often a resource which is consumed, such as money or oil.
These resources are called non-renewable resources in the literature. A standard task is to achieve
a certain global goal with a minimal input of a non-renewable resource. Since in the case of an
ONLINETDAP such a resource is consumed on each single target date, the objective to minimize
the total usage of this resource can be of interest. This leads to the class of MIN-TOTAL ONLINE-
TDAPs.

Definition 3.8 (MIN-TOTAL ONLINETDAP)
A MIN-TOTAL ONLINETDAP is an ONLINETDAP (Q,R, C) with an arbitrary downstream prob-
lem Q, a request set R where each request from R is compatible to Q, and a set C of cost func-
tions costm : Rm × Nm → R≥0 for m = 1, 2, . . . . These cost functions are defined as

costm(σ, d1, d2, . . . , dm) =
k∑

d=1

downcost(σd)

where σ = r1, r2, . . . , rm is a sequence of request from R, (d1, d2, . . . , dm) ∈ Nm is a feasible
assignment for the request sequence σ, and k = max{T (ri) | i = 1, 2, . . . ,m}. Therefore, a
MIN-TOTAL ONLINETDAP is given by the pair (Q,R). 4
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3.2.2 Minimizing the Maximum Downstream Cost (MIN-MAX ONLINETDAP).

Apart from the non-renewable resources there are resources which can be used without losing them
afterwards, such as workers or machines. These resources are called renewable resources. Since
these resources can be very expensive, one aims to find solutions that require a minimal amount of a
renewable resource at any point of time. In our case the resource has to be available on each single
target date. Therefore, such a local goal has to hold on each target date. Hence, minimizing the
maximum usage of a renewable resource over all target dates is a suitable goal. This defines the
class of MIN-MAX ONLINETDAPs.

Definition 3.9 (MIN-MAX ONLINETDAP)
A MIN-MAX ONLINETDAP is an ONLINETDAP (Q,R, C) with an arbitrary downstream prob-
lem Q, a request set R where each request from R is compatible to Q, and a set C of cost func-
tions costm : Rm × Nm → R≥0 for m = 1, 2, . . . . These cost functions are defined as

costm(σ, d1, d2, . . . , dm) = max{downcost(σd) | d = 1, 2, . . . , k}

where σ = r1, r2, . . . , rm is a sequence of request from R, (d1, d2, . . . , dm) ∈ Nm is a feasible
assignment for the request sequence σ, and k = max{T (ri) | i = 1, 2, . . . ,m}. Therefore, a
MIN-MAX ONLINETDAP is given by the pair (Q,R). 4

3.2.3 Elementary Downstream Problems

This section introduces the two elementary downstream problems which are of interest in this thesis:
the bin-packing problem and a parallel-machine scheduling problem.

Bin-Packing Problem

The classical one-dimensional bin-packing problem accepts as input a sequence L = s1, s2, . . . , sn

of n ∈ N items each with a size si ∈ (0, 1] for i = 1, 2, . . . , n. It is asked to pack these items into
a minimum number of unit-capacity bins. Formally, we are looking for a partition of the index set
of L into a minimum number of sets B1, B2, . . . , Bm such that∑

i∈Bj

si ≤ 1 ∀ j ∈ {1, 2, . . . ,m}.

This describes the offline version of bin-packing where the assumption is made that the input se-
quence is known in advance. Apart from the offline version there is an online version where items
arrive one-by-one and have to be packed immediately and irrevocably. The online version is not of
interest in this thesis since the downstream problems are solved offline. [CGJ96] provides a sur-
vey on approximation algorithms for the classical one-dimensional bin-packing problem including
results for the online version as well.
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The focus of this work is on two variants of the offline version. One variant considers a bounded
number b ∈ N of unit-capacity bins. The other assumes an infinite number of unit-capacity bins
(b =∞) as in the classical problem setting. Furthermore, the objective function determines the min-
imum number of unit-capacity bins b∗ needed to serve an input sequence if b∗ ≤ b. Otherwise, the
given input sequence is infeasible. Hence, a bin-packing problem has one parameter b ∈ N ∪ {∞}
which determines the number of available unit-capacity bins. It follows a (very) formal definition.

Definition 3.10 (Bin-Packing Problem)
A bin-packing problem with b ∈ N ∪ {∞} unit-capacity bins is an offline optimization prob-
lem (I, F, K,M) where I = {s1, s2, . . . , sn | n ∈ N0 ∧ 0 < si ≤ 1}, F (I) is the set of all
feasible packings for an I ∈ I which do not require more than b unit-capacity bins, K is the objec-
tive function which returns for a feasible packing the number of used bins, and the objective sense
is to minimize this number (M = min). 4

Note that in the case where the number of available bins is bounded there exist input instances
which are infeasible.

Furthermore, in our setting a bin-packing problem is of interest where all items have the same
size. If this is the case we mention it separately. Moreover, in this situation the terms a bin is
fully filled and a bin is partially filled are used. A fully filled bin means that this bin contains the
maximum number of items (with equal size) it can hold and a partially filled bin is not fully filled.
Note that in the case where all items have the same size the bin-packing problem by itself is trivial.
However, in connection with the ONLINETDAP framework there are interesting results, as we show
later.

Parallel-Machine Scheduling

Scheduling problems appear in many different versions. The basic problem receives a sequences
L = p1, p2, . . . , pn of n ∈ N jobs as input where each job has a processing time pi > 0 for
i = 1, 2, . . . , n. We want to assign these jobs to m ∈ N parallel and identical machines such that
the makespan, that is, the latest completion time of a job, is minimized. Scheduling problems arise
as offline versions as well as online versions. Again the online versions are not of interest since the
downstream problems are solved offline. For more details on online scheduling see [Sga98]. In the
offline case the whole input sequence and the processing time of each job of this sequence is known.
Formally, we are looking for a partition of the index set of L into m sets M1,M2, . . . ,Mm such that

max{
∑
i∈Mj

pi | j = 1, 2, . . . ,m}

is minimized.

The scheduling problems which are of interest in this work are from the same design as the bin-
packing problems. One is a bounded variant where m ∈ N machines are available. The other is
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the corresponding unbounded variant where unlimited machines are available (m =∞). Moreover,
the scheduling problems we are looking at accept as input any sequence of positive real numbers
where each number represents a job with a processing time. The downcost function determines
the minimum makespan to serve an input sequence on m parallel and identical machines in a non-
preemptive way. This means, each job has to be processed on a machine in one piece. The parallel-
machine scheduling problem has one parameter m ∈ N ∪ {∞} determining the number of parallel
and identical machines.

Definition 3.11 (Parallel-Machine Scheduling Problem)
A parallel-machine scheduling problem with m ∈ N ∪ {∞} parallel and identical machines is an
offline optimization problem (I, F, K,M) where I = {p1, p2, . . . , pn | n ∈ N0 ∧ pi > 0}, F (I) is
the set of all feasible schedules for an I ∈ I on no more than m parallel and identical machines
where each job is processed in a non-preemptive way, K is the objective function which returns the
makespan of a feasible schedule, and the objective sense is to minimize this makespan (M = min).

4

Note that the scheduling problem provides unlimited capacity independently of the number of
available machines m. Therefore, any input instances is feasible.

Again in the setting of ONLINETDAPs a parallel-machine scheduling problem is of interest
where all jobs have the same processing time. If this is the case we mention it also separately.
Obviously, this scheduling problem by itself is trivial but in connection with the ONLINETDAP
framework this setting becomes interesting.

3.3 Competitive Analysis for MIN-TOTAL ONLINETDAPs

The previous section introduced the class of MIN-TOTAL ONLINETDAPs as well as two elemen-
tary downstream problems, the bin-packing problem and the parallel-machine scheduling problem.
These form elementary MIN-TOTAL ONLINETDAPs. Additionally, we assume in the following
that all requests have δ ∈ N∪ {∞} feasible target dates, that is, T (r)− t(r) = δ for each request r.
For the associated MIN-TOTAL ONLINETDAPs this section presents results received by competi-
tive analysis. Most of the results were obtained in joint work with Sven O. Krumke, Nicole Megow,
Jörg Rambau, Andreas Tuchscherer and Tjark Vredeveld [HKM+05]. The proofs for these results
are more detailed as in [HKM+05].

We assume that all requests have δ ∈ N ∪ {∞} feasible target dates. A set of requests which
includes only requests with δ ∈ N feasible target dates, that is, T (r) − t(r) = δ, is denoted by Rδ.
Such a request set Rδ is called restricted request set. In general a request r has a release date t(r)
and a deadline date T (r). If a restricted request setRδ with δ ∈ N∪{∞} is considered, the deadline
of each request r ∈ Rδ is given by T (r) = t(r)+δ. Hence, the feasible target dates of a request r are
completely described by the release date t(r) and δ. Since in this section we consider only restricted
request sets, a request r is a pair (t(r), I(r)) instead of a triple (t(r), T (r), I(r)).
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Consider a restricted request set Rδ with δ = 1. In this case each request r ∈ Rδ has only one
feasible target date. Therefore, an algorithm which assigns each request to its feasible target date is a
feasible online algorithm. Moreover, such an algorithm is 1-competitive since any request sequence
has no more than one feasible assignment. Therefore, δ > 1 is assumed.

3.3.1 The General Online Algorithm PACKTOGETHERORDELAY

Before elementary MIN-TOTAL ONLINETDAP examples are analyzed the general algorithm PACK-
TOGETHERORDELAY, or briefly PTD, is introduced. Moreover, in the case of MIN-TOTAL

ONLINETDAP a general result can be shown for the algorithm PTD if the downstream problem
of a MIN-TOTAL ONLINETDAP satisfies some properties. To describe the algorithm PTD the fol-
lowing definition is necessary.

Definition 3.12 (Used Target Date)
A target date is called used if a request r exists which has been already assigned to this target
date. 4

The algorithm PTD can be described verbally as follows. PTD accepts as input a request r.
Moreover, the algorithm needs the current assignments to the feasible target dates of this request.
The output of PTD is a target date d for the given request r. First of all, the algorithm PTD tries
to pack requests together. This means, if for request r feasible and used target dates exist, then
the algorithm PTD assigns this request to the earliest of them. Otherwise, the algorithm uses a delay
tactic and assigns request r to its deadline target date T (r). Algorithm 1 gives a formal description of
PTD. Note that the algorithm PTD only works in general if each request r has a deadline T (r) ∈ N.
Otherwise, the delay strategy of the algorithm is not well defined. Moreover, this algorithm does not
compute a feasible assignment in general since the pack together tactic can produce input instances
for the downstream problem which are infeasible. In the cases where this algorithm is considered
it is ensured that any input instance of the downstream problem is feasible and each request has a
deadline.

The following example illustrates the workflow of the algorithm PTD.

Example 3.13 (PTD). Consider an ONLINETDAP with restricted request set Rδ where δ ∈ N.
Moreover, let σ = r1, r2, . . . , rn be a sequence of n ∈ N requests from Rδ where request ri has a
release date t(ri) = i− 1 for i = 1, 2, . . . , n. Therefore, request ri has to be assigned to a target
date d ∈ {i, i + 1, . . . , i + δ − 1} for i = 1, 2, . . . , n. The algorithm PTD generates the following
assignment:

PTD[σ] = (a1, a2, . . . , an) ∈ Nn with ai =
⌈

i

δ

⌉
· δ for i = 1, 2, . . . , n.

Figure 3.1 illustrates the assignment of PTD for σ. 4
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Input : A request r and the current assignments σt(r)+1, σt(r)+2, . . . , σT (r) to the feasible
target dates of request r.

Output : An assignment d ∈ N for request r.

for d ← t(r) + 1 to T (r) do
if σd 6= ∅ then

// pack together tactic;
return d;

// delay tactic;
return d ← T (r);

Algorithm 1: PACKTOGETHERORDELAY (PTD)

date d. . . δ . . . 2δ . . . 3δ

. . .

. . .

r1, . . . , rδ︸ ︷︷ ︸
↓

rδ+1, . . . , r2δ︸ ︷︷ ︸
↓

r2δ+1, . . . , r3δ︸ ︷︷ ︸
↓

Figure 3.1: Assignment of PTD for the request sequence σ = r1, r2, . . . , rn from Exam-
ple 3.13.

While studying the algorithm PTD for a MIN-TOTAL ONLINETDAP with restricted request
set Rδ (δ ∈ N), two important observations can be made. On the one hand the used target dates the
algorithm PTD produces are at least δ time units apart. On the other hand for any request sequence σ

where D ⊆ N denotes the set of all target dates used by the algorithm PTD to serve σ it follows:

PTD(σ) =
∑
d∈D

PTD(σd).

The following lemmas prove these two observations since they are needed to show a general
result for the algorithm PTD in the current problem setting.

Lemma 3.14. Consider an ONLINETDAP with restricted request setRδ where δ ∈ N. For a given
sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ let d1 < d2 < · · · < dh be the used target
dates the algorithm PTD produces. It follows that di − di−1 ≥ δ for i = 2, 3, . . . , h.

Proof. Given an ONLINETDAP with restricted request set Rδ where δ ∈ N and consider a se-
quence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ. From the way the algorithm PTD operates
and the fact that a restricted request set Rδ is given it follows that for each request of σ at most
one used target date exists which is also a feasible target date for this request. If for a request r
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of σ a feasible and used target date exists, then the algorithm PTD uses the pack together tactic and
assigns this request to this target date and does not generate a new used target date. Otherwise, all δ

feasible target dates of request r are not used and the algorithm uses the delay strategy and assigns
this request to its deadline T (r). This produces a new used target date which is at least δ time units
away from the last one since after the assignment the first δ− 1 feasible target dates of request r are
still not used. Hence, a target date which is not further away than δ time units from a used target
date cannot turn into a used target date. Therefore, the used target dates the algorithm PTD produces
for σ are at least δ time units apart.

Note that the above lemma holds for ONLINETDAPs with a restricted request set and an arbitrary
set C of cost functions.

Lemma 3.15. Let (Q,Rδ) be a MIN-TOTAL ONLINETDAP with δ ∈ N, σ = r1, r2, . . . , rn a
sequence of n ∈ N requests from Rδ, and D ⊂ N the set of used target dates the algorithm PTD

produces for σ, then the following equation holds:

PTD(σ) =
∑
d∈D

PTD(σd).

Proof. Consider a MIN-TOTAL ONLINETDAP with restricted request set Rδ where δ ∈ N. For a
given request sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ, let {d1, d2, . . . , dh} ⊂ N
denote the set of target dates the algorithm PTD uses to serve σ. The first requests of the subse-
quences σd1 , σd2 , . . . , σdh

of σ are assigned by PTD using the delay tactic. Hence, the assignments
for these subsequences are not influencing each other, that is,

PTD[σ] = (PTD[σd1 ], PTD[σd2 ], . . . , PTD[σdh
]).

Therefore,

PTD(σ) = cost(σ, PTD[σ])

= cost(σ, PTD[σd1 ], PTD[σd2 ], . . . , PTD[σdh
])

=
h∑

i=1

downcost(σdi
)

=
h∑

i=1

cost(σdi
, PTD[σdi

])

=
h∑

i=1

PTD(σdi
).

By the results of Lemma 3.14 and Lemma 3.15 it is easy to prove that PTD is 2-competitive for
a MIN-TOTAL ONLINETDAP (Q,Rδ) with δ ∈ N if the downstream problem Q satisfies some
properties.
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Theorem 3.16 ([HKM+05]). Let (Q,Rδ) be a MIN-TOTAL ONLINETDAP with δ ∈ N and a
downstream problem Q = (I, F, K,M) which has unlimited resources, that is, F (I) 6= ∅ for
all I ∈ I \ {∅} (each input instance is feasible). For the given problem (Q,Rδ) the algorithm PTD

is 2-competitive, if the following two properties hold

(i) The downcost function from Q is a monotonically increasing function, that is,

downcost(Ī) ≤ downcost(I) ∀ I ∈ I, Ī ⊂ I;

(ii) For each disjoint partition I(1), I(2), . . . , I(k) with k ∈ N of any given input instance I ∈ I
of Q it holds

downcost(I) ≤
k∑

i=1

downcost(I(i)).

Proof. Let (Q,Rδ) be a MIN-TOTAL ONLINETDAP with δ ∈ N meeting the conditions of the
theorem. Since the downstream problem Q has unlimited resources available, an online algo-
rithm which assigns each request to a feasible target date is already a feasible online algorithm.
Therefore, the algorithm PTD is a feasible online algorithm for the given problem. For a given se-
quence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ, let d1 < d2 < · · · < dh be all target dates
used by PTD. The used target dates are divided into two disjoint sets

Dodd := {di | 1 ≤ i ≤ h ∧ i odd} and Deven := {di | 1 ≤ i ≤ h ∧ i even}.

These sets induce
σodd :=

⋃
d∈Dodd

σd and σeven :=
⋃

d∈Deven

σd

as the subsequences of requests assigned to “odd” respectively “even” target dates. With
Lemma 3.15 follows

PTD(σ) = PTD(σd1) + PTD(σd2) + · · ·+ PTD(σdh
) = PTD(σodd) + PTD(σeven). (3.1)

From Lemma 3.14 it is known that the used target dates are at least δ time units apart. Hence,

∀d, d̄ ∈ Da : d 6= d̄⇒ |d− d̄| ≥ 2δ a ∈ {odd, even}.

This implies that two requests of σodd (σeven) that have not been assigned to the same target date
have no overlap in their feasible target dates. Therefore, PTD assigns the requests from the sub-
sequence σodd (σeven) which have an overlap in their feasible target dates to the same target date.
Furthermore, Property (ii) implies for all i ∈ {1, 2, . . . , h} that

OPT(σdi
) ≥ downcost(σdi

).
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Putting the last two arguments together it follows

OPT(σodd) =
h∑

i=1:
i odd

OPT(σdi
) ≥

h∑
i=1:
i odd

downcost(σdi
) = PTD(σodd).

In the same manner it is shown that OPT(σeven) ≥ PTD(σeven). Hence,

PTD(σodd) = OPT(σodd) and PTD(σeven) = OPT(σeven). (3.2)

Moreover, an optimal assignment for σ gives a feasible assignment for σodd (σeven) by removing
the irrelevant requests. Since the downcost function is monotonically increasing (Property (i)), it
follows

OPT(σodd) ≤ OPT(σ) and OPT(σeven) ≤ OPT(σ).

Putting this together with Equation (3.1) and Equations (3.2), we have

PTD(σ) = PTD(σodd) + PTD(σeven)

= OPT(σodd) + OPT(σeven)

≤ 2 · OPT(σ).

Hence, PTD is a feasible online algorithm and 2-competitive for the given MIN-TOTAL ONLINE-
TDAP.

3.3.2 Downstream Problem Bin-Packing

We now analyze MIN-TOTAL ONLINETDAP w. r. t. bin-packing as the downstream problem and a
restricted request setRδ with δ ∈ {2, 3, . . . } ∪ {∞}.

An instance of the bin-packing problem consists of b ∈ N ∪ {∞} unit-capacity bins and accepts
as input a sequence L = s1, s2, . . . , sn of n ∈ N items with size si ∈ (0, 1] for i = 1, 2, . . . , n. The
downcost function determines the minimum number b∗ of bins to serve an input sequence if b∗ ≤ b.
Otherwise, the sequence has no feasible solution. A request r has a size s(r) ∈ (0, 1] which repre-
sents the specific downstream problem information and a release date t(r) ∈ N0. Hence, a request r

is a pair (t(r), s(r)). A more specific description of bin-packing as downstream problem is given in
Section 3.2.3.

There are three cases of interest. The first one assumes that all requests have no dead-
line (δ =∞). The other two cases consider that all requests have a deadline and differ in their
assumption on the number of available bins. One case assumes that a bounded number of bins
(b ∈ N) is available on each target date. The other case considers that as many bins (b = ∞)
as necessary are available on each target date. Table 3.1 summarizes the results presented in this
section.
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Parameter arbitrary item size equal item size s ∈ (0, 1]
δ b lower bound upper bound lower bound upper bound

∞ N ∪ {∞} no competitive online algorithm b1/sc b1/sc
N≥2 N no feasible online algorithm min{b1/sc, δ} b1/sc
N≥2 ∞ 3/2 2 1 1

Table 3.1: Lower bounds on the competitive ratio of deterministic online algorithms as well as
upper bounds for the best known deterministic online algorithms for MIN-TOTAL

ONLINETDAP w. r. t. bin-backing and a restricted request set Rδ . The number of
available unit-capacity bins is denoted by b.

Unlimited number of feasible target dates (δ =∞)

If each request has no deadline (δ =∞), there exists no competitive deterministic online algorithm
independently of the number of bins available on each target date. Only if all request have the same
size, there exist competitive deterministic online algorithms.

Theorem 3.17. Consider the MIN-TOTAL ONLINETDAP with downstream problem bin-packing
where each request has no deadline (δ = ∞). For this problem setting there exists no competitive
deterministic online algorithm.

Proof. Given a MIN-TOTAL ONLINETDAP (Q,R∞) where Q is a bin-packing problem with
b ∈ N ∪ {∞} unit-capacity bins, let ALG be an arbitrary deterministic online algorithm for the prob-
lem (Q,R∞) which assigns each request to a feasible target date. Since ALG is a deterministic
online algorithm, it follows that the answer sequence for any request sequence is known in advance.
With that knowledge the claim of the theorem is proved by showing that for all n ∈ N there exists a
sequence σ of requests fromR∞ with

ALG(σ) = n · OPT(σ).

This implies that ALG is not competitive. Let n ∈ N and σ = r1, r2, . . . , rn be a sequence of n

requests from R∞ where each request ri has size s(ri) = 1/n for i = 1, 2, . . . , n. Moreover, the
release dates are defined as:

t(ri) =

{
0, if i = 0

ALG[ri−1], otherwise.

ALG is not able to assign any two of the requests from σ to the same target date since a new request
is released on the date where the previous request is assigned to (This is possible since ALG is a
deterministic algorithm). Therefore, the algorithm needs n bins to serve the request sequence σ.
Assigning all requests to a joint target date after the release date of request rn leads to a feasible
solution, since all requests have no deadline. Moreover, such an assignment needs 1 bin which is the
optimal cost for the given sequence σ. Hence, the algorithm ALG is not competitive.
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If it is additionally assumed in this setting that all requests have the same size s ∈ (0, 1], any
feasible deterministic online algorithm has a competitive ratio of b1/sc. For example, the algorithm
which assigns each request r to the earliest feasible target date d = t(r) + 1 is b1/sc-competitive.

Theorem 3.18. If additionally to the setting of the previous theorem is assumed that all requests
have the same size s ∈ (0, 1], then any feasible deterministic online algorithm has a competitive
ratio of b1/sc.

Proof. Consider a MIN-TOTAL ONLINETDAP (Q,R∞) where Q is a bin-packing problem with
b ∈ N ∪ {∞} unit-capacity bins and all requests from R∞ have the same size s ∈ (0, 1]. Let
k = b1/sc define the maximum number of request an unit-capacity bin can hold. Moreover, let ALG

be an arbitrary feasible deterministic online algorithm for this problem. To prove this theorem the
following two properties are shown:

1. ALG is k-competitive for the given MIN-TOTAL ONLINETDAP;

2. and k is a lower bound on the competitive ratio of ALG for the problem (Q,R∞).

Proof of Property 1. Let σ = r1, r2, . . . , rn be a sequence of n ∈ N requests from R∞. Since
one bin can not hold more than k requests, it follows:

OPT(σ) ≥
⌈

n

k

⌉
≥ n

k
⇔ n ≤ k · OPT(σ).

Moreover, ALG(σ) ≤ n. Therefore,

ALG(σ) ≤ n ≤ k · OPT(σ).

Hence, ALG is k-competitive for the given problem (Q,R∞).

Proof of Property 2. Consider the following sequence σ = r1, r2, . . . , rk of k requests from Rδ

with release dates

t(ri) =

{
0, if i = 0

ALG[ri−1], otherwise.

This is the same construction as in the proof for Theorem 3.17. The algorithm ALG is not able to
assign any two of the requests to the same target date. Hence, this algorithm needs k bins to serve
this request sequence. The optimal cost is 1 which is achieved by assigning all k requests to a joint
target date after the release date of request rk. Therefore, k is a lower bound on the competitive ratio
of ALG.

Hence, the algorithm ALG has a competitive ratio of k for the given MIN-TOTAL ONLINE-
TDAP.

The following two cases assume that all requests have a deadline (δ ∈ {2, 3, . . . }).
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Input : A request r, the current assignments σt(r)+1, σt(r)+2, . . . , σT (r) to the feasible tar-
get dates of request r, and the feasibility function F of a downstream problem Q.

Output : An assignment d ∈ N for request r or the message infeasible.

for d ← t(r) + 1 to T (r) do
if F (σd ∪ r) 6= ∅ then

// request r fits to target date d;
return d;

// there exists no feasible target date where request r fits to;
return infeasible;

Algorithm 2: FIRSTFIT

Bounded number of available bins (b ∈ N)

For the case where each target date has a bounded number of bins available and all requests have a
deadline (δ ∈ {2, 3, . . . }) we consider the algorithm FIRSTFIT. This algorithm assigns each request
to the earliest feasible target date d such that the downstream problem concerning target date d is still
feasible. Algorithm 2 specifies the workflow of FIRSTFIT. Note that it is possible that the algorithm
is not able to return a feasible assignment for a given request.

Analyzing the bounded case (b ∈ N) shows that the algorithm FIRSTFIT is the only online
algorithm which has a chance to be feasible for the considered problem even if all requests have
the same size. Furthermore, this result also holds for ONLINETDAPs with the currently considered
downstream problem bin-packing and an arbitrary set C of cost functions.

Lemma 3.19. Consider an ONLINETDAP with downstream problem bin-packing which has b ∈ N
bins available. Moreover, suppose that all requests have δ ∈ {2, 3, . . . } feasible target dates and
the same size s ∈ (0, 1]. The algorithm FIRSTFIT is the only deterministic online algorithm which
can be feasible for the given problem.

Proof. Let (Q,Rδ, C) be an ONLINETDAP where Q is a bin-packing problem with b ∈ N bins
available, δ ∈ {2, 3, . . . }, and all requests from Rδ have the same size s ∈ (0, 1]. Let k = b1/sc
which defines the maximum number of requests a unit-capacity bin can hold. Moreover, let ALG

be an arbitrary deterministic online algorithm for the given problem which does not behave like
FIRSTFIT, that is, there exists a request sequence σ where FIRSTFIT and ALG produce a feasi-
ble solution and FIRSTFIT[σ] 6= ALG[σ]. Consider a minimal (in terms of number of requests)
sequence σ = r1, r2, . . . , rm of m ∈ N requests fromRδ which satisfies the following conditions:

1. FIRSTFIT and ALG generate a feasible assignment for σ;

2. ALG assigns the first m − 1 requests of σ to the same target dates as FIRSTFIT, that is,
FIRSTFIT[r1, r2, . . . , rm−1] = ALG[r1, r2, . . . , rm−1];
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3. Request rm is assigned by the algorithm ALG to a target date dALG which differs from the target
date dFIRSTFIT which denotes the target date chosen by FIRSTFIT for request rm. Therefore,
FIRSTFIT[r1, r2, . . . , rm] 6= ALG[r1, r2, . . . , rm].

Note that such a request sequence exists since δ > 1. From the description of the algorithm FIRST-
FIT it follows that dFIRSTFIT < dALG. Otherwise, the assignment of ALG for the request sequence σ

is infeasible. Moreover, Condition 1 implies that dALG ≤ T (rm) since the assignment of ALG is
feasible.

Consider now a sequence σ̄ = r1, r2, . . . , rn of n = m+k ·b ·δ requests fromRδ where the first
m requests are equal to the requests from σ and the other have a release date of d = dALG − 1. Since
ALG is a deterministic online algorithm, the first m request from σ̄ are assigned to the same target
dates as the requests from σ. Therefore, request rm of σ̄ is assigned to date dALG. Note that through
the assignment of ALG the time period T = {dALG, dALG + 1, . . . , dALG + δ − 1} only can handle
k · b · δ − 1 more requests of equal size s. Since this time period represents the feasible target dates
for the last k · b · δ requests from σ̄, the algorithm ALG is not able to generate a feasible assignment
for σ̄. FIRSTFIT has a capacity of k · b · δ requests left in the time period T and is able to produce a
feasible solution for σ̄.

Therefore, FIRSTFIT is the only deterministic online algorithm which has a chance to be feasible
for the given problem.

Note that the above lemma does not state that FIRSTFIT is feasible. It only shows that this
algorithm is the only one which has a chance to be feasible in the considered setting. Unfortunately,
if the number of bins per target date is restricted and the requests do not have the same size, the
online algorithm FIRSTFIT is infeasible. Again this result also holds for the case of an ONLINE-
TDAP with the currently considered downstream problem bin-packing and an arbitrary set C of cost
functions.

Lemma 3.20. Consider an ONLINETDAP with downstream problem bin-packing which has b ∈ N
bins available and each request has δ ∈ {2, 3, . . . } feasible target dates. For this problem the online
algorithm FIRSTFIT is infeasible.

Proof. Let (Q,Rδ, C) be an ONLINETDAP where Q is a bin-packing problem with b ∈ N bins
available and δ ∈ {2, 3, . . . }. Moreover, let σ = r1, r2, . . . , r2bδ be a sequence of requests from Rδ

where each request is released on date 0 and the first b · δ requests of σ have a size of 2/5 and the
other a size of 3/5.

A feasible assignment for the request sequence σ is given by (a1, a2, . . . , a2bδ) ∈ N2bδ with

ai =

{⌈
i
b

⌉
, if 1 ≤ i ≤ b δ⌈

i
b

⌉
− δ, if bδ + 1 ≤ i ≤ 2 b δ.

Figure 3.2 illustrates such a feasible assignment for b = 2 and δ = 5. FIRSTFIT is not able to
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date d. . . 1 2 3 4 5

r1

r11

↓

r2

r12

↓

r3

r13

↓

r4

r14

↓

r5

r15

↓

r6

r16

↓

r7

r17

↓

r8

r18

↓

r9

r19

↓

r10

r20

↓

Figure 3.2: A feasible assignment for σ with b = 2 and δ = 5.

date d. . . 1 2 3 4 5

r1

r2

↓

r3

r4

↓

r5

r6

↓

r7

r8

↓

r9

r11

↓

r10

r12

↓
r13

↓
r14

↓
r15

↓
r16

↓

r17, . . . , r20 ??

Figure 3.3: FIRSTFIT produces an infeasible assignment for σ with b = 2 and δ = 5.

generate a feasible solution for the request sequence σ. This is illustrated in Figure 3.3 for b = 2 and
δ = 5. Hence, FIRSTFIT is not a feasible online algorithm for the given problem (Q,Rδ, C).

Using the last two lemmas we have the following result for ONLINETDAP w. r. t. bin-packing
as downstream problem.

Theorem 3.21. Consider an ONLINETDAP with downstream problem bin-packing which has
b ∈ N bins available and all requests have δ ∈ {2, 3, . . . } feasible target dates. For this problem
there exists no feasible deterministic online algorithm.

Proof. The theorem follows directly from Lemma 3.19 and Lemma 3.20.

Note that the above theorem holds in particular for the MIN-TOTAL ONLINETDAP setting con-
sidered in this section.

In the case that all requests have the same size the situation changes a little bit. Lemma 3.19
states that FIRSTFIT is the only online algorithm which has a chance to be feasible. Fortunately, in
this setting FIRSTFIT is a feasible online algorithm. This result also holds for ONLINETDAP with
the currently considered downstream problem bin-packing and an arbitrary set of cost functions.

Lemma 3.22. If additionally to the setting of the previous theorem is assumed that all requests have
the same size s ∈ (0, 1], then the algorithm FIRSTFIT is the only feasible online algorithm.
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Proof. Consider an ONLINETDAP (Q,Rδ, C) where Q is a bin-packing problem with b ∈ N bins
available, δ ∈ {2, 3, . . . }, and all requests from Rδ have the same size s ∈ (0, 1]. Lemma 3.19
gives that FIRSTFIT is the only deterministic online algorithm which has a chance to be feasible
for the problem (Q,Rδ, C). Suppose that FIRSTFIT is not feasible. Then, there exists a minimal
(in terms of number of requests) sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ which
has a feasible assignment and FIRSTFIT is not able to generate a feasible solution. Since σ is a
minimal counter example for the feasibility of FIRSTFIT, it follows that FIRSTFIT assigns the re-
quests r1, r2, . . . , rn−1 to the target dates t(rn) + 1, t(rn) + 2, . . . , T (rn). Moreover, these requests
fill every bin in this time period with the maximum number of requests a bin can hold (if not, σ is not
a minimal counter example). Hence, the first (n − 1) requests are released at the same release date
as request rn. The time period of feasible target dates of request rn can only serve n− 1 = k · b · δ
requests where k denotes the maximum number of requests a unit-capacity bin can hold. There-
fore, there exists no feasible assignment for σ which is a contradiction to the assumption that σ

has a feasible assignment. This shows that FIRSTFIT is a feasible online algorithm for the given
problem (Q,Rδ, C).

We aimed to prove that FIRSTFIT has a competitive ratio of min{b1/sc, δ} in this setting where
s denotes the equal item size of all requests. Until now, it was not possible for us to prove this
conjecture. However, the following theorem states that FIRSTFIT is b1/sc-competitive and shows
that min{b1/sc, δ} is a lower bound on the competitive ratio of this algorithm.

Theorem 3.23. Consider a MIN-TOTAL ONLINETDAP with downstream problem bin-packing
which has b ∈ N bins available. Moreover, suppose that all requests have δ ∈ {2, 3, . . . } fea-
sible target dates and the same size s ∈ (0, 1]. For this problem setting the algorithm FIRSTFIT

is b1/sc-competitive and min{b1/sc, δ} is a lower bound on the competitive ratio of this algorithm.

Proof. Let (Q,Rδ) be a MIN-TOTAL ONLINETDAP where Q is a bin-packing problem with b ∈ N
bins available, δ ∈ {2, 3, . . . }, and all requests fromRδ have the same size s ∈ (0, 1]. Moreover, let
k = b1/sc be the maximum number of requests an unit-capacity bin can hold. Lemma 3.22 shows
in particular that the algorithm FIRSTFIT is feasible for this problem. Therefore, it is left to prove
that FIRSTFIT is k-competitive and min{k, δ} is a lower bound on the competitive ratio.

Let σ = r1, r2, . . . , rn be a sequence of n ∈ N requests from Rδ. Since one bin can not hold
more than k requests, we have:

OPT(σ) ≥
⌈

n

k

⌉
≥ n

k
⇔ n ≤ k · OPT(σ).

Moreover, FIRSTFIT(σ) ≤ n. Therefore,

FIRSTFIT(σ) ≤ n ≤ k · OPT(σ).

Hence, FIRSTFIT is k-competitive for the given MIN-TOTAL ONLINETDAP.
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It follows the proof that min{k, δ} is a lower bound on the competitive ratio of FIRSTFIT. Let
m = min{k, δ} and consider the sequence σ = r1, r2, . . . , rm of m requests from Rδ where each
request has a release date t(ri) = i− 1 for i = 1, 2, . . . ,m. An optimal assignment is

OPT[σ] = (δ, δ, . . . , δ) ∈ Nm with OPT(σ) = 1.

FIRSTFIT produces the following assignment

FIRSTFIT[σ] = (1, 2, . . . ,m) ∈ Nm with FIRSTFIT(σ) = m.

Hence,
FIRSTFIT(σ) = m · OPT(σ) = min{k, δ} · OPT(σ).

Therefore, min{k, δ} is a lower bound on the competitive ratio of FIRSTFIT for the given prob-
lem (Q,Rδ).

This shows the claims of the theorem.

Remark. Lemma 3.19, Lemma 3.20, Theorem 3.21 and Lemma 3.22 consider a ONLINETDAP
with downstream problem bin-packing and an arbitrary set of cost functions. Therefore, these results
hold also for MIN-MAX ONLINETDAP w. r. t. bin-packing (see Section 3.4.2).

Infinite number of available bins (b =∞)

In this part the classical bin-packing problem is considered as downstream problem. This means,
an infinite number of bins (b = ∞) is available on each single target date. Therefore, each input
instance for the bin-packing problem is feasible. Hence, any online algorithm which assign each
request to a feasible target date is already feasible. However, any deterministic online algorithm has
a competitive ratio of at least 3/2.

Theorem 3.24 ([HKM+05]). Consider a MIN-TOTAL ONLINETDAP with downstream prob-
lem bin-packing which has an infinite number of bins (b = ∞) available and each request has
δ ∈ {2, 3, . . . } feasible target dates. For this problem no deterministic online algorithm has a
competitive ratio less than 3/2.

Proof. Given a MIN-TOTAL ONLINETDAP (Q,Rδ) where Q is a bin-packing problem with an
infinite number of bins (b = ∞) available and δ ∈ {2, 3, . . . }. Let ALG be an arbitrary feasible
deterministic online algorithm for the given problem (Q,Rδ) and 0 < ε < 1/2. Moreover, consider
the following request sequences:

σ(1) = r1, r3 and σ(2) = r1, r2 and σ(3) = r1, r2, r3, r4

with

r1 = (0, 1
2 − ε), r2 = (1, 1

2 − ε), r3 = (δ − 1, 1
2 + ε), and r4 = (δ, 1

2 + ε).



3.3. Competitive Analysis for MIN-TOTAL ONLINETDAPs 37

To prove the claim of the theorem it is shown that there exists an i ∈ {1, 2, 3} such that

ALG(σ(i)) ≥ 3
2
· OPT(σ(i)).

This means, one of the three request sequences forces the algorithm ALG to a cost of at least 3/2
time the optimal cost which proves the theorem. The following table presents for each sequence an
optimal solution and the optimal cost.

sequence an optimal assignment the optimal cost

σ(1) (δ, δ) 1
σ(2) (δ, δ) 1
σ(3) (δ, δ + 1, δ, δ + 1) 2

If the algorithm ALG does not assign request r1 to its deadline T (r1) = δ, the request sequence σ(1)

forces ALG to use one bin for each request. In that case the algorithm ALG needs 2 bins to serve
this sequence while an optimal solution only needs 1 bin. Therefore, ALG(σ(1)) ≥ 2 · OPT(σ(1)).
Otherwise, assume that ALG assigns request r1 to its deadline T (r) = δ. In this case, the request
sequences σ(2) and σ(3) are of interest. If ALG does not assign request r2 to the same target date δ as
request r1, the request sequence σ(2) forces ALG to use 2 bins while an optimal assignment for σ(2)

needs only 1 bin. Therefore, ALG(σ(2)) ≥ 2·OPT(σ(2)). Hence, request sequence σ(3) is of interest if
ALG assigns the requests r1 and r2 to target date δ. In that case the algorithm needs 3 bins to serve the
sequence σ(3). An optimal solution for σ(3) needs 2 bins. Therefore, ALG(σ(3)) ≥ 3/2 · OPT(σ(3)).

The above case distinction proves that the competitive ratio of ALG is at least 3/2.

On the other hand the algorithm PTD has a competitive ratio of 2. This is proved using the
general result for this algorithm (Theorem 3.16).

Theorem 3.25 ([HKM+05]). Consider the same MIN-TOTAL ONLINETDAP as in the previous
theorem. For this problem the online algorithm PTD has a competitive ratio of 2.

Proof. Let (Q,Rδ) be a MIN-TOTAL ONLINETDAP where Q is a bin-packing problem with an
infinite number of bins (b = ∞) available and δ ∈ {2, 3, . . . }. To prove the claim of the theorem it
is to show that:

1. PTD is 2-competitive for the given MIN-TOTAL ONLINETDAP;

2. and 2 is a lower bound on the competitive ratio of PTD for the problem (Q,Rδ).

Proof of Claim 1. It is shown that (Q,Rδ) meets the conditions of Theorem 3.16 which proves
that PTD is 2-competitive for the given problem (Q,Rδ).
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Since an infinite number of bins is available, it follows that any input instance for the bin-packing
problem is feasible. Therefore, the downstream problem Q has unlimited resources.

The monotonicity (Property (i) of Theorem 3.16) of the downcost function from Q holds since
any feasible solution of an input instance I gives a feasible solution for any sub-instance I ′ ⊂ I by
removing the irrelevant items. Hence, downcost(I ′) ≤ downcost(I).

In order to prove that the downstream problem Q satisfies the second property of Theorem 3.16,
let I be an input instance from Q, k ∈ N, and I(1), I(2), . . . , I(k) be a disjoint partition of I . More-
over, denote by b∗j the minimum number of bins needed for the sub-instance I(j) for j = 1, 2, . . . , k.
If all items from the sub-instances I(1), I(2), . . . , I(k) are presented at once to the downstream prob-
lem Q, no more than b∗1 + b∗2 + · · ·+ b∗k bins are needed to pack these items. Hence,

downcost(I) ≤
k∑

j=1

downcost(I(j)).

Therefore, it follows from Theorem 3.16 that PTD is a 2-competitive online algorithm for the
given problem (Q,Rδ).

Proof of Claim 2. It is shown that for all ε > 0 there exists a sequence σ of requests from Rδ

with
PTD(σ) > (2− ε) OPT(σ).

This means, it is possible to construct for any ε > 0 a request sequences σ which forces the online
algorithm PTD to a cost which is greater than (2 − ε) times the optimal cost. In the following we
construct request sequences which force the algorithm PTD to use almost on each used target date 2
bins whereas an optimal solution needs the same amount of used target dates but only uses one bin
on these dates.

Let k ∈ N, k ≥ 3 and 0 < λ < 1/(2k−4). Moreover, let σ(0) be the request sequence consisting
of one request r1 = (0, 1). For i = 1, 2, . . . , k the request sequence σ(i) is defined recursively as
σ(i) = σ(i−1) ∪ (r2i, r2i+1) with

r2i = (i δ − 1, 1/2 + (i− 2) λ) and r2i+1 = (i δ, 1/2− (i− 2) λ).

The assignment of PTD for the request sequence σ(k) is:

PTD[σ(k)] = (a1, a2, . . . , a2k+1) ∈ N2k+1

with a2i−1 = a2i = i δ for i = 1, 2, . . . , k and a2k+1 = (k + 1) δ. Therefore, the requests with an
odd index are assigned by PTD using the delay tactic and the other requests with the pack together
strategy. The assignment of PTD is illustrated in Figure 3.4. The request sequence is constructed
such that

s(r2i−1) + s(r2i) =
1
2
− (i− 1− 2) λ +

1
2

+ (i− 2) λ = 1 + λ > 1
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date d. . . δ . . . 2δ . . .

. . .

kδ . . . (k + 1)δ

r1 r2

↓ ↓
r3 r4

↓ ↓
r2k−1r2k

↓ ↓
r2k+1

↓

Figure 3.4: Assignment of PTD for the request sequence σ(k).

date d. . . δ δ + 1 . . . 2δ + 1

. . .

. . . kδ + 1

r1

↓
r2, r3

↓
r4, r5

↓
r2k, r2k+1

↓

Figure 3.5: An optimal assignment for the request sequence σ(k) which is also the assignment
of the algorithm PFD.

for i = 2, 3, . . . , k. Hence, PTD needs 2k + 1 bins to serve the request sequence σ(k). Since δ ≥ 2,
the requests r2i and r2i+1 can be assigned to the same target date d = (i δ + 1) and have together
a size of 1 for i = 1, 2, . . . , k. Figure 3.5 shows such an assignment which is an optimal solution
for σ(k). Hence, the optimal cost for serving σ(k) is k + 1. Since

lim
k→∞

2k + 1
k + 1

= 2,

there exists for any ε > 0 a k ∈ N with k ≥ 3 such that

PTD(σ(k)) > (2− ε) OPT(σ(k)).

Hence, 2 is a lower bound on the competitive ratio of PTD for the given problem (Q,Rδ).

Another online algorithm named PACKFIRSTORDELAY, or briefly PFD, which is described as
Algorithm 3 seems to be even more promising in this setting. PFD assigns a request r to the earliest,
used, and feasible target date d such that the assignment of r to this target date does not increase the
downstream cost. If such a target date does not exist PFD uses a delay strategy and assigns a request r
to its deadline T (r). Note that this algorithm only works in general if all requests have a deadline.
Otherwise, the delay strategy is not well defined. Moreover, this algorithm does not always compute
a feasible assignment since the delay tactic can produce input instances for the downstream problem
which are infeasible. In the case where this algorithm is considered in this work it is ensured that
any input instance of the downstream problem is feasible and all requests have a deadline.
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Input : A request r, the current assignments σt(r)+1, σt(r)+2, . . . , σT (r) to the feasible
target dates of request r, and the downcost function downcost of a downstream
problem Q.

Output : An assignment d ∈ N for request r.

for d ← t(r) + 1 to T (r) do
if downcost(σd) = downcost(σd ∪ r) then

// pack together tactic since no cost increase;
return d;

// delay tactic;
return d ← T (r);

Algorithm 3: PACKFIRSTORDELAY (PFD)

PFD achieves a better solution on the lower bound instance for PTD in the previous proof, in fact
PFD generates an optimal solution for this instance, which is illustrated in Figure 3.5. However, it
is not clear if the worst case performance of PFD is better than that of PTD since request sequences
exist where PTD yields a better solution than PFD. An example for such a sequence is given next.

Example 3.26 (PTD vs. PFD). Given a MIN-TOTAL ONLINETDAP (Q,Rδ) where Q is a bin-
packing problem with an infinite number of bins (b = ∞) available and δ ∈ {2, 3, . . . }. Moreover,
let σ = r1, r2, . . . , r6 be a request sequence with:

r1 = (0, 2/5), r2 = (0, 1/5), r3 = (0, 1/5),

r4 = (δ − 1, 2/5), r5 = (δ − 1, 2/5), and r6 = (δ − 1, 2/5).

The algorithm PTD assigns all request to the joint target date δ. Therefore,

PTD[σ] = (δ, δ, δ, δ, δ, δ) and PTD(σ) = 2.

On the other hand PFD only assigns the requests r1, r2, and r3 to the target date δ. The other requests
are assigned by PFD to the target date (2 δ − 1). Hence,

PFD[σ] = (δ, δ, δ, 2 δ − 1, 2 δ − 1, 2 δ − 1) and PFD(σ) = 3.

Therefore, the assignment of PFD needs one bin more as the solution of PTD. Both assignments are
visualized in Figure 3.6. 4

The algorithm PFD has to solve several downstream problems to decide which target date to
choose for a request. Since a downstream problem and therefore, an offline optimization problem
sometimes is not solvable in a real-time setting, this algorithm is not useful in these cases. In the
case of bin-packing as downstream problem where it is assumed that all items have the same size,
it is no problem to determine the minimum number of used bins for an input instance. Moreover, if
all items have identical size the situation changes in such a way that PFD is a 1-competitive online
algorithm for this problem setting.
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date d. . . δ

r1, . . . , r6︸ ︷︷ ︸
↓

date d. . . δ . . . 2δ − 1

r1, r2, r3

↓
r4, r5

↓
r6

↓

Figure 3.6: Assignment for the request sequence σ of PTD (PFD) is depicted on the left (right)
side.

Theorem 3.27 ([HKM+05]). Consider a MIN-TOTAL ONLINETDAP with downstream problem
bin-packing which has an infinite number of bins (b = ∞) available. Moreover, suppose that all
requests have δ ∈ {2, 3, . . . } feasible target dates and the same size s ∈ (0, 1]. For this problem the
algorithm PFD is a 1-competitive online algorithm.

Proof. Let (Q,Rδ) be a MIN-TOTAL ONLINETDAP where Q is a bin-packing problem with an
infinite number of bins (b = ∞) available, δ ∈ {2, 3, . . . }, and all requests from Rδ have the same
size s ∈ (0, 1]. Given a sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ. For each input
instance for the downstream problem bin-packing there exists an optimal packing in such a way that
at most one bin is partially filled. Assume that the bin-packing instances are solved in this way.
Therefore, let d1 < d2 < . . . < dp be the target dates on which PFD produced partially filled bins
for the given request sequence σ. Moreover, let σ′ be the subsequence of σ containing all requests
that are packed in a fully filled bin and for each partially filled bin the request that opens this bin.
Note that PFD(σ′) = PFD(σ).

Now σ′ is partitioned into subsequences σ(k) with k = 1, 2, . . . , p + 1 where

• σ(1) consists of all requests r of σ′ with t(r) < d1;

• σ(k) contains all requests r of σ′ with dk−1 ≤ t(r) < dk for k = 2, 3, . . . , p ;

• σ(p+1) consists of all requests r of σ′ with t(r) ≥ dp .

Note that the last request in σ(k) for k = 1, 2, . . . , p is the one which opens the partially filled
bin. Therefore, this request is assigned using the delay tactic of PFD. Moreover, the first request
of each sequence σ(k) for k = 1, 2, . . . , p + 1 is also assigned by the delay tactic of PFD. Since it
is considered that each request has δ feasible target dates, it follows that there is no overlap in the
feasible target dates of requests of different subsequences. Hence,

PFD(σ′) =
p+1∑
k=1

PFD(σ(k)) and OPT(σ′) =
p+1∑
k=1

OPT(σ(k)).



42 3. The Online Target Date Assignment Problem

Furthermore, at most one bin of a packing of PFD for a subsequence σ(k) is partially filled, and thus
we have

PFD(σ(k)) = OPT(σ(k))

for k = 1, 2, . . . , p + 1. Combining these equalities, leads to

PFD(σ) = PFD(σ′) =
p+1∑
k=1

PFD(σ(k)) =
p+1∑
k=1

OPT(σ(k)) = OPT(σ′) ≤ OPT(σ).

Therefore, PFD is a 1-competitive online algorithm for the given problem (Q,Rδ).

3.3.3 Downstream Problem Parallel-Machine Scheduling

In this section we analyze MIN-TOTAL ONLINETDAP w. r. t. parallel-machine scheduling as down-
stream problem and a restricted request setRδ with δ ∈ {2, 3, . . . } ∪ {∞}.

The parallel-machine scheduling problem accepts as input a sequence L = p1, p2, . . . , pn

of n ∈ N jobs with processing time pi > 0 for i = 1, 2, . . . , n. The downcost function determines
for an input sequence the minimum makespan, that is, the latest completion time of all jobs, to serve
the given input sequence on m ∈ N ∪ {∞} parallel and identical machines in a non-preemptive
way. For a more specific description read Section 3.2.3. In this setting, a request r has a processing
time p(r) > 0 additionally to its release date t(r) ∈ N0 and is given by the pair (t(r), p(r)). Note
that any input instance for the downstream problem parallel-machine scheduling is feasible indepen-
dently of the number of machines available. Hence, an online algorithm which assigns each request
to a feasible target date is already feasible.

Studying MIN-TOTAL ONLINETDAP w. r. t. parallel-machine scheduling and a restricted re-
quest set, two cases of interest occur. One case considers a real deadline for each request, that is,
each request has only a bounded number δ ∈ N of feasible target dates. The other case assumes
that each request has no deadline (δ = ∞), that is, all target dates after the release date of a re-
quest are feasible. Table 3.2 summarizes the results proved for MIN-TOTAL ONLINETDAP w. r. t.
parallel-machine scheduling in this section.

Before the results for the two cases are presented assume that the downstream problem parallel-
machine scheduling only has one machine (m = 1) available. In this case each feasible assignment
of a request sequence σ is optimal since any feasible assignment yields a cost of

∑
r∈σ p(r). In

particular, FIRSTFIT, PFD, and PTD are feasible online algorithms for this problem setting with
competitive ratio of 1.

Theorem 3.28. Consider a MIN-TOTAL ONLINETDAP (Q,R) where Q is a machine scheduling
problem on one machine (m = 1). For this problem every feasible online algorithm is 1-competitive.

The following cases assume that the downstream problem parallel-machine scheduling provides
more than one machine (m > 1).
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Parameter arbitrary processing time equal processing time

δ m lower bound upper bound lower bound upper bound

N ∪ {∞} 1 1 1 1 1
∞ ∞ no competitive online algorithm no competitive online algorithm

∞ N≥2 m m m m

N≥2 N≥2 ∪ {∞}
√

2 2 1 1

Table 3.2: Lower bounds on the competitive ratio of deterministic online algorithms as well as
upper bounds for the best known deterministic online algorithms for MIN-TOTAL

ONLINETDAP w. r. t. parallel-machine scheduling on m parallel and identical ma-
chines and a restricted request setRδ .

Unbounded number of feasible target dates (δ =∞)

In the setting where each request has no deadline (δ = ∞) the number of available machines m is
a lower and an upper bound on the competitive ratio of any feasible deterministic online algorithm.
Hence, in the case where m =∞ there exists no deterministic algorithm which is competitive. Even
if all requests have the same processing time, the bounds can not be improved.

Lemma 3.29. Consider a MIN-TOTAL ONLINETDAP with downstream problem parallel-machine
scheduling which has m ∈ {2, 3, . . . } parallel and identical machines available and each request
has no deadline (δ = ∞). Even if all requests have the same processing time p > 0, there exists no
deterministic online algorithm which has a competitive ratio less than m.

Proof. Given a MIN-TOTAL ONLINETDAP (Q,R∞) where Q is a parallel-machine scheduling
problem with m ∈ {2, 3, . . . } parallel and identical machines available and all requests from R∞
have the same processing time p > 0. Let ALG be an arbitrary feasible deterministic online algo-
rithm for this problem (Q,R∞). Since ALG is a deterministic online algorithm, it follows that the
answer sequence for any request sequence is known in advance. With that knowledge consider a
sequence σ = r1, r2, . . . , rm of m requests fromR∞ with release dates:

t(ri) =

{
0, if i = 0

ALG[ri−1], otherwise.

ALG is not able to assign any two of the requests from σ to the same target date since a new request
is released on the date where the previous request is assigned to (This is possible since ALG is a
deterministic algorithm). Therefore, ALG(σ) = m·p. Assigning all requests of σ to a joint target date
after the release date of request rm leads to a feasible solution since all requests have no deadline.
Moreover, such an assignment has a cost of p since m machines are available on each target date.
This assignment is also optimal. Hence, ALG(σ) = m · OPT(σ). Therefore, the algorithm ALG has
a competitive ratio which is greater than or equal to m for given MIN-TOTAL ONLINETDAP.



44 3. The Online Target Date Assignment Problem

From the above lemma follows in particular that there exists no competitive deterministic on-
line algorithm if the downstream problem parallel-machine scheduling has an infinite number of
machines, even if all requests have the same processing time.

Corollary 3.30. Consider a MIN-TOTAL ONLINETDAP with downstream problem parallel-
machine scheduling which has an infinite number of parallel and identical machines (m = ∞)
available and each request has no deadline (δ =∞). Even if all requests have the same processing
time p > 0, there exists no competitive deterministic online algorithm for this problem.

Proof. Let (Q,R∞) be a MIN-TOTAL ONLINETDAP where Q is a parallel-machine scheduling
problem with an infinite number of parallel and identical machines (m = ∞) available and all re-
quests from R∞ have the same processing time p > 0. Moreover, let ALG be an arbitrary feasible
deterministic online algorithm for the given problem. To prove the claim we use the same construc-
tion of a request sequence as in the proof of the previous lemma and show that for all n ∈ N there
exists a sequence σ of requests fromR∞ with

ALG(σ) = n · OPT(σ).

This implies that ALG is not competitive. Let n ∈ N and σ = r1, r2, . . . , rn be a sequence of n

requests fromR∞ with release dates:

t(ri) =

{
0, if i = 0

ALG[ri−1], otherwise.

With the same arguments as in the proof of the last lemma it follows that ALG(σ) = n · p and
OPT(σ) = p. Therefore, the algorithm ALG is not competitive.

Now an upper bound on the competitive ratio of an arbitrary feasible deterministic online algo-
rithm is shown in the case that the downstream problem parallel-machine scheduling has a bounded
number of machines.

Lemma 3.31. Consider a MIN-TOTAL ONLINETDAP with downstream problem parallel-machine
scheduling which has m ∈ {2, 3, . . . } parallel and identical machines available and each re-
quest has no deadline (δ = ∞). For this problem any feasible deterministic online algorithm
is m-competitive.

Proof. Let (Q,R∞) be a MIN-TOTAL ONLINETDAP where Q is a parallel-machine scheduling
problem with m ∈ {2, 3, . . . } parallel and identical machines available. Moreover, let ALG be an
arbitrary feasible deterministic online algorithm for the given problem and σ = r1, r2, . . . , rn be a
sequence of n ∈ N requests fromR∞. The total cost for serving the request sequence σ is bounded
from above by the sum of all processing times. Therefore,

ALG(σ) ≤
∑
r∈σ

p(r).



3.3. Competitive Analysis for MIN-TOTAL ONLINETDAPs 45

Assigning all requests of σ to a joint target date after the release date of request rn yields a feasible
solution since all requests have no deadline. Moreover, such an assignment is optimal. Therefore,

OPT(σ) ≥ 1
m

∑
r∈σ

p(r)⇔ m · OPT(σ) ≥
∑
r∈σ

p(r).

Hence,

ALG(σ) ≤
∑
r∈σ

p(r) ≤ m · OPT(σ)

which proves that the algorithm ALG is m-competitive for given MIN-TOTAL ONLINETDAP.

With the last two lemmas the main result for this problem setting is already proved.

Theorem 3.32. Consider the same MIN-TOTAL ONLINETDAP as in the previous lemma. For this
problem setting any feasible deterministic online algorithm has a competitive ratio of m, even if all
requests have the same processing time p > 0.

Proof. The theorem follows from Lemma 3.29 and Lemma 3.31.

Bounded number of feasible target dates (δ ∈ N≥2)

It is now assumed that all requests have δ ∈ {2, 3, . . . } feasible target dates and therefore, a deadline.
In this setting it is shown that the online algorithm PTD has a competitive ratio of 2 using the general
result for this algorithm (Theorem 3.16). Moreover, any deterministic online algorithm can be forced
to a cost of

√
2 times the optimal cost. If all requests have the same processing time, the algorithm

PFD is 1-competitive.

Theorem 3.33 ([HKM+05]). Consider a MIN-TOTAL ONLINETDAP with downstream problem
parallel-machine scheduling which has more than one parallel and identical machines (m > 1)
available and each request has δ ∈ {2, 3, . . . } feasible target dates. For this problem the online
algorithm PTD has a competitive ratio of 2.

Proof. Consider a MIN-TOTAL ONLINETDAP (Q,Rδ) where Q is a parallel-machine scheduling
problem with m ∈ {2, 3, . . . } ∪ {∞} parallel and identical machines available and δ ∈ {2, 3, . . . }.
The following claims are shown to prove the theorem:

1. PTD is 2-competitive for the given MIN-TOTAL ONLINETDAP;

2. and 2 is a lower bound on the competitive ratio of PTD for the problem (Q,Rδ).
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Proof of Claim 1. It is shown that (Q,Rδ) meets the conditions of Theorem 3.16 which proves
that PTD is 2-competitive for the given MIN-TOTAL ONLINETDAP.

The downstream problem parallel-machine scheduling provides unlimited capacity indepen-
dently of the number of available machines m. This means, for every feasible input instance for
the parallel-machine scheduling problem there exists a feasible solution. Therefore, the downstream
problem Q has unlimited resources.

The monotonicity (Property (i) of Theorem 3.16) of the downcost function from Q is given
since any feasible solution of a feasible input instance I gives a feasible solution for any sub-
instance I ′ ⊂ I by removing the irrelevant jobs. Hence, downcost(I ′) ≤ downcost(I).

In order to prove that the downstream problem Q satisfies the second property of Theorem 3.16,
let I be a feasible input instance from Q, k ∈ N and I(1), I(2), . . . , I(k) be a disjoint partition
of I . Moreover, we denote by m∗

j the minimum makespan for serving the sub-instance I(j) for
j = 1, 2, . . . , k. If all jobs from the sub-instances I(1), I(2), . . . , I(k) are presented at once to the
downstream problem Q, the minimum makespan is not greater than m∗

1 + m∗
2 + · · · + m∗

k. This
follows since the combination in series of the schedules for the sub-instances I(1), I(2), . . . , I(k)

lead to a feasible solution of I . Hence,

downcost(I) ≤
k∑

j=1

downcost(I(j)).

Therefore, Theorem 3.16 states that PTD is a 2-competitive online algorithm for the given prob-
lem.

Proof of Claim 2. Let p ∈ (0, 1) and σ = r1, r2, r3 be a sequence of 3 requests fromRδ with:

r1 = (0, p), r2 = (1, 1), and r3 = (δ, 1).

The algorithm PTD assigns the first two requests of σ to the same target date δ and request r3 to
target date 2 δ. Therefore,

PTD[σ] = (δ, δ, 2 δ) and PTD(σ) = 2.

The optimal cost for the given sequences is not smaller than 1 + p since request r1 and request r3

have no overlapping in their feasible target dates. Therefore, the following assignment is optimal

OPT[σ] = (δ, δ + 1, δ + 1) with OPT(σ) = 1 + p.

Figure 3.7 illustrates the assignment of PTD for σ and shows an optimal solution. Since

lim
p→0

2
1 + p

= 2,

it follows that for all ε > 0 there exists a sequence σ of requests fromRδ with

PTD(σ) > (2− ε) OPT(σ).
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date d

...

δ

...

2
δ

← r1

← r2

← r3

date d

...
δ

δ
+

1

← r1

← r2

← r3

Figure 3.7: Assignment of PTD for the request sequence σ on the left side and an optimal
solution for σ on the right side.

Therefore, 2 is a lower bound on the competitive ratio of PTD for the problem (Q,Rδ).

Hence, PTD has a competitive ratio of 2 for the given MIN-TOTAL ONLINETDAP.

Next, we show a lower bound on the competitive ratio of any deterministic online algorithm for
the current problem setting.

Theorem 3.34 ([HKM+05]). Consider the same MIN-TOTAL ONLINETDAP as in the previous
theorem. For this problem there exists no deterministic online algorithm with competitive ratio less
than

√
2.

Proof. Given a MIN-TOTAL ONLINETDAP (Q,Rδ) where Q is a parallel-machine scheduling
problem with m ∈ {2, 3, . . . } ∪ {∞} parallel and identical machines available and δ ∈ {2, 3, . . . }.
Let ALG be an arbitrary feasible deterministic online algorithm for the problem (Q,Rδ). Moreover,
consider the following two request sequences:

σ(1) = r1, r2 and σ(2) = r1, r2, r3

with
r1 = (0, 1), r2 = (δ − 1, 1 +

√
2), and r3 = (δ, 1 +

√
2).

Optimal assignments and the optimal cost for these request sequences are presented in the table
below.

sequence an optimal assignment the optimal cost

σ(1) (δ, δ) 1 +
√

2
σ(2) (δ, δ + 1, δ + 1) 2 +

√
2

To prove the claim of the theorem it is shown:
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1. ALG(σ(1)) <
√

2 · OPT(σ(1))⇒ ALG(σ(2)) =
√

2 · OPT(σ(2));

2. ALG(σ(2)) <
√

2 · OPT(σ(2))⇒ ALG(σ(1)) =
√

2 · OPT(σ(1)).

Case 1: Assume that ALG(σ(1)) <
√

2 ·OPT(σ(1)) =
√

2+2. Since the sum of processing times
of the two requests of σ(1) is

√
2+2, it follows that both requests of σ(1) are assigned by ALG to the

same target date d. Moreover,
d ≤ min{T (r1), T (r2)} = δ.

The first two requests of sequence σ(2) are assigned to the same target date d since ALG is a deter-
ministic algorithm. Request r3 is released on target date δ. Therefore, it is not possible to assign this
request to the same target date as the first two requests of σ(2). Hence,

ALG(σ(2)) = (1 +
√

2) + (1 +
√

2) = 2 + 2
√

2 =
√

2 (2 +
√

2) =
√

2 · OPT(σ(2))

which proves claim 1.

Case 2: Consider ALG(σ(2)) <
√

2 · OPT(σ(2)) = 2 + 2
√

2. Therefore, the algorithm ALG

assigns the two request r2 and r3 of σ(2) to the same target date d since these requests together have
a processing time of 2 + 2

√
2. Moreover,

d > max{t(r2), t(r3)} = δ.

ALG is a deterministic algorithm. Therefore, this algorithm assigns request r2 of request se-
quence σ(1) to the same target date d. Since d > δ, t(r1) = 0, and ALG is a feasible algorithm,
it follows that request r1 of σ(1) is not assigned to date d. Hence,

ALG(σ(1)) = 1 + (1 +
√

2) = 2 +
√

2 =
√

2 (1 +
√

2) =
√

2 · OPT(σ(1))

which proves claim 2.

Hence,
√

2 is a lower bound on the competitive ratio of the algorithm ALG for given MIN-TOTAL

ONLINETDAP.

The construction of the request sequences in the last proof heavily depends on different process-
ing times. In the case that all requests have the same processing time, the problem collapses into
a much easier problem. In this situation the online algorithm PFD is 1-competitive as it is in the
corresponding bin-packing case.

Theorem 3.35 ([HKM+05]). If additionally to the problem setting of the previous theorem is as-
sumed that all requests have the same processing time, then the algorithm PFD is 1-competitive.

Proof. Let (Q,Rδ) be a MIN-TOTAL ONLINETDAP where Q is a parallel-machine scheduling
problem with m ∈ N ∪ {∞} parallel and identical machines available, δ ∈ {2, 3, . . . }, and all
requests from Rδ have the same processing time p > 0. To prove the theorem a case distinction is
made. One case assumes that m ∈ N, the other one considers m =∞.
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Case m ∈ N: It is shown that the given MIN-TOTAL ONLINETDAP (Q,Rδ) is equivalent to a
MIN-TOTAL ONLINETDAP (Q′,R′δ) where Q′ is a bin-packing problem with an infinite number of
unit-capacity bins (b =∞) available and all requests fromR′δ have the same size s = 1/m ∈ (0, 1].
Therefore, Theorem 3.27 implies that PFD is 1-competitive for this problem (Q,Rδ) if m ∈ N. Let
σ = r1, r2, . . . , rn be a sequence of n ∈ N requests from Rδ. This sequence is transformed into a
request sequence σ′ = r′1, r

′
2, . . . , r

′
n of requests from R′δ. Request r′i has the same release date as

request ri for i = 1, 2, . . . , n, that is, t(r′i) = t(ri) for each i. Since the parallel-machine scheduling
problem Q has m machines available on each target date and all requests from Rδ have the same
processing time p, the downcost function of Q is equal to

downcostQ(I) =
⌈
|I|
m

⌉
· p ∀ I ∈ I

where |I| defines the number of jobs represented by I and I is the input set of the downstream
problem Q. In the case of the bin-packing problem Q′ where all items have the same size s = 1/m

the downcost function is equal to

downcostQ′(I) =
⌈
|I|
m

⌉
∀ I ∈ I ′.

Again |I| defines the number of items represented by I and I ′ is the input set of the downstream
problem Q′. Therefore, in both cases the number of requests assigned to a joint target date define
the downstream cost for this target date. Furthermore, both downcost functions are step functions
where

J = {n ∈ N0 | (n mod m) = 1}

is the set of all jumps of both functions. Therefore, the assignment (d1, d2, . . . , dn) ∈ Nn of PFD

for σ and the assignment (d′1, d
′
2, . . . , d

′
n) ∈ Nn of PFD for σ′ are equal since request ri has the same

release date as request r′i for i = 1, 2, . . . , n. Hence,

PFDQ(σ) = p · PFDQ′(σ′).

This shows that the given MIN-TOTAL ONLINETDAP (Q,Rδ) is equivalent to the MIN-TOTAL

ONLINETDAP (Q′,R′δ). Since the assignment of PFD for σ′ is optimal (Theorem 3.27) it follows
that the assignment of PFD for σ is also optimal. Therefore, the algorithm PFD is 1-competitive for
the given problem (Q,Rδ) if m ∈ N.

Case m = ∞: If an infinite number of machines is available on each target date, the downcost
function of the given downstream problem Q can only take two values, that are,

downcost(I) ∈ {0, p} ∀ I ∈ I.

This means, if a target date is used than the downstream cost is p independently of the number of
requests assigned to this target date. Otherwise, the downstream cost is 0 if the target date is not
used. Therefore, it follows that an assignment for a request sequence is optimal if this assignment
uses as less as possible target dates. To prove the claim of the theorem for m =∞ it is shown:
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1. PFD is equivalent to PTD for the given problem (Q,Rδ) if m =∞, that is, PFD[σ] = PTD[σ]
for all possible request sequences σ;

2. PTD is 1-competitive for the given MIN-TOTAL ONLINETDAP if m =∞.

Proof of Claim 1. If a target date is used, the downstream cost is p independently of the number
of requests assigned to this target date (since unlimited machines are available). Therefore, the delay
tactic of the algorithm PFD is only used if for a request no used and feasible target date exists. Hence,
for the given problem (Q,Rδ) the algorithm PFD produces for any sequence of requests from Rδ

the same assignment as the algorithm PTD if it is assumed that m =∞. This proves Claim 1.

Proof of Claim 2. Therefore, let σ = r1, r2, . . . , rn be a sequence of n ∈ N requests from Rδ

and d1 < d2 < · · · < dh be all target dates used by the algorithm PTD for the request se-
quence σ. Lemma 3.14 states that di − di−1 ≥ δ for i = 2, 3, . . . , h. Consider the subse-
quences σd1 , σd2 , . . . , σdh

of σ. From the description of the algorithm PTD it follows that the first
request of each subsequence is assigned by the algorithm PTD using the delay tactic. Therefore, for
these requests there exists no used and feasible target date. Moreover, any two of these requests have
no overlapping in the set of feasible target dates. Hence, the assignment of the algorithm PTD uses
for the request sequence σ the minimum number of target dates. This shows that the algorithm PTD

is 1-competitive for the given problem (Claim 2).

Both cases prove that PFD is a 1-competitive online algorithm for the given MIN-TOTAL

ONLINETDAP.

3.4 Competitive Analysis for MIN-MAX ONLINETDAPs

Section 3.2.2 introduced the class of MIN-MAX ONLINETDAPs. This section provides results
for elementary examples of this class obtained by competitive analysis. In particular, results are
shown for MIN-MAX ONLINETDAP with downstream problem bin-packing or parallel-machine
scheduling where additionally is assumed that a restricted request set is given. That means, all
requests have δ ∈ N ∪ {∞} feasible target dates. Again some of the results were obtained in
joint work with Sven O. Krumke, Nicole Megow, Jörg Rambau, Andreas Tuchscherer and Tjark
Vredeveld [HKM+05].

Since we consider only restricted request sets in this section, a request r is given by the
pair (t(r), I(r)) as it was in the previous section. Moreover, we suppose that each request has
more than one feasible target date. Otherwise, the problem setting is trivial (see Section 3.3).

3.4.1 The General Online Algorithm BALANCE

We start by introducing the general online algorithm BALANCE. Since the overall objective is to
minimize the maximum downstream cost over all target dates, an effective strategy for an online
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Input : A request r, the current assignments σt(r)+1, σt(r)+2, . . . , σT (r) to the feasible
target dates of request r, and an approximation algorithm APPROX for the down-
stream problem Q.

Output : An assignment d ∈ N for request r.

d ← t(r) + 1;
min ← APPROX(σd ∪ r)− APPROX(σd);
for i ← t(r) + 2 to T (r) do

newmin ← APPROX(σi ∪ r)− APPROX(σi);
if newmin < min then

d ← i;
min ← newmin;

return d;

Algorithm 4: BALANCE (BAL)

algorithm is to balance the load of all requests of a given request sequence over all target dates.
Therefore, an algorithm which assigns a given request to the earliest feasible target date such that
the increase in the objective value is minimal seems to be promising. Such an algorithm has to
solve several downstream problems to decide which target date to choose for a request. Since the
considered downstream problem may not be solvable under real-time aspects, this algorithm is not
useful in these cases. Therefore, the idea to balance the load of all requests has to go together
with an approximation algorithm for the downstream problem. Algorithm 4 specifies the algorithm
BALANCE (BAL) which implements the balancing idea with help of an approximation algorithm
APPROX for the considered downstream problem.

In [HKM+05] we only considered that the downstream problems are solvable under real time
aspects. We show in this section that the results for the algorithm BAL in [HKM+05] also hold if a
specific approximation algorithm is used to determine a target date for a given request.

For each downstream problem an approximation algorithm is specified in the corresponding
section.

3.4.2 Downstream Problem Bin-Packing

We now analyze MIN-MAX ONLINETDAP w. r. t. bin-packing as downstream problem and a re-
stricted request setRδ with δ ∈ {2, 3, . . . } ∪ {∞}.

The notation and downstream problem definition are the same as in the corresponding MIN-
TOTAL ONLINETDAP section (see Section 3.3.2). The downstream problem bin-packing consists
of b ∈ N ∪ {∞} unit-capacity bins and the downcost function determines the minimum number b∗

of bins to serve an input instance for the downstream problem if b∗ ≤ b. Otherwise, the downstream
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Input : A bin-packing problem and a list L = s1, s2, . . . , sn of n ∈ N items with
size si ∈ (0, 1] for i = 1, 2, . . . , n.

Output : The number of used unit-capacity bins for the list L.

1 Reorganize the list L in the way that s1 ≥ s2 ≥ · · · ≥ sn;
2 Go through the reorganized list L and pack the current item si in the first bin where si fits;
3 Return the number of used bins;

Algorithm 5: FIRSTFITDECREASING (FFD)

problem is infeasible for the given input instance. Moreover, a request r has a size s(r) ∈ (0, 1]
and a release date t(r) ∈ N0. Therefore, each request r is a pair (t(r), s(r)) where the deadline
date is given indirectly by T (r) = t(r) + δ. A more detailed description of bin-packing as offline
optimization problem is found in Section 3.2.3.

Before results for MIN-MAX ONLINETDAP w. r. t bin-packing are presented, the approxima-
tion algorithm FIRSTFITDECREASING, or briefly FFD, for the downstream problem bin-packing is
introduced. FFD packs each item in order of non-increasing size into the first bin in which it fits.
Algorithm 5 specifies the workflow of FFD.

In [Bak85] it is proved that FFD always produces a solution which does not need more bins
than 4 plus 11/9 times the number of bins an optimal solution needs. This means, for a given
sequence L = s1, s2, . . . , sn of n ∈ N items with size si ∈ (0, 1] for i = 1, 2, . . . , n it follows

FFD(L) ≤ 11
9

OPT(L) + 4,

where FFD(L) and OPT(L) denote the used bins for the sequence L by FFD and an optimal solu-
tion, respectively. Known proofs for this approximation guarantee require several pages and are not
readily intuitive. Much easier to see is that

FFD(L) ≤ 2 · OPT(L).

This result is obvious since all bins are half full on average if more than one bin is used.

Analyzing MIN-MAX ONLINETDAP w. r. t. bin-packing two cases of interest occur. One case
assumes that a bounded number of bins (b ∈ N) are available on each target date. The other case
supposes that on each target date as many bins (b = ∞) as necessary are available. Table 3.3
summarizes the results presented in this section for MIN-MAX ONLINETDAP w. r. t. bin-packing
and a restricted request set.

In the case that each request has no deadline date (δ =∞) the problem turns out to be trivial. An
online algorithm which assigns each request to a feasible target date in such a way that in the end a
target date has at most one request to serve produces always a feasible solution. This algorithm does
not need more than one bin per date. One bin is a lower bound on the optimal cost if the request
sequence is not empty. Hence, this algorithm is 1-competitive.
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Parameter arbitrary item size equal item size

δ b lower bound upper bound lower bound upper bound

∞ N ∪ {∞} 1 1 1 1
N≥2 N no feasible online algorithm min{b, δ} min{b, δ}
N≥2 ∞ 2 min{4, δ} 3/2 2

Table 3.3: Lower Bound on the competitive ratio of deterministic online algorithms as well
as upper bounds for the best known deterministic online algorithms for MIN-MAX

ONLINETDAP w. r. t. bin-backing and a restricted request set Rδ . The number of
available unit-capacity bins is denoted with b.

Theorem 3.36. For a MIN-MAX ONLINETDAP with downstream problem bin-packing where each
request has no deadline (δ = ∞) the algorithm which assigns at most one request to each target
date by respecting the feasible target dates of each request is a 1-competitive online algorithm.

Suppose from now on that each request has a deadline (δ ∈ {2, 3, . . . }).

Bounded number of available bins (b ∈ N)

In the case where each target date has a bounded number of bins available and all requests have
δ ∈ {2, 3, . . . } feasible target dates, Theorem 3.21 already states that there exists no competitive
deterministic online algorithm. A competitive algorithm only exists if additionally is assumed that
all requests have the same size. In this case FIRSTFIT is the only feasible online algorithm and has
a competitive ratio of min{b, δ}.

Theorem 3.37. Consider a MIN-MAX ONLINETDAP with downstream problem bin-packing
where all requests have δ ∈ {2, 3, . . . } feasible target dates and the same size s ∈ (0, 1]. For
this setting the algorithm FIRSTFIT has a competitive ratio of min{b, δ} and is the only feasible
online algorithm.

Proof. Given a MIN-MAX ONLINETDAP (Q,Rδ) where Q is a bin-packing problem with
b ∈ N ∪ {∞} bins available, δ ∈ {2, 3, . . . }, and all requests fromRδ have the same size s ∈ (0, 1].
Lemma 3.22 states that FIRSTFIT is the only feasible online algorithm for this problem setting.
Therefore, it is left to prove that

1. FIRSTFIT is min{b, δ}-competitive for the given MIN-MAX ONLINETDAP;

2. and min{b, δ} is a lower bound on the competitive ratio of FIRSTFIT for the problem (Q,Rδ).

Proof of Claim 1. On the one hand the number of available bins b is obviously an upper bound on
the competitive ratio of any feasible online algorithm since the objective is to minimize the maximum
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downstream cost over all target dates. Therefore, FIRSTFIT is b-competitive. On the other hand
δ is also an upper bound on the competitive ratio of FIRSTFIT. In order to see that consider a
sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ and the assignments σ1, σ2, . . . , σT (rn) of
FIRSTFIT for this sequence. Moreover, we denote by d the first target date where the assignment of
FIRSTFIT attained the maximum number of used bins, that is,

FIRSTFIT(σ) = downcost(σd)

downcost(σi) < downcost(σd), if 1 ≤ i < d

downcost(σi) ≤ downcost(σd), if d < i ≤ T (rn).

Therefore, all requests of σd are released on date (d− 1) and have a joint set of feasible target dates,
that is, {d, d+1, . . . , d+ δ−1}. Otherwise, d is not the first target date with the claimed properties.
Hence, an optimal solution can divide σd on not more than δ target dates. This leads to

OPT(σd) ≥
downcost(σd)

δ
⇔ downcost(σd) ≤ δ · OPT(σd).

Since FIRSTFIT(σ) = downcost(σd) and OPT(σd) ≤ OPT(σ), it follows

FIRSTFIT(σ) ≤ δ · OPT(σ).

Therefore, δ is an upper bound on the competitive ratio of FIRSTFIT in this setting. Hence, FIRST-
FIT is min{b, δ}-competitive for the given MIN-MAX ONLINETDAP.

Proof of Claim 2. Let m = min{b, δ} and k = b1/sc which determines the maximum number
of items a unit-capacity bin can hold. Consider a sequence σ = r1, r2, . . . , rk·m of k ·m requests
fromRδ where each request is released on date d ∈ N. The algorithm FIRSTFIT assigns all requests
of σ to the joint target date (d + 1). Therefore,

FIRSTFIT(σ) = m = min{b, δ}.

The optimal cost is OPT(σ) = 1 which is achieved by assigning no more than k requests to the same
target date. The following assignment represents such an optimal solution for σ:

σd+i = r(i−1)k+1, r(i−1)k+2, . . . , r(i−1)k+k i = 1, 2, . . . ,m.

Hence, the competitive ratio of FIRSTFIT for the given problem is not smaller than min{b, δ}.

Unbounded number of bins available (b =∞)

In this part it is assumed that each target date provides as many bins as necessary. Therefore, each
input instance for the downstream problem bin-packing is feasible. Theorem 3.37 declares for the
current problem setting that FIRSTFIT is a feasible online algorithm with a competitive ratio of δ.
Furthermore, the general algorithm BAL is 4-competitive if the algorithm FFD is used to approximate
the downstream problem. Moreover, 2 is a lower bound on the competitive ratio of any deterministic
online algorithm.
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date d. . . 1 2 3 . . . δ

r1, r3

↓
r2, r4

↓
r5

↓
rδ+2

↓

Figure 3.8: An optimal assignment for the request sequence σ.

Theorem 3.38 ([HKM+05]). Consider the MIN-MAX ONLINETDAP with downstream prob-
lem bin-packing which has an infinite number of bins (b = ∞) available and each request
has δ ∈ {2, 3, . . . } feasible target dates. For this problem there exists no deterministic online al-
gorithm which has competitive ratio less than 2.

Proof. Let (Q,Rδ) be a MIN-MAX ONLINETDAP where Q is a bin-packing problem with an
infinite number of bins (b = ∞) available and δ ∈ {2, 3, . . . }. Moreover, let ALG be an arbitrary
feasible deterministic online algorithm for the given problem and 0 < ε < 1/2. In order to obtain the
lower bound of 2 on the competitive ratio of ALG consider a request sequence σ with the following
first two requests: r1 = (0, ε) and r2 = (0, ε).

If the algorithm ALG assigns the same target date to both requests, then the sequence σ is com-
pleted by the requests:

r3 = (0, 1− ε), r4 = (0, 1− ε), ri = (0, 1) 5 ≤ i ≤ δ + 2.

An optimal assignment for the resultant sequence is shown in Figure 3.8. Therefore, we have
OPT(σ) = 1. Note that every used bin of an optimal assignment is completely filled. This implies
that ALG(σ) ≥ 2 since the same target date is assigned to both requests r1 and r2, s(r1)+s(r2) < 1,
and for all i ∈ {3, 4, . . . , δ + 2} it follows that s(r1) + s(r2) + s(ri) > 1. Therefore, in this setting
the competitive ratio of ALG is not smaller than 2.

Suppose now that the algorithm ALG assigns different target dates to the requests r1 and r2, then
the following additional requests are given:

r3 = (0, 1− 2 ε), ri = (0, 1) 4 ≤ i ≤ δ + 2.

Figure 3.9 depicts an optimal assignment for this sequence σ. Again OPT(σ) = 1 and every used
bin of an optimal assignment is completely filled. This indicates that ALG(σ) ≥ 2 since there exists
no request r of σ such that s(r1) + s(r) = 1. Therefore, if the algorithm behaves like assumed, the
competitive ratio of ALG for the given problem has a lower bound of 2.

Hence, no deterministic online algorithm for the given MIN-MAX ONLINETDAP has a com-
petitive ratio less than 2.
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date d. . . 1 2 3 . . . δ

r1, r2, r3

↓
r4

↓
r5

↓
rδ+2

↓

Figure 3.9: An optimal assignment for the request sequence σ.

Next, the algorithm BAL is analyzed for the MIN-MAX ONLINETDAP with downstream prob-
lem bin-packing.

Theorem 3.39. Consider the same MIN-MAX ONLINETDAP as in the previous theorem. For this
problem setting the algorithm BAL is 4-competitive if FFD is used to approximate the downstream
cost.

Proof. Given a MIN-MAX ONLINETDAP (Q,Rδ) where Q is a bin-packing problem with an infi-
nite number of bins (b =∞) available and δ ∈ {2, 3, . . . }. The crucial observation is the following:
Given a sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ the total size of all requests as-
signed by BAL within the time interval of feasible target dates of request rn is bounded from below
by half the number of bins required in this interval, whenever more than one bin is used in this period
of dates.

This claim can be shown by induction on the number of requests from the given sequence. Ob-
viously, the claim holds when the given sequence contains only one request. Assume that the claim
is true for sequences with (n− 1) requests and consider a sequence σ = r1, r2, . . . , rn of n requests
fromRδ. If after the first (n− 1) requests of σ no bin is used in the time window [t(rn) + 1, T (rn)]
the claim obviously also holds after assigning rn. Suppose that at least one bin is used in the con-
sidered time period of dates. If s(rn) ≥ 1/2 the total size in the considered time interval increases
by at least 1/2 and the number of used bins by at most one. Hence, in this case the claim also holds
after assigning rn. Assume that s(rn) < 1/2. If BAL can assign rn to some date such that FFD on
this date does not increase the number of used bins, we are also done. However, BAL assigns a date
to request rn such that FFD needs to use a new bin at this date, we know that previously the load of
each used bin at the dates t(rn)+1, t(rn)+2, . . . , T (rn) was at least 1−s(rn) > 1/2 which proves
the claim.

Now we can prove that BAL is 4-competitive. Consider a sequence σ = r1, r2, . . . , rn of n ∈ N
requests fromRδ and the assignments σ1, σ2, . . . , σT (rn) computed by the algorithm BAL for σ. We
denote by d the earliest date where FFD uses the most bins, that is,

FFD(σi) < FFD(σd), if 1 ≤ i < d

FFD(σi) ≤ FFD(σd), if d < i ≤ T (rn).
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Let rk be the first request in the sequence σ which forces FFD on date d to the maximum num-
ber of used bins. From the way the algorithm BAL works together with FFD it follows that
BAL[rk] = t(rk) + 1. Let σ̄ be the subsequence of all requests from σ up to rk that have been
assigned by BAL to a target date d′ > t(rk). Note that all requests from the subsequence σ̄ have a
release date which is not smaller than (t(rk) − δ + 1). Therefore, an optimal assignment only can
balance the load of these requests over the time period t(rk)− δ + 2 to T (rk) = t(rk) + δ. Hence,

OPT(σ) ≥ OPT(σ̄) ≥ 1
2 δ − 1

∑
r∈σ̄

s(r) >
1
2 δ

∑
r∈σ̄

s(r)⇔ 2 δ · OPT(σ) >
∑
r∈σ̄

s(r).

We assume that FFD(σd) > 1. Otherwise, there is nothing to show. Each target date in the time
period t(rk)+2 to T (rk) uses FFD(σd)−1 bins if FFD packs the items. These bins in the considered
time window are on average half full (follows from the crucial observation). Hence,

δ · (FFD(σd)− 1) ≤ 2
∑
r∈σ̄

s(r).

Putting this together with the previous argument, it follows

BAL(σ) ≤ FFD(σd) ≤
2
δ

∑
r∈σ̄

s(r) + 1 < 4 · OPT(σ) + 1.

The downcost function of the downstream problem bin-packing is an integral function. Hence,
BAL(σ) ≤ 4 · OPT(σ).

As in the previous sections the situation improves if we consider that all requests have the same
size. In this setting the algorithm BAL with FFD as approximation algorithm for the downstream cost
of bin-packing is 2-competitive. Note that in the case where all items of the downstream problem
bin-packing have the same size it is clear that the algorithm FFD always produces an optimal packing.

Theorem 3.40. Assume that a MIN-MAX ONLINETDAP with downstream problem bin-packing is
given which has an infinite number of bins (b = ∞) available. Moreover, suppose that all requests
have δ ∈ {2, 3, . . . } feasible target dates and the same size s ∈ (0, 1]. For this problem the algorithm
BAL is a 2-competitive online algorithm if FFD is used to compute the downstream cost.

Proof. Let (Q,Rδ) be a MIN-MAX ONLINETDAP where Q is a bin-packing problem with an
infinite number of bins (b = ∞) available, δ ∈ {2, 3, . . . }, and all requests from Rδ have the same
size s ∈ (0, 1]. Consider a sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ. Let rk be
the first request of the given sequence σ such that the maximum downstream cost is attained, that
is, BAL(r1, r2, . . . , rk) = BAL(σ). Note that the optimal packings computed by FFD have at most
one partially filled bin. With respect to such optimal packings each target date of the time period
t(rk) + 1 to T (rk) has BAL(σ) − 1 fully filled bins. Since an optimal solution requires the same
number of bins (δ (BAL(σ) − 1)) to serve the requests assigned from BAL to this time window and
these requests have a release date not earlier than t(rk)− δ + 1, we have

OPT(σ) ≥ 1
2 δ − 1

(δ (BAL(σ)− 1)) >
1
2
(BAL(σ)− 1).
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Hence, BAL(σ) < 2 ·OPT(σ)+1. This gives that BAL is 2-competitive since the cost of bin-packing
is integral.

It follows a lower bound on the competitive ratio of any deterministic online algorithm for the
considered MIN-MAX ONLINETDAP with downstream problem bin-packing.

Theorem 3.41 ([HKM+05]). Consider the same MIN-MAX ONLINETDAP as in the previous the-
orem. For the given problem there exists no deterministic online algorithm which has a competitive
ratio less than 3/2.

Proof. Given a MIN-MAX ONLINETDAP (Q,Rδ) where Q is a bin-packing problem with an
infinite number of bins (b = ∞) available, δ ∈ {2, 3, . . . }, and all requests from Rδ have the
same size s ∈ (0, 1]. Let ALG be an arbitrary deterministic online algorithm for this problem and
k = b1/sc which denotes the maximum number of items a unit-capacity bin can hold. Consider a
sequence σ of requests from Rδ starting with k · δ requests released on date 0. In order for ALG to
achieve a competitive ratio better than 2, this algorithm has to assign these requests in such a way
that no more than one bin is used on each target date. At that point the target dates 1 to δ have one
fully filled bin. Additionally k (δ + 2) requests are released on date 1. These additional requests
need at least δ + 2 bins in the time period [2, δ + 1]. In this period are already δ − 1 bins fully filled
from the previous requests. Hence,

ALG(σ) ≥
⌈

2 δ + 1
δ

⌉
= 3.

Obviously, the optimal cost for the given sequence is 2. Therefore, no deterministic online algorithm
has a competitive ratio less than 3/2.

3.4.3 Downstream Problem Parallel-Machine Scheduling

In this section we analyze the MIN-MAX ONLINETDAP w. r. t. parallel-machine scheduling as
downstream problem and a restricted request setRδ with δ ∈ {2, 3, . . . } ∪ {∞}.

The notation and the downstream problem definition are the same as in the corresponding MIN-
TOTAL ONLINETDAP section (see Section 3.3.3). The downstream problem parallel-machine
scheduling consists of m ∈ N ∪ {∞} parallel and identical machines. The downcost function
determines the minimum makespan to serve a given input instance. A request r is given by the
pair (t(r), p(r)) where p(r) > 0 represents the processing time and t(r) ∈ N0 the release date. The
deadline date is given indirectly by T (r) = t(r)+ δ. A more detailed description of the downstream
problem parallel-machine scheduling is given in Section 3.2.3. Note that any online algorithm which
assigns each request of a given sequence to a feasible target date is already a feasible online algo-
rithm since the downstream problem and therefore the target dates have unlimited capacity. Hence,
the algorithm BAL is a feasible online algorithm for this problem setting.
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Input : m parallel and identical machines and a list L = p1, p2, . . . , pn of n ∈ N jobs
with processing time pi > 0 for i = 1, 2, . . . , n.

Output : A makespan to serve the list L of jobs on m parallel and identical machines where
each job is processed in a non-preemptive way.

1 Reorganize the list L in the way that p1 ≥ p2 ≥ . . . ≥ pn;
2 Go through the reorganized list L and assign the current jobs pi to a least loaded machine;
3 Return the makespan of the computed schedule;

Algorithm 6: LISTDECREASING (LD)

Parameter arbitrary processing time equal processing time

δ m lower bound upper bound lower bound upper bound

N ∪ {∞} ∞ 1 1 1 1
∞ N ∪ {∞} 1 1 1 1

N≥2 N 3/2 3− 1/δ 3/2 2

Table 3.4: Lower bounds on the competitive ratio of deterministic online algorithms as well
as upper bounds for the best known deterministic online algorithms for MIN-MAX

ONLINETDAP w. r. t. parallel-machine scheduling on m parallel and identical ma-
chine and a restricted request setRδ .

Before the results for MIN-MAX ONLINETDAP w. r. t. parallel-machine scheduling are given,
the approximation algorithm LISTDECREASING, or briefly LD, for the downstream problem
parallel-machine scheduling is presented. The approximation algorithm LD assigns the jobs of an
input sequence in order of non-increasing size to a least loaded machine. Algorithm 6 formalizes
the workflow of LD. The following approximation guarantee is shown in [Gra69]. For all input
sequences L = p1, p2, . . . , pn of n ∈ N jobs follows:

LD(L) ≤ 1
3

(
4− 1

m

)
OPT(L),

where m denotes the number of parallel and identical machines and LD(L) and OPT(L) represents
the makespan of the schedule obtained for the sequence L by LD and an optimal solution, respec-
tively.

Only one case of interest occurs when analyzing MIN-MAX ONLINETDAP w. r. t. parallel-
machine scheduling. This case considers that each request has δ ∈ {2, 3, . . . } feasible target dates
and the downstream problem parallel-machine scheduling has a finite number of machines. All other
cases turned out to be trivial. Table 3.4 summarizes the results shown for MIN-MAX ONLINETDAP
w. r. t. parallel-machine scheduling as downstream problem.

We start to present two trivial cases. Suppose that the downstream problem parallel-machine
scheduling has an infinite number of machines (m = ∞) available. In this situation any feasible
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solution of a given request sequence σ yields a cost of maxr∈σ p(r). Therefore, any feasible online
algorithm in this problem setting is 1-competitive.

Theorem 3.42. For the MIN-MAX ONLINETDAP with downstream problem parallel-machine
scheduling which has an infinite number of parallel and identical machines (m = ∞) available
any feasible online algorithm is 1-competitive.

The problem changes also into a trivial problem if all requests have no deadline date (δ = ∞).
In that case an algorithm which assigns to each target date at most one request by respecting the
release dates of each request computes a feasible assignment. This assignment yields a cost of
maxr∈σ p(r) which is also a lower bound on the optimal cost. Therefore, this algorithm is feasible
and 1-competitive.

Theorem 3.43. Consider a MIN-MAX ONLINETDAP with downstream problem parallel-machine
scheduling where each request has no deadline (δ = ∞). The algorithm which assigns at most one
request to each target date by respecting the feasible target dates of each request is 1-competitive
for the given problem.

The following case assumes that the downstream problem provides a finite number of parallel
and identical machines and all requests have δ ∈ {2, 3, . . . } feasible target dates. In this problem
setting no deterministic online algorithm has a competitive ratio less than 3/2. This lower bound
also holds if all request have the same processing time.

Theorem 3.44 ([HKM+05]). Suppose that a MIN-MAX ONLINETDAP with downstream problem
parallel-machine scheduling is given which has m ∈ N parallel and identical machines available.
Moreover, assume that all requests have δ ∈ {2, 3, . . . } feasible target dates and the same process-
ing time p > 0. For this setting there exists no deterministic online algorithm with a competitive
ratio less than 3/2.

Proof. Given a MIN-MAX ONLINETDAP (Q,Rδ) where Q is a parallel-machine scheduling prob-
lem with m ∈ N parallel and identical machines available, δ ∈ {2, 3, . . . }, and all requests fromRδ

have the same processing time p > 0. Let ALG be an arbitrary deterministic online algorithm for the
given problem. Consider a sequence σ of requests fromRδ which starts with m · δ requests released
on date 0. In order for ALG to achieve a competitive ratio better than 2, this algorithm has to serve
the given requests in such a way that no more than m requests are assigned to the same target date.
Otherwise, the competitive ratio of ALG is not smaller than 2. At that point the target dates 1 to δ

have m requests to serve. Additionally, m (δ + 2) requests are released on date 1. These additional
requests require a total processing time of m · p (δ + 2) in time period [2, δ + 1]. In this period
previous requests already require a total processing time of m · p (δ − 1). Hence,

ALG(σ) ≥ m · p (2 δ + 1)
m δ

> 2 p.

It follows that ALG(σ) ≥ 3p since the downstream cost only can take values which are multiples
of p. The optimal cost for the given request sequence is 2p which is achieved by assigning no more
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than 2 · m requests to a joint target date. Therefore, the competitive ratio of ALG is not smaller
than 3/2 for the given MIN-MAX ONLINETDAP.

Remark. The above theorem also could be proved using Theorem 3.41 by transforming the down-
stream problem parallel-machine scheduling problem into a corresponding bin-packing problem as
it is done in proof of Theorem 3.35 on page 48.

The online algorithm BAL is (3− 1/δ)-competitive for the current problem setting if LD is used
as approximation algorithm for the parallel-machine scheduling problem.

Theorem 3.45. Consider a MIN-MAX ONLINETDAP with downstream problem parallel-machine
scheduling which has m ∈ N parallel and identical machines available and each request
has δ ∈ {2, 3, . . . } feasible target dates. For this problem setting the online algorithm BAL is
(3− 1/δ)-competitive if the approximation algorithm LD is used to approximate the downstream
cost.

Proof. Let (Q,Rδ) be a MIN-MAX ONLINETDAP where Q is a parallel-machine scheduling prob-
lem with m ∈ N parallel and identical machines available and δ ∈ {2, 3, . . . }. Consider a request
sequence σ = r1, r2, . . . , rn of n ∈ N requests from Rδ and the assignments σ1, σ2, . . . , σT (rn)

computed by the algorithm BAL for σ. We denote by d the earliest date where LD has the greatest
makespan, that is,

LD(σi) < LD(σd), if 1 ≤ i < d

LD(σi) ≤ LD(σd), if d < i ≤ T (rn).

Let r be the first request in the given sequence which forces LD on target date d to the maximum
makespan. Consider the schedule obtained by BAL before r is released. Moreover, let w denote
the load of a least loaded machine over all feasible target dates of r. Then, the makespan of LD

on date d for the given sequence σ is at most w + p(r). Since all feasible target dates for r have
a load of at least w · m, the total load in this time period is at least w · m · δ + p(r). Any of the
corresponding requests in this time window could not be issued earlier than δ dates before the release
date of request r. Hence, even an optimal offline algorithm OPT obeying feasibility conditions has
at least the following cost for the sequence σ:

OPT(σ) ≥ w m δ + p(r)
(2 δ − 1) m

>
w δ

2 δ − 1
.

Hence, we have:

w <

(
2− 1

δ

)
OPT(σ).

Since OPT(σ) is bounded from below by p(r) we conclude

BAL(σ) ≤ LD(σd) ≤ w + p(r) <

(
2− 1

δ

)
OPT(σ) + OPT(σ) =

(
3− 1

δ

)
OPT(σ).

Therefore, BAL is (3 − 1/δ)-competitive for the given MIN-MAX ONLINETDAP if LD is used to
approximate the downstream problem Q.
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Next, we consider the case where all requests have the same processing time. Note that in
this setting it is clear that the algorithm LD produces an optimal schedule for any input instance.
Moreover, the upper bound on the competitive ratio of BAL can be reduced to 2.

Theorem 3.46. Assume additionally to the previous theorem that all requests have the same pro-
cessing time p > 0. In this case the algorithm BAL is 2-competitive if the algorithm LD is used to
compute the downstream cost.

Proof. Given a MIN-MAX ONLINETDAP (Q,Rδ) where Q is a parallel-machine scheduling prob-
lem with m ∈ N parallel and identical machines available, δ ∈ {2, 3, . . . }, and all requests fromRδ

have the same processing time p > 0. Consider a sequence σ = r1, r2, . . . , rn of n ∈ N requests
from Rδ. Let rk be the first request of the given sequence which causes the maximum makespan,
that is, BAL(r1, r2, . . . , rk) = BAL(σ). Consider the schedule obtained by BAL before rk is released
with respect to the offline optimum and let w denote the load of a least loaded machine over all fea-
sible target dates of r. Since all request have the same processing time p it follows that all machines
in the time period t(rk) + 1 to T (rk) have the same load w before request rk is released. Hence,
BAL(σ) = w + p. Since all feasible target dates for rk have load of at least w ·m, the total load in
this time window is w ·m · δ + p(r). Any of the corresponding requests could not be issued earlier
than δ dates before the release date of request rk. Hence, even an optimal offline algorithm OPT

obeying feasibility conditions has at least the following cost on sequence σ:

OPT(σ) ≥ w m δ + p

(2 δ − 1) m
>

w

2
.

Hence, we have
BAL(σ) = w + p < 2 · OPT(σ) + p.

Since the downcost function of the parallel-machine scheduling only can take values in multiples
of p, it follows BAL(σ) ≤ 2 · OPT(σ).

Remark. Again, the last result also could be proved with help of Theorem 3.40 by transforming
the parallel-machine scheduling problem into a bin-packing problem as we showed in the proof of
Theorem 3.35.
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Approximate the Optimal Value Function
of a Discounted Markov Decision Problem

Locally

This chapter presents results from a joint work with Volker Kaibel, Matthias Peinhardt, Jörg Rambau,
and Andreas Tuchscherer [HKP+05]. In Section 2.2 we introduced standard techniques to compute
for a given discounted Markov Decision Problem (MDP) the optimal value function J∗ and an
optimal policy µ∗. These approaches are often infeasible if the state space is “large”. This chapter
introduces a method to approximate locally for a given state i0 the optimal value J∗(i0) and to find
a (near) optimal control for this state.

The outline of this chapter is as follows. In Section 4.1 we present the idea which is used to
approximate the optimal value function of a discounted Markov decision problem locally. After
that, in Section 4.2 we give the approximation result. Section 4.3 is devoted to further results which
follow from the result presented in the previous section. We derive two algorithms which estimate
the optimal value J∗(i0) for any given state i0 of an MDP in Section 4.4.

4.1 The Idea

Markov decision processes arising in real-life applications usually have a state space whose size is
exponential in the common input parameters of the original problem. The complexity of the standard
techniques introduced in Section 2.2 depends at least linearly on the state space. A reason for this
complexity is that these approaches aim to find the optimal value function and an optimal policy
globally for each state. Therefore, it is usually computationally impossible for these methods to
compute the optimal value function or an optimal policy.

In real-life applications it is often satisfying to find (near) optimal controls for certain states
locally. This observation motivates the approach to approximate for a given state i0 of an MDP
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the optimal value J∗(i0) and find a (near) optimal control for the considered state. In order to
approximate for a given state i0 the optimal value J∗(i0), we must provide an upper bound J(i0)
and a lower bound J(i0) on J∗(i0), that is,

J(i0) ≤ J∗(i0) ≤ J(i0).

On the other hand, often policies are known that behave well in simulation experiments, and one
would like to have a method to estimate the distance of the expected total discounted cost Jµ(i0)
of such a policy µ to the optimal cost J∗(i0) for a given state i0. Because of the complexity for
computing J∗(i0) and Jµ(i0) exactly for a given state i0, we do not only have to approximate the
optimal value. We also have to estimate Jµ(i0) to evaluate the distance between these two values.
Therefore, we have to provide a lower bound J∗(i0) for J∗(i0) and an upper bound Jµ(i0) for Jµ(i0)
since

Jµ(i0)− J∗(i0) ≤ Jµ(i0)− J∗(i0).

Furthermore, the relative distance of these values is also reasonable to estimate. This is also possible
with the above introduced bounds since

Jµ(i0)− J∗(i0)
J∗(i0)

≤ Jµ(i0)− J∗(i0)
J∗(i0)

.

In recent years there has been a significant progress in handling large-scale linear programs. We
aim to develop an approach based on the standard linear programming technique to compute the
optimal value function J∗ and an optimal policy µ∗ (see Section 2.2). The main idea is to modify
the linear program (2.6) (on page 15) in such a way that the resulting linear program is solvable and
its optimal solution approximates the optimal value J∗(i0) for a given state i0 from above or below,
respectively.

4.2 The Approximation Result

This section presents the approximation result of [HKP+05]. Before this result is introduced we
analyze the standard linear programming approach and give a necessary definition concerning a
Markov decision process.

Given an MDP with Markov decision process (S, C, P, cost) and discount factor α ∈ (0, 1), we
consider for any subset Ŝ ⊆ S the following linear program:

max
∑
i∈Ŝ

J(i) (4.1)

subject to J(i) ≤ cost(i, u) + α
∑
j∈Ŝ

pij(u)J(j) ∀i ∈ Ŝ,∀u ∈ C(i).
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Note that in case of Ŝ = S the above linear program is equal to LP (2.6). Let J∗(i) for all i ∈ Ŝ be an
optimal solution of the considered LP (4.1). Then, for each state i ∈ Ŝ there exists a control u ∈ C(i)
with

J∗(i) = cost(i, u) + α
∑
j∈S

pij(u)J∗(j).

That is, for each state i ∈ Ŝ there exists a control u ∈ C(i) such that the constraint corresponding
to state i and control u is tight. Otherwise, there exists a state i ∈ Ŝ such that for all u ∈ C(i) the
corresponding constraints are loose, that is,

J∗(i) < cost(i, u) + α
∑
j∈S

pij(u)J∗(j),

but then the solution J∗ cannot be optimal since the variable J∗(i) can be increased. A control u is
called critical for state i w. r. t. the optimal solution J∗ if the corresponding constraint of LP (4.1) is
tight. Note that in the case of Ŝ = S a critical control is optimal.

Definition 4.1 (r-neighborhood)
Given a Markov decision process (S, C, P, cost) and a state i0 ∈ S. The r-neighborhood S(i0, r) of
state i0 with r ∈ N0 is a subset of states that can be reached from i0 with positive probability within
at most r transitions. That is S(i0, 0) := {i0} and for r > 0 we define

S(i0, r) := S(i0, r − 1) ∪ {j ∈ S | ∃ i ∈ S(i0, r − 1)∃u ∈ C(i) : pij(u) > 0}.

4

Next, the approximation result is presented.

Theorem 4.2 ([HKP+05]). Consider an MDP with discount factor α ∈ (0, 1) and Markov de-
cision process (S, C, P, cost). Assume that, the MDP exhibits for every state at most a constant
number c ∈ N of controls, that is, |C(i)| ≤ c for all i ∈ S. Furthermore, suppose that for each
feasible control there is a positive transition probability for at most a constant number d ∈ N of
destination states, that is,

∀ i ∈ S ∀u ∈ C(i) : |{j ∈ S | pij(u) > 0}| ≤ d.

Let M ∈ R≥0 be an upper bound on the expected stage cost cost(i, u) for all i ∈ S and u ∈ C(i).
Then, for all i0 ∈ S and ε > 0, there exists a set of states Ŝ ⊆ S with the following properties:

(i) |Ŝ| ≤ (cd)
⌈

log
“

ε(1−α)
M

”
/ log(α)

⌉
−1, that is, the number of states in Ŝ does not depend on |S|;

(ii) the function J : Ŝ → R≥0 defined as an optimal solution of the linear program

max
∑
i∈Ŝ

J(i) (4.2)

subject to J(i) ≤ cost(i, u) + α
∑
j∈Ŝ

pij(u)J(j) ∀i ∈ Ŝ,∀u ∈ C(i)

is an ε-close lower bound to J∗ in the given state i0, that is, 0 ≤ J∗(i0)− J(i0) ≤ ε;
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(iii) the function J : Ŝ → R≥0 defined as an optimal solution of the linear program

max
∑
i∈Ŝ

J(i) (4.3)

subject to J(i) ≤ cost(i, u) + α
∑
j∈Ŝ

pij(u)J(j) + α
∑

j∈S\Ŝ

pij(u)
M

1− α
∀i ∈ Ŝ,∀u ∈ C(i)

is an ε-close upper bound to J∗ in the given state i0, that is, 0 ≤ J(i0)− J∗(i0) ≤ ε.

Proof. Consider an MDP with Markov decision process (S, C, P, cost) and discount factor
α ∈ (0, 1) meeting the conditions of the theorem. Moreover let ε > 0, i0 ∈ S, and

r =
⌈

log
(

ε (1− α)
M

)
/ log(α)

⌉
− 1.

The claim is that Ŝ = S(i0, r) ⊆ S satisfies the properties of the theorem.

Proof of Property (i). Since the number of applicable controls for any state i ∈ S and the number
of succeeding states from state i using any control u ∈ C(i) are bounded by c and d, respectively,
we have

|Ŝ| ≤ (cd)r.

Therefore, Ŝ satisfies Property (i) of the theorem.

Proof of Property (ii). Let J∗ be the optimal value function of the given MDP. Therefore, J∗ is
an optimal solution of LP (2.6). Now consider the following linear program:

max
∑
i∈S

J(i) (4.4)

subject to J(i) ≤ cost(i, u) + α
∑
j∈S

pij(u)J(j) ∀i ∈ S,∀u ∈ C(i)

J(i) = 0 ∀i ∈ S \ Ŝ.

Let J be an optimal solution of LP (4.4). Note that J |Ŝ is an optimal solution of LP (4.2) and
J(i) = 0 for all i ∈ S \ Ŝ. Therefore, LP (4.2) is equivalent to LP (4.4). Moreover, LP (4.4) is
derived from LP (2.6) by adding the restriction J(i) = 0 for all i ∈ S \ Ŝ. Therefore, J is a feasible
solution for LP (2.6) and is a lower bound on the optimal objective value of LP (2.6), that is,∑

i∈S

J(i) =
∑
i∈Ŝ

J(i) ≤
∑
i∈S

J∗(i).

Moreover, J(i) ≤ J∗(i) for all i ∈ S since cost(i, u) ≥ 0 for all i ∈ S and u ∈ C(i). In particular,
it follows that 0 ≤ J∗(i0)− J(i0) which proves the first inequality of Property (ii).
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Since J |Ŝ is an optimal solution of LP (4.2), we know that each state i ∈ Ŝ has a critical control.
Therefore, let u : Ŝ → C be a function which maps any state i ∈ Ŝ to a critical control u ∈ C(i)
according to LP (4.2) with optimal solution J |Ŝ . Hence,

J∗(i) ≤ cost(i, u(i)) + α
∑
j∈S

pij(u(i))J∗(j) ∀i ∈ Ŝ

J(i) = cost(i, u(i)) + α
∑
j∈S

pij(u(i))J(j) ∀i ∈ Ŝ,

which gives

J∗(i)− J(i) ≤ α
∑
j∈S

pij(u(i))(J∗(j)− J(j)) ∀i ∈ Ŝ. (4.5)

By successively applying (4.5) onto the difference J∗(j) − J(j) we can show the claimed ap-
proximation. Note that this is only possible for j ∈ Ŝ = S(i0, r). This leads to the following
approximation:

J∗(i0)− J(i0) ≤ α
∑
i1∈S

pi0i1(u(i0))(J∗(i1)− J(i1))

= α
∑
i1∈Ŝ

pi0i1(u(i0))(J∗(i1)− J(i1))

≤ α
∑
i1∈Ŝ

pi0i1(u(i0))

α
∑
i2∈S

pi1i2(u(i1))(J∗(i2)− J(i2))


= α2

∑
i1∈Ŝ

pi0i1(u(i0))
∑
i2∈Ŝ

pi1i2(u(i1))(J∗(i2)− J(i2))

≤ αr+1
∑
i1∈Ŝ

pi0i1(u(i0)) · · ·
∑

ir+1∈Ŝ

pirir+1(u(ir))(J∗(ir+1)− J(ir+1)).

From Inequality (2.1) on page 12 follows in particular that J∗(ir+1) ≤ M/(1 − α). Furthermore,
J(ir+1) = 0 since ir+1 ∈ S \ Ŝ. Therefore,

J∗(i0)− J(i0) ≤ αr+1
∑
i1∈Ŝ

pi0i1(u(i0))︸ ︷︷ ︸
=1

. . .
∑

ir+1∈Ŝ

pirir+1(u(ir))

︸ ︷︷ ︸
=1

· M

(1− α)

= αr+1 · M

(1− α)

= α

⌈
log

“
ε(1−α)

M

”
/ log(α)

⌉
· M

(1− α)

≤ α
log

“
ε(1−α)

M

”
/ log(α) · M

(1− α)

= ε.
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Hence, Ŝ satisfies Property (ii) since 0 ≤ J∗(i0)− J(i0) ≤ ε.

Property (iii) is proved in the same way as Property (ii). Consider the following linear program:

max
∑
i∈S

J(i) (4.6)

subject to J(i) ≤ cost(i, u) + α
∑
j∈S

pij(u)J(j) ∀i ∈ Ŝ,∀u ∈ C(i)

J(i) ≤ M

1− α
∀i ∈ S \ Ŝ.

Let J be an optimal solution of LP (4.6). Note that J(i) = M/(1− α) for all i ∈ S \ Ŝ. Therefore,
J |Ŝ is an optimal solution of LP (4.3). Hence, LP (4.6) is equivalent to LP (4.3). Obviously,
LP (4.6) is a relaxation of LP (2.6) since LP (2.6) is derived from LP (4.6) with additional restrictions.
Therefore, the optimal objective value of LP (4.6) is an upper bound on the optimal objective value
of LP (2.6), that is, ∑

i∈S

J(i) ≥
∑
i∈S

J∗(i).

Moreover, J(i) ≥ J∗(i) for all i ∈ S since cost(i, u) ≥ 0 for all i ∈ S and u ∈ C(i). In particular,
0 ≤ J(i0) − J∗(i0) which proves the first inequality of Property (iii). Let µ∗ be an optimal policy
for the given MDP. Therefore,

J∗(i) = cost(i, µ∗(i)) + α
∑
j∈S

pij(µ∗(i))J∗(j) ∀i ∈ Ŝ

J(i) ≤ cost(i, µ∗(i)) + α
∑
j∈S

pij(µ∗(i))J(j) ∀i ∈ Ŝ,

which gives

J(i)− J∗(i) ≤ α
∑
j∈S

pij(µ∗(i))(J(j)− J∗(j)) ∀i ∈ Ŝ.

Following the same arguments as above for proving the second inequality of Property (ii) gives:

J(i0)− J∗(i0) ≤ ε.

Hence, Ŝ satisfies Property (iii) since 0 ≤ J(i0)− J∗(i0) ≤ ε.

This showed that Ŝ = S(i0, r) satisfies the properties of the theorem.

Remark 4.3. LP (4.2) and LP (4.3) for computing a lower bound and an upper bound, respectively,
have unique optimal solutions. To see that, let J∗1 (i) for all i ∈ Ŝ and J∗2 (i) for all i ∈ Ŝ be two
optimal solutions of LP (4.2). Moreover, let

J∗(i) = max{J∗1 (i), J∗2 (i)}
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for all i ∈ Ŝ. The claim is that J∗ is a feasible solution of LP (4.2). This follows since the discount
factor α is greater than zero, pij ≥ 0 for all i, j ∈ Ŝ, the cost cost(i, u) ≥ 0 for all i ∈ Ŝ and
u ∈ C(i), and

J∗(i) = max{J∗1 (i), J∗2 (i)}

≤ max{cost(i, u) + α
∑
j∈Ŝ

pij(u)J∗1 (j), cost(i, u) + α
∑
j∈Ŝ

pij(u)J∗2 (j)}

≤ cost(i, u) + α
∑
j∈Ŝ

pij(u) ·max{J∗1 (j), J∗2 (j)}

= cost(i, u) + α
∑
j∈Ŝ

pij(u)J∗(j)

for all i ∈ Ŝ and u ∈ C(i). Moreover, J∗ is obviously also an optimal solution of LP (4.2), that is,∑
i∈Ŝ

J∗1 (i) =
∑
i∈Ŝ

J∗(i) =
∑
i∈Ŝ

J∗2 (i).

Hence, J∗1 ≡ J∗ ≡ J∗2 which shows that LP (4.2) has a unique optimal solution. In the same manner
it follows that LP (4.3) has a unique optimal solution.

4.3 Further Results

The above theorem gives an approximation result for estimating the optimal value J∗(i0) for a given
state i0 of an MDP. In Section 4.1 we mentioned that it is also of interest to evaluate known policies.
In doing so, we have to approximate both, the optimal value J∗(i0) and the expected total discounted
cost Jµ(i0) for a given policy µ. Furthermore, it turned out that it is also desirable to evaluate a single
control (not the entire policy) in given state i0 to estimate the cost increase for using in this state a
control u ∈ C(i0) instead of an optimal control. This section shows that the approximation result of
Theorem 4.2 carries over for these problems.

4.3.1 Evaluating Known Policies

Consider an MDP with Markov decision process (S, C, P, cost) and discount factor α ∈ (0, 1). For
a given policy µ, the expected total discounted cost function Jµ : S → R≥0 can be computed as the
optimal value function of a modified MDP. The only modification we have to make from the original
MDP is that the feasible controls of each state are restricted to the control chosen by the policy µ,
that is, C ′(i) = {µ(i)} for all i ∈ S. With that modification it is possible to compute the expected
total discounted cost function Jµ as the optimal value function of the modified MDP. Hence, the
approximation result of Theorem 4.2 carries over for approximating the expected total discounted
cost Jµ(i0) for a given policy µ and state i0 ∈ S. Note that in this case the number of applicable
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controls in any state is one. Therefore, the set of necessary states to estimate the expected total
discounted cost Jµ(i0) is “smaller” than in the case of approximation the optimal value. Moreover,
for each state there exists only one side constraint in the corresponding linear programs.

From the above observation follows, that it is possible to estimate the relative and absolute cost
increase in state i0 ∈ S when using the policy µ instead of an optimal policy, that are,

Jµ(i0)− J∗(i0)
J∗(i0)

and Jµ(i0)− J∗(i0).

4.3.2 Evaluating Single Controls

Given an MDP with Markov decision process (S, C, P, cost) and discount factor α ∈ (0.1). Let
i0 ∈ S be a state of the MDP for which we want to evaluate a control u ∈ C(i0). This means, we
want to know the cost increase for using in state i0 control u instead of an optimal control. Therefore,
the remaining decisions are made w. r. t. an optimal policy. This cost can be determine as the optimal
value of state i0 of a modified MDP. We only have to restrict the set of feasible controls for state i0
to the control u, that means, C ′(i0) = {u}. The optimal value J∗(i0) of the modified MDP gives
the expected cost of interest. We denote this cost by Ju(i0).

It is obviously that the approximation result of Theorem 4.2 also holds for this expected cost.
Therefore, the relative and absolute cost increase in state i0 when using the control u instead of an
optimal control can be estimated, that are,

Ju(i0)− J∗(i0)
J∗(i0)

and Ju(i0)− J∗(i0).

Note that if a control u ∈ C(i0) is optimal for state i0, then it follows that Ju(i0) = J∗(i0).

4.4 Two Algorithms

Section 4.2 states an approximation result for the optimal value J∗(i0) for a state i0 of an MDP
which satisfies some properties. This section describes two algorithms for approximating J∗(i0).
We consider in this section only MDPs which satisfy the assumption of Theorem 4.2.

4.4.1 The Algorithm APPROXBYSTATICNEIGHBORHOOD (ASN)

Consider an MDP with Markov decision process (S, C, P, cost) and discount factor α ∈ (0, 1).
This section introduces the algorithm APPROXBYSTATICNEIGHBORHOOD (ASN) which yields
for a given ε > 0 an ε-close approximation for a state i0 ∈ S on optimal value J∗(i0). This means,
the algorithm returns a lower bound and an upper bound which differ by at most ε.
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Input : An MDP with Markov decision process (S, C, P, cost) and discount factor
α ∈ (0, 1), a state i0 ∈ S, and ε > 0.

Output : A lower bound J(i0) and an upper bound J(i0) on the optimal value J∗(i0) which
differ by at most ε, that is, J(i0)− J(i0) ≤ ε.

1 r ←
⌈

log
(

ε(1−α)
2 M

)
/ log(α)

⌉
− 1;

2 initialize lower bound LP (4.2) with Ŝ = S(i0, r) and solve it;
3 J ← optimal solution of lower bound LP (4.2);
4 initialize upper bound LP (4.3) with Ŝ = S(i0, r) and solve it;
5 J ← optimal solution of upper bound LP (4.3);
6 return J(i0), J(i0);

Algorithm 7: APPROXBYSTATICNEIGHBORHOOD (ASN)

The proof of Theorem 4.2 showed that for a certain r ∈ N the r-neighborhood of i0 defines a
subset of S such that an optimal solution of LP 4.2 (LP 4.3) is an ε-close lower bound (upper bound)
on the optimal value function J∗ in state i0. The algorithm ASN is based on this fixed neighborhood.

The algorithm ASN needs as input an MDP, the state i0 of interest, and an ε > 0. Since ASN

wants to return a lower bound and an upper bound which differ by at most ε, the necessary
set S(i0, r) ⊆ S has to be chosen to ensure this approximation guarantee. Therefore, r ∈ N has to
be adjusted to

r =
⌈

log
(

ε(1− α)
2 M

)
/ log(α)

⌉
− 1,

which differs slightly to the used r in the proof of Theorem 4.2. With the computed subset S(i0, r)
the algorithm initializes LP (4.2) and LP (4.3) and solves them. Let J and J be an optimal solution
of LP (4.2) and LP (4.3), respectively. ASN returns J(i0) as lower bound and J(i0) as upper bound
on the optimal value J∗(i0). Algorithm 7 summarizes this method for approximating the optimal
value J∗(i0).

For the linear programs used by ASN follows from Theorem 4.2 that J∗(i0)− J(i0) ≤ ε/2 and
J(i0)−J∗(i0) ≤ ε/2 where J is an optimal solution of LP (4.2), J is an optimal solution of LP (4.3),
and J∗ is the optimal value function of the considered MDP. Therefore, J(i0) − J(i0) ≤ ε which
proves the correctness of the algorithm ASN.

Experimental results showed that for particular applications the set S(i0, r) is already pretty
large for reasonable ε and α and that the computed bounds J(i0) and J(i0) are already much closer
than ε (see Appendix C.1).
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4.4.2 The Algorithm APPROXBYDYNAMICNEIGHBORHOOD (ADN)

This section introduces the algorithm APPROXBYDYNAMICNEIGHBORHOOD (ADN) which uses
the technique of column generation to approximate the optimal value J∗(i0) for a given state i0 of
an MDP. For more details about column generation see [LD05, Wil01].

Consider an MDP with Markov decision process (S, C, P, cost) and discount factor α ∈ (0, 1).
Let i0 ∈ S be the state whose optimal value J∗(i0) we want to estimate. The idea of this algorithm
is to start with a “small” set Ŝ ⊆ S which is used to initialize the linear programs to compute a
lower bound and an upper bound on J∗(i0). After that, states are added successively to the set Ŝ

until the rearranged linear programs yield a lower bound and an upper bound which achieve the
desired approximation. Therefore, the neighborhood of state i0 grows dynamically. Since we are
only interested in J∗(i0) and not in J∗(i) for any other state i ∈ S with i 6= i0, we want to extend the
set Ŝ with states that force the approximation values for J∗(i0) to converge fast. To reach this goal
we use to following linear program to compute a lower bound on the optimal value and to obtain
new states:

max J(i0) (4.7)

subject to J(i) ≤ cost(i, u) + α
∑
j∈Ŝ

pij(u)J(j) ∀i ∈ Ŝ,∀u ∈ C(i)

J(i) ≥ 0 ∀i ∈ Ŝ.

The objective value of this linear program is equal to J(i0) where J is the optimal solution of the
corresponding LP (4.2) used in Theorem 4.2 to determine a lower bound on the optimal value J∗(i0).
This can be proved in the same way as Remark 4.3.

In each step of the column generation algorithm we have to solve a pricing problem which selects
a state i ∈ S \ Ŝ which is added to the set Ŝ. To formulate the pricing problem we first state the dual
linear program to LP (4.7). For all i ∈ Ŝ and u ∈ C(i) we define for the corresponding constraint
of LP (4.7) the dual variable π(i, u). This gives the dual linear program to LP (4.7):

min
∑
i∈Ŝ

∑
u∈C(i)

cost(i, u) π(i, u) (4.8)

subject to
∑

u∈C(i0)

π(i0, u) ≥ α
∑
i∈Ŝ

∑
u∈C(i)

pii0(u) π(i, u) + 1

∑
u∈C(j)

π(j, u) ≥ α
∑
i∈Ŝ

∑
u∈C(i)

pij(u) π(i, u) ∀j ∈ Ŝ \ {i0}

π(i, u) ≥ 0 ∀i ∈ Ŝ,∀u ∈ C(i).
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Input : An MDP with Markov decision process (S, C, P, cost) and discount factor
α ∈ (0, 1), a state i0 ∈ S, and ε > 0.

Output : A lower bound J(i0) and an upper bound J(i0) on the optimal value J∗(i0) which
differ by at most ε, that is, J(i0)− J(i0) ≤ ε.

1 Ŝ ← {i0} ;
2 SC ← S(i0, 1) \ {i0};

repeat
3 initialize lower bound LP (4.7) with Ŝ and solve it;
4 J ← optimal solution of lower bound LP (4.7);
5 initialize upper bound LP (4.3) with Ŝ and solve it;
6 J ← optimal solution of upper bound LP (4.3);

if the reduced costs for all states in SC are not positive then
// in this case J(i0) = J∗(i0);

7 return J(i0);
8 j ← a state of SC with maximum reduced cost w. r. t. LP (4.7) and J ;
9 Ŝ ← Ŝ ∪ {j};

10 SC ← SC ∪ S(j, 1) \ Ŝ;

until J(i0)− J(i0) ≤ ε;
11 return J(i0), J(i0);

Algorithm 8: APPROXBYDYNAMICNEIGHBORHOOD (ADN)

From the theory of linear programming follows that if for all i ∈ S \ Ŝ the reduced costs are
not positive, then the objective value of the current LP (4.7) is equal to the optimal value J∗(i0).
Moreover, a states j ∈ S \ Ŝ is only of interest to be added to the set Ŝ if this state has positive
reduced cost. From the dual LP (4.8) we see that the reduced cost of a state j ∈ S \ Ŝ is

α
∑
i∈Ŝ

∑
u∈C(i)

pij(u) π∗(i, u),

where π∗ is an optimal solution of the dual linear program. Note that these costs are zero for all states
in S \ Ŝ which are not reachable within one transition from a state of Ŝ since the corresponding
transition probabilities are zero. Therefore, we only have to consider states as candidates to be
added into the set Ŝ which are reachable with one transition with positive probability. Therefore, the
candidates are

SC = {j ∈ S \ Ŝ | ∃ i ∈ Ŝ ∃u ∈ C(i) : pij(u) > 0}.

The algorithm ADN has to check if there exists a state in SC which has positive reduced cost. If this
is not the case, then the algorithm can stop and has found the optimal value J∗(i0). Otherwise, a
state j from SC with maximum reduced cost is added to the set Ŝ. Algorithm 8 specifies this method
to approximate the optimal value J∗(i0). Obviously, this algorithm works correctly.





5

Computational Results for
PACKTOGETHERORDELAY

and
PACKFIRSTORDELAY

In Section 3.3 and Section 3.4 we used competitive analysis to analyze instantiations of ONLINE-
TDAPs. In the case of MIN-TOTAL ONLINETDAPs we considered the general online algorithm
PACKTOGETHERORDELAY (PTD) which turned out to be competitive for specific problem settings.
Furthermore, we proposed the online algorithm PACKFIRSTORDELAY (PFD) which seems to be
even more promising than PTD. However, it was not possible to prove any satisfying result for
the competitive ratio of PFD. In this chapter we analyze these two algorithms concerning their
average case behavior for associated Markov decision process formulations. Therefore, we use the
approach introduced in the previous chapter to approximate the expected costs for both algorithms.
The computational results were obtained using a self-developed approximation tool.

This chapter is organized as follows. In Section 5.1 we briefly introduce the used approximation
tool. In Section 5.2 we describe the problem setting of MIN-TOTAL ONLINETDAPs used to com-
pare the algorithms PTD and PFD. Moreover, we specify the stochastic assumptions on which the
average case analysis for these algorithms is based. For the considered problems in Section 5.3 we
give a model as Markov decision process since the used approach is based on an MDP. Finally, in
Section 5.4 we state and analyze computational results for the two algorithms PTD and PFD applied
to the associated Markov decision processes of the considered problem settings.

5.1 Features of the Used Approximation Tool

This section briefly describes the features of the self-developed approximation tool. This tool
was developed together with Andreas Tuchscherer and is based on the algorithm ADN (Algo-
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rithm 8), introduced in the previous chapter. It accepts as input an MDP with Markov decision
process (S, C, P, cost) and discount factor α and has the following three main features:

1. It can be used to approximate for a given state i0 ∈ S the optimal value J∗(i0) for a desired
approximation guarantee of ε > 0. Therefore, this tool returns a lower and an upper bound
on J∗(i0) which differ by at most ε;

2. If additionally to a state i0 ∈ S a policy µ is given, then this tool can estimate the expected
total discounted cost Jµ(i0) until a certain accuracy ε > 0 is reached. Therefore, a lower and
an upper bound on Jµ(i0) is returned which differ by at most ε;

3. It is also possible to estimate for a state i0 ∈ S the expected total discounted cost Ju(i0) for
a certain control u ∈ C(i0) (for a definition of Ju(i0) see Section 4.3.2). The approximation
tool returns in this case a lower and an upper bound on Ju(i0) which differ by at most ε > 0.

The approximation tool uses linear programs to compute the lower and upper bounds on the expected
costs of interest. In particular, this tool uses the technique of column generation to obtain reasonable
states (for more details see Section 4.4.2). After for a state i0 any of the three expected costs is
estimated, the generated state by the technique of column generation can be useful to build the
starting linear programs for approximating the expected cost for any successor state of i0. This
is the case since the obtained states in the previous approximation phase are often also of specific
interest for approximating the expected cost for any successor state of i0. The approximation tool
exploits this fact in the case where one of the expected costs has to be estimated for a sample path
of states. This gives often a significant speed up compared to approximate the expected cost for any
state of the sample path from scratch.

All these features are used to analyze the algorithms PTD and PFD applied to the associated
Markov decision processes of the MIN-TOTAL ONLINETDAPs introduced in the next section.

5.2 Considered MIN-TOTAL ONLINETDAPs

In this chapter we report computational results for two MIN-TOTAL ONLINETDAPs. The first one
is a MIN-TOTAL ONLINETDAP with downstream bin-packing. The second one is a MIN-TOTAL

ONLINETDAP w. r. t. parallel machine scheduling as downstream problem. For both problems we
only consider a restricted request set, that is, all request have δ ∈ N feasible target dates. This section
introduces these two problems and the considered stochastic assumptions which determine the prob-
abilities for future requests. This allows to perform an average case analysis for the algorithms PTD

and PFD w. r. t. these stochastic assumptions.
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MIN-TOTAL ONLINETDAP w. r. t. bin-packing

Section 3.3.2 showed that the problem setting MIN-TOTAL ONLINETDAP w. r. t. bin-packing and
a restricted request set only has one setting which is reasonable for comparing both algorithms.
This is the setting where the downstream problem bin-packing provides an infinite number of bins
(b =∞) on each target date and all requests have δ ∈ {2, 3, . . . } feasible target dates (see Table 3.1
on page 30). With that knowledge we consider a MIN-TOTAL ONLINETDAP with downstream bin-
packing which has an infinite number of bins (b =∞) with bin-capacity 5 available and a restricted
request set

Rδ = {(t(r), T (r), s(r)) | t(r) ∈ N0 ∧ T (r) = t(r) + δ ∧ s(r) ∈ {1, 2}},

where δ ∈ {2, 3, . . . }. Note that for a request r ∈ Rδ the release date of r is given by t(r), the
deadline date is T (r), and s(r) is the size of this request.

MIN-TOTAL ONLINETDAP w. r. t. parallel-machine scheduling

In the case of MIN-TOTAL ONLINETDAP w. r. t. parallel-machine scheduling and a restricted re-
quest set, Table 3.2 (on page 43) states that there is only one problem setting which is suitable for
analyzing the average case behavior of the two algorithms. This setting assumes that all requests
have δ ∈ {2, 3, . . . } feasible target dates and the downstream problem parallel-machine scheduling
has more than one machine available. Therefore, we consider a MIN-TOTAL ONLINETDAP with
downstream parallel-machine scheduling which has 2 parallel and identical machines and a restricted
request set

Rδ = {(t(r), T (r), p(r)) | t(r) ∈ N0 ∧ T (r) = t(r) + δ ∧ p(r) ∈ {1, 2}},

where δ ∈ {2, 3, . . . }. Note that this request set is equal to the one in the last paragraph. However,
a request r ∈ Rδ has a processing time p(r) instead of a size.

Stochastic Assumptions

Since we want to analyze the average case behavior of the algorithms PTD and PFD, we have to make
stochastic assumptions. These assumptions determine the possibilities of future requests. Thereby,
we have to ensure that the next request has a release date which is not smaller than that of the
previously processed one. Otherwise, the generated sequence of requests is not reasonable for these
problems. To ensure this we define a probability for the release date of the next request and a
probability for the size or processing time of the next request. Since both problems have the same
request setRδ, we are using the same stochastic assumptions for them.

We assume that on each date at least one request is released but no more than 6. Therefore, we
give a probability that a time shift arises. This means, if this is the case, the next request has a release
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date one greater than the just assigned one. Otherwise, the new request has the same release date as
the previously processed one. The time shift probability depends on the number of requests released
after the last shift. This probability is given by the function pS : {1, 2, . . . , 6} → [0, 1] with

pS(k) =


0.2, if k = 1
2k−1
10 , if 2 ≤ k ≤ 5

1, if k = 6.

The size or processing time of the next request is generated according to the uniform distribution
which is given by the following function

pD : {1, 2} → [0, 1], i 7→ 0.5.

These two probabilities define the stochastic assumptions we consider. For example, suppose
that r ∈ Rδ is the k-th (k ∈ {1, 2, . . . , 6}) request after the last time shift, then there are at most
four possible requests ofRδ which can appear with a positive probability. These requests are

r1 = (t(r), T (r), 1), r2 = (t(r), T (r), 2),

r3 = (t(r) + 1, T (r) + 1, 1), and r4 = (t(r) + 1, T (r) + 1, 2).

The probabilities that these requests arise are given by

p(r1) = p(r2) = 0.5 · (1− pS(k)), and p(r3) = p(r4) = 0.5 · pS(k).

Note that in the case of k = 6 request r1 and request r2 have probability zero to occur as next request
since the probability that a time shift arises in this case is one. Moreover, for all k ∈ {1, 2, . . . , 6}
follows

p(r1) + p(r2) + p(r3) + p(r4) = 1.

These stochastic assumptions ensure that reasonable request sequences are generated.

5.3 Markov Decision Process Model

This section describes briefly how the considered MIN-TOTAL ONLINETDAPs with the given
stochastic assumptions are modeled as a Markov decision process. For both downstream problems
the resulting Markov decision processes are similar. They only differ in the cost functions.

The parameters of interest for the following formulation are the given restricted request set Rδ

and the stochastic assumptions. The main part of the formulation as a Markov decision pro-
cess (S, C, P, cost) is to define a suitable state space S. By modeling this space we have to be
aware of the information a state has to provide for specifying the transition probability matrix P and
the cost function cost. A state of the state space S includes the following information:
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1. the number of released requests k ∈ {1, 2, . . . , 6} after the last time shift;

2. a demand d ∈ {1, 2} which is either a size or a processing time depending on the downstream
problem;

3. and δ slot assignments each of which specifies the assignment of some target date and is given
by a pair of integers (d1, d2) where d1 and d2 specify the number of assigned requests with
demand 1 and 2, respectively.

We now define the other objects of the resulting Markov decision process which shows why a state
has to contain these information. The control set is C = {1, 2, . . . , δ} where a control u ∈ C

determines the slot to use for the current request demand. The transition probability matrix P has to
reflect the considered stochastic assumptions. These assumptions depend on the number of requests
released on the same date which explains why a state has to include the number of released requests k

after the last time shift. The cost structure of the resulting Markov decision process has to reflect
the overall objective of a MIN-TOTAL ONLINETDAP. If the cost function cost returns the cost
increase w. r. t. the downstream problem after a certain request demand is assigned, then the sum of
all cost increases equals the overall objective of a MIN-TOTAL ONLINETDAP. Since each request
has δ feasible target dates and therefore, δ feasible controls, δ slot assignments are necessary to
compute the cost increase after an arbitrary control u ∈ C is used. This observation explains why a
state has to contain δ slot assignments besides the request demand d.

Note that after a time shift occurs the first slot assignment is not relevant anymore for future
assignments. Furthermore, a new target date has to be taken into account where no request has yet
been assigned to. This date is represented by a new empty slot assignment. Moreover, the release
date and the deadline date of a request does not appear as a state information. These dates are
indirectly given through the δ slot assignments. It follows a small example, which illustrates the
described construction of the Markov decision process.

Example 5.1. Consider a MIN-TOTAL ONLINETDAP with downstream parallel-machine schedul-
ing which has 2 parallel and identical machines available and a restricted request set

R2 = {(t(r), T (r), p(r)) | t(r) ∈ N0 ∧ T (r) = T (r) + 2 ∧ p(r) = 1}.

Furthermore, we assume that at least one and at most two requests are released at the same target
date. Hence, we have k ∈ {1, 2}, d = 1, and δ = 2. Table 5.1 presents all states of the resulting
state space S and also for each state i ∈ S the possible successor states.

Let σ = r1, r2, . . . , r6 be a randomly generated (w. r. t. the considered stochastic assumptions)
sequence of requests fromR2 with

r1 = (1, 3, 1) = r2 = (1, 3, 1), r3 = (2, 4, 1), r4 = r5 = (3, 5, 1), and r6 = (4, 6, 1).

The assignment and incurred cost of the algorithm PTD for σ are

PTD[σ] = (3, 3, 3, 5, 5, 5) and PTD(σ) = 4.
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State Request r Assignment successor states for

Index k p(r) Slot 1 Slot 2 Control 1 Control 2

1 1 1 0 0 1, 5 2, 4
2 1 1 1 0 1, 7 2, 6
3 1 1 2 0 1, 9 2, 8
4 2 1 0 1 2 3
5 2 1 1 0 1 2
6 2 1 1 1 2 3
7 2 1 2 0 1 2
8 2 1 2 1 2 3
9 2 1 3 0 1 2

Table 5.1: All states of S if δ = 2, each request has a processing time of 1, and on each target
date at least one and at most two requests are released. Note that k denotes the
number of requests already released on the current date and a slot assignment is
represented only by one integer since there is only one possible processing time.

The associated Markov decision process starts in the state with state index 1 since after the release
of request r1 the feasible target dates for this request are empty and this request is the first released
on this date. The algorithm PTD selects for request r1 the deadline date T (r1) = 3 which is con-
trol 2 in the corresponding Markov decision processes. The next request is also released at date 1.
Therefore, the system evolves after applying control 2 in the starting state to the state with state in-
dex 4. Furthermore, this leads to a cost increase of one. PTD selects in this situation again control 2.
The process ends after applying this control in the state with state index 3 since a time shift occurs.
For this control the cost function equals zero. Processing the whole sequences σ leads to following
sample path of visited states:

1
2;1−→ 4

2;0−→ 3
1;1−→ 1

2;1−→ 4
2;0−→ 3

1;1−→ i.

The first number over each arrow defines the chosen control and the second number determines the
amount of cost increase. Note that after processing the last request it is undetermined in which state i

the associated Markov decision process ends since the outcome of the stochastic process is unknown.
Furthermore, the sum of all cost increases is 4 which matches the cost of the algorithm PTD in the
corresponding MIN-TOTAL ONLINETDAP. 4

Before we present the computational results we illustrate how many states a Markov decision
process has which results from the above formulation. The number of states depends on the number
of feasible target dates δ, the maximum number of request which can be released on the same
target date k (in our case 6), and the number of different demands. Table 5.2 shows the number of
states of a Markov decision process resulting from the above formulation for δ ∈ {1, 2, 3, 4, 5, 6},
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k \ δ 1 2 3 4 5 6

6 42 4 ·103 230 ·103 16 ·106 1 ·109 100 ·109

7 56 8 ·103 590 ·103 55 ·106 5 ·109 577 ·109

8 72 14 ·103 1, 353 ·103 160 ·106 20 ·109 2, 700 ·109

9 90 25 ·103 2, 841 ·103 417 ·106 65 ·109 10, 712 ·109

10 110 39 ·103 5, 552 ·103 988 ·106 187 ·109 37, 207 ·109

Table 5.2: Number of states of a Markov decision process which results from the formulation
described in Section 5.3. This number depends on the number of feasible target
dates δ, the maximal number of request released on the same date k, and number of
different demands which equals 2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t(ri) 1 1 2 2 2 3 3 3 3 4 4 5 5 5 6 6 6 6 7 7
d(ri) 1 1 1 1 2 1 1 2 1 1 1 1 2 1 2 2 1 1 1 2

Table 5.3: The considered request sequence σ = r1, r2, . . . , r20 for the computational results.
The deadline date for each request r is T (r) = t(r) + 3.

k ∈ {6, 7, 8, 9, 10}, and 2 different request demands which are either a size or a processing time of
requests depending on the downstream problem.

This shows that already small examples lead to Markov decision processes which have a huge
number of states.

5.4 Results

Finally, we present the computational results for the algorithms PTD and PFD applied to the asso-
ciated Markov decision processes of the problems described in Section 5.2 where δ = 3 is chosen.
From now on we use the term policy instead of the term algorithm.

We made for both policies the same computations to obtain results which are comparable.
Therefore, we generated w. r. t. the considered stochastic assumptions (see Section 5.2) a se-
quence σ = r1, r2, . . . r20 of requests fromRδ. This sequence is stated in Table 5.3 and is considered
for all computations.

The request sequence σ, the considered policy µ ∈ {PTD, PFD}, and the considered downstream
problem define a sample path of 20 states. For each state i0 of this sample path we are interested in
the relative and absolute errors

Jµ(i0)− J∗(i0)
J∗(i0)

and Jµ(i0)− J∗(i0)
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and
Ju(i0)− J∗(i0)

J∗(i0)
and Ju(i0)− J∗(i0)

where u = µ(i0) (for the definition of Ju(i0) see Section 4.3.2). Since in general it is computational
impossible to compute the expected total discounted costs J∗(i0), Jµ(i0), and Ju(i0), we use the
approach introduced in Chapter 4 to estimate these costs choosing a discount factor α ∈ {0.5, 0.7}.
We compute a lower and an upper bound on each of these values. A lower bound is denoted with a
line under the corresponding symbol and an upper bound with a line over the corresponding symbol.
With these bounds the relative and absolute errors of interest can be approximated. Furthermore,
sometimes it is possible to tell if a policy µ is not optimal. This is the case if a state i0 exists with

Jµ(i0) > J
∗(i0). (5.1)

Note that this does not mean that the control choice of µ in state i0 is not optimal. To tell this it has
to be shown that

Ju(i0) > J
∗(i0) (5.2)

where u = µ(i0).

We are further interested to know if the control choice of a policy is optimal for the explored
states. Since in general it is computational impossible to compute the optimal value function J∗,
Bellman’s equation (2.3) does not help to decide whether a certain control is optimal or not. How-
ever, if for a state i0 and a control u ∈ C(i0) follows that

Ju(i0) ≤ Ju′(i0) (5.3)

for all u′ ∈ C(i0)\{u}, then the control u is optimal for state i0. Therefore, we also approximate for
any state i0 of the considered sample path the expected total discounted cost Ju(i0) for all u ∈ C(i0).

We estimate all values of interest until the lower bound and the upper bound differ by at most 1%,
this is, until the following inequality is satisfied:

Lower Bound + 0.01 · Lower Bound ≥ Upper Bound.

Before the computational results are finally presented for each downstream problem separately,
we want to give a general explanation for the following figures. Each figure includes two pictures:
one showing the results for the discount factor α = 0.5, and the other for the discount factor α = 0.7.
Each picture presents for each state i0 of the current sample path, policy µ, and α the estimated
bounds on the expected costs J∗(i0) (black), Jµ(i0) (red), and Ju(i0) (blue) with u = µ(i0). This
means, for each pair of bounds we draw a filled rectangle (in the corresponding color) where the
“upper” side states the computed upper bound and the “lower” side the computed lower bound.
Tables of the actual values of the computed bounds are presented in Appendix C.2. Since we also
estimated for each state i0 the expected cost Ju(i0) for all u ∈ C(i0), it is often possible to answer
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the question: Is the control chosen by µ optimal? This answer is also shown in each picture. The
computed bounds which are necessary to answer the optimality question are given in tables shown
in Appendix C.3. Moreover, the answer “Yes” is given if the control chosen by the policy satisfies
Inequality (5.3). This question is answered with “No” if the control selected by the policy meets
Inequality (5.2). In the case that the selected control by the policy neither satisfies Inequality (5.2)
nor Inequality (5.3), then the answer “Maybe” is stated.

5.4.1 Downstream Problem Bin-Packing

In this section we consider the MIN-TOTAL ONLINETDAP with downstream bin-packing as it is de-
scribed in Section 5.2 where δ = 3 is chosen. For this problem setting we present the computational
results for the policies PTD and PFD applied to the associated Markov decision processes.

As mentioned before the sample path of states depends among other things on the considered
policy µ. Table 5.4 states the sample path for the policy PTD and Table 5.5 for the policy PFD

resulting in the current problem setting. For both policies the computational results are depicted in
Figure 5.1 and Figure 5.2.

First of all, both figures illustrate the influence of the discount factor α. For α = 0.5 the com-
puted bounds on the expected costs are smaller than the corresponding bounds for α = 0.7. This is
the case since for a greater discount factor, the future costs matter for the current cost more as for a
smaller one. This also explains that if for a state i0 and policy µ ∈ {PTD, PFD} follows that

Jµ(i0) > J
∗(i0) or Ju(i0) > J

∗(i0),

then the gaps between these values are in the case of α = 0.7 greater than the corresponding gaps
in the case of α = 0.5. For instance, this can be observed in Figure 5.1 for the state with state
index 9 and 17.

This figure also shows that PTD is not an optimal policy. This is the case since in almost all
investigated states for the policy PTD the Inequality (5.1) is satisfied (since there is a gap between
the red and black rectangle for these states). Furthermore, PTD selects independently of the discount
factor α for certain states obviously a control which is not optimal at all, e. g. , for the states with state
index 9, 14, and 17. This can be observed since there exists a positive gap between the black and blue
rectangles for these states and therefore, the computed bound for these states meet Inequality (5.2).
It is also obvious that in these states the gaps are often quite “large”. This indicates that the policy
PTD is not even a near-optimal policy for the considered MDPs. This conjecture is strengthened
by the observation that even in the cases where PTD selects an optimal control, Inequality (5.1) is
satisfied often and the resulting gaps are relatively larger.

By Figure 5.2 the policy PFD is also not optimal for the considered MDPs since for each discount
factor α the policy PFD selects in the state with state index 20 a control which is not optimal.
However, Figure 5.2, which shows the computed bounds for the policy PFD, looks slightly different
to Figure 5.1, which states the computed bounds for the policy PTD. This is the case since for each
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State

State Request r Assignment

Index k d(r) Slot 1 Slot 2 Slot 3
#size 1 #size 2 #size 1 #size 2 #size 1 #size 2

1 1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 1 0
3 1 1 0 0 2 0 0 0
4 2 1 0 0 3 0 0 0
5 3 2 0 0 4 0 0 0

6 1 1 4 1 0 0 0 0
7 2 1 5 1 0 0 0 0
8 3 2 6 1 0 0 0 0
9 4 1 6 2 0 0 0 0
10 1 1 0 0 0 0 0 0

11 2 1 0 0 0 0 1 0
12 1 1 0 0 2 0 0 0
13 2 2 0 0 3 0 0 0
14 3 1 0 0 3 1 0 0
15 1 2 4 1 0 0 0 0

16 2 2 4 2 0 0 0 0
17 3 1 4 3 0 0 0 0
18 4 1 5 3 0 0 0 0
19 1 1 0 0 0 0 0 0
20 2 2 0 0 0 0 1 0

Table 5.4: The sample path of states for associated Markov decision processes for the con-
sidered MIN-TOTAL ONLINETDAPs where δ = 3 is chosen and the policy (algo-
rithm) PTD is used. Note that k denotes the number of requests after the last time
shift.
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State

State Request r Assignment

Index k d(r) Slot 1 Slot 2 Slot 3
#size 1 #size 2 #size 1 #size 2 #size 1 #size 2

1 1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 1 0
3 1 1 0 0 2 0 0 0
4 2 1 0 0 3 0 0 0
5 3 2 0 0 4 0 0 0

6 1 1 4 0 0 1 0 0
7 2 1 5 0 0 1 0 0
8 3 2 5 0 1 1 0 0
9 4 1 5 0 1 2 0 0
10 1 1 1 2 1 0 0 0

11 2 1 1 2 2 0 0 0
12 1 1 3 0 0 0 0 0
13 2 2 4 0 0 0 0 0
14 3 1 4 0 0 0 0 1
15 1 2 0 0 0 1 0 0

16 2 2 0 0 0 2 0 0
17 3 1 0 0 0 2 0 1
18 4 1 0 0 1 2 0 1
19 1 1 1 2 1 1 0 0
20 2 2 1 2 2 1 0 0

Table 5.5: This table shows the obtained sample path of states for associated Markov deci-
sion processes for the considered MIN-TOTAL ONLINETDAPs w. r. t. bin-packing
where δ = 3 is chosen and the policy (algorithm) PFD is used. Note that k denotes
the number of requests after the last time shift.
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Figure 5.1: The computational results for the policy (algorithm) PTD applied to the MIN-
TOTAL ONLINETDAP w. r. t. bin-packing as described in Section 5.2 with δ = 3
and α ∈ {0.5, 0.7}. The actual values for the bounds on the expected costs are
given in Table C.2 (see Appendix C.2) and the optimality decisions are based
on Inequality (5.3) with the bounds stated in Table C.6 and Table C.7 (see Ap-
pendix C.3).
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Figure 5.2: The computational results for the policy (algorithm) PFD applied to the MIN-
TOTAL ONLINETDAP w. r. t. bin-packing as described in Section 5.2 with δ = 3
and α ∈ {0.5, 0.7}. The actual values for the bounds on the expected costs are
given in Table C.3 (see Appendix C.2) and the optimality decisions are based
on Inequality (5.3) with the bounds stated in Table C.6 and Table C.7 (see Ap-
pendix C.3).
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investigated state for PFD the drawn rectangles in Figure 5.2, for the computed bounds on the three
expected costs, are often on the same level unlike the drawn rectangles in Figure 5.1. In particular,
except for two states, these are the states with state index 5 and 20, the computed bounds on the
expected costs for PFD are not satisfying Inequality (5.1) and Inequality (5.2). This emphasizes the
conjectures that PFD seems to be more promising than PTD and that PFD is a near-optimal policy
for the considered MDPs.

Before we go on to the case of downstream parallel-machine scheduling, we want to point out
that the optimality patterns given in each picture of the two figures are the same except for the state
with state index 13 in Figure 5.2. Looking at the Table C.2, which includes the computed bounds
on which these decisions are based in this state, make us suppose that if we were approximate the
expected costs a little bit further, then the decision in the case of α = 0.5 would flip into a “Yes” as
it is in the case of α = 0.7.

5.4.2 Downstream Problem Parallel-Machine Scheduling

We consider in this section the MIN-TOTAL ONLINETDAP with parallel-machine scheduling as
downstream problem as it is described in Section 5.2 where δ = 3 is chosen. For this problem
setting the computational results for the policies PTD and PFD applied to the associated Markov
decision processes are presented in this section.

The policy PTD works in this problem setting equivalent to the case of downstream bin-packing,
this is, each request is assigned to the same target date. Moreover, the associated Markov decision
process for the current problem setting differs only in the cost function compared to the Markov
decision process considered for the case of bin-packing as downstream problem. In particular, the
state space of these Markov decision processes are equal. Therefore, the policy PTD occupies for
both downstream problems the same states. Table 5.4 shows these states. Since the decision made by
the policy PFD is influenced by the downstream problem, the visited states for the case of parallel-
machine scheduling as downstream problem differ to the case of downstream bin-packing. The
sample path of states occupied by the policy PFD for the current problem setting is stated in Table 5.6.
For both policies the computational results are depicted in Figures 5.3 and Figure 5.4. Again, both
figures illustrate the influence of the discount factor α as described in the case of downstream bin-
packing. That is, a greater discount factor leads to greater expected costs compared to a smaller
discount factor since future costs matter for a greater discount factor more as for a smaller one.

Figure 5.3 shows that PTD is not an optimal policy for the considered MDPs. For both discount
factors there exist many states where the computed bounds for the expected costs meet Inequality 5.1.
This can be observed in the figure since there exists often between the red and black rectangles a
positive gap. For instance, in the case of α = 0.5 Inequality 5.1 is satisfied by the states with
state index 5 and 8. In the case of α = 0.7 this inequality is satisfied by the computed bounds of
all considered states. Similar to the previous section there are states, independently of the chosen
discount factor, for which the policy PTD selects a control which is not optimal. This is stated in
the figure by a positive gap between the black and blue rectangles, for instance, for the states with



5.4. Results 89

State

State Request r Assignment

Index k d(r) Slot 1 Slot 2 Slot 3
#size 1 #size 2 #size 1 #size 2 #size 1 #size 2

1 1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 1 0
3 1 1 0 0 2 0 0 0
4 2 1 0 0 2 0 1 0
5 3 2 0 0 2 0 2 0

6 1 1 2 0 2 1 0 0
7 2 1 2 0 2 1 1 0
8 3 2 2 0 2 1 2 0
9 4 1 2 0 2 1 2 1
10 1 1 2 1 3 1 0 0

11 2 1 2 1 4 1 0 0
12 1 1 4 1 1 0 0 0
13 2 2 4 1 2 0 0 0
14 3 1 4 1 2 0 0 1
15 1 2 2 0 1 1 0 0

16 2 2 2 0 1 1 0 1
17 3 1 2 0 1 1 0 2
18 4 1 2 0 2 1 0 2
19 1 1 2 1 1 2 0 0
20 2 2 2 1 2 2 0 0

Table 5.6: This table shows the obtained sample path of states for the considered MIN-TOTAL

ONLINETDAPs w. r. t. parallel-machine scheduling where δ = 3 is chosen and the
policy (algorithm) PFD is used. Note that k denotes the number of requests after
the last time shift.
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Figure 5.3: The computational results for the algorithm PTD applied to the MIN-TOTAL

ONLINETDAP w. r. t. parallel-machine scheduling as described in Section 5.2
with δ = 3 and α ∈ {0.5, 0.7}. The actual values for the bounds on the expected
costs are given in Table C.4 (see Appendix C.2) and the optimality decisions are
based on Inequality (5.3) with the bounds stated in Table C.8 and Table C.9 (see
Appendix C.3).
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Figure 5.4: The computational results for the algorithm PFD applied to the MIN-TOTAL

ONLINETDAP w. r. t. parallel-machine scheduling as described in Section 5.2
with δ = 3 and α ∈ {0.5, 0.7}. The actual values for the bounds on the expected
costs are given in Table C.5 (see Appendix C.2) and the optimality decisions are
based on Inequality (5.3) with the bounds stated in Table C.8 and Table C.9 (see
Appendix C.3).
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state index 13, 15, and 20. This means, the computed bounds for these states meet Inequality (5.2).
Furthermore, these gaps a relatively large. Finally, all these observations show that the policy PTD

is not even near-optimal for the MDPs considered in this section.

The policy PFD is not optimal for the current problem setting. This can be observed in Fig-
ure 5.4 since there exists a positive gap between the red and black rectangle for all visited states,
independently of the chosen discount factor. Hence, for all these states Inequality 5.1 is satisfied
by the computed bounds for both discount factors. Moreover, the policy PFD selects, independently
of the chosen discount factor, for the states with state index 13, 15, and 20 a control which is not
optimal. This can be seen in the figure since for these states there exists a positive gap between the
black and blue rectangles. Therefore, the computed bounds for these state satisfy Inequality (5.2).
Furthermore, these gaps are relatively large. Hence, the policy PFD is not even a near-optimal policy
for the considered MDPs. Furthermore, all these observations show that for the considered MDPs
the average performance of PFD is not better than the average performance of PTD.

Finally, in this problem setting the answer “Maybe” is given quite often for the question: If the
control chosen by µ ∈ {PTD, PFD} optimal? Looking for these states at the actual values for the
computed bounds, which are posted in the tables in Appendix C.3, shows that for these states often
two controls exist which have similar bounds. This could indicate that in these states more than one
control is optimal. However, to prove this conjecture we have to know the exact expected costs.
However, these are in general computational impossible to compute.



6

Summary, Conclusion, and Outlook

In this diploma thesis we introduced the novel concept of an Online Target Date Assignment Problem
(ONLINETDAP) as a general framework for online problems featuring a special two-stage decision
process. In a first stage target dates have to be assigned immediately and irrevocably to arising
requests, while in the second stage certain “sub-instances”, these are instances formed by requests
assigned to a joint target date, can be solved to optimality later. The cost at a target date is given
by the downstream cost which is the optimal cost of processing all requests assigned to this date
w. r. t. a given downstream problem. There are two intuitive objectives: Minimizing the sum over
all downstream costs (MIN-TOTAL ONLINETDAP) and minimizing the maximum downstream cost
over all target dates (MIN-MAX ONLINETDAP). A real-life application was given in Section 1.1:
The customer service of Hermes Technischer Kundendienst.

We investigated first basic examples of ONLINETDAPs. In particular, we provided general on-
line algorithms for the MIN-TOTAL ONLINETDAP and MIN-MAX ONLINETDAP independently
of the downstream problem. As the first basic examples, we analyzed these algorithms for the partic-
ular academic downstream problems of bin-packing and non-preemptive scheduling on identical and
parallel machines. Therefore, we used competitive analysis to analyze the competitive ratios of these
algorithms. In some cases, where the results obtained by competitive analysis were not satisfying,
we preformed an average case analysis for these algorithms to evaluate the expected performance of
them. Therefore, we applied these algorithms to associated Markov decision processes of instances
of MIN-TOTAL ONLINETDAPs.

Competitive Analysis

First of all, we observed for both objective functions that special settings lead to trivial problems or
prevent any deterministic online algorithm from achieving a constant competitive ratio. In particular,
this is the case if each request has no deadline (independently of the considered downstream problem
and overall objective). Furthermore, in the case of bin-packing as downstream problem there exists
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no competitive deterministic online algorithm if this downstream problem only provides a bounded
number of bins. However, there are also interesting settings of MIN-TOTAL ONLINETDAP and
MIN-MAX ONLINETDAP which do not yield trivial results.

In the case of MIN-TOTAL ONLINETDAP we introduced the general online algorithm PACKTO-
GETHERORDELAY (PTD) which is 2-competitive if the downstream problem satisfies some prop-
erties and each request has δ ∈ N feasible target dates. Parallel-machine scheduling as downstream
problem always meets these properties. The downstream problem bin-packing only conforms these
properties if it provides an infinite number of bins. Furthermore, we proved for these profiles of
the downstream problems and the assumption that all requests have δ ∈ {2, 3, . . . } feasible target
dates lower bounds on the competitive ratio of any deterministic online algorithm. In particular, we
showed in the case of downstream bin-packing that no deterministic online algorithm has a compet-
itive ratio better than 3/2. For parallel-machine scheduling as downstream problem we constructed
request sequences which force any deterministic online algorithm to a cost of

√
2 times the optimal

cost if additionally is assumed that more than one machine is available.

In the case of MIN-MAX ONLINETDAP we introduced the online algorithm BALANCE (BAL).
If each request has δ ∈ {2, 3, . . . } feasible target dates, this algorithm is competitive for specific
profiles of the considered downstream problems. In particular, if the downstream problem bin-
packing provides an infinite number of bins, then the algorithm BAL is 4-competitive. Moreover,
for this problem setting we proved that no deterministic online algorithm has competitive ratio less
than 2. For parallel-machine scheduling as downstream problem the algorithm BAL is (3 − 1/δ)-
competitive. Furthermore, if this downstream problem has more than one machine, we showed that
3/2 is a lower bound on the competitive ratio of any deterministic online algorithm.

The presented results for MIN-TOTAL ONLINETDAPs and MIN-MAX ONLINETDAPs using
competitive analysis were satisfying in some cases. On the one hand, it was surprising that a great
portion of the investigated problem setting turned out to be in some way trivial. On the other hand,
it was dissatisfying that there are still gaps between the proved lower and upper bound on the com-
petitive ratio of the considered online algorithms for reasonable problem setting, in particular since
the investigated downstream problems are well known. Furthermore, in the case of MIN-TOTAL

ONLINETDAP we introduced the algorithm PACKFIRSTORDELAY (PFD) which seemed to be
more promising than PTD. However, using competitive analysis this conjecture could not be proved.
Therefore, we carried out an average case analysis for these two algorithms to receive a satisfying
result.

Expected Performance

We analyzed the expected performance of the two algorithms PTD and PFD applied to associated
Markov decision processes for instances of MIN-TOTAL ONLINETDAPs. We showed that the as-
sociated Markov decision processes have a “very large” state space. For these Markov decision
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processes the standard approaches of the field stochastic dynamic optimization are in general infea-
sible to compute the optimal value function. This is the case since they aim to find the optimal value
function globally for each state of the system. We presented a method for approximating the optimal
value function of discounted Markov decision problem (MDP) locally. This approach is based on
the classical linear programming formulation. Its running time complexity does not depend on the
number of states of the considered MDP. We derived from this approach an algorithm which uses
the technique of column generation to approximate the optimal value function locally. A version of
this algorithm was used to analyze the expected performance of the two algorithms PTD and PFD.

In particular, we considered two instances of MIN-TOTAL ONLINETDAPs. One instance had
bin-packing as downstream problem and the other parallel-machine scheduling. Furthermore, we
assumed some probabilities on which the average case analysis is based. The presented computa-
tional results were in some way surprising. In the case of downstream bin-backing these results
emphasize the conjecture that PFD has a better performance than PTD. Furthermore, it seemed that
PFD is even a near-optimal policy for this problem setting (w. r. t. the considered stochastic assump-
tions). For parallel-machine scheduling as downstream problem the computational results showed
that in general the performance of PFD is not better than the of PTD. Moreover, it turned out that
both algorithms are not near-optimal.

Open Problems

For the introduced ONLINETDAP framework, there are several open problems which are directly
and indirectly related to this thesis. The proved bounds, received by competitive analysis in this
work, still offer room for improvements since they are not tight. In this thesis we assumed that
each request has to be assigned to a future target date. Therefore, the downstream problem of an
ONLINETDAP can be solved offline. If we were consider that the release date of a request itself is
a feasible target date, the situation would chances. With this assumption the downstream problem
is not solvable offline anymore. The question which occurs is: How the proved bounds, stated in
this thesis, change if this is assumed? It is also conceivable to consider various other downstream
problem. In particular, downstream problems which are abundant in reality such as the vehicle
dispatching problem arising at Hermes Technischer Kundendienst. Furthermore, we assumed that
each request has the same number of feasible target date. Therefore, the question, which arises, is:
What happens if each request has an arbitrary number of feasible target dates? There are several
other versions which are conceivable to be verify.

We conjecture that the theoretical result stated in Theorem 4.2 is not tight. That means, we
believe that the used state space (a certain r-neighborhood) in the proof of this theorem, to prove the
approximation result, is too large. This conjecture is strengthened by the computational results given
in Appendix C.3 even though these results are for a fixed application. In particular, these results show
that for reasonable approximation guarantees and discount factors the needed state space is pretty
large to achieve a provable approximation result. Furthermore, the computational results show that
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the computed bounds are much closer than the desired approximation guarantee. Therefore, it would
be desirable to improve the theoretical approximation results of Theorem 4.2.

By generating the computational results, we figured out that for MDPs, which result from par-
ticular applications, it is often possible to tell for certain states that a certain control is not optimal.
If this observation were formalized into rules for particular MDPs, it would be possible to speed up
the running time for approximating the optimal value function. This is conjecture since for example
the corresponding side constraints for these controls in the linear programs used to compute a lower
and an upper bound could be removed without shrinking the feasibility region of these programs. It
would be interesting to analyze this observation for particular MDPs.
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A

Mathematical Symbols and Notations

The usage of mathematical symbols and notations differ from one to the other. In this chapter we
state the mathematical symbols and notations with the corresponding definition we use in this thesis.

Symbol Definition
N the natural numbers N = {1, 2, 3, 4, . . . };
N0 the natural numbers including zero N0 = N ∪ {0};
R the real numbers;

R+ the positive real numbers R+ = {x ∈ R | x > 0};
R≥0 the positive real numbers including zero R≥0 = {x ∈ R | x ≥ 0};
Sn Sn = {(s1, s2, . . . , sn) | s1, s2, . . . , sn ∈ S} denotes the Cartesian product;

|S| number of elements the set S contains;

dxe the ceiling function which gives the smallest integer greater than or equal to x ∈ R;

bxc the floor function which gives the largest integer less than or equal to x ∈ R;

X a discrete random variable;

E[X] the expectation of the random variable X;

E[X1 | X2] the conditional expectation;
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Zusammenfassung

Viele Planungsaufgaben, die in der Praxis vorkommen, unterliegen einem zweistufigen Entschei-
dungsprozess. In der ersten Stufe werden Ressourcen aufkommenden Anfragen zugewiesen. Dies
muss sofort nach Auftreten dieser Anfrage und ohne Wissen über zukünftige Ereignisse geschehen.
In einer zweiten Stufe werden alle Anfragen, die einer bestimmten Ressource zugewiesen wurden,
bezüglich eines gegeben Kostenkriteriums, optimal abgearbeitet. Ein Beispiel für ein derartiges
Problem ist die Servicetechniker-Einsatzplanung der Firma Hermes Technischer Kundendienst. In
der ersten Stufe wird während des Telefonates mit einem Kunden ein Zeitrahmen (zum Beispiel ein
Wochentag) innerhalb eines festen Zeithorizonts (zum Beispiel die folgenden zwei Wochen) ver-
einbart, um einen Serviceauftrag beim Kunden auszuführen. In der zweiten Stufe wird vor jedem
Außendiensttag ein bezüglich eines Kostenkriteriums optimaler Techniker-Einsatzplan berechnet.
Dieser umfasst alle vereinbarten Kundentermine des betrachteten Tages.

In dieser Diplomarbeit entwickelten wir ein mathematisches Modell für die Klasse von Pla-
nungsaufgaben, bei der die zuzuweisende Ressource Zeitrahmen sind. Wir nennen dieses Mo-
dell das Online Target Date Assignment Problem, oder kurz ONLINETDAP. Ein Auftrag eines
ONLINETDAP muss sofort einem Zeitrahmen innerhalb eines gegebenen Zeitfensters unwider-
ruflich zugewiesen werden, d. h. ohne Wissen über zukünftige Aufträge und somit online. Die
Kosten für einen Zeitrahmen ergegeben sich aus den nachgelagerten Kosten. Das sind die Kosten
für das Bearbeiten aller Aufträge, die diesem Zeitrahmen zugewiesen wurden. Dabei nehmen wir
an, dass diese hinsichtlich eines gegebenen nachgelagerten Optimierungsproblems optimal sind.
Dieses nachgelagerte Optimierungsproblem kann offline gelöst werden, da zu diesem Zeitpunkt alle
Aufträge des nächsten Zeitrahmens bekannt sind. Die Zuweisungsentscheidungen definieren also
den Inputs mehrerer nachgelagerter Optimierungsprobleme und beeinflussen damit die Summe aller
nachgelagerter Kosten und die maximalen nachgelagerter Kosten über alle Zeitrahmen. Dies führt
für diese Problemformulierung zu den beiden Zielsetzungen: Minimierung der Summe aller nachge-
lagerten Kosten und Minimierung der maximalen nachgelagerten Kosten über alle Zeitrahmen.

Wir präsentierten für diese Problemklasse Online-Algorithmen in Abhängigkeit von der Zielset-
zung, jedoch unabhängig vom nachgelagerten Problem. Diese Algorithmen wurden für elementare
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nachgelagerte Probleme, wie Bin-Packing und ein Maschinen-Scheduling Problem, analysiert. Im
Mittelpunkt stand die Untersuchung des worst-case Verhaltens dieser Algorithmen unter Zuhilfe-
nahme der kompetitiven Analyse. In den Fällen, wo die kompetitive Analyse keine zufriedenstellen-
den Ergebnisse lieferte, haben wir die Algorithmen bezüglich ihres durchschnittlichen Verhaltens
analysiert. Dafür entwickelten wir eine neue Methode, welche die optimale Wertfunktion eines
diskontierten Markov-Entscheidungsproblems lokal approximiert.

Kompetitive Analyse

Unter der Zielsetzung, die maximalen nachgelagerten Kosten über alle Zeitrahmen zu minimieren,
ist es eine vielversprechende Strategie, die ankommenden Aufträge über alle Zeitrahmen auszu-
balancieren. Diese Idee liefert den Online-Algorithmus BALANCE. In dieser Arbeit konnten wir
zeigen, dass dieser Algorithmus für das nachgelagerte Problem des Bin-Packings 4-kompetitiv ist.
Für diese Problemstellung haben wir außerdem bewiesen, dass 2 eine untere Schranke für den
kompetitiven Faktor für jeden deterministischen Online-Algorithmus ist. Im Falle von Maschinen-
Scheduling haben wir bewiesen, dass BALANCE 3-kompetitiv ist und 3/2 eine untere Schranke an
den kompetitiven Faktor für jeden beliebigen deterministischen Online-Algorithmus ist.

Für die Problemstellung, die Summe aller nachgelagerten Kosten zu minimieren, haben wir den
Algorithmus PACKTOGETHERORDELAY (PTD) vorgestellt. Die Grundidee dieses Algorithmus’
ist, auftretende Aufträge zu bündeln. Wir haben gezeigt, dass dieser Algorithmus 2-kompetitiv ist,
wenn das nachgelagerte Problem bestimmte Eigenschaften erfüllt. Diese Eigenschaften werden vom
betrachteten Maschinen-Scheduling Problem eingehalten. Im Falle des Bin-Packing Problem sind
diese Eigenschaften nur erfüllt, wenn beliebig viele Bins zur Verfügung stehen. Weiterhin haben
wir bewiesen, dass für das nachgelagerte Problem des Maschinen-Scheduling kein deterministischer
Online-Algorithmus einen kompetitiven Faktor kleiner als

√
2 haben kann. Wenn Bin-Packing das

nachgelagerte Problem ist, folgt eine untere Schranke von 3/2 für den kompetitiven Faktor eines je-
den deterministischen Online-Algorithmus für dieses Problem. Nachfolgend haben wir den Online-
Algorithmus PACKFIRSTORDELAY (PFD) vorgestellt. Dieser ist eine modifizierte Version von PTD

und wir hatten die Vermutung, dass dieser Algorithmus eine bessere Gütegarantie als PTD hat. Je-
doch war es nicht möglich, ein zufriedenstellendes Resultat mit Hilfe der kompetitiven Analyse zu
beweisen. Daher haben wir diese beiden Algorithmen bezüglich ihres durchschnittlichen Verhaltens
analysiert.

Durchschnittsanalyse

Wir haben die beiden Algorithmen PTD und PFD auf Markov-Entscheidungsprozesse angewandt.
Diese Prozesse gehören zu Instanzen von ONLINETDAPs mit der Zielsetzung, die Summe aller
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nachgelagerten Kosten zu minimieren. Die klassischen Methoden aus der stochastischen dyna-
mischen Optimierung zur Berechnung der diskontierten Kosten sind im Allgemeinen nicht anwend-
bar, wenn der Zustandsraum zu “groß” ist. Ein Grund dafür ist, dass diese Verfahren für jeden
Zustand eines Markov-Entscheidungsprozesses die diskontierten Kosten global berechnen. In dieser
Arbeit haben wir ein neues Verfahren vorgestellt, welches die diskontierten Kosten eines Zustandes
lokal approximiert. Mit Hilfe dieses Verfahrens haben wir beide Algorithmen bezüglich ihres durch-
schnittlichen Verhaltens untersucht. Dazu betrachteten wir zwei Probleminstanzen des ONLINE-
TDAPs mit dem Ziel, die Summe der nachgelagerten Kosten zu minimieren. Eine Instanz hat
Bin-Packing als nachgelagertes Problem, die andere Maschinen-Scheduling. Weiterhin haben wir
Übergangswahrscheinlichkeiten angenommen, auf welchen die Durchschnittsanalyse beruht. Die
präsentierten Ergebnisse haben im Falle von Bin-Packing als nachgelagertes Problem die Vermu-
tung verstärkt, dass PFD eine besseres “Verhalten” als PTD hat. Im Fall von Maschinen-Scheduling
wurde diese Vermutung im Allgemeinen jedoch widerlegt.





C

Additional Computational Results

This chapter states additional computational results. Mainly, we present the computational result
tables for the figures shown in Section 5.4.

C.1 APPROXBYSTATICNEIGHBORHOOD vs. APPROXBYDYNAMIC-
NEIGHBORHOOD

This section presents some experimental results which compare the number of necessary states the
two algorithms APPROXBYSTATICNEIGHBORHOOD (ASN) and APPROXBYDYNAMICNEIGH-
BORHOOD (ADN) need to generate, in order to achieve some approximation guarantee.

We considered as input instances for both algorithms:

• the associated Markov decision process which results from the MIN-TOTAL ONLINETDAP
with downstream problem bin-packing as described in Section 5.2 where δ = 3 is chosen;

• α ∈ {0.5, 0.7};

• the state with state index 1 shown in Table 5.4;

• ε ∈ {0.5, 0.3, 0.1, 0.05, 0.01}.

Table C.1 shows the computed bounds as well as the number of necessary states to achieve a provable
approximation result for both algorithms.

This table shows that the required state space of the algorithm ASN is pretty large for reasonable
α and ε and the computed bounds are much closer than ε. For the algorithm ADN the required num-
ber of states to achieve a certain approximation guarantee is much smaller than the corresponding
number of ASN . Therefore, these experimental results emphasize the conjecture that the result of
Theorem 4.2 is not tight in the sense that the necessary state space to reach a given approximation
guarantee is probably much smaller.
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Parameters ASN ADN

α ε r |S(i0, r)| lower
bound

upper
bound

|S| lower
bound

upper
bound

0.5 0.5 1 12 1 1.49735 8 1 1.5
0.5 0.3 2 88 1.001 1.24475 17 1 1.29
0.5 0.1 4 1210 1.09168 1.1406 85 1.07728 1.17608
0.5 0.05 5 3242 1.09592 1.12011 180 1.08988 1.13957
0.5 0.01 7 12412 1.10324 1.1066 625 1.1014 1.11135

0.7 0.5 5 3242 1.31973 1.54286 162 1.27753 1.77745
0.7 0.3 6 6756 1.36461 1.48506 368 1.32418 1.624
0.7 0.1 9 32358 1.41933 1.43338 1072 1.39302 1.49286
0.7 0.05 11 67134 1.42389 1.42513 1750 1.408 1.45788
0.7 0.01 13 209524 1.42426 1.42426 3629 1.42104 1.43104

Table C.1: Number of necessary states for the algorithms ASN and ADN to achieve a desired
approximation guarantee.

C.2 Computational Result Tables

This section contains the tables for computational results depicted in the figures shown in Sec-
tion 5.4. For each figure we present one table including all bounds drawn in the corresponding
figure.

The following table shows which table belongs to which figure.

Figure Computational Result Table

Figure 5.1 Table C.2

Figure 5.2 Table C.3

Figure 5.3 Table C.4

Figure 5.4 Table C.5
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C.3 Evaluating all Controls of Certain States

Consider an MDP with Markov decision process (S, C, P, cost) and discount factor α ∈ (0, 1).
Theorem 2.12 states known results for MDPs. One of them is that a policy µ is optimal if for
every state i ∈ S, the control µ(i) attains the minimum in Bellman’s equation (2.3). To check this
criterion the optimal value function J∗ is necessary. Since it is usually computational impossible the
compute J∗, this criterion does not help. However, there is a possibility to determine for some states
an optimal control without knowing J∗ exactly.

The idea is to estimate for a state i0 the expected total discounted cost Ju(i0) for all controls
u ∈ C(i0). If we have for a control u ∈ C(i0) that the computed upper bound on Ju(i0) is smaller
than or equal to the computed lower bound on Ju′(i0) for all u′ ∈ C(i0) \ {u}, then the control u

is an optimal control for state i0. On the other hand, a control u ∈ C(i0) is not optimal if a control
u′ ∈ C(i0) exists such that the upper bound on Ju′(i0) is smaller than the lower bound on Ju(i0).

Section 5.4 presented computational results for the algorithms PTD and PFD. For certain states
of given MDPs we illustrated approximation results. The following tables present for each state i0
considered in Section 5.4 a lower and upper bounds on the expected total discounted cost Ju(i0) for
any possible control u ∈ C(i0). For the states where it is possible to tell which control is optimal
we print the lower and upper bound with a bold face.

The tables are organized as follows. Table C.6 and Table C.7 present the bounds for the states
shown in Table 5.4 and Table 5.5 for associated Markov decision processes for specific MIN-TOTAL

ONLINETDAP w. r. t. bin-packing and discount factor α ∈ {0.5, 0.7}. Table C.8 and Table C.9
state the bounds for the states shown in Table 5.4 and Table 5.6 for associated Markov decision
processes of certain MIN-TOTAL ONLINETDAP w. r. t. parallel-machine scheduling and discount
factor α ∈ {0.5, 0.7}. Note that each state is coded by the values of the last 8 columns of the sample
path tables (see Table 5.4,Table 5.5, and Table 5.6). For instance, the state with state index 1 in
Table 5.4 is coded by 11000000.
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State Control 1 Control 2 Control 3
State Index lower upper lower upper lower upper

PTD PFD bound bound bound bound bound bound
11000000 1, 10, 19 1 1.26466 1.27705 1.11264 1.12351 1.10115 1.11213

11002000 3, 12 3 1.08351 1.09396 0.249448 0.251936 1.02928 1.03944

11121000 − 10 1.0627 1.07247 0.173961 0.17568 1.02039 1.03052

11121100 − 19 1.11052 1.12114 0.422521 0.426711 1.04317 1.05352

11300000 − 12 0.456463 0.46098 1.07343 1.08354 1.05744 1.06765

11400100 − 6 0.174321 0.176031 0.195519 0.197461 1.02508 1.03475

11410000 6 − 0.27891 0.281652 1.06269 1.07245 1.04379 1.05413

12000100 − 15 1.09256 1.10338 0.426443 0.430621 1.05243 1.06266

12410000 15 − 0.320966 0.324155 1.08286 1.09323 1.07278 1.0828

21000010 2, 11 2 1.05601 1.06626 1.02257 1.03279 0.166846 0.168492

21003000 4 4 1.13994 1.1508 0.424781 0.428953 1.04414 1.05455

21122000 − 11 1.10546 1.11622 0.250658 0.253128 1.03128 1.04146

21500100 − 7 1.10539 1.11612 0.250603 0.253092 1.03109 1.04118

21510000 7 − 0.35653 0.360058 1.08278 1.0932 1.05926 1.06982

22000010 20 − 1.05931 1.06973 1.03094 1.04115 0.246602 0.249064

22000200 − 16 1.25322 1.26552 1.15162 1.16305 1.13774 1.14897

22003000 13 − 1.14681 1.158 0.566734 0.57224 1.0695 1.07978

22122100 − 20 1.2527 1.26441 1.1181 1.12923 1.13706 1.14798

22400000 − 13 1.31186 1.32474 1.15918 1.17003 1.14877 1.15997

22420000 16 − 0.566786 0.572322 1.11784 1.12827 1.10512 1.11586

31000201 − 17 1.09885 1.10957 0.168632 0.170288 0.172527 0.174233

31003100 14 − 1.39995 1.4138 1.12731 1.13851 1.10182 1.11273

31400001 − 14 0.168622 0.170292 1.03683 1.04658 0.220311 0.2225

31430000 17 − 1.39983 1.41382 1.12739 1.13823 1.10164 1.11263

32004000 5 5 1.30861 1.32148 1.12726 1.13852 1.13812 1.14916

32501100 − 8 1.18245 1.1939 0.566706 0.572301 1.07137 1.08202

32610000 8 − 0.566757 0.57234 1.1406 1.15133 1.12315 1.13438

41001201 − 18 1.13981 1.15076 1.04315 1.05311 0.247023 0.249471

41501200 − 9 1.47416 1.4883 1.13592 1.14673 1.1022 1.11322

41530000 18 − 0.478587 0.483311 1.12394 1.13475 1.08616 1.09676

41620000 9 − 1.47409 1.4885 1.13581 1.14676 1.10211 1.11301

Table C.6: Lower and upper bounds on the expected cost Ju(i0) for each state i0 shown in
Table 5.4 and Table 5.5 and each feasible control u ∈ C(i0) for the associated
Markov decision process of the MIN-TOTAL ONLINETDAP with downstream
problem bin-packing, δ = 3, and α = 0.5. If an optimal control is detectable,
then the corresponding bounds are printed with a bold face.
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State Control 1 Control 2 Control 3
State Index lower upper lower upper lower upper

PTD PFD bound bound bound bound bound bound
11000000 1, 10, 19 1 1.69332 1.71025 1.44477 1.45892 1.41977 1.43387

11002000 3, 12 3 1.36243 1.37585 0.67318 0.679853 1.22535 1.23757

11121000 − 10 1.3081 1.32108 0.552694 0.558155 1.18889 1.20069

11121100 − 19 1.42198 1.43607 0.874165 0.882778 1.27527 1.28802

11300000 − 12 0.917422 0.92657 1.3469 1.36028 1.31176 1.32475

11400100 − 6 0.553084 0.558609 0.58769 0.593541 1.20559 1.21754

11410000 6 − 0.693231 0.700151 1.30782 1.32082 1.26381 1.27634

12000100 − 15 1.39053 1.40429 0.879946 0.888735 1.29469 1.30761

12410000 15 − 0.759112 0.766678 1.36027 1.37378 1.33643 1.34975

21000010 2, 11 2 1.30137 1.31428 1.19774 1.20966 0.537628 0.542987

21003000 4 4 1.4824 1.49714 0.879524 0.888224 1.27656 1.2891

21122000 − 11 1.41287 1.42693 0.67514 0.681887 1.23188 1.24407

21500100 − 7 1.41255 1.42657 0.67512 0.681839 1.23156 1.2438

21510000 7 − 0.801049 0.80898 1.36446 1.37805 1.31258 1.32557

22000010 20 − 1.31285 1.32591 1.23183 1.24413 0.666093 0.672728

22000200 − 16 1.65669 1.67303 1.50486 1.51987 1.4746 1.4893

22003000 13 − 1.49926 1.51414 1.03616 1.04646 1.34627 1.35957

22122100 − 20 1.65506 1.67142 1.45418 1.46863 1.4732 1.48793

22400000 − 13 1.73108 1.74825 1.52101 1.53595 1.50084 1.51584

22420000 16 − 1.03616 1.04646 1.44543 1.45982 1.41947 1.43366

31000201 − 17 1.39281 1.40672 0.542378 0.547755 0.549814 0.555234

31003100 14 − 1.84403 1.86241 1.47065 1.48528 1.4227 1.43682

31400001 − 14 0.542382 0.547791 1.24731 1.2597 0.625066 0.63126

31430000 17 − 1.84307 1.86131 1.47067 1.48536 1.4227 1.43683

32004000 5 5 1.73171 1.74899 1.47055 1.48518 1.47637 1.49102

32501100 − 8 1.56237 1.57788 1.03629 1.04663 1.35159 1.36506

32610000 8 − 1.03625 1.04658 1.4896 1.50441 1.45613 1.47058

41001201 − 18 1.48799 1.50284 1.26714 1.27976 0.667632 0.674293

41501200 − 9 1.93226 1.9514 1.48552 1.50029 1.42406 1.43811

41530000 18 − 0.93734 0.94666 1.45626 1.47081 1.38447 1.39827

41620000 9 − 1.93226 1.95152 1.4856 1.50033 1.42404 1.43825

Table C.7: Lower and upper bounds on the expected cost Ju(i0) for each state i0 shown in
Table 5.4 and Table 5.5 and each feasible control u ∈ C(i0) for the associated
Markov decision process of the MIN-TOTAL ONLINETDAP with downstream
problem bin-packing, δ = 3, and α = 0.7. If an optimal control is detectable,
then the corresponding bounds are printed with a bold face.
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State Control 1 Control 2 Control 3
State Index lower upper lower upper lower upper

PTD PFD bound bound bound bound bound bound
11000000 1, 10, 19 1 1.75282 1.7701 1.63054 1.64657 1.61954 1.63558

11002000 3, 12 3 1.69074 1.70753 1.63024 1.64629 1.61861 1.63472

11202100 − 6 1.69053 1.70707 1.62947 1.64574 1.61706 1.63308

11211200 − 19 1.57347 1.5892 0.873567 0.882256 1.53741 1.55268

11213100 − 10 1.57386 1.58945 0.873648 0.882255 1.53777 1.55293

11410000 6 − 1.74001 1.75734 1.63001 1.64562 1.61865 1.63465

11411000 − 12 1.57337 1.58907 0.873885 0.88197 1.53725 1.5522

12201100 − 15 1.62926 1.64524 1.62955 1.64567 2.25174 2.27403

12410000 15 − 1.90476 1.92298 2.39201 2.4152 2.38345 2.40648

21000010 2, 11 2 1.56989 1.58545 1.53981 1.55467 0.872075 0.880691

21002010 − 4 1.56845 1.58397 1.54006 1.55489 0.871508 0.880183

21003000 4 − 1.58933 1.60475 0.87538 0.884105 1.53996 1.55535

21202110 − 7 1.56916 1.58435 1.53975 1.55485 0.871011 0.879642

21214100 − 11 1.72321 1.74015 1.63509 1.65112 1.61857 1.63449

21510000 7 − 0.925583 0.934807 1.58911 1.60492 1.56982 1.58517

22000010 20 − 2.39242 2.41535 2.25284 2.27524 1.61994 1.63585

22003000 13 − 2.41158 2.43566 1.63513 1.65119 2.25717 2.27974

22201101 − 16 1.26093 1.27348 1.26097 1.27349 0.639287 0.645559

22212200 − 20 1.87071 1.88932 1.87092 1.88929 2.36944 2.39287

22412000 − 13 1.87072 1.88903 1.87054 1.8888 2.36973 2.39253

22420000 16 − 1.9216 1.94053 2.40248 2.4264 2.39061 2.41382

31003100 14 − 1.61227 1.62767 0.877203 0.885793 1.54266 1.55795

31201102 − 17 1.61223 1.62827 0.876737 0.885361 1.54256 1.55764

31412001 − 14 1.33889 1.35203 1.268 1.28068 0.62399 0.63022

31430000 17 − 1.86051 1.87865 1.64257 1.65854 1.62021 1.63615

32002020 − 5 2.63795 2.66321 1.86708 1.88558 1.867 1.88559

32004000 5 − 2.64437 2.67073 1.87324 1.8911 2.37252 2.39577

32202120 − 8 1.8664 1.88468 1.86614 1.88467 1.86592 1.88454

32610000 8 − 1.94718 1.96631 2.4138 2.43724 2.39668 2.42051

41202102 − 18 1.81726 1.83508 1.64895 1.66513 1.61981 1.63596

41202121 − 9 1.80902 1.82674 1.63162 1.64744 1.61997 1.6361

41530000 18 − 0.974162 0.9839 1.63229 1.64825 1.60165 1.61746

41620000 9 − 1.92238 1.94115 1.64894 1.66513 1.62091 1.63647

Table C.8: Lower and upper bounds on the expected cost Ju(i0) for each state i0 shown in
Table 5.4 and Table 5.6 and each feasible control u ∈ C(i0) for the associated
Markov decision process of the MIN-TOTAL ONLINETDAP with downstream
problem parallel-machine scheduling, δ = 3, and α = 0.5. If an optimal control is
detectable, then the corresponding bounds are printed with a bold face.
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State Control 1 Control 2 Control 3
State Index lower upper lower upper lower upper

PTD PFD bound bound bound bound bound bound
11000000 1, 10, 19 1 2.77916 2.80693 2.59166 2.61746 2.56877 2.59445

11002000 3, 12 3 2.68478 2.71156 2.59145 2.61727 2.56713 2.59269

11202100 − 6 2.68338 2.71002 2.5901 2.61538 2.56607 2.59165

11211200 − 19 2.47574 2.50041 1.92268 1.94187 2.39025 2.41401

11213100 − 10 2.47659 2.50121 1.92217 1.94132 2.39049 2.41434

11410000 6 − 2.74062 2.76799 2.59055 2.61642 2.56641 2.59189

11411000 − 12 2.47647 2.50118 1.9222 1.94129 2.39019 2.41401

12201100 − 15 2.58961 2.6155 2.58991 2.61536 2.9939 3.0238

12410000 15 − 2.95355 2.98306 3.25761 3.29009 3.23761 3.26992

21000010 2, 11 2 2.46822 2.49263 2.3975 2.42145 1.92074 1.93992

21002010 − 4 2.46672 2.49124 2.39693 2.42089 1.91908 1.93827

21003000 4 − 2.51147 2.53641 1.92564 1.94488 2.39693 2.42082

21202110 − 7 2.46646 2.4911 2.39627 2.42003 1.91793 1.93706

21214100 − 11 2.73094 2.75822 2.60057 2.62655 2.56717 2.59274

21510000 7 − 1.97427 1.99399 2.5115 2.53659 2.467 2.4913

22000010 20 − 3.22047 3.25259 2.99819 3.02814 2.56919 2.59487

22003000 13 − 3.26353 3.29612 2.60116 2.62692 3.00561 3.03564

22201101 − 16 2.00983 2.02989 2.00948 2.02957 1.60532 1.62133

22212200 − 20 2.91804 2.94709 2.91875 2.9479 3.21921 3.25125

22412000 − 13 2.91801 2.94717 2.91808 2.9472 3.21993 3.25209

22420000 16 − 2.96939 2.99905 3.27398 3.30662 3.24711 3.27932

31003100 14 − 2.5562 2.58172 1.92757 1.94672 2.40479 2.42884

31201102 − 17 2.55601 2.58146 1.92725 1.9463 2.40452 2.4285

31412001 − 14 2.15858 2.1801 2.02389 2.04407 1.57497 1.59067

31430000 17 − 2.88431 2.91304 2.61406 2.63987 2.5701 2.5957

32002020 − 5 3.6075 3.64346 2.91387 2.94295 2.91313 2.94218

32004000 5 − 3.61847 3.65456 2.92228 2.95144 3.22516 3.2572

32202120 − 8 2.91222 2.94121 2.91229 2.94132 2.91229 2.94132

32610000 8 − 2.99179 3.02164 3.29076 3.32346 3.2553 3.28782

41202102 − 18 2.85435 2.88261 2.62546 2.65162 2.57086 2.59654

41202121 − 9 2.84158 2.86999 2.59666 2.6226 2.57102 2.59667

41530000 18 − 2.01536 2.03545 2.59386 2.61979 2.53488 2.56019

41620000 9 − 2.9521 2.98156 2.62575 2.652 2.57205 2.59775

Table C.9: Lower and upper bounds on the expected cost Ju(i0) for each state i0 shown in
Table 5.4 and Table 5.6 and each feasible control u ∈ C(i0) for the associated
Markov decision process of the MIN-TOTAL ONLINETDAP with downstream
problem parallel-machine scheduling, δ = 3, and α = 0.7. If an optimal control is
detectable, then the corresponding bounds are printed with a bold face.


