
Packing Steiner Trees�

Separation Algorithms

M. Grötschel A. Martin R. Weismantel

Abstract

In this paper we investigate separation problems for classes of inequal-
ities valid for the polytope associated with the Steiner tree packing prob-
lem, a problem that arises, e. g., in VLSI routing. The separation problem
for Steiner partition inequalities is NP-hard in general. We show that
it can be solved in polynomial time for those instances that come up in
switchbox routing. Our algorithm uses dynamic programming techniques.
These techniques are also applied to the much more complicated separation
problem for alternating cycle inequalities. In this case we can compute in
polynomial time, given some point y, a lower bound for the gap α − aTy
over all alternating cycle inequalities aTx ≥ α. This gives rise to a very
effective separation heuristic. A by-product of our algorithm is the solu-
tion of a combinatorial optimization problem that is interesting in its own
right: Find a shortest path in a graph where the “length” of a path is its
usual length minus the length of its longest edge.

� Introduction

To introduce the problem we are considering let us begin with a few defintions.
We are given a graph G = (V,E). If T is a subset of V , then an edge set S ⊆ E is
called a Steiner tree in G for T if the subgraph induced by S contains a path from
s to t for every pair s, t of nodes in T . We will call the elements of T terminals
and T terminal set or net. We are further given a list N = {T1, . . . , TN}, N ≥ 1,
of nets, i. e., subsets of V , and moreover, for each edge e ∈ E, a positive capacity
ce ∈ IN. A Steiner tree packing is an N -tuple (S1, . . . , SN) of edge sets Sk ⊆ E
such that each set Sk is a Steiner tree in G for Tk, k = 1, . . . , N , and such that
each edge e ∈ E is contained in at most ce of these Steiner trees. The Steiner tree
packing problem is the task to decide whether, for a given graph G = (V,E) with
edge capacities ce ∈ IN and for a given net list N , a Steiner tree packing exists.
The ultimate goal of the investigation is to find a minimum weight Steiner tree
packing with respect to some given weight function on the edges.

1

In [GMW92b] we have shown how the Steiner tree packing problem can be em-
ployed to model various versions of the routing problem in VLSI design. We have
demonstrated that a cutting plane method based on polyhedral investigations
can be successfully utilized for the optimal solution of small real routing prob-
lems and that good lower bounds on the optimum solution value can be computed
in acceptable running time. The cornerstone of our cutting plane algorithm is
an effective implementation of exact and heuristic separation routines for various
classes of inequalities, introduced in [GMW92a], that are valid and under mild
assumptions facet-defining for the associated Steiner tree packing polyhedron.
The design and investigation of these separation algorithms are the subject of
this paper.

� The Polyhedral Approach and Some Basic

Results

In this section we define the Steiner tree packing polyhedron and describe some
basic polyhedral results. We start by introducing some graphtheoretic notation.

We denote graphs by G = (V,E), where V is the node set and E the edge set.
All graphs we consider are undirected, loopless and finite. For a given edge set
F ⊆ E, we denote by V (F) all nodes that are incident to an edge in F . An edge
e with endnodes u and v is also denoted by uv. Given two node sets U,W ⊆ V ,
we denote by [U : W] the set of edges in G with one endnode in U and the
other in W . For a node set W , we also use E(W) instead of [W : W]. A set
of node sets V1, . . . , Vp ⊂ V, p ≥ 2, is called a partition of V if all sets Vi are
nonempty, the node sets are mutually disjoint and the union of these sets is V .
(Note that we use “⊂” to denote strict set theoretic containment.) If V1, . . . , Vp is
a partition of V , then δ(V1, . . . , Vp) denotes the set of edges in G whose endnodes
are in different sets. We call δ(V1, . . . , Vp) a multicut (with p shores) induced by
V1, . . . , Vp. For W ⊂ V, W �= ∅, we write δ(W) instead of δ(W,V \W) and call
this set the cut induced by W . We abbreviate δ({v}) by δ(v). For an edge set
F , we define dF (v) := |δ(v)∩ F |, which is the degree of v in the subgraph (V, F)
of G. With a planar graph G we always associate a fixed embedding of G in
the plane. The set of edges that are incident to the outer face of a planar graph
G = (V,E) will be denoted by OG(E). For a subset of edges S ⊆ E, we define
OG(S) := O(V (S),S)(S), i. e., OG(S) denotes the set of outer face edges of the
graph induced by S.

Let K = (v0, e1, v1, e2, . . . , vl−1, el, vl) be a sequence of nodes and edges, where
each edge ei is incident with the nodes vi−1 and vi for i = 1, . . . , l, and where
the edges are pairwise disjoint and the nodes distinct (except possibly v0 and
vl). K is called a path (or a [v0, vl]−path), if v0 �= vl, and a cycle, if v0 = vl and
l ≥ 2. The nodes v1, . . . , vl−1 of a path K are called the inner nodes of K. Each

2

edge that connects two nodes of a cycle (path) K and that is not in K is called
a diagonal of K. We say that two diagonals uv and u′v′ cross with respect to
K if the corresponding nodes appear in the sequence u, u′, v, v′ or u, v′, v, u′ by
walking along the cycle (path). Similarly, we call two sets of diagonals F1 and F2

cross free if, for all e1 ∈ F1 and e2 ∈ F2, e1 and e2 do not cross. Otherwise, F1

and F2 are crossing. For our purposes, it is convenient to consider a path P or
a cycle C , respectively, as a subset of the edge set. We call an edge set B a tree
if (V (B), B) is connected and contains no cycle. The leaves of a tree B are the
nodes that are incident to exactly one edge of B.

Note that a Steiner tree is not a tree, in general. (Our Steiner trees are supersets
of “ordinary” Steiner trees. We employ this slight change of the more standard
definition, since it simplifies a number of technicalities of our polyhedral inves-
tigations.) A Steiner tree that is a tree and whose leaves are terminals is called
edge-minimal Steiner tree. We call an edge e in a graph G, given some net T , a
Steiner bridge, if every Steiner tree for T in G contains e.

We now introduce a polytope associated with the Steiner tree packing problem.
We are given a graph G = (V,E) with capacities ce ∈ IN for all e ∈ E and a
net list N = {T1, . . . , TN}, N ≥ 1. We will denote an instance of the Steiner
tree packing problem by the tripel (G,N , c). Let IRN×E denote the N · |E| –
dimensional vector space IRE × . . . × IRE, where the components of each vector
x ∈ IRN×E are indexed by xke for k ∈ {1, . . . , N}, e ∈ E. Moreover, for a vector
x ∈ IRN×E and k ∈ {1, . . . , N}, we denote by xk ∈ IRE the vector (xke)e∈E , and we
simply write x = (x1, . . . , xN) instead of x = ((x1)T , . . . , (xN)T)T . For a subset
E ′ ⊆ E and a vector a ∈ IRN×E , we define a vector a|E′ ∈ IRN×E′

by (a|E′)ke := ake
for all k = 1, . . . , N and e ∈ E ′. For an edge set F ⊆ E, χF ∈ IRE denotes the
incidence vector of F , i. e., χF

e := 1, if e ∈ F , and χF
e := 0, otherwise. Conversely,

for each 0/1-vector x ∈ IRE, the set Ix := {e ∈ E | xe = 1} is called the incidence
set of x. The incidence vector of a Steiner tree packing (S1, . . . , SN) is denoted
by (χS1, . . . , χSN).

The Steiner tree packing polyhedron STP (G,N , c) is the convex hull of all inci-
dence vectors of Steiner tree packings. It is easy to see that the following holds.

(2.1)

STP (G,N , c) = conv {x ∈IRN×E |
(i)

∑

e∈δ(W)

xke ≥ 1, for all W ⊂ V, W ∩ Tk �= ∅,
(V \W) ∩ Tk �= ∅, k = 1, . . . , N ;

(ii)
N∑

k=1

xke ≤ ce, for all e ∈ E;

(iii) 0 ≤ xke ≤ 1, for all e ∈ E, k = 1, . . . , N ;

(iv) xke ∈ {0, 1}, for all e ∈ E, k = 1, . . . , N}.

3

The inequalities (2.1) (i) are called Steiner cut inequalities, inequalities (2.1) (ii)
are called capacity inequalities and the ones in (2.1) (iii) trivial inequalities. In
case N = 1, the Steiner tree packing polyhedron is also called the Steiner tree
polyhedron. Note that (2.1) (i) – (iv) yields an integer programming formulation
of the weighted Steiner tree packing problem.

We close this section by listing some polyhedral results that are of importance for
the remainder of the paper. The reader interested in the proofs of these results
is referred to [GMW92a].

First of all, the problem of deciding whether, for some given l ∈ IN, the dimension
of the Steiner tree packing polyhedron is at least l is NP-complete. This follows
from the fact that the Steiner tree packing problem itself is NP-complete (see,
for instance, [KL84], [S87]). Due to this fact, we have decided to study the Stei-
ner tree packing polyhedron for problem instances, for which the dimension can
easily be determined and to look for facet-defining inequalities for these special
instances. The justification of the choice to be described below can be found in
[GMW92a].

We restrict ourselves to considering instances (G,N , c), where the graph G is
complete, the net list N = {T1, . . . , TN} is disjoint (i. e. Ti ∩ Tj = ∅ for all
i, j ∈ {1, . . . , N}, i �= j) and the capacities are equal to one (c = 1I). It can easily
be verified that the corresponding Steiner tree packing polyhedron STP (G,N , 1I)
is fulldimensional in this case. The subsequent lemma shows how validity results
for the Steiner tree packing polyhedron for some graph can be transformed to
validity results for the Steiner tree packing polyhedron for the graph obtained by
deleting some edge or splitting some node and thus, by repeated application, how
validity results for the complete graph can be transformed to the genral case.

Lemma 2.2 Let (G,N , c) be an instance of the Steiner tree packing problem.

(a) (Deleting an edge) Let aTx ≥ α be a valid inequality of STP (G,N , c) and
suppose f ∈ E is deleted from G. Then âTx ≥ α is a valid inequality of
STP (G \ f,N , c|E\{f}) where âke = ake for all e ∈ E \ {f}, k ∈ {1, . . . , N}
(where G \ f denotes the graph that is obtained by deleting edge f).

(b) (Splitting a node) Let f ∈ E and let âTx ≥ α be a valid inequality of
STP (G/f, N̂ , ĉ) (G/f denotes the graph that is obtained by shrinking edge
f , N̂ and ĉ denote the corresponding net list and capacity vector defined
on G / f). Then, aTx ≥ α defines a valid inequality for STP (G,N , c) with
ake = âke for all e ∈ E\{f}, k ∈ {1, . . . , N} and akf = 0 for all k = 1, . . . , N .

The next theorem shows that each nontrivial facet-defining inequality of the Stei-
ner tree polyhedron can be lifted to yield a facet-defining inequality of the Steiner
tree packing polyhedron.

4

Theorem 2.3 Let G = (V,E) be the complete graph with node set V and let
N = {T1, . . . , TN}, N ≥ 2, be a disjoint net list. Let āTx ≥ α, ā ∈ IRE , be a
nontrivial facet-defining inequality of STP (G, {Tl}, 1I) for some l ∈ {1, . . . , N}.
Then, aTx ≥ α defines a facet of STP (G,N , 1I), where a ∈ IRN×E denotes the
vector with ale = āe, a

k
e = 0 for all k = 1, . . . , N, k �= l, e ∈ E.

Theorem 2.3 implies that, in order to obtain a complete description of some Stei-
ner tree packing polyhedron STP (G,N , c), at least all “individual” Steiner tree
polyhedra STP (G, {T}, c), T ∈ N , must be known completely. Of course, this
knowledge will hardly do. There are many classes of inequalities that combine
at least two nets. We call such inequalities joint. In [GMW92a] and [GMW93]
several classes of joint inequalities are described.

Polyhedral results such as the ones mentioned above are utilized algorithmically
by means of separation algorithms in the framework of a cutting plane method.
We will discuss separation problems for classes of inequalities valid for the Stei-
ner tree packing polyhedron and separation algorithms for these classes in the
subsequent sections.

� Separation of the Steiner Partition Inequal�

ities

Let a graph G = (V,E) and a set of terminals T ⊆ V, |T | ≥ 2 be given. A
partition V1, . . . , Vp, p ≥ 2, of V is called a Steiner partition (with respect to T)
if Vi ∩ T �= ∅ for i = 1, . . . , p. The inequality

x(δ(V1, . . . , Vp)) ≥ p− 1

induced by a Steiner partition V1, . . . , Vp is called a Steiner partition inequality.
(Note that a Steiner cut inequality is the special case, where p = 2.) Obviously,
each Steiner partition inequality is valid for STP (G, {T}, 1I). The separation
problem for this class of inequalities can be formulated as follows.

Problem 3.1 (Separation problem for the Steiner partition inequali-
ties)
Let a graph G = (V,E), a terminal set T ⊆ V , and a vector y ∈ IRE with
0 ≤ ye ≤ 1, for e ∈ E, be given. Decide whether y satisfies all Steiner partition
inequalities. If not, find a Steiner partition inequality that y violates.

Problem 3.1 is NP-hard in general (cf. [GMS92]). Restricting 3.1 to Steiner
cut inequalities, i. e., the case p = 2, the separation problem can be solved in
polynomial time by min-cut computations using any of the many polynomial
time max-flow algorithms, see [AMO93]. We show now that, if we restrict the

5

graph G to be planar and the set of terminals T to lie on the outer face of G, the
separation problem 3.1 can be solved in time polynomial in the size of G and the
encoding length of y. In the following we describe this algorithm.

It is shown in [GM90] that the following conditions are necessary and sufficient for
a Steiner partition inequality induced by V1, . . . , Vp to be facet-defining, provided
that the graph G is connected and contains no Steiner bridge:

(3.2)

(i) (Vi, E(Vi)) is connected for i = 1, . . . , p,
(ii) (Vi, E(Vi)) contains no Steiner bridge with respect

to the terminal set Vi ∩ T (i = 1, . . . , p), and
(iii) G(V1, . . . , Vp) is 2-node connected;

where G(V1, . . . , Vp) is the graph obtained from G by contracting each node set
of the partition to a single node. Moreover, the proof shows that each Steiner
partition inequality that does not define a facet of STP (G,N , 1I) is the non-
negative linear combination of facet-defining Steiner partition inequalities and
trivial inequalities. Thus, we can restrict ourselves to solving Problem 3.1 for
facet-defining Steiner partition inequalities.

We now describe how each edge set δ(V1, . . . , Vp) of a Steiner partition satisfying
(3.2) (i) and (iii) can be viewed as a Steiner tree in a certain “dual” graph.

t t

t

t

2

4

5

1t t

t

2

4

5

1

t

d

d

d

dd

1

5

2

3

4

t t

t

t

t

2

3

4

5

1t t

t

t

2

4

5

1

t

d

d

d

dd

3

1

5

2

3

4

(b)(a)

(c) (d)

t 3 t 3

V V

V
V

1 2

3
4

Figure 1:

6

For the remainder of this section we assume that the graph G is 2-node connected.
We can do this without loss of generality, because otherwise the overall problem
can be decomposed in an obvious way into subproblems where the corresponding
graphs are 2-node connected. Thus, the edge set OG(E) that encloses the outer
face of G is a cycle. We may assume that the terminal set T = {t1, . . . , tz} is
numbered in a clockwise fashion along this cycle. Let us consider the dual planar
graph G∗ = (V ∗, E) of G. We subdivide the node representing the outer face into
z nodes d1, . . . , dz such that every edge of OG(E) that is passed by walking from
ti to ti+1 on OG(E) in clockwise order is now incident to di+1 for i = 1, . . . , z.
(We identify an index i > z with ((i − 1) modulo z) + 1.) Let GD = (VD, E)
denote the resulting graph and set TD := {d1, . . . , dz}. We call TD the set of dual
terminals. Observe that, instead of working with a bijective mapping, we denote
both the edge set of the original graph G and its “dual” GD by the same symbol
E. We make sure that this notational simplification will not lead to confusion.
Figures 1 (a), showing a 4× 6 grid with five terminals, and Figures 1 (b), where
the edges of GD are displayed by solid lines, illustrate this construction.

Let us now define the following set of Steiner trees in GD .

D := {S ⊆ E | S is an edge-minimal Steiner tree in GD

for some J ⊆ TD, |J | ≥ 2, such that
dS(j) = 1 for all j ∈ J,
dS(t) = 0 for all t ∈ TD \ J}.

Clearly, every Steiner tree S in D determines the set J ⊆ TD of its terminals
uniquely. For notational ease we will thus often write SJ to denote a Steiner tree
S in D and its associated set J of dual terminals.

Lemma 3.3 Let G = (V,E) be a planar graph and T a set of terminals located
on the outer face of G. Then, the following statements are true:

1. If V1, . . . , Vp is a Steiner partition of V with respect to T satisfying (3.2) (i)
and (iii), then the multicut δ(V1, . . . , Vp) viewed as an edge set of the dual
graph GD is a Steiner tree SJ contained in D with |J | = p.

2. If SJ is a Steiner tree in GD contained in D, then there exists a unique
Steiner partition V1, . . . , V|J| of V with respect to T satisfying (3.2) (i) and
(iii) such that SJ = δ(V1, . . . , V|J|).

We will prove a similar statement in Lemma 4.4, so we omit the proof here.
Lemma 3.3 shows that the Steiner partitions of V satisfying (3.2) (i) and (iii) are
in one-to-one correspondence to the edge-minimal Steiner trees in GD that are in
D. To illustrate this on an example, consider Figures 1 (c) and (d): the multicut
δ(V1, V2, V3, V4) induced by the Steiner partition V1, V2, V3, V4 of V depicted in
Figure 1 (c) is a Steiner tree in GD for the subset {d1, d2, d4, d5} of the dual
terminals, see the thick solid lines in Figure 1 (d).

7

To check whether a given vector y ∈ IRE , y ≥ 0, satisfies all Steiner partition
inequalities x(δ(V1, . . . , Vp)) ≥ p− 1, we determine the value

(3.4) α := min
SJ∈D

(
y(SJ)− |J |

)
.

If α ≥ −1, Lemma 3.3 implies that there exists no violated Steiner partition
inequality. Otherwise, the corresponding Steiner tree SJ yields the violated Stei-
ner partition inequality y(SJ) < |J | − 1.

Observe that the objective function of the minimization problem in (3.4) is not
linear. One way to linearize it is to consider the following 2-stage process. First,
for every J ⊆ TD with |J | ≥ 2 we determine a Steiner tree S∗

J for J in GD

such that the weight y(S∗
J) is minimum, where only those Steiner trees SJ are

considered that satisfy dSJ
(j) = 1 for all j ∈ J and dSJ

(j) = 0 for all j ∈ TD \ J .
Then we determine, among all these Steiner trees S∗

J , J ⊆ TD with |J | ≥ 2, a
Steiner tree S∗

J∗ such that the value y(S∗
J∗)− |J∗| is as small as possible. In other

words (3.4) can be written in the following way:

(3.5) α = min
J⊆TD
|J|≥2

(
min

S Steiner tree forJ
S∈D

y(S)
)
− |J |.

However, this does not lead to a polynomial time algorithm. Our approach for the
computation of α is based on ideas of [DW71] and [EMV87] who have presented
a dynamic programming algorithm for the solution of the following problem.

Suppose, we are given a graph G = (V,E) and a set of terminals Z, and we want
to compute a minimal (with respect to some weighting w : E → IR+) Steiner
tree for Z. The idea of the algorithm is based on the observation that, for every
minimal Steiner tree S and every node v ∈ V (S) that is not a leaf of S, there
exists a subset J ⊆ Z such that S can be split into two subtrees S1 and S2,
where S1 is an optimal Steiner tree with respect to J ∪ {v} and S2 is an optimal
Steiner tree with respect to (Z \J)∪{v}. This observation leads to the following
recursion formula.

For J ⊆ Z and v ∈ V , let S(J ∪ {v}) denote a minimal Steiner tree in G for
J ∪ {v}. Moreover, let Sv(J ∪ {v}) be a minimal Steiner tree in G with respect
to J ∪ {v}, where we require in addition dSv(J∪{v})(v) ≥ 2, if v /∈ Z. Then, we
obtain (see [DW71])

(i) w(Sv(J ∪ {v})) = min
∅⊂I⊂J

w(S(I ∪ {v})) + w(S((J \ I) ∪ {v})),
(ii) w(S(J ∪ {v})) = min

u∈V
w(W (v, u)) + w(Su(J ∪ {u}));

where W (u, v), u, v ∈ V denotes a shortest path from u to v in G. Of course, for
arbitrary graphs G and terminal sets Z, the running time of the dynamic program

8

based on this recursion is exponential in the number of terminals. However, in
the particular case, where G is planar and all terminals lie on the outer face of G,
Erickson, Monma and Veinott (cf. [EMV87]) showed that it suffices to consider
only subsets of Z whose elements are located consecutively on the outer face.
Since the number of these subsets is quadratic in the number of terminals, a
minimal Steiner tree can be computed in polynomial time using this recursion.

Let us return to our problem of determining α. We can clearly use the polynomial
time algorithm described above to compute a minimal Steiner tree for every
J ⊆ TD in GD, because GD is planar and the dual terminal set TD (and thus J)
lies on the outer face of GD . We can also take the additional condition that every
Steiner tree S for J has to satisfy S ∈ D into account by some slight modifications
of the recursion formula. Moreover, by running the recursion appropriately we
can simultanously determine the optimal subset J ∗ of TD (and thus solve (3.5))
as follows.

First, from the minimum weight of a Steiner tree for J we subtract the number
of its terminals. This can easily be taken into account in the recursion formula,
since each terminal is a leaf of the Steiner tree (see properties of D). Second, the
minimum in (3.5) is taken over all subsets of TD with at least two elements. The
number of these subsets is exponential in the size of the terminals. However, it
is possible to decide locally which dual terminal belongs to the optimal solution.
Namely, a shortest path P (v, d), v ∈ VD \ TD, d ∈ TD, is a branch of a minimal
Steiner tree only if y(P (v, d)) ≤ 1 holds. This is due to the fact that, if such a
branch is added to a minimal Steiner tree, the left hand side of the corresponding
Steiner partition inequality increases by the weight of the path, whereas the right
hand side is incremented by one. Summing up we obtain the following recursion:

(3.6)

(i) yvi,0 := min{y(W (v, di))− 1, 0}, for all v ∈ VD \ TD, i = 1, . . . , z;

(ii) ψv
i,j := min

1≤l≤j
(yvi,l−1 + yvi+l,j−l), for all v ∈ VD \ TD,

i = 1, . . . , z, j = 1, . . . , z − 1;

(iii) yvi,j := min
u∈VD\TD

(y(W (v, u)) + ψu
i,j), for all v ∈ VD \ TD,

i = 1, . . . , z, j = 1, . . . , z − 1;

where W (u, v), u, v ∈ VD denotes a shortest path in GD from u to v such that
(TD ∩ VD(W (u, v))) \ {u, v} = ∅. This additional restriction is necessary to
guarantee that the solution belongs to D.

In the following we show that Recurision (3.6) works correctly. Unfortunately,
the proof requires many technicalities that we do not see how to avoid.

For i = 1, . . . , z, j = 0, . . . , z − 1, let Pi,j denote the unique path from di to
di+j by walking along the outer face of GD in clockwise order. We define the
interval [di, di+j] := TD ∩ VD(Pi,j). Consider a Steiner tree S in GD for some

9

subset J ⊆ [di, di+j], J �= ∅. We denote by lS the index of the “left most” dual
terminal and by lS + rS the index of the “right most” dual terminal of S, i. e.,
element of J ; in formulas:

lS := i+ h∗, with h∗ := min{h | h ≥ 0, di+h ∈ VD(S)},
and
rS := max{h | h ≤ j, dlS+h ∈ VD(S)}.

Moreover, for i = 1, . . . , z, j = 1, . . . , z−1, we introduce the symbol ei,j to denote
the edge that is incident to di and di+j . Set Gi,j := (VD, E∪{ei,j}). In the planar
representation of Gi,j we embed the edge ei,j in the outer face of GD such that it
is homotopic to the path Pi,j . Figure 2 illustrates this construction. It will turn
out to be useful to employ the symbol ei,0 in some recursion formula in order
to avoid the treatment of additional special cases. We will interpret ei,0 as a
nonexisting edge and, accordingly, Gi,0 as the graph GD .

di+jdi

ei,j

Figure 2:

Lemma 3.7 For i = 1, . . . , z, j = 0, . . . , z − 1 and v ∈ VD \ TD, define Dv
i,j :=

{S ⊆ E | S is an edge-minimal Steiner tree for J ∪ {v} with J ⊆ [di, di+j] such
that dS(j) = 1 for j ∈ J and dS(j) = 0 for j ∈ TD \ J and such that, if J �= ∅, in
addition v ∈ VD(OGlS ,rS

(S ∪ {elS,rS}))}. Then, for the values that are computed
using Recursion (3.6), the following property holds:

yvi,j ≤ min
∅⊆J⊆[di,di+j]

(
min

S Steiner tree forJ∪{v}
S∈Dv

i,j

y(S)
)
− |J |,

for all v ∈ VD \ TD, i = 1, . . . , z, j = 0, . . . , z − 1.

Proof.
For r = 1, . . . , z, s = 0, . . . , z − 1 and v ∈ VD \ TD, let D

v
r,s ⊆ [dr, dr+s] and

Sv
r,s ∈ Dv

r,s be a Steiner tree for Dv
r,s ∪ {v} such that

y(Sv
r,s)− |Dv

r,s| = min
∅⊆J⊆[dr ,dr+s]

(
min

S Steiner tree forJ∪{v}
S∈Dv

r,s

y(S)
)
− |J |.

10

We must show that yvi,j ≤ y(Sv
i,j) − |Dv

i,j| for all v ∈ VD \ TD, i = 1, . . . , z, j =
0, . . . , z − 1. We prove the statement by induction over j. For j = 0 Lemma 3.7
is obviously true. Suppose the statement also holds for all k = 0, . . . , j − 1. Let
v ∈ VD \ TD be any arbitrary node and i ∈ {1, . . . , z}. For ease of notation let
l := lSv

i,j
, r := rSv

i,j
and F := OGl,r

(Sv
i,j ∪ {el,r}). We distinguish two cases:

(1) dSv
i,j
(v) ≥ 2.

Since GD is planar, since all dual terminals (and thus Dv
i,j) lie on the outer face of

GD, and since v ∈ VD(F), there exists an index q ∈ {1, . . . , j} and two nonempty
disjoint subtrees S1, S2 ⊆ Sv

i,j with S1∪S2 = Sv
i,j such that S1 is an edge-minimal

Steiner tree for (Dv
i,j ∩ [di, di+q−1]) ∪ {v} and S2 is an edge-minimal Steiner tree

for (Dv
i,j ∩ [di+q , di+j]) ∪ {v} (see Figure 3).

d i+q

d l

d i+j

Gv
d i

d l+r

Figure 3:

Moreover, Sv
i,j ∈ Dv

i,j implies that dS1(d) = 1 for all d ∈ Dv
i,j ∩ [di, di+q−1] and

dS1(d) = 0 for all d ∈ TD\(Dv
i,j∩[di, di+q−1]). The same holds for S2, i. e., dS2(d) =

1 for all d ∈ Dv
i,j∩[di+q , di+j] and dS2 (d) = 0 for all d ∈ TD\(Dv

i,j∩[di+q , di+j]). Let
F1 := OGlS1

,rS1
(S1∪{elS1

,rS1
}) and F2 := OGlS2

,rS2
(S2∪{elS2

,rS2
}). It is clear that

VD(F) ⊆ VD(F1) ∪ VD(F2) and {v} = VD(F1) ∩ VD(F2). Therefore, S1 ∈ Dv
i,q−1

and S2 ∈ Dv
i+q,j−q . This yields

y(Sv
i,j)− |Dv

i,j| = y(S1) − |Dv
i,j ∩ [di, di+q−1]|+

y(S2)− |Dv
i,j ∩ [di+q, di+j]|

≥ y(Sv
i,q−1) − |Dv

i,q−1|+ y(Sv
i+q,j−q)− |Dv

i+q,j−q |
≥ yvi,q−1 + yvi+q,j−q

≥ ψv
i,j ≥ yvi,j.

(2) dSv
i,j
(v) = 1.

We consider three subcases:
(a) |Dv

i,j | ≥ 2.
Then, since Sv

i,j is edge-minimal, there exists a node u ∈ VD \ TD with
dSv

i,j
(u) ≥ 2 such that Sv

i,j =W (v, u)∪S ′, whereW (v, u)∩S ′ = ∅ (see Figure

4). Obviously, lS′ = l, rS′ = r and, since dSv
i,j
(v) = 1 and v ∈ VD(F) we have

that F =W (v, u)∪OGl,r
(S ′∪{el,r}). Moreover, it is easy to check that S ′ is

11

G

d l

d

u

v

l+r

Figure 4:

an edge-minimal Steiner tree for Dv
i,j ∪ {u} satisfying all further properties

in Du
i,j . This, together with (1) (note that dS′(u) ≥ 2) yields

y(Sv
i,j)− |Dv

i,j| = y(W (v, u)) + y(S ′)− |Dv
i,j|

≥ y(W (v, u)) + ψu
i,j

≥ yvi,j.

(b) Dv
i,j = {du} for some u ∈ {i, . . . , i+ j − 1}.

Then, we know that Sv
i,j ∈ Dv

i,u−i, and we obtain

y(Sv
i,j)− |Dv

i,j | = y(W (v, du))− 1
≥ y(Sv

i,u−i)− |Dv
i,u−i|

≥ yvi,u−i ≥ yvi,u−i + yvu+1,i+j−u−1

≥ ψv
i,j ≥ yvi,j.

(c) Dv
i,j = ∅.

Here, we have that y(Sv
i,j)− |Dv

i,j| = 0 ≥ ψv
i,j ≥ yvi,j.

This completes the proof.

Let β := minv∈VD\TD
yv1,z−1 and let S∗ be the corresponding edge set. Obviously,

(VD(S
∗), S∗) is connected and Lemma 3.7 implies β ≤ α. If β ≥ −1, then

there does not exist a violated Steiner partiton inequality. If β < −1, we get
p∗ := |VD(S∗) ∩ TD| ≥ 2, since y ≥ 0 holds. Thus, S∗ ∈ D and α = β. Due to
Lemma 3.3 there exists a Steiner partiton V1, . . . , Vp∗ with δ(V1, . . . , Vp∗) = S∗

and 0 > β + 1 = y(δ(V1, . . . , Vp∗)) − p∗ + 1. Therefore, V1, . . . , Vp∗ defines a
violated Steiner partiton inequality.
This gives rise to the following algorithm.

Algorithm 3.8 (Separation algorithm for the Steiner partition inequal-
ities)

Input:
A planar graph G = (V,E), a set of terminals T ⊆ V that are located on the
outer face and a vector y ∈ IRE , y ≥ 0.

12

Output:
One of the following possibilities:

- a violated Steiner partiton inequality,
- the message “there does not exist a violated Steiner partiton inequality”.

(1) Construct the graph GD = (VD , E) with TD = {d1, . . . , dz}.
(2) Compute shortest paths W (u, v) for all u, v ∈ VD such that no inner node of

the corresponding paths is an element of TD.
(3) Determine yv1,z−1 for all v ∈ VD \ TD using Recursion (3.6).
(4) Set β := minv∈VD\TD

yv1,z−1.
(5) If β ≥ −1, print the message “there does not exist a violated Steiner partiton

inequality”, STOP.
(6) Determine the edge set S∗ corresponding to β.
(7) Return the violated inequality (χS∗

)Tx ≥ |VD(S∗) ∩ TD| − 1.
(8) STOP.

The running time for the execution of steps (3) and (4) of Algorithm 3.8 is
bounded by O(|VD|2|T |2). Also note that (3.2) (ii) can easily be taken into
account in step (i) of Recursion (3.6). Taking all together, we obtain the following
theorem.

Theorem 3.9 Let G = (V,E) be a planar graph and let T ⊆ V be a set of
terminals located on the outer face of G. Then, the separation problem for the
Steiner partition inequalities can be solved in time O(|VD|2|T |2 + γ), where γ is
the running time for the computation of the shortest paths between all pairs of
nodes.

Let us close this section by two remarks.

From Lemma 3.3 we know that each Steiner tree in GD for some subset J of
TD corresponds to a Steiner partition inequality. This observation gives rise
to several heuristic algorithms for finding violated Steiner partition inequalities.
Namely, instead of calculating an optimal Steiner tree in GD , we determine a
Steiner tree also heuristically. Many heuristics are known for the solution of the
minimumSteiner tree problem (see, for instance, [HRW92] for a survey). We have
implemented one such algorithm that is based on the ideas described in [TM80].
This heuristic starts with a terminal d ∈ TD. Then, a terminal d′ ∈ TD \ {d} is
chosen such that the weight of a shortest path from d′ to d is minimal. Finally, d′

and d are connected via a shortest path. This scheme is iterated until all terminals
are connected. For our purposes this procedure is slightly modified. First, we
have to make sure that no inner node on the corresponding shortest paths is an
element of TD. Second, in order to generate as many inequalites as possible, we
compute a Steiner tree starting with all pairs of nodes di, dj, where di, dj ∈ TD.
The advantage of this heuristic is that not only the final Steiner trees define
Steiner partition inequalities, but also any of its iteratively computed subtrees

13

defines a Steiner partition inequality (cf. Lemma 3.3). Working in this scheme we
obtain plenty of inequalities. For each of them we check whether it is violated.
We will see in the last section that this heuristic works very well for our problem
instances.

Finally, let us point out that Algorithm 3.8 can also be used to solve certain
multicut problems. Suppose, there is given a planar graph G, a set of nodes
T ⊆ V located on the outer face of G and nonnegative edge weights we, e ∈ E,
and we want to determine min{−λ, min{w(δ(V1, . . . , Vp))−λp | V1, . . . , Vp, p ≥ 2
is a Steiner partition of V with respect to T such that G(V1, . . . , Vp) is 2-node
connected}}, where λ is the gain for each element of the partition. By applying
some modifications to Algorithm 3.8 this problem can be solved in polynomial
time as well.

� Separation of the Alternating Cycle Inequal�

ities and Extensions

We first introduce the so-called alternating cycle inequalities. Let G = (V,E)
be a graph and N = {T1, T2} a net list. We call a cycle F in G an alternating
cycle with respect to T1, T2, if F ⊆ [T1 : T2] and V (F) ∩ T1 ∩ T2 = ∅ (see Figure
5). Moreover, let F1 ⊆ E(T2) and F2 ⊆ E(T1) be two sets of diagonals of the
alternating cycle F with respect to T1, T2. The inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1
2
|F | − 1

is called an alternating cycle inequality.

T

T

1

2

1

2

F

F

F

Figure 5:

It is not difficult to see that the basic form of an alternating cycle inequality, i. e.,
F1 = F2 = ∅, is valid for STP (G,N , 1I), but in general, it is not facet-defining.
The sets F1 and F2 are used to strengthen the basic form; in fact, choosing them
appropriately we can obtain facet-defining inequalities.

The sets of diagonals F1 ⊆ E(T2) and F2 ⊆ E(T1) are called maximal cross free
with respect to F , if F1 and F2 are cross free, and each diagonal e1 ∈ E(T1) \ F2

14

crosses F1 and each diagonal e2 ∈ E(T2)\F1 crosses F2 (see Figure 5). Then, the
following theorem holds.

Theorem 4.1 Let G = (V,E) be a graph that contains the complete graph on
node set V as a subgraph and let N = {T1, T2} be a disjoint net list with T1∪T2 =
V and |T1| = |T2| = l, l ≥ 2. Furthermore let F be an alternating cycle with
respect to T1, T2 with V (F) = V and F1 ⊆ E(T2), F2 ⊆ E(T1). Then, the
alternating cycle inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ l − 1

defines a facet of STP (G,N , 1I) if and only if F1 and F2 are maximal cross free.

There is a natural way to extend the alternating cycle inequalities as follows.
Let G = (V,E) be a graph and N = {T1, T2} be a net list. Let V1, . . . , Vk be
a partition of V with k ≥ 4 and k even such that the following properties are
satisfied:

(4.2)

(i) (Vi, E(Vi)) is connected for i = 1, . . . , k,
(ii) V2i+1 ∩ T1 �= ∅, V2i+1 ∩ T2 = ∅, for i = 0, . . . , k

2
− 1,

V2i ∩ T1 = ∅, V2i ∩ T2 �= ∅, for i = 1, . . . , k
2
,

(iii) [Vi : Vi+1] �= ∅, for i = 1, . . . , k.

(An index i > k is identified with the index ((i−1) modulo k)+1.) Condition (iii)
guarantees that the contracted graph G(V1, . . . , Vk) (i. e. the graph obtained by
contracting every element of the partition to a single node) contains at least one
hamiltonian cycle. We choose an edge set F ⊆ ∪k

i=1[Vi : Vi+1] in G that forms
a hamiltonian cycle in G(V1, . . . , Vk). Note that, due to (ii), F is alternating.
Furthermore, let F1 ⊆ ⋃

i,j even
i�=j

[Vi : Vj], F2 ⊆ ⋃
i,j odd
i�=j

[Vi : Vj] be two edge sets

such that F1 and F2, viewed as edge sets in the contracted graph G(V1, . . . , Vk),
are cross free with respect to the alternating cycle F . Then we call the following
inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ k

2
− 1

extended alternating cycle inequality. This inequality is valid with respect to
STP (G,N , 1I) due to Lemma 2.2. Let us give an example.

Example 4.3 Consider the graph G in Figure 6 (a) with T1 = {1, 3, 5, 10} and
T2 = {4, 9, 12}. It can easily be checked that the partition V1, V2, V3, V4 satisfies
(4.2); the corresponding contracted graph G(V1, V2, V3, V4) is depicted in Figure
6 (a). Obviously, F := { {3, 4}, {10, 11}, {9, 10}, {5, 9}} is an hamiltonian al-
ternating cycle in G(V1, V2, V3, V4) and F1 := ∅, F2 := { {2, 6}, {5, 6}} are cross
free sets of diagonals. Thus, the inequality x126 + x156 + x137 + x167 + x237 + x267 ≥ 1
is an extended alternating cycle inequality.

15

1 2 3 4

5 6 7 8

9 10 11 12

V

V

VV

1

2

34

1V 2V

3V4V

(a) (b)

Figure 6:

Observe that, when V1, . . . , Vk are chosen we have the freedom to pick F, F1 and
F2 among many possible alternatives. We call any tripel (F, F1, F2) that satisfies
the additional requirements defined above a feasible tripel (for V1, . . . , Vk).

We do not know under which conditions the extended alternating cycle inequali-
ties define facets of the Steiner tree packing polyhedron and we do not know how
to separate these inequalities in the general case. Our aim here is to outline a
separation routine for extended alternating cycle inequalities in the (practically
relevant) case where a planar graph G is given and all terminals of T1 and T2 are
on the outer face.

We proceed in a similar way as for the Steiner partition inequalities. We show
that, for each partition V1, . . . , Vk satisfying (4.2), the multicut δ(V1, . . . , Vk) cor-
responds to a certain Steiner tree in a graph that remains to be defined. Here, an
additional difficulty comes up, since the edges of δ(V1, . . . , Vk) must be evaluated
differently. The coefficients depend on the choice of the alternating cycle F in
G(V1, . . . , Vk) and on the sets F1 and F2. Thus, for the corresponding Steiner
tree, a vector must be defined that “sifts” the edges that correspond to F, F1 or
F2, respectively.

Without loss of generality we suppose the planar graph G to be 2-node connected
so that the edge set OG(E) that encloses the outer face is a cycle. Let T = T1∪T2

and we may assume that T := {t1, . . . , tz} is numbered in a clockwise fashion
along this cycle. Let us consider the dual graph G∗ = (V ∗, E) of G. We split the
node representing the outer face into z nodes d1, . . . , dz such that every edge of
OG(E) that is passed by walking from ti to ti+1 on OG(E) in clockwise order is
incident to di+1 for i = 1, . . . , z. Let GD = (VD, E) denote the resulting graph
and set TD = {d1, . . . , dz}. Figure 7 illustrates this construction for the graph of

16

Example 4.3. Set

M := {di ∈ TD | {ti−1, ti} ∩ Tk �= ∅ for k = 1, 2},
S := {S ⊆ E | S is an edge-minimal Steiner tree for M in GD such that

dS(d) = 1 for all d ∈M and dS(d) = 0 for all d ∈ TD \M}.

d d

d

dd

d

d

t t t

ttt

t

1 2 3

6

2 3

4

4

56

7

1

7

5

Figure 7:

Then, the following relation holds.

Lemma 4.4 Let G = (V,E) be a planar graph and N = {T1, T2} where all
terminals are located on the outer face. Then, the following statements are true:

1. If V1, . . . , Vk is a partition of V satisfying (4.2), then the corresponding
multicut δ(V1, . . . , Vk) viewed as an edge set of the dual graph GD is a Stei-
ner tree contained in S.

2. If S is a Steiner tree in GD contained in S and |M | ≥ 4 holds, then there ex-
ists a partition V1, . . . , Vk of V satisfying (4.2) such that S = δ(V1, . . . , Vk).

Proof. Let us prove the first statement. Suppose V1, . . . , Vk with k ≥ 4 even is
a partition satisfying (4.2). Since G is planar and all terminals are located on
the outer face, properties (4.2) guarantee that the numbering of the partition is
clockwise (or anticlockwise) along the outer face of G. Without loss of generality
we suppose that the elements of the partition are numbered in clockwise fashion.
For every i ∈ {1, . . . , k}, the graph (Vi, E(Vi)) is connected and Vi ∩ T �= ∅.
Hence, there exist di1 , di2 ∈ TD such that δ(Vi) defines a path from di1 to di2.
Without loss of generality di1, di2 are chosen such that terminal ti1 ∈ Vi. From
property (iii) of (4.2) and the fact that V1, . . . , Vk is a partition it follows that
di2 = d(i+1)1 for i = 1, . . . , k. Thus, S := ∪k

i=1δ(Vi) = δ(V1, . . . , Vk) is a Steiner
tree for M ′ := ∪k

i=1{di1}. Since V1, . . . , Vk is a partition and since (4.2) (ii), (iii)

17

hold, S is edge-minimal. Properties (4.2) (ii) and (iii) together with k even imply
that M ′ = M and thus dS(d) = 0 for all d ∈ TD \M . Finally, dS(d) = 1 for all
d ∈ M ′, because V1, . . . , Vk is a partition of V with Vi ∩ T �= ∅ (i = 1, . . . , k) and
property (4.2) (iii) holds. Thus, S ∈ S.
Conversely, let S ∈ S and suppose |M | ≥ 4. We number the elements in M =
{ds1 , . . . , dsm} with m := |M | in clockwise order around the outer face such that
ts1−1 ∈ T1. Every unique path Pi in S from dsi to dsi+1 is a cut in G, i. e.,
there exists a node set Vi such that δ(Vi) = Pi. Moreover, we can assume that
tsi−1 ∈ Vi, for i = 1, . . . , m. Since dS(d) = 0 for all d ∈ TD \ M , (Vi, E(Vi))
is connected for all i = 1, . . . , m. Furthermore, V1, . . . , Vm is a partition of V,
because S is edge-minimal. Property (iii) of (4.2) follows from dS(d) = 1 for all
d ∈M . By construction, V1 ∩ T1 �= ∅. So, we obtain Property (4.2) (ii) from the
fact that S is a Steiner tree for M with VD(S)∩ (TD \M) = ∅. Obviously, m ≥ 4
and even, since |M | ≥ 4 and even.

In Figure 8 the Steiner tree S ∈ S which corresponds to the partition V1, V2, V3, V4
shown in Figure 6 (a) is depicted in thick solid lines. From the proof of Lemma
4.4 we see that the cardinality k of a partition V1, . . . , Vk satisfying (4.2) equals
|M |. So, we suppose from now on that k = |M | ≥ 4, otherwise, there does not
exist any extended alternating cycle inequality.

d d

d

dd

d

d

t t t

ttt

t

1 2 3

6

2 3

4

4

56

7

1

7

5

Figure 8:

Next, we define a “sifting function” for each S ∈ S. Let V S
1 , . . . , V

S
k be the

corresponding partition satisfying (4.2) according to Lemma 4.4. We call a vector
a ∈ {0, 1}{T1,T2}×E a sifting for S if there exists a feasible tripel (F, F1, F2) for
V S
1 , . . . , V

S
k such that a = (χE\(F∪F1), χE\(F∪F2)). Moreover, set η(S) := k

2
and let

F(S) denote the set of all siftings for S. Consider now the following minimization
problem

18

(4.5) min
S∈S

min
a∈F(S)

y1(S ∩ Ia1) + y2(S ∩ Ia2)− η(S),

where y ∈ IR{T1,T2}×E , y ≥ 0, is the vector to be cut off and Ib = {e ∈ E | be = 1}
for b ∈ {0, 1}E . Let μ denote the minimum value of (4.5). From Lemma 4.4 and
the definition of a sifting we know that we can solve the separation problem for
the extended alternating cycle inequalities via computing (4.5). If μ ≥ −1, there
obviously exists no violated inequality. If μ < −1, let S̃ ∈ S and ã ∈ F(S) be such

that μ = y1(S̃ ∩ Iã1)+ y2(S̃ ∩ Iã2)− η(S̃). In this case (χS̃∩Iã1 , χS̃∩Iã2) ≥ η(S̃)− 1
is an extended alternating cycle inequality that is violated by y. Thus, it remains
to solve Problem (4.5).

As in the case of the Steiner partition inequalities we develop a dynamic program
in order to compute the optimal Steiner tree S̃ ∈ S and the optimal sifting
ã ∈ F(S̃). Consider the following recursion:

Recursion 4.6 Let yk(u, v) denote the value of a shortest path from u to v with
respect to the weighting yk whose inner nodes have empty intersection with TD.
Moreover, let y(u, v) correspond to the value of a shortest path from u to v with
respect to the weight function y1 + y2 whose inner nodes have empty intersection
with TD. Finally, define y−1(u, v) := min{ŷ(W)−maxe∈W ŷe | W is a path from
u to v whose inner nodes have empty intersection with TD} where ŷ = y1 + y2.
Then, for all i = 1, . . . , z, j = 0, . . . , z− 1, v ∈ VD \TD and k = 1, 2 (with k̄ = 1,
if k = 2, and k̄ = 2, if k = 1) set

(1) l1(v, i, 0) := y−1(v, di)− 1
2
, if di ∈M ;

l1(v, i, 0) := 0, if di ∈ TD \M ;
(2) l2(v, i, j) := min

1≤r≤j
l1(v, i, r− 1) + l1(v, i+ r, j − r);

(3) l1(v, i, j) := min
u∈VD\TD

yk(v, u) + l2(u, i, j), if ti−1, ti+j ∈ Tk;

l1(v, i, j) := min
u∈VD\TD

y(v, u) + l2(u, i, j), if ti−1 ∈ Tk, ti+j ∈ Tk̄

or ti−1 ∈ Tk̄, ti+j ∈ Tk.

Then, the following theorem holds.

Theorem 4.7 For the value lmin := minv∈VD\TD
l1(v, 1, z − 1) computed via Re-

cursion 4.6, we have

lmin ≤ min
S∈S

min
a∈F(S)

y1(S ∩ Ia1) + y2(S ∩ Ia2)− η(S).

Proof.
We will proceed as in the last chapter and prove a relation between solutions for
subproblems in the spirit of Lemma 3.7. Hereto we need some further notation.

19

First of all, we have to define subtrees of Steiner trees in S. For all i =
1, . . . , z, j = 0, . . . , z − 1, we use the same notation and definitions as in the
previos section, i. e., the interval [di, di+j], the edge ei,j embedded in the outer
face of GD, the graph Gi,j := (VD, E ∪ {ei,j}), and, for a Steiner tree in GD for
J ⊆ [di, di+j], J �= ∅, the symbols lS and rS. For v ∈ VD\TD and i = 1, . . . , z, j =
0, . . . , z − 1, we define Sv

i,j := {S ⊆ E | S is an edge-minimal Steiner tree in GD

for ([di, di+j]∩M)∪{v} such that dS(d) = 1 for all d ∈ [di, di+j]∩M and dS(d) = 0
for all d ∈ TD \ ([di, di+j] ∩M) and such that, if [di, di+j] ∩M �= ∅, in addition
v ∈ VD(OGlS ,rS

(S ∪ {els,rS}))}. Furthermore, we call a vector a ∈ {0, 1}{T1,T2}×E

a sifting for S ∈ Sv
i,j if there exists a Steiner tree S̃ ∈ S and a sifting ã for S̃ such

that S ⊆ S̃, ae = ãe for all e ∈ S and ae = 0, otherwise. Let F(S) denote the set
of siftings for S ∈ Sv

i,j and set η(S) := 1
2
|[di, di+j] ∩M |.

What we want to show is that l1(v, i, j) is a lower bound for y1(S ∩ Ia1) + y2(S ∩
Ia2)− η(S) for all Steiner trees S ∈ Sv

i,j and all siftings a ∈ F(S). Unfortunately,
this is not true, in general. It turns out that depending on the node v certain
siftings must be excluded.

Let S ∈ Sv
i,j . Define V 3

S := {w ∈ VD(S) | dS(w) ≥ 3}. Let L ⊆ M ∩ [di, di+j] be
the set of nodes d such that, for the unique path P in S from v to d, VD(P)∩V 3

S =
∅ holds. If L = ∅, we set Fv(S) := F(S). Otherwise, let Pd, d ∈ L, denote the
unique path from v to d. We set Fv(S) := {a ∈ F(S) | for all d ∈ L there exists
an edge e ∈ S ∩ Pd with a1e = a2e = 0}, that means that we allow only siftings
where the corresponding alternating cycle has nonempty intersection with all
paths Pd, d ∈ L.

Now, we show that

(∗) l1(v, i, j) ≤ min
S∈Sv

i,j

min
a∈Fv(S)

y1(S ∩ Ia1) + y2(S ∩ Ia2)− η(S)

for all v ∈ VD \ TD, i = 1, . . . , z, j = 0, . . . , z − 1.

We prove this by induction on j. (∗) is obviously true for j = 0. Now, suppose
(∗) is also true for all l = 0, . . . , j − 1. Consider any arbitrary v ∈ VD \ TD and
i ∈ {1, . . . , z}. Let S̃ ∈ Sv

i,j and ã ∈ Fv(S̃) such that

y1(S̃ ∩ Iã1) + y2(S̃ ∩ Iã2)− η(S̃) = min
S∈Sv

i,j

min
a∈Fv(S)

y1(S ∩ Ia1) + y2(S ∩ Ia2)− η(S).

We have to show that l1(v, i, j) ≤ y1(S̃ ∩ Iã1)+y2(S̃ ∩ Iã2)− η(S̃). We distinguish
two cases:

(1) dS̃(v) ≥ 2. SinceGD is planar, all terminals of TD are located on the outer face
of GD and v ∈ VD(OGl

S̃
,r
S̃
(S̃ ∪ {elS̃,rS̃})), there exists an index r ∈ {1, . . . , j} and

two disjoint subtrees S1, S2 of S̃ such that S1 ∪ S2 = S̃, v ∈ VD(S1), v ∈ VD(S2)
and such that S1 ∈ Sv

i,r−1 and S2 ∈ Sv
i+r,j−r (see also proof of Lemma 3.7). Set

20

ake := ãke for all e ∈ E \ S2 and ake := 0 for all e ∈ S2, k = 1, 2. Furthermore,
choose bke := ãke for all e ∈ E \ S1 and bke := 0 for all e ∈ S1, k = 1, 2. Next,
we show that a ∈ Fv(S1) and b ∈ Fv(S2). First, since ã ∈ F(S̃), we know that
a ∈ F(S1) and b ∈ F(S2). Let L̃ ⊆ M ∩ [di, di+j] denote the set of nodes d
such that for the unique path P from v to d holds VD(P) ∩ V 3

S̃
= ∅. Denote

by L1 and L2 the corresponding node sets of S1 and S2. From the fact that
L̃ = L1 ∪ L2 we conclude that a ∈ Fv(S1) and b ∈ Fv(S2). Finally, note that
η(S̃) = η(S1) + η(S2). Summing up, we obtain that

y1(S̃ ∩ Iã1) + y2(S̃ ∩ Iã2)− η(S̃) = y1(S1 ∩ Ia1) + y2(S1 ∩ Ia2)− η(S1)+
y1(S2 ∩ Ib1) + y2(S2 ∩ Ib2)− η(S2)

≥ l1(v, i, r− 1) + l1(v, i+ r, j − r)
≥ l2(v, i, j) ≥ l1(v, i, j).

(2) dS̃(v) = 1. If |VD(S̃) ∩ [di, di+j]| = 1, we conclude that there exists an
r ∈ {1, . . . , j} such that S̃ ∈ Sv

i,r−1 and ∅ ∈ Sv
i+r,j−r , or vice versa, ∅ ∈ Sv

i,r−1

and S̃ ∈ Sv
i+r,j−r (note that j > 0). Since both r − 1 and j − r are less than or

equal to j − 1, we conclude by the assumption of the induction that (∗) holds.
Now, suppose |VD(S̃) ∩ [di, di+j]| ≥ 2. This implies that there exists a node
u ∈ V 3

S̃
such that S̃ = W (v, u) ∪ S ′, W (v, u) ∩ S ′ = ∅, with dS′(u) ≥ 2 and

S ′ ∈ Su
i,j , where W (v, u) is the unique path in S̃ from v to u (for a more detailed

discussion, see the corresponding case in the proof of Lemma 3.7). Set ake := ãke
for all e ∈ E \ W (v, u) and ake := 0 for all e ∈ W (v, u), k = 1, 2. Obviously,
η(S̃) = η(S ′). Since ã ∈ Fv(S̃) we obtain that a ∈ Fu(S

′). Moreover, ã ∈ Fv(S̃)
and v ∈ VD(OGl

S̃
,r
S̃
(S̃ ∪ {elS̃,rS̃})) imply that, for all e ∈ W (v, u), ãke = 1 if

ti−1 ∈ Tk or ti+j ∈ Tk for k = 1, 2. Thus, taking the correctness of case (1) into
account we get the following:
If ti−1, ti+j ∈ Tk for some k ∈ {1, 2}, we obtain that

y1(S̃ ∩ Iã1) + y2(S̃ ∩ Iã2)− η(S̃) ≥ yk(W (v, u))+
y1(S ′ ∩ Ia1) + y2(S ′ ∩ Ia2)− η(S ′)

≥ yk(W (v, u)) + l2(u, i, j)
≥ l1(v, i, j).

If ti−1 ∈ T1 and ti+j ∈ T2 or ti−1 ∈ T2 and ti+j ∈ T1, we have that

y1(S̃ ∩ Iã1) + y2(S̃ ∩ Iã2)− η(S̃) ≥ ŷ(W (v, u))+
y1(S ′ ∩ Ia1) + y2(S ′ ∩ Ia2)− η(S ′)

≥ ŷ(W (v, u)) + l2(u, i, j)
≥ l1(v, i, j).

21

We conclude that (∗) is true. Relation (∗) finally implies that

lmin = min
v∈VD\TD

l1(v, 1, z − 1)

≤ min
v∈VD\TD

min
S∈Sv

1,z−1

min
a∈Fv(S)

y1(S ∩ Ia1) + y2(S ∩ Ia2)− η(S)

≤ min
S∈S

min
a∈F(S)

y1(S ∩ Ia1) + y2(S ∩ Ia2)− η(S).

This completes the proof.

An edge set Sl that yields the minimum value lmin can easily be obtained by
labeling the corresponding edges in Recursion 4.6. Per construction, Sl is an
element of S. Note that the recursion formulas 4.6 implicitly define a vector
al ∈ {0, 1}{T1,T2}×E such that lmin = y1(Sl∩Ia1l)+y2(Sl∩Ia2l)−η(Sl). If lmin ≥ −1,
we conclude from Theorem 4.7 that there does not exist a violated alternating
cycle inequality. If lmin < −1, unfortunately, al is not necessarily a sifting of Sl.

Example 4.8 Consider the example depicted in Figure 9. Given a complete
rectangular 3 × 3 grid graph, where the terminals of net 1 are printed as small
black rectangles and these of net 2 as small black cycles. All other nodes are
depicted as white cycles. The solid lines represent edges e with value y1e = 1,
dashed lines edges e having value y2e = 0.5 and dotted lines edges e with value
y1e = 0.5. The edge set in GD yielding lmin is drawn in thick black lines. lmin

results from the following computation: lmin = l1(4, 4, 0)+ l1(4, 3, 0)+ l1(4, 1, 1) =
(y−1(4, d4) − 1

2
) + (y−1(4, d3) − 1

2
) + (y1(4, 2) + l1(2, 1, 0) + l1(2, 2, 0)) = (0.0 −

1
2
) + (0.0− 1

2
) + (0.5 + (0.0− 1

2
) + (0.0− 1

2
)) = −1.5. The branching nodes of the

recursion are the nodes 4 and 2, i.e., edge {1, 2} is counted twice. The branching
nodes of the edge set Sl are the nodes 4 and 1. Therefore, al does not define a
sifting for Sl. However, al can be modified to a sifting āl for Sl. In this case we
obtain y1(Sl ∩Fā1l

)+ y2(Sl ∩Fā2l
)−α(Sl) = −1.0 implying that the corresponding

cycle inequality is not violated.

We do not know how to avoid these cases. We have no alternative but check
whether al actually is an element of F(Sl). Thus, the algorithm proposed is not
an exact separation method. However, it provides a lower bound for the slack of
the most violated extended alternating cycle inequality and, if lmin ≥ −1, a proof
that no extended alternating cycle inequality exists that is violated by y.

Clearly, the recursion itself for computing lmin takes time O(|VD|2(|T1| + |T2|)2).
The values y(u, v) and yk(u, v), k ∈ {1, 2}, can be determined by any shortest
path algorithm. However, at first sight it is not obvious how to compute the
values y−1(u, v). It turns out that these values can be calculated by calling a
shortest path algorithm twice. This will be the topic of the following subsection.
Thus, the overall running time of our algorithm is O(|VD|2(|T1|+|T2|)2+γ), where
γ is the time to compute shortest paths between all pairs of nodes.

22

1 2

3 4

d d

d

1 2

3

d4

Figure 9:

Finally, let us remark that in our cutting plane algorithm for computing a min-
imum weight Steiner tree packing, we do not only try to determine the most
violated extended alternating cycle inequality by using Recursion 4.6. Instead,
we also compute Steiner trees for M in GD heuristically. Again, we use the algo-
rithm proposed by [TM80] with cost function y1 + y2. Thereafter, we determine
the best possible sifting for the resulting Steiner trees.

Up to now, all partitions V1, . . . , Vk of V considered in our separation algorithm
have cardinality k = |M |. In other words, each node in the contracted graph
G(V1, . . . , Vk) is part of the alternating cycle. It is natural to generalize this in
the sense that not all elements of the partition V1, . . . , Vk belong to the alternat-
ing cycle, but are viewed as certain additional nodes in the contracted graph.
We have analyzed this generalization from a theoretical point of view and have
identified conditions under which the resulting inequalities are facet-defining (see
[GMW92a]). Moreover, the dynamic program described above can be adapted
to this generalization. It also provides a lower bound for the slack of the most
violated inequality. A detailed description of this algorithm requires many tech-
nicalities that we do not want to present here. For a discussion of this separation
algorithm we refer to [M92].

� Determining Cheapest Paths with Costfree

Edges

The following combinatorial optimization problem is an interesting variant of the
shortest path problem. We are given a graph G = (V,E) with costs ce ≥ 0 for all
edges ce ∈ E, two nodes s, t ∈ V , and a nonnegative integer k. We want to find

23

a cheapest path from s to t where the “cost” of a path is the usual cost minus
the sum of the costs of the k (or at most k) most expensive edges of the path.
Another way to view the problem is the following. We have k tokens that allow
us to use k (or at most k) edges for free. We want to choose a path from s to
t and employ the k tokens to use k (or at most k) edges without any costs in
such a way that the total sum paid for the use of the remaining edges is as small
as possible. Clearly, this problem also has a directed version; we can similarly
search for odd or even paths or cycles where k of the edges can be used for free.

We are particularly interested in the case of [s, t]-paths where k = 1, since the
computation of cheapest paths with one costfree edge is necessary to compute the
values (1) l1(v, i, 0) = y−1(v, di)− 1

2
in Recursion 4.6. There is an obvious way to

determine a cheapest [s, t]-path with one costfree edge. For every edge e ∈ E, we
do the following: We define a new cost function by setting cef := cf , if f �= e, and
cee := 0, and we compute a shortest [s, t]-path in G with cost function ce. Every
shortest of the |E| [s, t]-paths determined this way is a cheapest [s, t]-path with
one costfree edge. (This process can be clearly generalized to the case k ≥ 1.)
However, a cheapest [s, t]-path with one costfree edge can be computed faster by
calling a shortest path algorithm only twice as follows.

Algorithm 5.1 (Cheapest paths from s to all other nodes with one cost-
free edge)

Input:
A graph G = (V,E), edge costs ce ≥ 0, e ∈ E and a node s ∈ V .

Output:
The costs of cheapest paths from s to all v ∈ V with one costfree edge.

Datastructures:

d(v) = Length of a shortest [s, v]-path.
m(v) = Cost of a cheapest path from s to v with one costfree edge.
N = List of unlabeled nodes that are incident

to some labeled node.

(1) Compute d(v) for all v ∈ V using a shortest path algorithm.
(2) Initialize m(v) = d(v) for all v ∈ V .
(3) Set m(s) = 0 and N = ∅.

Label s, (all other nodes are supposed to be unlabeled).
For all nodes v adjacent to s set
m(v) = 0 and N = N ∪ {v}.

(4) As long as there exists an unlabeled node, perform the following steps:
(5) Determine a node v ∈ N with m(v) = min{m(u) | u ∈ N}.
(6) Label v and set N = N \ {v}.
(7) For all nodes u adjacent to v perform the following steps:

If min{m(v) + cvu, d(v)} < m(u), set

24

m(u) = min{m(v) + cvu, d(v)}.
N = N ∪ {u}.

(8) Return the values m(v) for all v ∈ V .
(9) STOP.

The following theorem states the correctness of the algorithm.

Theorem 5.2 Let G = (V,E) be a graph with nonnegative edge costs ce, e ∈ E.
Then, Algorithm 5.1 determines the cheapest path from s to v with one costfree
edge, for all v ∈ V .

Proof. To avoid confusion we use throughout this proof the following notation:
For a path P from u to v, we denote by c(P) =

∑
e∈P ce the “length” of path P

and use the term “shortest” if c(P) is minimum among all [u, v]-paths. On the
other hand, for a path P from u to v with one costfree edge, we call the value
c(P)−maxe∈P ce the “cost” of path P , and speak of a “cheapest” path P if the
value c(P)−maxe∈P ce is minimum among all [u, v]-paths.

By induction on the number of labeled nodes we show the following: If a node v
is labeled, then m(v) is the cost of a cheapest [s, v]-path with one costfree edge.
In order to prove this, we need the property that, for all v ∈ N , m(v) is the
cost of a cheapest [s, v]-path with one costfree edge whose inner nodes are only
labeled nodes. This will be simultanously shown by the induction.

If s is the only labeled node, the statement is true due to step (3) of Algorithm
5.1. Suppose, the statement is true for i − 1 labeled nodes and we have chosen
an i-th node v, say, in step (5). We claim that m(v) is the cost of a cheapest
[s, v]-path with one costfree edge. If this is not the case, there exists a path from
s to v with one costfree edge that is cheaper. Suppose P is such a path with
cost mP . Then, P must contain an edge that connects an unlabeled node with
a labeled one. Let uw (with w unlabeled) be the first of these edges. Obviously,
w ∈ N . From the assumption of the induction we know that m(w) is the cost of
a cheapest [s, v]-path with one costfree edge whose inner nodes are only labeled
nodes. Thus, m(w) ≤ mP < m(v), a contradiction to the choice of v.

It remains to be shown that for all unlabeled nodes u ∈ N the value m(u) is
the cost of a cheapest [s, u]-path with one costfree edge whose inner nodes are
labeled. We assume that v was the node chosen in step (5).

Due to the induction assumption, m(u) is the cost of a cheapest [s, u]-path with
one costfree edge whose inner nodes are labeled and different from v. This value is
compared in step (7) with the cost of a cheapest [s, u]-path with one costfree edge
whose predecessor is v and whose inner nodes are labeled. Suppose, there exists
a [s, u]-path P with one costfree edge that is cheaper and whose inner nodes are
labeled such that v ∈ V (P) and wu ∈ P, w �= v. Without loss of generality let P
be the cheapest of those paths and mP the cost of P . If mP = d(w) (i. e. wu is

25

a maximal edge), we conclude that mP = d(w) ≥ d(v) ≥ m(u), a contradiction.
Otherwise, mP = m(w) + cwu. Since w was labeled before v, there exists due to
the assumption of induction a cheapest path P ′ from s to w with one costfree
edge whose inner nodes are labeled and different from v. Let mP ′ be the cost of
P ′. We obtain that mP = m(w) + cwu ≥ mP ′ + cwu ≥ m(u), a contradiction.
This shows Theorem 5.2.

� Computational Results

In this section we report on the success of our separation algorithms for the
solution of practical problem instances. We have developed a branch and cut
algorithm to solve a certain class of Steiner tree packing problems arising in the
design of electronic circuits. Here, the underlying graph is a complete rectangular
grid graph and the set of terminals are located on the outer face. The task is
to find a Steiner tree packing with minimal weight, where all edge weights are
equal to one. These problems are called switchbox routing problems in the VLSI
literature. We have tested our algorithm on switchbox routing problems discussed
in the literature.

name h b N distribution of the nets ref.
2 3 4 5 6

difficult switchbox 15 23 24 15 3 4 1 1 [BP83]

more difficult 15 22 24 15 3 5 1 [CH88]
switchbox

terminal intensive 16 23 24 8 7 5 4 [L85]
switchbox

dense switchbox 17 15 19 3 11 5 [L85]

augmented dense 18 16 19 3 11 5 [L85]
switchbox

modified dense 17 16 19 3 11 5 [CH88]
switchbox

pedagogical 16 15 22 14 4 4 [CH88]
switchbox

Table 1:

Table 1 summarizes the data of our test problems. Column 1 presents the names
of the instances used in the literature. In column 2 and 3 the height and width
of the underlying grid graph is given. Column 4 contains the number of nets.

26

Columns 5 to 9 provide information about the distribution of the nets; more pre-
cisely, column 5 gives the number of 2-terminal nets, column 6 gives the number
of 3-terminal nets and so on. Finally, the last column states the reference to the
paper the example is taken from.

In [GMW92b] we report on our experiences for solving these problems with a
branch and cut algorithm. For more details on these switchbox routing problems
and on the general outline of our branch and cut algorithm we refer to that paper.

We focus in this section on our evaluation of the various separation algorithms
described in the previous sections. We have, in total, inplemented 9 exact and
heuristic separation routines. We have executed many test runs using just a single
separation routine, two, three or more separation routines in various combinations
and orders. It seems impossible to present all the data of these runs here and
discuss the relative merits of the choices. We rather want to describe our final
selection of separation algorithms and to indicate why we have made some of the
choices.

Initially, we started with the trivial LP relaxation consisting of just the upper
and lower bounds and the degree constraints for all terminals. This turned out to
be a disastrous beginning. It took the separation routines almost forever to add
sufficiently many cutting planes so that the graphs Gk induced by the edges Ek :=
{e ∈ E | xke > 0} became connected. We therefore added a preprocessing stage
that, for each net, generates certain Steiner partition inequalities by analyzing the
positions of the terminals of the net. In particular, our program determines all
horizontal and vertical cuts that separate two terminals of a net and a number of
further suitably chosen Steiner partition inequalities. In this stage we keep an eye
on the spatial distribution of the corresponding cuts and multicuts, i .e., we try to
select inequalities in such a way that almost every edge appears with a positive
coefficient in one of the initial inequalities and only few edges occur in many
inequalities. The reason for this rule is that, by this choice, the LP solver is unable
to satisfy many inequalities at once by setting just a few variables to a positive
value. Practically satisfactory rules for determining Steiner cut and partition
inequalities of this type were found by running various combinations of choices
and comparing the computational results on many instances. The introduction
of this preprocessing stage was, in retrospect, decisive for the practical success of
our approach.

For the separation of the Steiner partition inequalities we have programmed the
exact separation routine described in section 3 and two heuristics. These heuris-
tics determine cheap Steiner trees in the dual graph GD introduced in section
3. The running times of these heuristics are only small fractions of the running
time of the exact separation algorithm. Moreover, the heuristics tend to find
significantly more violated constraints than the exact routine. Our experiments
indicated that a certain combination of the heuristics and the exact method
seems to perform best. We first run the two heuristics and stop the cutting

27

plane generation if a certain threshold for the number of cutting planes that we
want to generate at most in one iteration is surpassed. We control the heuristics
by several parameters so that violated Steiner partition inequalities of different
structure and small overlap are generated. The time consuming exact method is
only called if none of the separation heuristics is able to find a violated Steiner
partition inequality. Column 2 of Table 2 shows the number of Steiner parti-
tion inequalities generated during the runs of our final combination of exact and
heuristic separation algorithms for the Steiner partition inequalities on the test
instances. The results show that our methods are quite successful cutting plane
generators.

example Steiner part. ineq. ext. alt. cycle ineq.

difficult switchbox 3966 565

more difficult 3494 475
switchbox

terminal intensive 5718 981
switchbox

dense switchbox 3409 469

augmented dense 5613 584
switchbox

modified dense 3117 400
switchbox

pedagogical 2139 448
switchbox

Table 2:

Our computational experiments revealed that a similar strategy also yields the
best results with respect to separating extended alternating cycle inequalities.
Here our final choice was to execute the separation heuristic described in section
4 first and to call the dynamic program only if the separation heuristic failed to
determine a violated extended alternating cycle inequality. Moreover, based on
comparing the running time spent with the probability of success, we decided to
call the separation algorithms for the extended alternating cycle inequalities not
for all net pairs. Our choice is as follows. We determine “conflicting nets”, i. e.,
those nets that our primal heuristic for finding a Steiner tree packing is unable
to route simultanously, and run the separation routines for extended alternating
cycle inequalities only for these pairs of nets. Column 3 of Table 2 shows the
number of violated extended alternating cycle inequalities that were generated
with these strategies for our test instances. Again, this combination of separation

28

methods was highly successful.

example best sol. lower bound gap

difficult switchbox 464 464 0.0%

more difficult 452 452 0.0%
switchbox

terminal intensive 537 535 0.4%
switchbox

dense switchbox 441 438 0.7%

augmented dense 469 467 0.4%
switchbox

modified dense 452 452 0.0%
switchbox

pedagogical 331 331 0.0%
switchbox

Table 3:

Table 3 demonstrates the success of the separation algorithms. Column “lower
bound” shows the LP-value at the end of the initial cutting plane phase before
the branching phase of our code is entered. We are able to solve most of these
examples to optimality without branching. For all other examples we obtain a
bound that is at most 1% below the optimal solution value. This does not only
indicate that the separation algorithms work very well, but also that the Steiner
partition inequalities and the alternating cycle inequalities describe the (for our
type of problems) relevant part of the Steiner tree packing polyhedron quite well.
Moreover, it has turned out that most of the violated inequalities were found
by the separation heuristics and that the dynamic programs were called only a
few times. Thus, we have good hopes that this approach is also applicable to
practical problem instances where only separation heuristics are at hand, i. e.,
where the underlying graph is not planar or the terminals are not located on a
fixed number of faces.

References

[AMO93] R. K. Ahuja, T. L. Magnanti, J. B. Orlin: Network flows: theory,
algorithms, and applications, Prentice-Hall, Englewood Cliffs, New
Jersey, 1993.

29

[BP83] M. Burstein, R. Pelavin: Hierarchical wire routing, IEEE Transac-
tions on Computer-Aided-Design CAD-2, 1983, 223 – 234.

[CH88] J. P. Cohoon, P. L. Heck: BEAVER: A computational-geometry-based
tool for switchbox routing, IEEE Transactions on Computer-Aided-
Design CAD-7, 1988, 684 – 697.

[CR88a] S. Chopra, M. R. Rao: The Steiner tree problem I: Formulations,
compositions and extension of facets, Technical Report No. 88-82,
Graduate School of Business Administration, New York University,
New York, 1988.

[CR88b] S. Chopra, M. R. Rao: The Steiner tree problem II: Properties and
classes of facets, Technical Report No. 88-83, Graduate School of
Business Administration, New York University, New York, 1988.

[DW71] S. E. Dreyfus, R. A. Wagner: The Steiner problem in graphs, Net-
works 1, 1971, 195 – 207.

[EMV87] R. E. Erickson, C. L. Monma, A. F. Veinott: Send-and-split method
for minimum concave-cost network flows, Mathematics of Operations
Research 12, 1987, 634 – 664.

[GM90] M. Grötschel, C. L. Monma: Integer polyhedra associated with certain
network design problems with connectivity constraints, SIAM Journal
on Discrete Mathematics 3, 1990, 502 – 523.

[GMS92] M. Grötschel, C. L. Monma, M. Stoer: Computational results with a
cutting plane algorithm for designing communication networks with
low-connectivity constraints, Operations Research 40, 1992, 309 –
330.

[GMW92a] M. Grötschel, A. Martin, R. Weismantel: Packing Steiner trees: poly-
hedral investigations, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Preprint SC 92-8, 1992.

[GMW92b] M. Grötschel, A. Martin, R. Weismantel: Packing Steiner trees:
a cutting plane algorithm and computational results, Konrad-Zuse-
Zentrum für Informationstechnik Berlin, Preprint SC 92-9, 1992.

[GMW93] M. Grötschel, A. Martin, R. Weismantel: Packing Steiner trees:
further facets, Konrad-Zuse-Zentrum für Informationstechnik Berlin,
Preprint SC 93-1, 1993.

[HRW92] F. K. Hwang, D. S. Richards, P. Winter: The Steiner tree prob-
lem, Annals of Discrete Mathematics 53, North-Holland Amsterdam,
1992.

30

[KL84] M. R. Kramer, J. van Leeuwen: The complexity of wire-routing and
finding minimum area layouts for arbitrary VLSI circuits, F. P. Pre-
parata (ed.): “Advances in Computing Research”, Bd. 2: VLSI the-
ory, Jai Press, London, 1984, 129 – 146.

[L85] W. K. Luk: A greedy switch-box router, Integration 3, 1985, 129 –
149.

[M92] A. Martin: Packen von Steinerbäumen: Polyedrische Studien und
Anwendung, Ph.D. Thesis, Technische Universität Berlin, 1992.

[S87] M. Sarrafzadeh: Channel-routing problem in the knock-knee mode is
NP-complete, IEEE Transactions on Computer-Aided-Design CAD-
6, 1987, 503 – 506.

[TM80] H. Takahashi, A. Matsuyama: An approximate solution for the
Steiner problem in graphs, Math. Japonica 24, 1980, 573 – 577.

31

