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Abstract

In this paper we continue the investigations in [GMW92a] for the Stei-
ner tree packing polyhedron. We present several new classes of valid ine-
qualities and give sufficient (and necessary) conditions for these inequalities
to be facet-defining. It is intended to incorporate these inequalities into an
existing cutting plane algorithm that is applicable to practical problems
arising in the design of electronic circuits.

1 Introduction

Given a graph G = (V,E) and a node set T ⊆ V , we call an edge set S ⊆ E
a Steiner tree for T if, for each pair of nodes u, v ∈ T, S contains a [u, v]-path.
In this paper we investigate the following problem that we call the Steiner tree
packing problem.

Given an undirected graph G = (V,E) with edge capacities ce ∈ IN
for all e ∈ E and a list of node sets N = {T1, . . . , TN}, N ∈ IN, find
Steiner trees Sk for Tk, k = 1, . . . , N such that each edge e ∈ E is
contained in at most ce of the edge sets S1, . . . , SN .

Every collection of Steiner trees S1, . . . , SN with this property is called a Steiner
tree packing. If a weighting of the edges is given in addition and a (with respect
to this weighting) minimal Steiner tree packing must be found, we call this the
weighted Steiner tree packing problem.

The Steiner tree packing problem has important applications in the layout of
electronic circuits. One of the major tasks in VLSI design is the so-called routing
problem. Here, given sets of contact points (also called terminals) have to be
connected by wires such that certain technical side constraints are taken into
account and an objective function such as the total wiring length is minimized.
The routing problem in general is too complex to be solved in one step. Depending
on the user’s choice of decomposing the chip design problem into a hierarchy
of stages, on the underlying technology, and on the given design rules, various
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subproblems arise. Many of the routing problems that come up this way can be
formulated as Steiner tree packing problems (for details, see for instance [L90] or
[MW93]).

The Steiner tree packing problem is not only interesting because of its important
applications. Special cases of it have been the focal point of deep theoretical work
in graph theory. For instance, the problem of packing edge-disjoint paths (i. e.,
the Steiner tree packing problem where all node sets have cardinality two) was
intensively studied in the literature (surveys are [F90] and [S90]).

To our knowledge most published work on that topic (either theoretical or prac-
tical) concerns the task of finding feasible solutions. We have found almost no
paper (one exception is [FWW93]) where optimal solutions or at least good lower
bounds for the Steiner tree packing problem are investigated.

In [GMW92a] and [GMW92b] we considered the Steiner tree packing problem
from a polyhedral point of view and developed a branch and cut algorithm. We
tested our algorithm on an important subclass of routing problems, namely on
so-called switchbox routing problems. Here, the underlying graph is a complete
rectangular grid graph and the node sets are located on the outer face of the grid.
The results we obtained are encouraging. We could solve most of the problems
discussed in the literature to optimality. Unfortunately, the inequalities described
in [GMW92b] are not sufficient to yield integer solutions of these practical pro-
blem instances (without using the branching phase of our algorithm). This fact
results either from the lack of exact separation algorithms for the known classes
of inequalities or from the lack of a sufficient knowledge of the facet structure of
the Steiner tree packing polyhedron. In this paper we concentrate on the second
aspect and present new classes of (facet-defining) inequalities. These inequalities
will form the backbone of our cutting plane algorithm in order to further improve
the lower bounds of certain (weighted) Steiner tree packing problems and in order
to apply our algorithm to problem instances of large scale.

The paper is organized as follows. In Section 2 we define the Steiner tree packing
polyhedron and outline some results known for this polyhedron. Sections 3 and
4 present new classes of facet-defining inequalities. The first two classes, the
matching and matching-tree inequalities, involve two different node sets. We
give sufficient and necessary conditions for these inequalities to be facet-defining.
Section 4 describes inequalities that combine more than two node sets. The first
inequalities with three node sets are called 2-eared alternating cycle inequalities
and the second class applies to an arbitrary number of node sets. It is obtained
by composition of alternating cycle inequalities.
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2 The Steiner tree packing polyhedron

In this section we introduce a polyhedron associated with the Steiner tree packing
problem. We assume the reader to be familiar with polyhedral theory, see, for
instance, [S86].

First, we sketch some graphtheoretic notation. Let G = (V,E) be an undirected
graph. For a given edge set F ⊆ E, we denote by V (F ) all nodes that are incident
to an edge in F . Given two node sets U,W ⊆ V , we denote by [U : W ] the set
of edges in G with one endnode in U and the other in W . For a node set W ,
we also use E(W ) instead of [W : W ], and, if ∅ �= W �= V , we write δ(W ) for
[W : V \W ]. If W = {v}, we abbreviate δ({v}) by δ(v).

Suppose we are given a graph G = (V,E) with capacities ce ∈ IN for all e ∈ E
and a list of node sets N = {T1, . . . , TN}, N ≥ 1. Each set Tk in N is called
a terminal set or a net, each node in Tk a terminal, and the list of node sets
N a net list. We will denote an instance of the Steiner tree packing problem by
the tripel (G,N , c). If a collection of Steiner trees S1, . . . , SN defines a Steiner
tree packing for (G,N , c), it is convenient to order the sets Sk and denote the
Steiner tree packing by the N -tupel (S1, . . . , SN). Moreover, we introduce the
following technically useful operations on N -tupels of edge sets. For an N -tupel
of edge sets P = (F1, . . . , FN) and an edge set F ⊆ E, we define P \k F :=
(F1, . . . , Fk \ F, . . . , FN) and P ∪k F := (F1, . . . , Fk ∪ F, . . . , FN). We abbreviate
P \k {e} by P \k e and P ∪k {e} by P ∪k e.

Our definition of a Steiner tree (see the beginning of the introduction) differs
from the terminology most frequently used in the literature. A Steiner tree is
usually supposed to be a tree. However, our definition simplyfies notation and is
more convenient for the polyhedral investigations in the following. A Steiner tree
that is a tree and whose leaves are terminals is called edge-minimal. Accordingly,
a Steiner tree packing P = (S1, . . . , Sn) is edge-minimal if each Steiner tree Sk is
edge-minimal.

Let IRN×E denote the N ·|E| – dimensional vector space IRE×. . .×IRE, where the
components of each vector x ∈ IRN×E are indexed by xk

e for k ∈ {1, . . . , N}, e ∈
E. Moreover, for a vector x ∈ IRN×E and k ∈ {1, . . . , N}, we denote by xk ∈
IRE the vector (xk

e)e∈E , and we simply write x = (x1, . . . , xN) instead of x =
((x1)T , . . . , (xN)T )T . For an edge set F ⊆ E, χF ∈ IRE denotes the incidence
vector of F , i. e., χF

e := 1, if e ∈ F , and χF
e := 0, otherwise. The incidence vector

of a Steiner tree packing P = (S1, . . . , SN) is denoted by (χS1 , . . . , χSN ) or for
short χP . If aTx ≥ α is some inequality with a ∈ IRN×E and P is a Steiner tree
packing with aTχP = α, we call P a root (with respect to aTx ≥ α).

The Steiner tree packing polyhedron STP (G,N , c) is defined as the convex hull of
all incidence vectors of Steiner tree packings. It is easy to see that the following
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holds.

STP (G,N , c) = conv{x ∈IRN×E |
(i)

∑

e∈δ(W )

xk
e ≥ 1, for all W ⊂ V, W ∩ Tk �= ∅,

(V \W ) ∩ Tk �= ∅, k = 1, . . . , N ;

(2.1) (ii)
N∑

k=1

xk
e ≤ ce, for all e ∈ E;

(iii) 0 ≤ xk
e ≤ 1, for all e ∈ E, k = 1, . . . , N ;

(iv) xk
e ∈ {0, 1}, for all e ∈ E, k = 1, . . . , N}.

The inequalities (2.1) (i) are called Steiner cut inequalities, inequalities (2.1)
(ii) are called capacity inequalities and the ones in (2.1) (iii) trivial inequalities.
In case N = 1, the Steiner tree packing polyhedron is also called the Steiner
tree polyhedron. The weighted Steiner tree packing problem can be solved — in
principle — via the following linear programm:

(2.2)
min

N∑

k=1

wTxk

x ∈ STP (G,N , c),

where we ∈ IR+ denotes the nonnegative weight of edge e ∈ E. In order to apply
linear programming techniques, a “good” description of the Steiner tree packing
polyhedron by means of equations and inequalities is indispensable. The aim
of our paper is to present several new valid and facet-defining inequalities for
STP (G,N , c).

To this end we must determine the dimension of STP (G,N , c). Unfortunately,
the problem of deciding whether, for some given l ∈ IN, the dimension of the
Steiner tree packing polyhedron is at least l is NP-complete. This follows from
the fact that the Steiner tree packing problem itself is NP-complete (see, for
instance, [KL84], [Sa87]).

Due to this fact, we decided to study the facial structure of instances where the
underlying graph is complete and the net list N = {T1, . . . , TN} is disjoint (i. e.,
Ti ∩ Tj = ∅ for all i, j ∈ {1, . . . , N}, i �= j). It can easily be verified that the
corresponding Steiner tree packing polyhedron STP (G,N , c) is fulldimensional
in this case. In [GMW92a] we show how validity results for the Steiner tree
packing polyhedron for some graph can be transformed to validity results for the
Steiner tree packing polyhedron for the graph obtained by deleting some edge or
splitting some node and thus, by repeated application, how validity results for
the complete graph can be transformed to the general case.

4



Let us now summarize some results for the case that G is complete and the net
list is disjoint. The reader interested in the proofs of these results is referred to
[GMW92a].

First, the trivial inequalities xk
e ≥ 0 of (2.1) (iii) are facet-defining if and only

if |V | ≥ 5 or e /∈ E(Tk), whereas the trivial inequalities xk
e ≤ 1 of (2.1) (iii) are

facet-defining if and only if ce ≥ 2. Moreover, the capacity constraints (2.1) (ii)
are facet-defining if and only if ce ≤ N − 1.

We have also shown that each nontrivial facet-defining inequality of the Steiner
tree polyhedron can be lifted to yield a facet-defining inequality of the Steiner
tree packing polyhedron. More precisely, if âTx ≥ α defines a facet of the Steiner
tree polyhedron STP (G, {Tk}, c) for some k ∈ {1, . . . , N}, then aTx ≥ α defines
a facet of STP (G,N , c), where ale = 0 for l �= k and ake = âe for all e ∈ E. This
theorem implies that, in order to obtain a complete description of some Stei-
ner tree packing polyhedron STP (G,N , c), at least all “individual” Steiner tree
polyhedra STP (G, {T}, c), T ∈ N , must be known completely. Of course, this
knowledge will hardly do. There are many classes of inequalities that combine at
least two nets. We call such inequalities joint.

In [GMW92a] several classes of joint inequalities are desribed. Among them are
the alternating cycle inequalities, the grid inequalities and the critical cut ine-
qualites. All these inequalities and all joint inequalities we are going to present
in this paper are of the form aTx ≥ α, a ≥ 0. The coefficients of some of the
edges turn out to be zero for all nets. We call these edges zero edges and the
graph induced by the zero edges the zero graph. We will use the structure of
the zero graph to name the inequalities. This has the following reasons. The
zero graph is structured in such a way that there exists no Steiner tree packing
for the nets involved in this graph. Therefore, each feasible solution must use
edges whose coefficients are different from zero. This means that each inequality
is in some sense (but not necessarily uniquely) determined by the zero graph. In
addition, edges get value zero for some single nets (we typically denote these sets
by F1, . . . , FN). We will always define the inequalities for an arbitrary instance
without guaranteeing that the inequality is also valid for the corresponding po-
lyhedron. In the succeeding theorem we characterize the instances for which the
inequality defines a facet of the corresponding polyhedron. We will see that the
edge sets F1, . . . , FN must usually satisfy very technical restrictions.

3 Matching and matching-tree inequalities

For the first class of inequalities the edge set of the zero graph defines a matching.

Definition 3.1 We are given a graph G = (V,E) and a net list N = {T1, T2}.
Let M ⊆ [T1 : T2] be a matching and F1 ⊆ E(T2), F2 ⊆ E(T1). The inequality
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(χE\(M∪F1), χE\(M∪F2))Tx ≥ |M |
is called matching inequality.

An interesting question is: For which choices of F1 and F2 is the matching
inequality valid or facet-defining for the Steiner tree packing polyhedron? If
F1 = F2 = ∅, the inequality is obviously valid (in fact, the right hand side can be
increased to 2|M |). On the other hand, if one of both edge sets F1, say, contains
a spanning tree for T2 that is not a star, the inequality is no longer valid. In fact,
if both sets are stars the inequality is valid and, in general, also facet-defining.
But, are these the only choices for F1 and F2? The following theorem gives the
answer.

Theorem 3.2 We are given the complete graph G = (V,E) with node set V ,
and a disjoint net list N = {T1, T2} with T1 ∪ T2 = V and |T1| = |T2| ≥ 4. Let
M be a perfect matching in (V, [T1 : T2]) and F1 ⊆ E(T2), F2 ⊆ E(T1). Then, the
matching inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ |M |
defines a facet of STP (G,N , 1I) if and anly if there exist τ1 ∈ T1 and τ2 ∈ T2

such that one of the following three conditions holds:

(i) F1 = [τ2 : T2], F2 = [τ1 : T1] and τ1τ2 /∈ M (see Figure 1 (a)).

(ii) F1 = E(T2 \ {τ2}), F2 = [τ1 : T1] and τ1τ2 ∈ M (see Figure 1 (b)).

(iii) F1 = [τ2 : T2], F2 = E(T1 \ {τ1}) and τ1τ2 ∈ M .

(a)

F

F

F

T

T

2

1

1

2

(b)

Figure 1
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Proof. We start by showing that Property (i) is sufficient. Set a := (χE\(F∪F1),
χE\(F∪F2)). First, we prove that aTx ≥ |M | is valid. Suppose, P = (S1, S2) is
an arbitrary Steiner tree packing. W. l. o. g. S1 and S2 are edge-minimal. Set
sk := |M ∩ Sk| for k = 1, 2. We distinguish two cases:

(a) s1 = 0 or s2 = 0.
Suppose s1 = 0 (the case s2 = 0 can be shown analogously). Then,
(a1)TχS1 ≥ |M | − 1. If (a2)TχS2 > 0, we are done. Otherwise, S2 = F ∪ F2

and we know that V (S1)∩T2 �= ∅, since [τ1 : T1] = F2 ⊂ S2. This, however,
implies that (a1)TχS1 ≥ |M |.

(b) s1 > 0 and s2 > 0.
It is easy to see that in this case aTχSk ≥ |M | − |M ∩ Sk| = |M | − sk
for k = 1, 2. This implies that aTχP ≥ 2|M | − (s1 + s2) ≥ |M |, since
s1 + s2 ≤ |M |.

Now suppose bTx ≥ β is a facet-defining inequality of STP (G,N , 1I) with Fa :=
{x ∈ STP (G,N , 1I) | aTx = |M |} ⊆ Fb := {x ∈ STP (G,N , 1I) | bTx = β}. We
show in the following that b is a multiple of a. For ease of exposition set k̄ := 1,
if k = 2, and k̄ := 2, if k = 1.

(1) bke = 0 for all e ∈ Fk, k = 1, 2.
Let A be a spanning tree in (Tk\{τk}, E(Tk\{τk})). Let u ∈ Tk\{τk}, v ∈ Tk̄ with
uv /∈ M and τkv /∈ M (these nodes exist for |M | ≥ 3). Set Sk := A ∪ {uv, τkv}
and Sk̄ = M ∪Fk̄. Then, P := (S1, S2) and P ′ := P ∪k e are Steiner tree packings
with χP , χP ′ ∈ Fa. Thus, χ

P , χP ′ ∈ Fb, and we have that 0 = χP ′ − χP = bke .

(2) bke = 0 for all e ∈ M, k = 1, 2.
Let e = uv ∈ M,u ∈ T1, v ∈ T2. Due to (i) uv �= τ1τ2. Suppose w. l. o. g. v �= τ2.
Let e′ ∈ [u : T1]. Choose S1 := M ∪ F1 ∪ {e′} \ {e, τ2v} and S2 := [v : T2]. Then,
P := (S1, S2) and P ′ := P ∪k e are Steiner tree packings with χP , χP ′ ∈ Fa, and
we conclude that 0 = χP ′ − χP = bke .

(3) bke = bke′ for all e, e
′ ∈ E(Tk), k = 1, 2.

Let u ∈ Tk with uτk̄ /∈ M . Let e1, e2 ∈ [u : Tk], e1 �= e2 and v ∈ Tk̄ with uv ∈ M .
Choose Sk := M ∪Fk∪{e1} \ {uv, τk̄v}, Sk̄ := [v : Tk̄] and S ′

k := Sk \ {e1}∪{e2}.
Then, P := (S1, S2) and P ′ := (P \k Sk) ∪k S

′
k are Steiner tree packings with

χP , χP ′ ∈ Fa, and we get that 0 = χP ′ − χP = bke2 − bke1. This holds for all
e1, e2 ∈ [u : Tk] and u ∈ Tk with uτk̄ /∈ M . This implies (3).

(4) bke = bke′ for all e ∈ E(Tk̄ \ {τk̄}), e′ ∈ E(Tk), k = 1, 2.
Let e = uv with u, v ∈ Tk̄ \ {τk̄}. Let w, x ∈ Tk with uw, vx ∈ M . Choose
Sk := F ∪ Fk ∪ {e} \ {uτk̄} and S ′

k := Sk \ {e} ∪ {wx}. Furthermore, let Sk̄

be a spanning tree in (Tk̄, E(Tk̄) \ Sk) (such a tree exists, since |M | ≥ 4). By
construction, P := (S1, S2) and P ′ := (P \k Sk) ∪k S

′
k are Steiner tree packings

with χP , χP ′ ∈ Fa, and we obtain 0 = χP ′ − χP = bkwx − bke . This together with
(3) yields the statement.
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(5) bke = bke′ for all e ∈ [Tk̄ : Tk] \M, e′ ∈ E(Tk), k = 1, 2.
Let e = uv, u ∈ Tk̄, v ∈ Tk. Let w ∈ Tk, x ∈ Tk̄ with uw, vx ∈ M . If u = τk̄, set
t := x, otherwise set t := u. Choose Sk := F ∪Fk ∪{e} \ {τk̄t}, Sk̄ := [t : Tk̄] and
S ′
k := Sk \ {e}∪{vw}. Then, P := (S1, S2) and P ′ := (P \k Sk) ∪k S

′
k are Steiner

tree packings with χP , χP ′ ∈ Fa, and we have that 0 = χP ′ −χP = bkvw − bke. This
together with (3) implies (5).

(6) b1e = b2e′ for all e ∈ E(T1), e
′ ∈ E(T2).

Let Ak be a spanning tree in (Tk \{τk}, E(Tk \{τk})). Let uk ∈ Tk \{τk}, vk ∈ Tk̄

with ukvk /∈ M and τkvk /∈ M (these nodes exist for |M | ≥ 3). Set Sk :=
Ak ∪ {ukvk, τkvk} and S ′

k := M ∪ Fk for k = 1, 2. Then, P := (S ′
1, S2) and

P ′ := (S1, S
′
2) are Steiner tree packings with χP , χP ′ ∈ Fa, and it follows together

with (3) and (5) that 0 = χP ′ − χP = |M | · b1u1τ1
− |M | · b2u2τ2

. This shows (6).

(1) – (6) imply that b is a multiple of a. Hence, we have proved that aTx ≥ |M |
defines a facet for STP (G,N , 1I), if (i) holds. In a very similar way it can be
shown that Properties (ii) and (iii) are sufficient as well. So, we omit the proofs.

Next, we show that (i) – (iii) of Theorem 3.2 indeed describe all possible cases
for F1 and F2 such that the corresponding matching inequality is facet-defining.

Suppose (χE\(F∪F1), χE\(F∪F2))Tx ≥ |M | defines a facet for STP (G,N , 1I). Set
a := (χE\(F∪F1), χE\(F∪F2)) and let lk denote the number of (connected) com-
ponents of (V,M ∪ Fk), for k = 1, 2. We assume w. l. o. g. that l1 ≤ l2.

Suppose lk = 1 for k = 1, say, and F1 is not a star. Then, there exist two
pairwise edge-disjoint spanning trees A1 and A2 in (T2, E(T2)) with A1 ⊆ F1.
Thus, P = (S1, S2) where S1 := M ∪ A1 and S2 := A2 is a Steiner tree packing
with aTχP = |M | − 1, a contradiction to the validity of aTx ≥ |M |.
Since aT ≥ |M | defines a facet, we know that, for every edge e ∈ M , there
exists a root P = (S1, S2) with e /∈ P , otherwise Fa ⊆ {x ∈ STP (G,N , 1I) |
x1
e + x2

e = 1}, a contradiction. Moreover, we know that, for a root P = (S1, S2)
with e /∈ P, e ∈ M, either M ∩ S1 = ∅ or M ∩ S2 = ∅, otherwise aTχP ≥
(|M | − |M ∩ S1|) + (|M | − |M ∩ S2|) = 2|M | − (|M ∩ S1|+ |M ∩ S2|) ≥ |M |+ 1.
In the following we show that, for all possible remaining choices of F1 and F2, we
can find an edge e ∈ M such that there does not exist a root P = (S1, S2) with
e /∈ P and M ∩ S1 = ∅ or M ∩ S2 = ∅. This proves the statement.

First, suppose both F1 = [τ2 : T2], τ2 ∈ T2, and F2 = [τ1 : T1], τ1 ∈ T1, are stars,
but τ1τ2 ∈ M . Suppose there exists a root P = (S1, S2) with τ1τ2 /∈ P with
w. l. o. g. M ∩ S1 = ∅. Then, we know that (a2)TχS2 = 1, since (a1)TχS1 ≥
|M | − 1. Since τ1τ2 /∈ S2, we conclude that F2 ⊂ S2. This, however, implies that
(a1)TχS1 ≥ |M |, since F2 = [τ1 : T1], a contradiction.

Now, we know that l2 ≥ 2. Suppose still that F1 = [τ2 : T2]. Then, since (iii) does
not apply, we conclude that the node t ∈ T1 with tτ2 ∈ M is incident to an edge
in F2. Suppose there exists a root P = (S1, S2) with tτ2 /∈ P and M ∩ S1 = ∅
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or M ∩ S2 = ∅. If M ∩ S1 = ∅, we know that (a1)TχS1 ≥ |M | − 1 and, since the
number of (connected) components of (V, (M ∪F2) \ {tτ2}) is at least three (note
that t ∈ V (F2) and l2 ≥ 2), that (a2)TχS2 ≥ 2, a contradiction. If M ∩ S2 = ∅,
we have (a1)TχS1 = 1. This implies that F1 ⊂ S1, since tτ2 /∈ S1. However, since
F1 is a star, (a2)TχS2 ≥ |M |, a contradiction.

We conclude that also l1 ≥ 2. Then, at least one of the following cases applies:

(1) lk ≥ 3 for k = 1, 2.
In this case, we immediately get a contradiction, since (ak)TχSk ≥ 2 and
(ak)TχSk ≥ |M | − 1, if M ∩ Sk = ∅, for k = 1, 2.

(2) There exists an edge uv ∈ M with u ∈ V (F1) and v ∈ V (F2).
Suppose there exists a root P = (S1, S2) with uv /∈ P and with w. l. o. g.M∩
S1 = ∅. Since uv /∈ S2 and the number of (connected) components of
(V, (M ∪ F2) \ {uv}) is at least three (note that v ∈ V (F2) and l2 ≥ 2), we
have that aTχP ≥ (|M | − 1) + 2 = |M |+ 1, a contradiction.

(3) F2 = ∅.
In this case we know that, for every Steiner tree packing P = (S1, S2),
(a2)TχS2 ≥ |M | − 1 and (a1)TχS1 ≥ 1, since l1 ≥ 2. Thus, every root
P = (S1, S2) satisfies (a2)TχS2 = |M | − 1. This implies that Fa ⊆ {x ∈
STP (G,N , 1I) | 1

2

∑
uv∈M x(δ({u, v})) = |M | − 1}, a contradiction.

Summing up, we conclude that the only choices for F1 and F2 are those described
in (i) to (iii) of Theorem 3.2.

The last theorem gives necessary and sufficient conditions for the matching in-
equality to be facet-defining under the assumptions that the zero graph is a
matching and all edges in F1 and F2, are incident to nodes in T2 and T1, respec-
tively. What happens if we relax one of these assumptions? In the following we
give a partial answer to this question and extend the zero graph by a tree.

Definition 3.3 We are given a graph G = (V,E) and a net list N = {T1, T2}.
Let M ⊆ [T1 : T2] be a matching and let B be a spanning tree in (V (M) ∩
T2, E(V (M) ∩ T2)), see Figure 2. Moreover, let F1, F2 ⊆ E \ (M ∪B). Then, the
inequality

(χE\(M∪B∪F1), χE\(M∪B∪F2)) ≥ |B|
is called matching-tree inequality.
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It is easy to see that the basic form of a matching-tree inequality, i. e., F1 = F2 =
∅, is valid for STP (G,N , 1I), but in general it is not facet-defining. In the next
theorem we present necessary and sufficient conditions for F1, F2 such that the
matching-tree inequality is facet-defining.

Theorem 3.4 Let G = (V,E) be a complete graph on node set V and N =
{T1, T2} be a disjoint net list with T1 ∪ T2 = V, |T1| = |T2| ≥ 2. Suppose M
is a perfect matching in (V, [T1 : T2]), B is a spanning tree in (T2, E(T2)) and
F1, F2 ⊆ E \ (M ∪ B). For two nodes u, v ∈ V , let bd(u, v) denote the number
of edges in B contained in the unique path P from u to v in (V,M ∪ B), i. e.,
bd(u, v) := |P ∩ B|. Then, the matching-tree inequality

(χE\(M∪B∪F1), χE\(M∪B∪F2)) ≥ |B|
defines a facet of STP (G,N , 1I) if and only if F1 and F2 satisfy the following
properties:

(i) F1 = ∅.
(ii) (V,M ∪ F2) is connected.

(iii) For r, s = 1, 2, all pairs of nodes u ∈ Ts and v ∈ Tr with bd(u, v) ≥ 5−r−s
are not connected in (V (F2), F2).

(iv) F1 and F2 are maximal with respect to Properties (i) to (iii).

Proof. For ease of notation we assume that Tk = {tk1, . . . , tkl }, k = 1, 2 with
l := |T1| = |T2| such that M = {t1i t2i | i = 1, . . . , l}. We begin by showing that
Properties (i) to (iv) are sufficient. Let a := (χE\(M∪B∪F1), χE\(M∪B∪F2)).
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First, we prove that aTx ≥ |B| is valid. Let P = (S1, S2) be any Steiner tree
packing. We assume w. l. o. g. that S1 and S2 are edge-minimal. We show that
there always exists a Steiner tree packing P ′ = (S ′

1, S
′
2) with aTχP ′ ≤ aTχP that

satisfies the following two properties:

(A) If δ(t2i ) ∩ S ′
1 ∩B �= ∅, then t2i t

1
i ∈ S ′

1 (for i = 1, . . . , l).

(B) If t2i t
2
j ∈ S ′

1 for some i, j ∈ {1, . . . , l} with bd(t2i , t
2
j ) = 1, then t2i and t2j are

not connected in (V, (M ∪B ∪ F2) \ S ′
1).

Intuitively, Property (A) becomes clear by drawing a picture. A formal proof
of this statement is quite technical and we omit it here (for details see [M92]).
Property (B) directly follows from (A) and from Property (iii). Thus, in order to
prove that aTx ≥ |B| is valid, we can assume that P already satisfies Properties
(A) and (B).

Now let s1 denote the number of (connected) components of (T2, B ∩ S1) and let
s2 denote the number of (connected) components of (T2, B \ S1). Since B is a
spanning tree of T2, it is not difficult to see that s1 + s2 = (|B \ S1|+ 1) + (|B ∩
S1|+1) = |B|+2. Property (B) implies that two components of (T2, B \ S1) are
not connected in (V, (M ∪B ∪ F2) \ S1). Thus, we have that (a2)TχS2 ≥ s2 − 1.
Moreover, since F1 = ∅, there does not exist a path in (V,M ∪B∪F1) connecting
two different components of (T2, B ∩S1). Thus, (a

1)TχS1 ≥ s1− 1. Summing up,
we conclude that aTχP ≥ (s1 − 1) + (s2 − 1) = |B|.
Now, let bTx ≥ β be a facet-defining inequality of STP (G,N , 1I) with Fa := {x ∈
STP (G,N , 1I) | aTx = |B|} ⊆ {x ∈ STP (G,N , 1I) | bTx = β}. In the following
we show that b is a multiple of a.

(1) bke = 0 for e ∈ M, k = 1, 2.
Let S1 := [t11 : T1] and S2 := B. Then, P := (S1, S2) and P ′ := P ∪k e are
Steiner tree packings with χP , χP ′ ∈ Fa. Thus, χP , χP ′ ∈ Fb and we have 0 =
bTχP ′ − bTχP = bke .

(2) b2e = 0 for e ∈ F2.
This can be shown as in (1).

(3) bke = 0 for e ∈ B, k = 1, 2.
Let (V1, B1) and (V2, B2) be the two (connected) components of (V (B), B \ {e}).
Property (ii) implies that there exists an edge e′ = tput

q
v ∈ F2 with t2u ∈ V1

and t2v ∈ V2. If l = 2, Property (iv) guarantees that e′ can be chosen such
that p �= q, and we set S1 := {t1ut1v} and S2 := M ∪ {e′}. In the other case
(l ≥ 3), choose an index i ∈ {1, . . . , l}, i �= u, i �= v. We set S1 := [t1i : T1] and
S2 := B1 ∪B2 ∪M ∪ {e′}. Then, P := (S1, S2) and P ′ := P ∪k e are Steiner tree
packings with χP , χP ′ ∈ Fa, and we obtain 0 = bTχP ′ − bTχP = bke .

(4) b1e = b1e′ for e, e
′ ∈ E(T1).

11



Let e = t1ut
1
v, where t1u, t

1
v ∈ T1. Set S2 := B and S1 := [t1v : T1]. Moreover,

let e′ ∈ [t1u : T1] \ {e} and S ′
1 := S1 \ {e} ∪ {e′}. Then, P := (S1, S2) and

P ′ := (S ′
1, S2) are Steiner tree packings with χP , χP ′ ∈ Fa. We conclude that

0 = bT (χS′
1 , χS2)− bT (χS1, χS2) = b1e′ − b1e, for all e, e

′ ∈ δ(t1u), t
1
u ∈ T1.

(5) b1e = b1e′ for e ∈ E \ (E(T1) ∪M ∪ B), e′ ∈ E(T1).
Let e = tput

q
v with e /∈ E(T1) ∪ M ∪ B. Set S2 := B, S1 := [t1u : T1] and

S ′
1 := S1\{t1ut1v}∪M∪{e}. Then, P := (S1, S2) and P ′ := (S ′

1, S2) are Steiner tree
packings with χP , χP ′ ∈ Fa, and it follows that 0 = bT (χS1 , χS2)− bT (χS′

1, χS2) =
b1t1ut1v − b1e. This together with (4) implies (5).

(6) b2e = b1e′ for e ∈ E \ (M ∪B ∪ F2), e
′ ∈ E(T1).

Let e = tput
q
v with e /∈ M ∪ B ∪ F2, where u, v ∈ {1, . . . , l}, p, q ∈ {1, 2}. Due to

Properties (iii) and (iv) we know that there exists i, j ∈ {1, . . . , l}, s, r ∈ {1, 2}
with bd(tsi , t

r
j) ≥ 5 − r − s such that there exists a path W from tsi to trj in

(V (F2∪{e}), F2∪{e}) with e ∈ W (in case W is not unique, choose W such that
|W ∩ E(T1)| is minimal). We distinguish three cases.

(a) s = r = 1.
Since bd(tsi , t

r
j) ≥ 3, there exists indices i0, j0 ∈ {1, . . . , l} \ {i, j} with

bd(t2i0, t
2
j0
) = 1, bd(t2i0, t

s
i ) < bd(t2j0, t

s
i ) and bd(t2i0, t

r
j) > bd(t2j0 , t

r
j). Set M2 :=

{t1i t2i , t1jt2j}.
(b) s = 1, r = 2 (the other case s = 2, r = 1 can be shown analoguosly).

Since bd(tsi , t
r
j) ≥ 2, there exists an index j0 ∈ {1, . . . , l} \ {i, j} with

bd(tsi , t
2
j0
) = 1 and bd(t2j0, t

r
j) < bd(tsi , t

r
j). Set i0 := i and M2 := {t1j t2j}.

(c) s = 2, r = 2.
Since bd(tsi , t

r
j) ≥ 1, there exists j0 ∈ {1, . . . , l} with bd(tsi , t

2
j0
) = 1 and

bd(t2j0, t
r
j) ≤ bd(tsi , t

r
j). Set i0 := i and M2 := ∅.

Set U := {t1i0t2i0, t2i0t2j0, t2j0t1j0} (note that U ∩ M2 = ∅). Choose S2 := (B \
U) ∪ M2 ∪ W , S ′

1 := [t1i0 : T1] and S ′
2 := B. If l = 2, set S1 := U . If l = 3,

there exists an edge ē ∈ E(T1) \ W with ē �= t1i0t
1
j0
, since W was chosen such

that |W ∩ E(T1)| is minimal. Set S1 := {ē} ∪ U . For l ≥ 4, there exists a
spanning tree A in (T1, E(T1) \W ), because W is a path. Let ê ∈ A such that
A \ {ê} ∪ {t1i0t1j0} is a spanning tree as well. Set S1 := A \ {ê} ∪ U . Then,

P := (S1, S2) and P ′ := (S ′
1, S

′
2) are Steiner tree packings with χP , χP ′ ∈ Fa,

and we have 0 = bT (χS1, χS2)− bT (χS′
1 , χS′

2) = b2e − b1t1i0t
1
j0

. This together with (4)

proves the statement.

(1) – (6) imply that b is a multiple of a.

It remains to be shown that Properties (i) – (iv) are necessary as well.

(i) Suppose F1 �= ∅. Let e = tput
q
v ∈ F1, e /∈ M ∪ B. Choose S1 := [t1u :

T1 \ {t1v}] ∪ M ∪ {e} and S2 := B. Then, P := (S1, S2) is a packing
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of Steiner trees with aTχP = |B| − 1, a contradiction to the validity of
aTx ≥ |B|.

(ii) Suppose (V,M ∪ F2) is not connected. Then, there exist indices i, j ∈
{1, . . . , l} with bd(t2i , t

2
j) = 1 such that there does not exist a path from t2i

to t2j in (V,M∪F2). Since a
Tx ≥ |B| defines a facet of STP (G,N , 1I), there

exists a Steiner tree packing P = (S1, S2) with aTχP = |B| and t2i t
2
j /∈ P .

Otherwise, we will have the contradiction that Fa ⊆ {x ∈ STP (G,N , 1I) |
x1
t2i t

2
j
+ x2

t2i t
2
j
= 1}. Let W be the unique path from t2i to t2j in (V (S2), S2),

where we assume w. l. o. g. that S2 is edge-minimal. Since t2i t
2
j /∈ S2, and

since there does not exist a path from t2i to t2j in (V,M ∪ F2), there is an
edge e ∈ W with a2e = 1. Choose S ′

2 := S2 \ {e} ∪ {t2i t2j}. Note that
t2i t

2
j /∈ S1. Then, P ′ := (S1, S

′
2) is also a Steiner tree packing, and we have

that aTχP ′
= aTχP − 1 = |B| − 1, a contradiction.

(iii) Suppose, there exist indices i, j ∈ {1, . . . , l}, r, s ∈ {1, 2} with bd(tri , t
s
j) ≥

5− r− s such that there is a path W from tri to tsj in (V (F2), F2). Then, in
the same manner as described in (6) we can construct a packing of Steiner
trees P = (S1, S2) with aTχP = |B| − 1, which yields a contradiction.

(iv) Suppose F1 and F2 are not maximal with respect to Properties (i) – (iii).
Then, choose F ′

2 ⊂ E \ (M ∪ B) such that F2 ⊂ F ′
2, and F1 and F ′

2 are
maximal with respect to Properties (i) – (iii). According to Part 1 of this
proof (χE\(M∪B∪F1), χE\(M∪B∪F ′

2))Tx ≥ |B| defines a facet of STP (G,N , 1I).
Summing up this facet-defining inequality together with the valid inequali-
ties x2

e ≥ 0 for all e ∈ F ′
2 \ F2 we obtain aTx ≥ |B|. Thus, aTx ≥ |B| does

not define a facet of STP (G,N , 1I), a contradiction.

In this section we presented two classes of inequalities each combining two nets.
The zero graphs have quite simple structures, namely they either form a matching
or a matching and a tree. The fact that a maximum matching or a maximum
spanning tree can be determined in polynomial time gives hope to efficiently solve
the corresponding separation problems. However, the structure of the additional
edge sets F1 and F2, which are the edges whose coefficient is zero for net T1

and T2, is rather complicated and makes it difficult to develop good separation
algorithms that take these edge sets into account.

In the next section, the situation becomes even more complicated. When more
than two nets are involved not only the edge sets F1, . . . , FN but also the zero
graph may have difficult structures.
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4 Inequalities involving more than two nets

The two classes of inequalities we present in this section are extensions of so-called
alternating cycle inequalities introduced in [GMW92a]. First, we extend the
alternating cycle inequality by a third net and add two “ears” to the alternating
cycle. An inequality of the second class is composed of two or more alternating
cycle inequalities. We will see that this composition applies to an arbitrary
number of terminal sets.
Before describing both inequalities let us give the defintion of an alternating cycle
inequality and recall a theorem from [GMW92a] characterizing conditions under
which this inequality is facet-defining.

Definition 4.1 Let G = (V,E) be a graph and N = {T1, T2} a net list. We
call a cycle F an alternating cycle with respect to T1, T2, if F ⊆ [T1 : T2] and
V (F ) ∩ T1 ∩ T2 = ∅ (see Figure 3). Moreover, let F1 ⊆ E(T2) and F2 ⊆ E(T1)
be two sets of diagonals of the alternating cycle F with respect to T1, T2. The
inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ 1
2
|F | − 1

is called an alternating cycle inequality.

F

F

F

T

T

2

1

1

2

Figure 3

The following theorem gives necessary and sufficient conditions for F1 and F2 so
that the alternating cycle inequality is facet-defining. In order to state this result
we need some definitions. We say that two diagonals uv and rs of a cycle F cross
if they appear on F in the sequence u, r, v, s or u, s, v, r; otherwise uv and rs are
called cross free. For an alternating cycle F with respect to T1, T2, we call two
sets of diagonals F1 ⊆ E(T2) and F2 ⊆ E(T1) maximal cross free if F1 and F2

are cross free (that is each pair of edges e1 ∈ F1 and e2 ∈ F2 is cross free), each
diagonal e1 ∈ E(T1) \F2 crosses F1 and each diagonal e2 ∈ E(T2) \F1 crosses F2.
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Theorem 4.2 Let G = (V,E) be the complete graph with node set V and let
N = {T1, T2} be a disjoint net list with T1 ∪ T2 = V and |T1| = |T2| = l, l ≥ 2.
Furthermore, let F be an alternating cycle with respect to T1, T2 with V (F ) = V
and F1 ⊆ E(T2), F2 ⊆ E(T1). Then the alternating cycle inequality

(χE\(F∪F1), χE\(F∪F2))Tx ≥ l − 1

defines a facet of STP (G,N , 1I) if and only if F1 and F2 are maximal cross free.

4.1 2-eared alternating cycle inequalities

Definition 4.3 We are given a graph G = (V,E) and a net list N = {T1, T2, T3}.
Let C be an alternating cycle with respect to T2, T3 and let t1, t2 ∈ T1\V (C). Mo-
reover, choose ei, ej ∈ [t1 : T2 ∩ V (C)], ei �= ej, and er, es ∈ [t2 : T3 ∩ V (C)], er �=
es. Set K := C ∪ {ei, ej, er, es}. The inequality

(χE\K, χE\K, χE\K)Tx ≥ 1

is called 2-eared alternating cycle inequality (see Figure 4).

T

K

T

3T

2

1

Figure 4

The following theorem specifies choices for F1, F2 and F3 such that the 2-eared
alternating cycle inequality is facet-defining.

Theorem 4.4 Let G = (V,E) be the complete graph on node set V , N =
{T1, T2, T3} a disjoint net list with T1∪T2∪T3 = V and |T2| = |T3| =: l, l ≥ 2. Let
T1 = {t1, t2}, ei, ej ∈ [t11 : T2], ei �= ej and er, es ∈ [t2 : T3], er �= es. Moreover,
suppose C is an alternating cycle with respect to T2, T3 where V (C) = T2∪T3. Set
K := C ∪ {ei, ej, er, es}, F1 := E(T2) ∪ E(T3), F2 := E(T3) ∪ ([t2 : T3] \ {er, es})
and F3 := E(T2) ∪ ([t1 : T2] \ {ei, ej}). Then, the 2-eared alternating cycle ine-
quality
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(χE\(F∪F1), χE\(F∪F2), χE\(F∪F3))Tx ≥ 1

defines a facet of STP (G,N , 1I).

Proof. We start by showing that aTx ≥ 1 is valid where a := (χE\(F∪F1),
χE\(F∪F2), χE\(F∪F3)). Let P = (S1, S2, S3) be an arbitrary Steiner tree packing.
If (a2)TχS2 > 0 or (a3)TχS3 > 0, the inequality trivially holds. On the other
hand, if (a2)TχS2 = 0 and (a3)TχS3 = 0, we have that C ⊂ S2 ∪ S3. This implies
that S1 �⊂ F ∪ F1. Thus, (a1)Tx ≥ 1 in this case, and we conclude that the
inequality is valid.

Let us briefly sketch the proof that aTx ≥ 1 is also facet-defining. Again, suppose
that bTx ≥ β is a facet-defining inequality of STP (G,N , 1I) that satisfies Fa :=
{x ∈ STP (G,N , 1I) | aTx = 1} ⊆ Fb := {x ∈ STP (G,N , 1I) | bTx = β}, and we
show that b is a multiple of a.

First of all, one can easily convince oneselve that, for each edge e ∈ K ∪ Fk,
there exists a root P with e /∈ P , for k = 1, 2, 3. This shows that bke = 0 for all
e ∈ K ∪ Fk, k = 1, 2, 3.

Moreover, for each edge e /∈ K ∪ Fk, one can find a root P = (S1, S2, S3) with
Sr ⊆ K ∪Fr, for r �= k and Sk ∩ (V \ (K ∪Fk)) = {e}, for k = 1, 2, 3. This proves
that bke = β, and the result follows.

In fact, finding the appropriate Steiner tree packings as necessary is (somehow)
straight-forward, but the description of the constructions is quite technical, so
we omit the details here. A complete proof of Theorem 4.4 can be found in
[M92].

One of the requirements in Theorem 4.4 is that the net list N is disjoint. One
can drop this assumption and still get facet-defining inequalities. In this case,
however, the edge sets F2 and F3 must be extended. The following corollary
describes one such case. We state this without a proof and refer the interested
reader to [M92] for more details.

Corollary 4.5 Let G = (V,E) be the complete graph on node set V , N =
{T1, T2, T3} be a net list with T1 ∪ T2 ∪ T3 = V, |T2| = |T3| =: l + 1, l ≥ 3
and T1 = {t1, t2} such that T1 ∩ T2 = {t1} and T1 ∩ T3 = {t2}. Moreover, let
ei, ej ∈ [t1 : T2], ei �= ej, and er, es ∈ [t2 : T3], er �= es. Suppose that C is
an alternating cycle with respect to T2, T3 with V (C) = (T2 ∪ T3) \ T1. Finally,
choose f2 ∈ [t2 : T2] and f3 ∈ [t1 : T3]. Set F := C ∪ {ei, ej, er, es}, F1 :=
E(T2) ∪ E(T3), F2 := (E(T3) ∪ [t2 : T3] ∪ {f2}) \ {er, es} and F3 := (E(T2) ∪ [t1 :
T2] ∪ {f3}) \ {ei, ej}. Then, the 2-eared alternating cycle inequality

(χE\(F∪F1), χE\(F∪F2), χE\(F∪F3))Tx ≥ 1

defines a facet of STP (G,N , 1I).
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4.2 Composition of alternating cycles

In this subsection we present a class of ineqalities that involves an arbitrary
number of nets. The idea behind our construction is to compose several facet-
defining alternating cycle inequalities.

Theorem 4.6 Let G = (V,E) be a complete graph with node set V , and let
N = {T1, . . . , TN} be a disjoint net list with ∪N

k=1Tk = V and |Tk| =: l, l ≥ 2,
for k = 1, . . . , N . Moreover, let Ck be be an alternating cycle with respect to
T1, Tk such that V (Ck) = T1∪Tk for k = 2, . . . , N . Finally, set F := ∪N

k=2Ck and
Fk := {[Tp : Tq] | p = 1, . . . , N, q = 1, . . . , N, q �= k, p �= k} for k = 2, . . . , N (see
Figure 5) Then, the inequality

(χE\F , χE\(F∪F2), . . . , χE\(F∪FN))Tx ≥ l − 1

defines a facet of STP (G,N , 1I).

F

T

T

T2

T1

3

4

Figure 5

Proof. Set a = (χE\F , χE\(F∪F2), . . . , χE\(F∪FN)). We first show that the the ine-
quality is valid. Let P = (S1, . . . , SN) be any edge-minimal Steiner tree packing.
Let Ik := {t ∈ Tk | δ(t) ∩ Ck ⊂ S1} denote the set of nodes of Tk that are
isolated by S1 on the cycle Ck. Since {e ∈ E | a1e = 0} = F , we have that
(a1)TχS1 ≥ l − 1 − ∑N

k=2 |Ik|. Since S1 is edge-minimal, Tk \ Ik �= ∅, for all
k = 2, . . . , N . Moreover, {e ∈ δ(t) | ake = 0} ⊂ F for all t ∈ Tk, k = 2, . . . , N .
These two facts imply that (ak)Tx ≥ |Ik| for k = 2, . . . , N . Summing up, we
obtain aTχP ≥ (l − 1 − ∑N

k=2 |Ik|) +
∑N

k=2 |Ik| = l − 1. Thus, the inequality is
valid.

Now suppose bTx ≥ β is a facet-defining inequality of STP (G,N , 1I) such that
Fa := {x ∈ STP (G,N , 1I) | aTx = l−1} ⊆ Fb := {x ∈ STP (G,N , 1I) | bTx = β}.
We show that b is a multiple if a.
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First, we observe the following. Consider two terminal sets T1 and Tk for some
k ∈ {2, . . . , N}. Let V ′ := V (Ck) and E ′ = E(V ′), and set F ′

1 := ∅ and F ′
k :=

E ′ ∩ Fk = E ′(T1). Obviously, Ck is an alternating cycle in the complete graph
G′ = (V ′, E ′), and F ′

1 and F ′
k are maximal cross free with respect to Ck. Thus,

due to Theorem 4.2, a′ := (χE′\(Ck∪F ′
1), χE′\(Ck∪F ′

k)Tx ≥ l − 1 defines a facet for
STP (G′, {T1, Tk}, 1I). Every root P ′ = (S ′

1, S
′
k) of (a′)Tx ≥ l − 1 can easily be

extended to a root P = (S1, . . . , SN ) of a
Tx ≥ l− 1 by setting S1 := S ′

1, Sk := S ′
k

and Sr := Cr for all r ∈ {2, . . . , N}, r �= k. Therefore, from Theorem 4.2 we can
conclude that

(1) bke = 0 for all e ∈ F, k = 1, . . . , N .

(2) bke = 0 for all e ∈ F ′
k, k = 2, . . . , N .

(3) bke = bke′ for all e, e
′ ∈ E(Tk), k = 1, . . . , N .

(4) b1e = bke′ for all e ∈ E(T1), e
′ ∈ E(Tk), k = 2, . . . , N .

(5) b1e = b1e′ for all e
′ ∈ E(T1), e ∈ [T1 : Tk], k = 2, . . . , N .

(6) b1e = b1e′ for all e
′ ∈ E(T1), e ∈ E(Tk), k = 2, . . . , N .

(7) bke = bke′ for all e ∈ E(Tk), e
′ ∈ [T1 : Tk], k = 2, . . . , N .

In the following we fix the remaining coefficients.

(8) bke = 0 for all e ∈ Fk \ F ′
k, k = 2, . . . , N .

Let e ∈ Fk \ F ′
k. Choose S1 := [t1 : T1] for some t1 ∈ T1, and set Sk := Ck

for k = 2, . . . , N . Then, P := (S1, . . . , SN ) and P ′ := P ∪k e are Steiner tree
packings with χP , χP ′ ∈ Fa. So we obtain 0 = bTχP ‘ − bTχP = bke .

(9) b1e = b1e′ for all e
′ ∈ E(T1), e ∈ [Tp : Tq], p, q ≥ 2, p �= q,.

Let e = tptq with tp ∈ Tp, tq ∈ Tq. Let t1, t
′
1 ∈ T1, t1 �= t′1 such that t1tp ∈ Cp and

t′1tq ∈ Cq. Choose S1 := [t1 : T1], Sp := Cp \ {t1tp}, Sq := Cq \ {t′1tq} and Si := Ci

for all i ∈ {2, . . . , N}\{p, q}. Furthermore, let S ′
1 := S1 \{t1t′1}∪{t1tp, tptq, tqt′1}.

Then, P := (S1, . . . , SN) and P ′ := (S ′
1, S2, . . . , SN) are Steiner tree packings

with aTχP , aTχP ′ ∈ Fa, and we get that 0 = bTχP ′ − bTχP = b1tptq − b1t1t′1
. This

together with (3) proves the statement.

(10) bke = bke′ for all e ∈ [Tk : Tp], p ≥ 2, p �= k and e′ ∈ E(Tk).
Let e = tktp for some tk ∈ Tk, tp ∈ Tp. Let t′k ∈ Tk \ {tk} and t1 ∈ T1 such that
t1t

′
k ∈ Ck and t1tp ∈ Cp. Choose S1 := Ck\{t1t′k}, Sk := [tk : Tk], Sp := Cp\{t1tp}

and Si := Ci for all i ∈ {2, . . . , N} \ {p, k}. Furthermore, set S ′
k := Sk \ {tkt′k} ∪

{tktp, tpt1, t1t′k}. Then, P := (S1, . . . , SN) and P ′ := (P \k Sk) ∪k S
′
k are Steiner

tree packings with aTχP , aTχP ′ ∈ Fa. Thus, we have that 0 = bTχP ′ − bTχP =
bktktp − bktkt′k

, and the result follows with (3).

(1) to (10) imply that b is a multiple of a, which completes the proof.

Note that, in Theorem 4.6, we generalize only one special case of Theorem 4.2
to an arbitrary number of nets, namely, where F1 = ∅. We believe that there
also exist similar generalizations for F1 �= ∅. But, the condition “maximal cross
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free” is not sufficient anymore in this case. Up to now we do not know a good
characterization for the general case.

5 Conclusions

In this paper we presented several new classes of inequalities for the Steiner
tree packing polyhedron. It turned out that the conditions under which the
inequalites define facets are quite complicated. However, the zero graphs have
mostly nice (sub-) structures like cycles, matchings or trees that are more easily
tractable. This gives hope to find good and efficient (not necessarily exact)
separation algorithms and to successfully incorporate these inequalities in our
cutting plane algorithm.
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