Packing Steiner Trees: Further Facets

M. Grötschel A. Martin R. Weismantel

Abstract

In this paper we continue the investigations in [GMW92a] for the Steiner tree packing polyhedron. We present several new classes of valid inequalities and give sufficient (and necessary) conditions for these inequalities to be facet-defining. It is intended to incorporate these inequalities into an existing cutting plane algorithm that is applicable to practical problems arising in the design of electronic circuits.

1 Introduction

Given a graph $G=(V, E)$ and a node set $T \subseteq V$, we call an edge set $S \subseteq E$ a Steiner tree for T if, for each pair of nodes $u, v \in T, S$ contains a $[u, v]$-path. In this paper we investigate the following problem that we call the Steiner tree packing problem.

Given an undirected graph $G=(V, E)$ with edge capacities $c_{e} \in \mathbb{N}$ for all $e \in E$ and a list of node sets $\mathcal{N}=\left\{T_{1}, \ldots, T_{N}\right\}, N \in \mathbb{N}$, find Steiner trees S_{k} for $T_{k}, k=1, \ldots, N$ such that each edge $e \in E$ is contained in at most c_{e} of the edge sets S_{1}, \ldots, S_{N}.

Every collection of Steiner trees S_{1}, \ldots, S_{N} with this property is called a Steiner tree packing. If a weighting of the edges is given in addition and a (with respect to this weighting) minimal Steiner tree packing must be found, we call this the weighted Steiner tree packing problem.

The Steiner tree packing problem has important applications in the layout of electronic circuits. One of the major tasks in VLSI design is the so-called routing problem. Here, given sets of contact points (also called terminals) have to be connected by wires such that certain technical side constraints are taken into account and an objective function such as the total wiring length is minimized. The routing problem in general is too complex to be solved in one step. Depending on the user's choice of decomposing the chip design problem into a hierarchy of stages, on the underlying technology, and on the given design rules, various
subproblems arise. Many of the routing problems that come up this way can be formulated as Steiner tree packing problems (for details, see for instance [L90] or [MW93]).
The Steiner tree packing problem is not only interesting because of its important applications. Special cases of it have been the focal point of deep theoretical work in graph theory. For instance, the problem of packing edge-disjoint paths (i. e., the Steiner tree packing problem where all node sets have cardinality two) was intensively studied in the literature (surveys are [F90] and [S90]).

To our knowledge most published work on that topic (either theoretical or practical) concerns the task of finding feasible solutions. We have found almost no paper (one exception is [FWW93]) where optimal solutions or at least good lower bounds for the Steiner tree packing problem are investigated.
In [GMW92a] and [GMW92b] we considered the Steiner tree packing problem from a polyhedral point of view and developed a branch and cut algorithm. We tested our algorithm on an important subclass of routing problems, namely on so-called switchbox routing problems. Here, the underlying graph is a complete rectangular grid graph and the node sets are located on the outer face of the grid. The results we obtained are encouraging. We could solve most of the problems discussed in the literature to optimality. Unfortunately, the inequalities described in [GMW92b] are not sufficient to yield integer solutions of these practical problem instances (without using the branching phase of our algorithm). This fact results either from the lack of exact separation algorithms for the known classes of inequalities or from the lack of a sufficient knowledge of the facet structure of the Steiner tree packing polyhedron. In this paper we concentrate on the second aspect and present new classes of (facet-defining) inequalities. These inequalities will form the backbone of our cutting plane algorithm in order to further improve the lower bounds of certain (weighted) Steiner tree packing problems and in order to apply our algorithm to problem instances of large scale.
The paper is organized as follows. In Section 2 we define the Steiner tree packing polyhedron and outline some results known for this polyhedron. Sections 3 and 4 present new classes of facet-defining inequalities. The first two classes, the matching and matching-tree inequalities, involve two different node sets. We give sufficient and necessary conditions for these inequalities to be facet-defining. Section 4 describes inequalities that combine more than two node sets. The first inequalities with three node sets are called 2-eared alternating cycle inequalities and the second class applies to an arbitrary number of node sets. It is obtained by composition of alternating cycle inequalities.

2 The Steiner tree packing polyhedron

In this section we introduce a polyhedron associated with the Steiner tree packing problem. We assume the reader to be familiar with polyhedral theory, see, for instance, [S86].
First, we sketch some graphtheoretic notation. Let $G=(V, E)$ be an undirected graph. For a given edge set $F \subseteq E$, we denote by $V(F)$ all nodes that are incident to an edge in F. Given two node sets $U, W \subseteq V$, we denote by $[U: W]$ the set of edges in G with one endnode in U and the other in W. For a node set W, we also use $E(W)$ instead of $[W: W]$, and, if $\emptyset \neq W \neq V$, we write $\delta(W)$ for [$W: V \backslash W$]. If $W=\{v\}$, we abbreviate $\delta(\{v\})$ by $\delta(v)$.
Suppose we are given a graph $G=(V, E)$ with capacities $c_{e} \in \mathbb{N}$ for all $e \in E$ and a list of node sets $\mathcal{N}=\left\{T_{1}, \ldots, T_{N}\right\}, N \geq 1$. Each set T_{k} in \mathcal{N} is called a terminal set or a net, each node in T_{k} a terminal, and the list of node sets \mathcal{N} a net list. We will denote an instance of the Steiner tree packing problem by the tripel (G, \mathcal{N}, c). If a collection of Steiner trees S_{1}, \ldots, S_{N} defines a Steiner tree packing for (G, \mathcal{N}, c), it is convenient to order the sets S_{k} and denote the Steiner tree packing by the N-tupel $\left(S_{1}, \ldots, S_{N}\right)$. Moreover, we introduce the following technically useful operations on N-tupels of edge sets. For an N-tupel of edge sets $P=\left(F_{1}, \ldots, F_{N}\right)$ and an edge set $F \subseteq E$, we define $P \backslash_{k} F:=$ $\left(F_{1}, \ldots, F_{k} \backslash F, \ldots, F_{N}\right)$ and $P \cup_{k} F:=\left(F_{1}, \ldots, F_{k} \cup F, \ldots, F_{N}\right)$. We abbreviate $P \backslash_{k}\{e\}$ by $P \backslash_{k} e$ and $P \cup_{k}\{e\}$ by $P \cup_{k} e$.
Our definition of a Steiner tree (see the beginning of the introduction) differs from the terminology most frequently used in the literature. A Steiner tree is usually supposed to be a tree. However, our definition simplyfies notation and is more convenient for the polyhedral investigations in the following. A Steiner tree that is a tree and whose leaves are terminals is called edge-minimal. Accordingly, a Steiner tree packing $P=\left(S_{1}, \ldots, S_{n}\right)$ is edge-minimal if each Steiner tree S_{k} is edge-minimal.
Let $\mathbb{R}^{\mathcal{N} \times E}$ denote the $N \cdot|E|$ - dimensional vector space $\mathbb{R}^{E} \times \ldots \times \mathbb{R}^{E}$, where the components of each vector $x \in \mathbb{R}^{\mathcal{N} \times E}$ are indexed by x_{e}^{k} for $k \in\{1, \ldots, N\}, e \in$ E. Moreover, for a vector $x \in \mathbb{R}^{\mathcal{N} \times E}$ and $k \in\{1, \ldots, N\}$, we denote by $x^{k} \in$ \mathbb{R}^{E} the vector $\left(x_{e}^{k}\right)_{e \in E}$, and we simply write $x=\left(x^{1}, \ldots, x^{N}\right)$ instead of $x=$ $\left(\left(x^{1}\right)^{T}, \ldots,\left(x^{N}\right)^{T}\right)^{T}$. For an edge set $F \subseteq E, \chi^{F} \in \mathbb{R}^{E}$ denotes the incidence vector of F, i. e., $\chi_{e}^{F}:=1$, if $e \in F$, and $\chi_{e}^{F}:=0$, otherwise. The incidence vector of a Steiner tree packing $P=\left(S_{1}, \ldots, S_{N}\right)$ is denoted by $\left(\chi^{S_{1}}, \ldots, \chi^{S_{N}}\right)$ or for short χ^{P}. If $a^{T} x \geq \alpha$ is some inequality with $a \in \mathbb{R}^{\mathcal{N} \times E}$ and P is a Steiner tree packing with $a^{T} \chi^{P}=\alpha$, we call P a root (with respect to $a^{T} x \geq \alpha$).
The Steiner tree packing polyhedron $\operatorname{STP}(G, \mathcal{N}, c)$ is defined as the convex hull of all incidence vectors of Steiner tree packings. It is easy to see that the following
holds.

$$
\operatorname{STP}(G, \mathcal{N}, c)=\operatorname{conv}\left\{x \in \mathbb{R}^{\mathcal{N} \times E}\right.
$$

$$
\begin{align*}
& \text { (i) } \sum_{e \in \delta(W)} x_{e}^{k} \geq 1, \text { for all } W \subset V, W \cap T_{k} \neq \emptyset, \\
& \\
& \text { (ii) } \left.\sum_{k=1}^{N} x_{e}^{k} \leq c_{e}, \quad \text { for all } e \in E ; W\right) \cap T_{k} \neq \emptyset, k=1, \ldots, N \tag{2.1}\\
& \text { (iii) } 0 \leq x_{e}^{k} \leq 1, \quad \text { for all } e \in E, k=1, \ldots, N \\
& \text { (iv) } \left.x_{e}^{k} \in\{0,1\}, \quad \text { for all } e \in E, k=1, \ldots, N\right\}
\end{align*}
$$

The inequalities (2.1) (i) are called Steiner cut inequalities, inequalities (2.1) (ii) are called capacity inequalities and the ones in (2.1) (iii) trivial inequalities. In case $N=1$, the Steiner tree packing polyhedron is also called the Steiner tree polyhedron. The weighted Steiner tree packing problem can be solved - in principle - via the following linear programm:

$$
\min \begin{array}{ll}
& \sum_{k=1}^{N} w^{T} x^{k} \tag{2.2}\\
& x \in \operatorname{STP}(G, \mathcal{N}, c)
\end{array}
$$

where $w_{e} \in \mathbb{R}_{+}$denotes the nonnegative weight of edge $e \in E$. In order to apply linear programming techniques, a "good" description of the Steiner tree packing polyhedron by means of equations and inequalities is indispensable. The aim of our paper is to present several new valid and facet-defining inequalities for $\operatorname{STP}(G, \mathcal{N}, c)$.
To this end we must determine the dimension of $\operatorname{STP}(G, \mathcal{N}, c)$. Unfortunately, the problem of deciding whether, for some given $l \in \mathbb{N}$, the dimension of the Steiner tree packing polyhedron is at least l is $\mathcal{N} \mathcal{P}$-complete. This follows from the fact that the Steiner tree packing problem itself is $\mathcal{N} \mathcal{P}$-complete (see, for instance, [KL84], [Sa87]).
Due to this fact, we decided to study the facial structure of instances where the underlying graph is complete and the net list $\mathcal{N}=\left\{T_{1}, \ldots, T_{N}\right\}$ is disjoint (i. e., $T_{i} \cap T_{j}=\emptyset$ for all $i, j \in\{1, \ldots, N\}, i \neq j$). It can easily be verified that the corresponding Steiner tree packing polyhedron $\operatorname{STP}(G, \mathcal{N}, c)$ is fulldimensional in this case. In [GMW92a] we show how validity results for the Steiner tree packing polyhedron for some graph can be transformed to validity results for the Steiner tree packing polyhedron for the graph obtained by deleting some edge or splitting some node and thus, by repeated application, how validity results for the complete graph can be transformed to the general case.

Let us now summarize some results for the case that G is complete and the net list is disjoint. The reader interested in the proofs of these results is referred to [GMW92a].
First, the trivial inequalities $x_{e}^{k} \geq 0$ of (2.1) (iii) are facet-defining if and only if $|V| \geq 5$ or $e \notin E\left(T_{k}\right)$, whereas the trivial inequalities $x_{e}^{k} \leq 1$ of (2.1) (iii) are facet-defining if and only if $c_{e} \geq 2$. Moreover, the capacity constraints (2.1) (ii) are facet-defining if and only if $c_{e} \leq N-1$.

We have also shown that each nontrivial facet-defining inequality of the Steiner tree polyhedron can be lifted to yield a facet-defining inequality of the Steiner tree packing polyhedron. More precisely, if $\hat{a}^{T} x \geq \alpha$ defines a facet of the Steiner tree polyhedron $\operatorname{STP}\left(G,\left\{T_{k}\right\}, c\right)$ for some $k \in\{1, \ldots, N\}$, then $a^{T} x \geq \alpha$ defines a facet of $\operatorname{STP}(G, \mathcal{N}, c)$, where $a_{e}^{l}=0$ for $l \neq k$ and $a_{e}^{k}=\hat{a}_{e}$ for all $e \in E$. This theorem implies that, in order to obtain a complete description of some Steiner tree packing polyhedron $\operatorname{STP}(G, \mathcal{N}, c)$, at least all "individual" Steiner tree polyhedra $\operatorname{STP}(G,\{T\}, c), T \in \mathcal{N}$, must be known completely. Of course, this knowledge will hardly do. There are many classes of inequalities that combine at least two nets. We call such inequalities joint.
In [GMW92a] several classes of joint inequalities are desribed. Among them are the alternating cycle inequalities, the grid inequalities and the critical cut inequalites. All these inequalities and all joint inequalities we are going to present in this paper are of the form $a^{T} x \geq \alpha, a \geq 0$. The coefficients of some of the edges turn out to be zero for all nets. We call these edges zero edges and the graph induced by the zero edges the zero graph. We will use the structure of the zero graph to name the inequalities. This has the following reasons. The zero graph is structured in such a way that there exists no Steiner tree packing for the nets involved in this graph. Therefore, each feasible solution must use edges whose coefficients are different from zero. This means that each inequality is in some sense (but not necessarily uniquely) determined by the zero graph. In addition, edges get value zero for some single nets (we typically denote these sets by F_{1}, \ldots, F_{N}). We will always define the inequalities for an arbitrary instance without guaranteeing that the inequality is also valid for the corresponding polyhedron. In the succeeding theorem we characterize the instances for which the inequality defines a facet of the corresponding polyhedron. We will see that the edge sets F_{1}, \ldots, F_{N} must usually satisfy very technical restrictions.

3 Matching and matching-tree inequalities

For the first class of inequalities the edge set of the zero graph defines a matching.
Definition 3.1 We are given a graph $G=(V, E)$ and a net list $\mathcal{N}=\left\{T_{1}, T_{2}\right\}$. Let $M \subseteq\left[T_{1}: T_{2}\right]$ be a matching and $F_{1} \subseteq E\left(T_{2}\right), F_{2} \subseteq E\left(T_{1}\right)$. The inequality

$$
\left(\chi^{E \backslash\left(M \cup F_{1}\right)}, \chi^{E \backslash\left(M \cup F_{2}\right)}\right)^{T} x \geq|M|
$$

is called matching inequality.
An interesting question is: For which choices of F_{1} and F_{2} is the matching inequality valid or facet-defining for the Steiner tree packing polyhedron? If $F_{1}=F_{2}=\emptyset$, the inequality is obviously valid (in fact, the right hand side can be increased to $2|M|$). On the other hand, if one of both edge sets F_{1}, say, contains a spanning tree for T_{2} that is not a star, the inequality is no longer valid. In fact, if both sets are stars the inequality is valid and, in general, also facet-defining. But, are these the only choices for F_{1} and F_{2} ? The following theorem gives the answer.

Theorem 3.2 We are given the complete graph $G=(V, E)$ with node set V, and a disjoint net list $\mathcal{N}=\left\{T_{1}, T_{2}\right\}$ with $T_{1} \cup T_{2}=V$ and $\left|T_{1}\right|=\left|T_{2}\right| \geq 4$. Let M be a perfect matching in $\left(V,\left[T_{1}: T_{2}\right]\right)$ and $F_{1} \subseteq E\left(T_{2}\right), F_{2} \subseteq E\left(T_{1}\right)$. Then, the matching inequality

$$
\left(\chi^{E \backslash\left(F \cup F_{1}\right)}, \chi^{E \backslash\left(F \cup F_{2}\right)}\right)^{T} x \geq|M|
$$

defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$ if and anly if there exist $\tau_{1} \in T_{1}$ and $\tau_{2} \in T_{2}$ such that one of the following three conditions holds:
(i) $F_{1}=\left[\tau_{2}: T_{2}\right], F_{2}=\left[\tau_{1}: T_{1}\right]$ and $\tau_{1} \tau_{2} \notin M$ (see Figure 1 (a)).
(ii) $F_{1}=E\left(T_{2} \backslash\left\{\tau_{2}\right\}\right), F_{2}=\left[\tau_{1}: T_{1}\right]$ and $\tau_{1} \tau_{2} \in M$ (see Figure 1 (b)).
(iii) $F_{1}=\left[\tau_{2}: T_{2}\right], F_{2}=E\left(T_{1} \backslash\left\{\tau_{1}\right\}\right)$ and $\tau_{1} \tau_{2} \in M$.

Figure 1

Proof. We start by showing that Property (i) is sufficient. Set $a:=\left(\chi^{E \backslash\left(F \cup F_{1}\right)}\right.$, $\left.\chi^{E \backslash\left(F \cup F_{2}\right)}\right)$. First, we prove that $a^{T} x \geq|M|$ is valid. Suppose, $P=\left(S_{1}, S_{2}\right)$ is an arbitrary Steiner tree packing. W. l. o. g. S_{1} and S_{2} are edge-minimal. Set $s_{k}:=\left|M \cap S_{k}\right|$ for $k=1,2$. We distinguish two cases:
(a) $s_{1}=0$ or $s_{2}=0$.

Suppose $s_{1}=0$ (the case $s_{2}=0$ can be shown analogously). Then, $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq|M|-1$. If $\left(a^{2}\right)^{T} \chi^{S_{2}}>0$, we are done. Otherwise, $S_{2}=F \cup F_{2}$ and we know that $V\left(S_{1}\right) \cap T_{2} \neq \emptyset$, since $\left[\tau_{1}: T_{1}\right]=F_{2} \subset S_{2}$. This, however, implies that $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq|M|$.
(b) $s_{1}>0$ and $s_{2}>0$.

It is easy to see that in this case $a^{T} \chi^{S_{k}} \geq|M|-\left|M \cap S_{k}\right|=|M|-s_{k}$ for $k=1,2$. This implies that $a^{T} \chi^{P} \geq 2|M|-\left(s_{1}+s_{2}\right) \geq|M|$, since $s_{1}+s_{2} \leq|M|$.

Now suppose $b^{T} x \geq \beta$ is a facet-defining inequality of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$ with $F_{a}:=$ $\left\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I})\left|a^{T} x=|M|\right\} \subseteq F_{b}:=\left\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I}) \mid b^{T} x=\beta\right\}\right.$. We show in the following that b is a multiple of a. For ease of exposition set $k:=1$, if $k=2$, and $\bar{k}:=2$, if $k=1$.
(1) $b_{e}^{k}=0$ for all $e \in F_{k}, k=1,2$.

Let A be a spanning tree in $\left(T_{k} \backslash\left\{\tau_{k}\right\}, E\left(T_{k} \backslash\left\{\tau_{k}\right\}\right)\right)$. Let $u \in T_{k} \backslash\left\{\tau_{k}\right\}, v \in T_{\bar{k}}$ with $u v \notin M$ and $\tau_{k} v \notin M$ (these nodes exist for $|M| \geq 3$). Set $S_{k}:=A \cup\left\{u v, \tau_{k} v\right\}$ and $S_{\bar{k}}=M \cup F_{\bar{k}}$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=P \cup_{k} e$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$. Thus, $\chi^{P}, \chi^{P^{\prime}} \in F_{b}$, and we have that $0=\chi^{P^{\prime}}-\chi^{P}=b_{e}^{k}$.
(2) $b_{e}^{k}=0$ for all $e \in M, k=1,2$.

Let $e=u v \in M, u \in T_{1}, v \in T_{2}$. Due to (i) $u v \neq \tau_{1} \tau_{2}$. Suppose w. l. o. g. $v \neq \tau_{2}$. Let $e^{\prime} \in\left[u: T_{1}\right]$. Choose $S_{1}:=M \cup F_{1} \cup\left\{e^{\prime}\right\} \backslash\left\{e, \tau_{2} v\right\}$ and $S_{2}:=\left[v: T_{2}\right]$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=P \cup_{k} e$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and we conclude that $0=\chi^{P^{\prime}}-\chi^{P}=b_{e}^{k}$.
(3) $b_{e}^{k}=b_{e^{\prime}}^{k}$ for all $e, e^{\prime} \in E\left(T_{k}\right), k=1,2$.

Let $u \in T_{k}$ with $u \tau_{\bar{k}} \notin M$. Let $e_{1}, e_{2} \in\left[u: T_{k}\right], e_{1} \neq e_{2}$ and $v \in T_{\bar{k}}$ with $u v \in M$. Choose $S_{k}:=M \cup F_{k} \cup\left\{e_{1}\right\} \backslash\left\{u v, \tau_{\bar{k}} v\right\}, S_{\bar{k}}:=\left[v: T_{\bar{k}}\right]$ and $S_{k}^{\prime}:=S_{k} \backslash\left\{e_{1}\right\} \cup\left\{e_{2}\right\}$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=\left(P \backslash_{k} S_{k}\right) \cup_{k} S_{k}^{\prime}$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and we get that $0=\chi^{P^{\prime}}-\chi^{P}=b_{e_{2}}^{k}-b_{e_{1}}^{k}$. This holds for all $e_{1}, e_{2} \in\left[u: T_{k}\right]$ and $u \in T_{k}$ with $u \tau_{\bar{k}} \notin M$. This implies (3).
(4) $b_{e}^{k}=b_{e^{\prime}}^{k}$ for all $e \in E\left(T_{\bar{k}} \backslash\left\{\tau_{\bar{k}}\right\}\right), e^{\prime} \in E\left(T_{k}\right), k=1,2$.

Let $e=u v$ with $u, v \in T_{\bar{k}} \backslash\left\{\tau_{\bar{k}}\right\}$. Let $w, x \in T_{k}$ with $u w, v x \in M$. Choose $S_{k}:=F \cup F_{k} \cup\{e\} \backslash\left\{u \tau_{\bar{k}}\right\}$ and $S_{k}^{\prime}:=S_{k} \backslash\{e\} \cup\{w x\}$. Furthermore, let $S_{\bar{k}}$ be a spanning tree in $\left(T_{\bar{k}}, E\left(T_{\bar{k}}\right) \backslash S_{k}\right)$ (such a tree exists, since $|M| \geq 4$). By construction, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=\left(P \backslash_{k} S_{k}\right) \cup_{k} S_{k}^{\prime}$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and we obtain $0=\chi^{P^{\prime}}-\chi^{P}=b_{w x}^{k}-b_{e}^{k}$. This together with (3) yields the statement.
(5) $b_{e}^{k}=b_{e^{\prime}}^{k}$ for all $e \in\left[T_{\bar{k}}: T_{k}\right] \backslash M, e^{\prime} \in E\left(T_{k}\right), k=1,2$.

Let $e=u v, u \in T_{\bar{k}}, v \in T_{k}$. Let $w \in T_{k}, x \in T_{\bar{k}}$ with $u w, v x \in M$. If $u=\tau_{\bar{k}}$, set $t:=x$, otherwise set $t:=u$. Choose $S_{k}:=F \cup F_{k} \cup\{e\} \backslash\left\{\tau_{\bar{k}} t\right\}, S_{\bar{k}}:=\left[t: T_{\bar{k}}\right]$ and $S_{k}^{\prime}:=S_{k} \backslash\{e\} \cup\{v w\}$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=\left(P \backslash_{k} S_{k}\right) \cup_{k} S_{k}^{\prime \prime}$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and we have that $0=\chi^{P^{\prime}}-\chi^{P}=b_{v w}^{k}-b_{e}^{k}$. This together with (3) implies (5).
(6) $b_{e}^{1}=b_{e^{\prime}}^{2}$ for all $e \in E\left(T_{1}\right), e^{\prime} \in E\left(T_{2}\right)$.

Let A_{k} be a spanning tree in $\left(T_{k} \backslash\left\{\tau_{k}\right\}, E\left(T_{k} \backslash\left\{\tau_{k}\right\}\right)\right)$. Let $u_{k} \in T_{k} \backslash\left\{\tau_{k}\right\}, v_{k} \in T_{\bar{k}}$ with $u_{k} v_{k} \notin M$ and $\tau_{k} v_{k} \notin M$ (these nodes exist for $|M| \geq 3$). Set $S_{k}:=$ $A_{k} \cup\left\{u_{k} v_{k}, \tau_{k} v_{k}\right\}$ and $S_{k}^{\prime}:=M \cup F_{k}$ for $k=1,2$. Then, $P:=\left(S_{1}^{\prime}, S_{2}\right)$ and $P^{\prime}:=\left(S_{1}, S_{2}^{\prime}\right)$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and it follows together with (3) and (5) that $0=\chi^{P^{\prime}}-\chi^{P}=|M| \cdot b_{u_{1} \tau_{1}}^{1}-|M| \cdot b_{u_{2} \tau_{2}}^{2}$. This shows (6).
(1) - (6) imply that b is a multiple of a. Hence, we have proved that $a^{T} x \geq|M|$ defines a facet for $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$, if (i) holds. In a very similar way it can be shown that Properties (ii) and (iii) are sufficient as well. So, we omit the proofs.

Next, we show that (i) - (iii) of Theorem 3.2 indeed describe all possible cases for F_{1} and F_{2} such that the corresponding matching inequality is facet-defining. Suppose $\left(\chi^{E \backslash\left(F \cup F_{1}\right)}, \chi^{\left.E \backslash\left(F \cup F_{2}\right)\right)^{T}} x \geq|M|\right.$ defines a facet for $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$. Set $a:=\left(\chi^{E \backslash\left(F \cup F_{1}\right)}, \chi^{E \backslash\left(F \cup F_{2}\right)}\right)$ and let l_{k} denote the number of (connected) components of $\left(V, M \cup F_{k}\right)$, for $k=1,2$. We assume w. l. o. g. that $l_{1} \leq l_{2}$.
Suppose $l_{k}=1$ for $k=1$, say, and F_{1} is not a star. Then, there exist two pairwise edge-disjoint spanning trees A_{1} and A_{2} in $\left(T_{2}, E\left(T_{2}\right)\right)$ with $A_{1} \subseteq F_{1}$. Thus, $P=\left(S_{1}, S_{2}\right)$ where $S_{1}:=M \cup A_{1}$ and $S_{2}:=A_{2}$ is a Steiner tree packing with $a^{T} \chi^{P}=|M|-1$, a contradiction to the validity of $a^{T} x \geq|M|$.
Since $a^{T} \geq|M|$ defines a facet, we know that, for every edge $e \in M$, there exists a root $P=\left(S_{1}, S_{2}\right)$ with $e \notin P$, otherwise $F_{a} \subseteq\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I}) \mid$ $\left.x_{e}^{1}+x_{e}^{2}=1\right\}$, a contradiction. Moreover, we know that, for a root $P=\left(S_{1}, S_{2}\right)$ with $e \notin P, e \in M$, either $M \cap S_{1}=\emptyset$ or $M \cap S_{2}=\emptyset$, otherwise $a^{T} \chi^{P} \geq$ $\left(|M|-\left|M \cap S_{1}\right|\right)+\left(|M|-\left|M \cap S_{2}\right|\right)=2|M|-\left(\left|M \cap S_{1}\right|+\left|M \cap S_{2}\right|\right) \geq|M|+1$. In the following we show that, for all possible remaining choices of F_{1} and F_{2}, we can find an edge $e \in M$ such that there does not exist a root $P=\left(S_{1}, S_{2}\right)$ with $e \notin P$ and $M \cap S_{1}=\emptyset$ or $M \cap S_{2}=\emptyset$. This proves the statement.

First, suppose both $F_{1}=\left[\tau_{2}: T_{2}\right], \tau_{2} \in T_{2}$, and $F_{2}=\left[\tau_{1}: T_{1}\right], \tau_{1} \in T_{1}$, are stars, but $\tau_{1} \tau_{2} \in M$. Suppose there exists a root $P=\left(S_{1}, S_{2}\right)$ with $\tau_{1} \tau_{2} \notin P$ with w. l. o. g. $M \cap S_{1}=\emptyset$. Then, we know that $\left(a^{2}\right)^{T} \chi^{S_{2}}=1$, since $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq$ $|M|-1$. Since $\tau_{1} \tau_{2} \notin S_{2}$, we conclude that $F_{2} \subset S_{2}$. This, however, implies that $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq|M|$, since $F_{2}=\left[\tau_{1}: T_{1}\right]$, a contradiction.
Now, we know that $l_{2} \geq 2$. Suppose still that $F_{1}=\left[\tau_{2}: T_{2}\right]$. Then, since (iii) does not apply, we conclude that the node $t \in T_{1}$ with $t \tau_{2} \in M$ is incident to an edge in F_{2}. Suppose there exists a root $P=\left(S_{1}, S_{2}\right)$ with $t \tau_{2} \notin P$ and $M \cap S_{1}=\emptyset$
or $M \cap S_{2}=\emptyset$. If $M \cap S_{1}=\emptyset$, we know that $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq|M|-1$ and, since the number of (connected) components of $\left(V,\left(M \cup F_{2}\right) \backslash\left\{t \tau_{2}\right\}\right)$ is at least three (note that $t \in V\left(F_{2}\right)$ and $l_{2} \geq 2$), that $\left(a^{2}\right)^{T} \chi^{S_{2}} \geq 2$, a contradiction. If $M \cap S_{2}=\emptyset$, we have $\left(a^{1}\right)^{T} \chi^{S_{1}}=1$. This implies that $F_{1} \subset S_{1}$, since $t \tau_{2} \notin S_{1}$. However, since F_{1} is a star, $\left(a^{2}\right)^{T} \chi^{S_{2}} \geq|M|$, a contradiction.
We conclude that also $l_{1} \geq 2$. Then, at least one of the following cases applies:
(1) $l_{k} \geq 3$ for $k=1,2$.

In this case, we immediately get a contradiction, since $\left(a^{k}\right)^{T} \chi^{S_{k}} \geq 2$ and $\left(a^{k}\right)^{T} \chi^{S_{k}} \geq|M|-1$, if $M \cap S_{k}=\emptyset$, for $k=1,2$.
(2) There exists an edge $u v \in M$ with $u \in V\left(F_{1}\right)$ and $v \in V\left(F_{2}\right)$.

Suppose there exists a root $P=\left(S_{1}, S_{2}\right)$ with $u v \notin P$ and with w. l. o. g. $M \cap$ $S_{1}=\emptyset$. Since $u v \notin S_{2}$ and the number of (connected) components of $\left(V,\left(M \cup F_{2}\right) \backslash\{u v\}\right)$ is at least three (note that $v \in V\left(F_{2}\right)$ and $l_{2} \geq 2$), we have that $a^{T} \chi^{P} \geq(|M|-1)+2=|M|+1$, a contradiction.
(3) $F_{2}=\emptyset$.

In this case we know that, for every Steiner tree packing $P=\left(S_{1}, S_{2}\right)$, $\left(a^{2}\right)^{T} \chi^{S_{2}} \geq|M|-1$ and $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq 1$, since $l_{1} \geq 2$. Thus, every root $P=\left(S_{1}, S_{2}\right)$ satisfies $\left(a^{2}\right)^{T} \chi^{S_{2}}=|M|-1$. This implies that $F_{a} \subseteq\{x \in$ $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})\left|\frac{1}{2} \sum_{u v \in M} x(\delta(\{u, v\}))=|M|-1\right\}$, a contradiction.

Summing up, we conclude that the only choices for F_{1} and F_{2} are those described in (i) to (iii) of Theorem 3.2.
The last theorem gives necessary and sufficient conditions for the matching inequality to be facet-defining under the assumptions that the zero graph is a matching and all edges in F_{1} and F_{2}, are incident to nodes in T_{2} and T_{1}, respectively. What happens if we relax one of these assumptions? In the following we give a partial answer to this question and extend the zero graph by a tree.

Definition 3.3 We are given a graph $G=(V, E)$ and a net list $\mathcal{N}=\left\{T_{1}, T_{2}\right\}$. Let $M \subseteq\left[T_{1}: T_{2}\right]$ be a matching and let B be a spanning tree in $(V(M) \cap$ $T_{2}, E\left(V(M) \cap T_{2}\right)$), see Figure 2. Moreover, let $F_{1}, F_{2} \subseteq E \backslash(M \cup B)$. Then, the inequality

$$
\left(\chi^{E \backslash\left(M \cup B \cup F_{1}\right)}, \chi^{E \backslash\left(M \cup B \cup F_{2}\right)}\right) \geq|B|
$$

is called matching-tree inequality.

Figure 2

It is easy to see that the basic form of a matching-tree inequality, i. e., $F_{1}=F_{2}=$ \emptyset, is valid for $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$, but in general it is not facet-defining. In the next theorem we present necessary and sufficient conditions for F_{1}, F_{2} such that the matching-tree inequality is facet-defining.

Theorem 3.4 Let $G=(V, E)$ be a complete graph on node set V and $\mathcal{N}=$ $\left\{T_{1}, T_{2}\right\}$ be a disjoint net list with $T_{1} \cup T_{2}=V,\left|T_{1}\right|=\left|T_{2}\right| \geq 2$. Suppose M is a perfect matching in $\left(V,\left[T_{1}: T_{2}\right]\right), B$ is a spanning tree in $\left(T_{2}, E\left(T_{2}\right)\right)$ and $F_{1}, F_{2} \subseteq E \backslash(M \cup B)$. For two nodes $u, v \in V$, let $b d(u, v)$ denote the number of edges in B contained in the unique path P from u to v in $(V, M \cup B)$, i. e., $b d(u, v):=|P \cap B|$. Then, the matching-tree inequality

$$
\left(\chi^{E \backslash\left(M \cup B \cup F_{1}\right)}, \chi^{E \backslash\left(M \cup B \cup F_{2}\right)}\right) \geq|B|
$$

defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$ if and only if F_{1} and F_{2} satisfy the following properties:
(i) $F_{1}=\emptyset$.
(ii) $\left(V, M \cup F_{2}\right)$ is connected.
(iii) For $r, s=1,2$, all pairs of nodes $u \in T_{s}$ and $v \in T_{r}$ with $b d(u, v) \geq 5-r-s$ are not connected in $\left(V\left(F_{2}\right), F_{2}\right)$.
(iv) F_{1} and F_{2} are maximal with respect to Properties (i) to (iii).

Proof. For ease of notation we assume that $T_{k}=\left\{t_{1}^{k}, \ldots, t_{l}^{k}\right\}, k=1,2$ with $l:=\left|T_{1}\right|=\left|T_{2}\right|$ such that $M=\left\{t_{i}^{1} t_{i}^{2} \mid i=1, \ldots, l\right\}$. We begin by showing that Properties (i) to (iv) are sufficient. Let $a:=\left(\chi^{E \backslash\left(M \cup B \cup F_{1}\right)}, \chi^{E \backslash\left(M \cup B \cup F_{2}\right)}\right)$.

First, we prove that $a^{T} x \geq|B|$ is valid. Let $P=\left(S_{1}, S_{2}\right)$ be any Steiner tree packing. We assume w. l. o. g. that S_{1} and S_{2} are edge-minimal. We show that there always exists a Steiner tree packing $P^{\prime}=\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$ with $a^{T} \chi^{P^{\prime}} \leq a^{T} \chi^{P}$ that satisfies the following two properties:
(A) If $\delta\left(t_{i}^{2}\right) \cap S_{1}^{\prime} \cap B \neq \emptyset$, then $t_{i}^{2} t_{i}^{1} \in S_{1}^{\prime}$ (for $i=1, \ldots, l$).
(B) If $t_{i}^{2} t_{j}^{2} \in S_{1}^{\prime}$ for some $i, j \in\{1, \ldots, l\}$ with $b d\left(t_{i}^{2}, t_{j}^{2}\right)=1$, then t_{i}^{2} and t_{j}^{2} are not connected in $\left(V,\left(M \cup B \cup F_{2}\right) \backslash S_{1}^{\prime}\right)$.

Intuitively, Property (A) becomes clear by drawing a picture. A formal proof of this statement is quite technical and we omit it here (for details see [M92]). Property (B) directly follows from (A) and from Property (iii). Thus, in order to prove that $a^{T} x \geq|B|$ is valid, we can assume that P already satisfies Properties (A) and (B).

Now let s_{1} denote the number of (connected) components of $\left(T_{2}, B \cap S_{1}\right)$ and let s_{2} denote the number of (connected) components of $\left(T_{2}, B \backslash S_{1}\right)$. Since B is a spanning tree of T_{2}, it is not difficult to see that $s_{1}+s_{2}=\left(\left|B \backslash S_{1}\right|+1\right)+(\mid B \cap$ $\left.S_{1} \mid+1\right)=|B|+2$. Property (B) implies that two components of $\left(T_{2}, B \backslash S_{1}\right)$ are not connected in $\left(V,\left(M \cup B \cup F_{2}\right) \backslash S_{1}\right)$. Thus, we have that $\left(a^{2}\right)^{T} \chi^{S_{2}} \geq s_{2}-1$. Moreover, since $F_{1}=\emptyset$, there does not exist a path in $\left(V, M \cup B \cup F_{1}\right)$ connecting two different components of $\left(T_{2}, B \cap S_{1}\right)$. Thus, $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq s_{1}-1$. Summing up, we conclude that $a^{T} \chi^{P} \geq\left(s_{1}-1\right)+\left(s_{2}-1\right)=|B|$.
Now, let $b^{T} x \geq \beta$ be a facet-defining inequality of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$ with $F_{a}:=\{x \in$ $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})\left|a^{T} x=|B|\right\} \subseteq\left\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I}) \mid b^{T} x=\beta\right\}$. In the following we show that b is a multiple of a.
(1) $b_{e}^{k}=0$ for $e \in M, k=1,2$.

Let $S_{1}:=\left[t_{1}^{1}: T_{1}\right]$ and $S_{2}:=B$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=P \cup_{k} e$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$. Thus, $\chi^{P}, \chi^{P^{\prime}} \in F_{b}$ and we have $0=$ $b^{T} \chi^{P^{\prime}}-b^{T} \chi^{P}=b_{e}^{k}$.
(2) $b_{e}^{2}=0$ for $e \in F_{2}$.

This can be shown as in (1).
(3) $b_{e}^{k}=0$ for $e \in B, k=1,2$.

Let $\left(V_{1}, B_{1}\right)$ and (V_{2}, B_{2}) be the two (connected) components of $(V(B), B \backslash\{e\})$. Property (ii) implies that there exists an edge $e^{\prime}=t_{u}^{p} t_{v}^{q} \in F_{2}$ with $t_{u}^{2} \in V_{1}$ and $t_{v}^{2} \in V_{2}$. If $l=2$, Property (iv) guarantees that e^{\prime} can be chosen such that $p \neq q$, and we set $S_{1}:=\left\{t_{u}^{1} t_{v}^{1}\right\}$ and $S_{2}:=M \cup\left\{e^{\prime}\right\}$. In the other case $(l \geq 3)$, choose an index $i \in\{1, \ldots, l\}, i \neq u, i \neq v$. We set $S_{1}:=\left[t_{i}^{1}: T_{1}\right]$ and $S_{2}:=B_{1} \cup B_{2} \cup M \cup\left\{e^{\prime}\right\}$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=P \cup_{k} e$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and we obtain $0=b^{T} \chi^{P^{\prime}}-b^{T} \chi^{P}=b_{e}^{k}$.
(4) $b_{e}^{1}=b_{e^{\prime}}^{1}$ for $e, e^{\prime} \in E\left(T_{1}\right)$.

Let $e=t_{u}^{1} t_{v}^{1}$, where $t_{u}^{1}, t_{v}^{1} \in T_{1}$. Set $S_{2}:=B$ and $S_{1}:=\left[t_{v}^{1}: T_{1}\right]$. Moreover, let $e^{\prime} \in\left[t_{u}^{1}: T_{1}\right] \backslash\{e\}$ and $S_{1}^{\prime}:=S_{1} \backslash\{e\} \cup\left\{e^{\prime}\right\}$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=\left(S_{1}^{\prime}, S_{2}\right)$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$. We conclude that $0=b^{T}\left(\chi^{S_{1}^{\prime}}, \chi^{S_{2}}\right)-b^{T}\left(\chi^{S_{1}}, \chi^{S_{2}}\right)=b_{e^{\prime}}^{1}-b_{e}^{1}$, for all $e, e^{\prime} \in \delta\left(t_{u}^{1}\right), t_{u}^{1} \in T_{1}$.
(5) $b_{e}^{1}=b_{e^{\prime}}^{1}$ for $e \in E \backslash\left(E\left(T_{1}\right) \cup M \cup B\right), e^{\prime} \in E\left(T_{1}\right)$.

Let $e=t_{u}^{p} t_{v}^{q}$ with $e \notin E\left(T_{1}\right) \cup M \cup B$. Set $S_{2}:=B, S_{1}:=\left[t_{u}^{1}: T_{1}\right]$ and $S_{1}^{\prime}:=S_{1} \backslash\left\{t_{u}^{1} t_{v}^{1}\right\} \cup M \cup\{e\}$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=\left(S_{1}^{\prime}, S_{2}\right)$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and it follows that $0=b^{T}\left(\chi^{S_{1}}, \chi^{S_{2}}\right)-b^{T}\left(\chi^{S_{1}^{\prime}}, \chi^{S_{2}}\right)=$ $b_{t_{u}^{1} t_{v}^{1}}^{1}-b_{e}^{1}$. This together with (4) implies (5).
(6) $b_{e}^{2}=b_{e^{\prime}}^{1}$ for $e \in E \backslash\left(M \cup B \cup F_{2}\right), e^{\prime} \in E\left(T_{1}\right)$.

Let $e=t_{u}^{p} t_{v}^{q}$ with $e \notin M \cup B \cup F_{2}$, where $u, v \in\{1, \ldots, l\}, p, q \in\{1,2\}$. Due to Properties (iii) and (iv) we know that there exists $i, j \in\{1, \ldots, l\}, s, r \in\{1,2\}$ with $b d\left(t_{i}^{s}, t_{j}^{r}\right) \geq 5-r-s$ such that there exists a path W from t_{i}^{s} to t_{j}^{r} in ($V\left(F_{2} \cup\{e\}\right), F_{2} \cup\{e\}$) with $e \in W$ (in case W is not unique, choose W such that $\left|W \cap E\left(T_{1}\right)\right|$ is minimal). We distinguish three cases.
(a) $s=r=1$.

Since $b d\left(t_{i}^{s}, t_{j}^{r}\right) \geq 3$, there exists indices $i_{0}, j_{0} \in\{1, \ldots, l\} \backslash\{i, j\}$ with $b d\left(t_{i_{0}}^{2}, t_{j_{0}}^{2}\right)=1, b d\left(t_{i_{0}}^{2}, t_{i}^{s}\right)<b d\left(t_{j_{0}}^{2}, t_{i}^{s}\right)$ and $b d\left(t_{i_{0}}^{2}, t_{j}^{r}\right)>b d\left(t_{j_{0}}^{2}, t_{j}^{r}\right)$. Set $M_{2}:=$ $\left\{t_{i}^{1} t_{i}^{2}, t_{j}^{1} t_{j}^{2}\right\}$.
(b) $s=1, r=2$ (the other case $s=2, r=1$ can be shown analoguosly).

Since $b d\left(t_{i}^{s}, t_{j}^{r}\right) \geq 2$, there exists an index $j_{0} \in\{1, \ldots, l\} \backslash\{i, j\}$ with $b d\left(t_{i}^{s}, t_{j_{0}}^{2}\right)=1$ and $b d\left(t_{j_{0}}^{2}, t_{j}^{r}\right)<b d\left(t_{i}^{s}, t_{j}^{r}\right)$. Set $i_{0}:=i$ and $M_{2}:=\left\{t_{j}^{1} t_{j}^{2}\right\}$.
(c) $s=2, r=2$.

Since $b d\left(t_{i}^{s}, t_{j}^{r}\right) \geq 1$, there exists $j_{0} \in\{1, \ldots, l\}$ with $b d\left(t_{i}^{s}, t_{j_{0}}^{2}\right)=1$ and $b d\left(t_{j_{0}}^{2}, t_{j}^{r}\right) \leq b d\left(t_{i}^{s}, t_{j}^{r}\right)$. Set $i_{0}:=i$ and $M_{2}:=\emptyset$.
Set $U:=\left\{t_{i_{0}}^{1} t_{i_{0}}^{2}, t_{i_{0}}^{2} t_{j_{0}}^{2}, t_{j_{0}}^{2} t_{j_{0}}^{1}\right\}$ (note that $\left.U \cap M_{2}=\emptyset\right)$. Choose $S_{2}:=(B \backslash$ $U) \cup M_{2} \cup W, S_{1}^{\prime}:=\left[t_{i_{0}}^{1}: T_{1}\right]$ and $S_{2}^{\prime}:=B$. If $l=2$, set $S_{1}:=U$. If $l=3$, there exists an edge $\bar{e} \in E\left(T_{1}\right) \backslash W$ with $\bar{e} \neq t_{i_{0}}^{1} t_{j_{0}}^{1}$, since W was chosen such that $\left|W \cap E\left(T_{1}\right)\right|$ is minimal. Set $S_{1}:=\{\bar{e}\} \cup U$. For $l \geq 4$, there exists a spanning tree A in $\left(T_{1}, E\left(T_{1}\right) \backslash W\right)$, because W is a path. Let $\hat{e} \in A$ such that $A \backslash\{\hat{e}\} \cup\left\{t_{i_{0}}^{1} t_{j_{0}}^{1}\right\}$ is a spanning tree as well. Set $S_{1}:=A \backslash\{\hat{e}\} \cup U$. Then, $P:=\left(S_{1}, S_{2}\right)$ and $P^{\prime}:=\left(S_{1}^{\prime}, S_{2}^{\prime}\right)$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$, and we have $0=b^{T}\left(\chi^{S_{1}}, \chi^{S_{2}}\right)-b^{T}\left(\chi^{S_{1}^{\prime}}, \chi^{S_{2}^{\prime}}\right)=b_{e}^{2}-b_{t_{i_{0}}^{1}}^{1} t_{j_{0}}^{1}$. This together with (4) proves the statement.
(1) - (6) imply that b is a multiple of a.

It remains to be shown that Properties (i) - (iv) are necessary as well.
(i) Suppose $F_{1} \neq \emptyset$. Let $e=t_{u}^{p} t_{v}^{q} \in F_{1}, e \notin M \cup B$. Choose $S_{1}:=\left[t_{u}^{1}\right.$: $\left.T_{1} \backslash\left\{t_{v}^{1}\right\}\right] \cup M \cup\{e\}$ and $S_{2}:=B$. Then, $P:=\left(S_{1}, S_{2}\right)$ is a packing
of Steiner trees with $a^{T} \chi^{P}=|B|-1$, a contradiction to the validity of $a^{T} x \geq|B|$.
(ii) Suppose ($V, M \cup F_{2}$) is not connected. Then, there exist indices $i, j \in$ $\{1, \ldots, l\}$ with $b d\left(t_{i}^{2}, t_{j}^{2}\right)=1$ such that there does not exist a path from t_{i}^{2} to t_{j}^{2} in $\left(V, M \cup F_{2}\right)$. Since $a^{T} x \geq|B|$ defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$, there exists a Steiner tree packing $P=\left(S_{1}, S_{2}\right)$ with $a^{T} \chi^{P}=|B|$ and $t_{i}^{2} t_{j}^{2} \notin P$. Otherwise, we will have the contradiction that $F_{a} \subseteq\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I}) \mid$ $\left.x_{t_{i}^{2} t_{j}^{2}}^{1}+x_{t_{i}^{2} t_{j}^{2}}^{2}=1\right\}$. Let W be the unique path from t_{i}^{2} to t_{j}^{2} in $\left(V\left(S_{2}\right), S_{2}\right)$, where we assume w. l. o. g. that S_{2} is edge-minimal. Since $t_{i}^{2} t_{j}^{2} \notin S_{2}$, and since there does not exist a path from t_{i}^{2} to t_{j}^{2} in $\left(V, M \cup F_{2}\right)$, there is an edge $e \in W$ with $a_{e}^{2}=1$. Choose $S_{2}^{\prime}:=S_{2} \backslash\{e\} \cup\left\{t_{i}^{2} t_{j}^{2}\right\}$. Note that $t_{i}^{2} t_{j}^{2} \notin S_{1}$. Then, $P^{\prime}:=\left(S_{1}, S_{2}^{\prime}\right)$ is also a Steiner tree packing, and we have that $a^{T} \chi^{P^{\prime}}=a^{T} \chi^{P}-1=|B|-1$, a contradiction.
(iii) Suppose, there exist indices $i, j \in\{1, \ldots, l\}, r, s \in\{1,2\}$ with $b d\left(t_{i}^{r}, t_{j}^{s}\right) \geq$ $5-r-s$ such that there is a path W from t_{i}^{r} to t_{j}^{s} in $\left(V\left(F_{2}\right), F_{2}\right)$. Then, in the same manner as described in (6) we can construct a packing of Steiner trees $P=\left(S_{1}, S_{2}\right)$ with $a^{T} \chi^{P}=|B|-1$, which yields a contradiction.
(iv) Suppose F_{1} and F_{2} are not maximal with respect to Properties (i) - (iii). Then, choose $F_{2}^{\prime} \subset E \backslash(M \cup B)$ such that $F_{2} \subset F_{2}^{\prime}$, and F_{1} and F_{2}^{\prime} are maximal with respect to Properties (i) - (iii). According to Part 1 of this proof $\left(\chi^{E \backslash\left(M \cup B \cup F_{1}\right)}, \chi^{E \backslash\left(M \cup B \cup F_{2}^{\prime}\right)}\right)^{T} x \geq|B|$ defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$. Summing up this facet-defining inequality together with the valid inequalities $x_{e}^{2} \geq 0$ for all $e \in F_{2}^{\prime} \backslash F_{2}$ we obtain $a^{T} x \geq|B|$. Thus, $a^{T} x \geq|B|$ does not define a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I I})$, a contradiction.

In this section we presented two classes of inequalities each combining two nets. The zero graphs have quite simple structures, namely they either form a matching or a matching and a tree. The fact that a maximum matching or a maximum spanning tree can be determined in polynomial time gives hope to efficiently solve the corresponding separation problems. However, the structure of the additional edge sets F_{1} and F_{2}, which are the edges whose coefficient is zero for net T_{1} and T_{2}, is rather complicated and makes it difficult to develop good separation algorithms that take these edge sets into account.

In the next section, the situation becomes even more complicated. When more than two nets are involved not only the edge sets F_{1}, \ldots, F_{N} but also the zero graph may have difficult structures.

4 Inequalities involving more than two nets

The two classes of inequalities we present in this section are extensions of so-called alternating cycle inequalities introduced in [GMW92a]. First, we extend the alternating cycle inequality by a third net and add two "ears" to the alternating cycle. An inequality of the second class is composed of two or more alternating cycle inequalities. We will see that this composition applies to an arbitrary number of terminal sets.
Before describing both inequalities let us give the defintion of an alternating cycle inequality and recall a theorem from [GMW92a] characterizing conditions under which this inequality is facet-defining.

Definition 4.1 Let $G=(V, E)$ be a graph and $\mathcal{N}=\left\{T_{1}, T_{2}\right\}$ a net list. We call a cycle F an alternating cycle with respect to T_{1}, T_{2}, if $F \subseteq\left[T_{1}: T_{2}\right]$ and $V(F) \cap T_{1} \cap T_{2}=\emptyset$ (see Figure 3). Moreover, let $F_{1} \subseteq E\left(T_{2}\right)$ and $F_{2} \subseteq E\left(T_{1}\right)$ be two sets of diagonals of the alternating cycle F with respect to T_{1}, T_{2}. The inequality

$$
\left(\chi^{E \backslash\left(F \cup F_{1}\right)}, \chi^{E \backslash\left(F \cup F_{2}\right)}\right)^{T} x \geq \frac{1}{2}|F|-1
$$

is called an alternating cycle inequality.

Figure 3
The following theorem gives necessary and sufficient conditions for F_{1} and F_{2} so that the alternating cycle inequality is facet-defining. In order to state this result we need some definitions. We say that two diagonals $u v$ and $r s$ of a cycle F cross if they appear on F in the sequence u, r, v, s or u, s, v, r; otherwise $u v$ and $r s$ are called cross free. For an alternating cycle F with respect to T_{1}, T_{2}, we call two sets of diagonals $F_{1} \subseteq E\left(T_{2}\right)$ and $F_{2} \subseteq E\left(T_{1}\right)$ maximal cross free if F_{1} and F_{2} are cross free (that is each pair of edges $e_{1} \in F_{1}$ and $e_{2} \in F_{2}$ is cross free), each diagonal $e_{1} \in E\left(T_{1}\right) \backslash F_{2}$ crosses F_{1} and each diagonal $e_{2} \in E\left(T_{2}\right) \backslash F_{1}$ crosses F_{2}.

Theorem 4.2 Let $G=(V, E)$ be the complete graph with node set V and let $\mathcal{N}=\left\{T_{1}, T_{2}\right\}$ be a disjoint net list with $T_{1} \cup T_{2}=V$ and $\left|T_{1}\right|=\left|T_{2}\right|=l, l \geq 2$. Furthermore, let F be an alternating cycle with respect to T_{1}, T_{2} with $V(F)=V$ and $F_{1} \subseteq E\left(T_{2}\right), F_{2} \subseteq E\left(T_{1}\right)$. Then the alternating cycle inequality

$$
\left(\chi^{E \backslash\left(F \cup F_{1}\right)}, \chi^{E \backslash\left(F \cup F_{2}\right)}\right)^{T} x \geq l-1
$$

defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$ if and only if F_{1} and F_{2} are maximal cross free.

4.1 2-eared alternating cycle inequalities

Definition 4.3 We are given a graph $G=(V, E)$ and a net list $\mathcal{N}=\left\{T_{1}, T_{2}, T_{3}\right\}$. Let C be an alternating cycle with respect to T_{2}, T_{3} and let $t_{1}, t_{2} \in T_{1} \backslash V(C)$. Moreover, choose $e_{i}, e_{j} \in\left[t_{1}: T_{2} \cap V(C)\right], e_{i} \neq e_{j}$, and $e_{r}, e_{s} \in\left[t_{2}: T_{3} \cap V(C)\right]$, $e_{r} \neq$ e_{s}. Set $K:=C \cup\left\{e_{i}, e_{j}, e_{r}, e_{s}\right\}$. The inequality

$$
\left(\chi^{E \backslash K}, \chi^{E \backslash K}, \chi^{E \backslash K}\right)^{T} x \geq 1
$$

is called 2-eared alternating cycle inequality (see Figure 4).

Figure 4

The following theorem specifies choices for F_{1}, F_{2} and F_{3} such that the 2-eared alternating cycle inequality is facet-defining.

Theorem 4.4 Let $G=(V, E)$ be the complete graph on node set $V, \mathcal{N}=$ $\left\{T_{1}, T_{2}, T_{3}\right\}$ a disjoint net list with $T_{1} \cup T_{2} \cup T_{3}=V$ and $\left|T_{2}\right|=\left|T_{3}\right|=: l, l \geq 2$. Let $T_{1}=\left\{t_{1}, t_{2}\right\}, e_{i}, e_{j} \in\left[t_{1}^{1}: T_{2}\right], e_{i} \neq e_{j}$ and $e_{r}, e_{s} \in\left[t_{2}: T_{3}\right], e_{r} \neq e_{s}$. Moreover, suppose C is an alternating cycle with respect to T_{2}, T_{3} where $V(C)=T_{2} \cup T_{3}$. Set $K:=C \cup\left\{e_{i}, e_{j}, e_{r}, e_{s}\right\}, F_{1}:=E\left(T_{2}\right) \cup E\left(T_{3}\right), F_{2}:=E\left(T_{3}\right) \cup\left(\left[t_{2}: T_{3}\right] \backslash\left\{e_{r}, e_{s}\right\}\right)$ and $F_{3}:=E\left(T_{2}\right) \cup\left(\left[t_{1}: T_{2}\right] \backslash\left\{e_{i}, e_{j}\right\}\right)$. Then, the 2-eared alternating cycle inequality

$$
\left(\chi^{E \backslash\left(F \cup F_{1}\right)}, \chi^{E \backslash\left(F \cup F_{2}\right)}, \chi^{E \backslash\left(F \cup F_{3}\right)}\right)^{T} x \geq 1
$$

defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$.
Proof. We start by showing that $a^{T} x \geq 1$ is valid where $a:=\left(\chi^{E \backslash\left(F \cup F_{1}\right)}\right.$, $\left.\chi^{E \backslash\left(F \cup F_{2}\right)}, \chi^{E \backslash\left(F \cup F_{3}\right)}\right)$. Let $P=\left(S_{1}, S_{2}, S_{3}\right)$ be an arbitrary Steiner tree packing. If $\left(a^{2}\right)^{T} \chi^{S_{2}}>0$ or $\left(a^{3}\right)^{T} \chi^{S_{3}}>0$, the inequality trivially holds. On the other hand, if $\left(a^{2}\right)^{T} \chi^{S_{2}}=0$ and $\left(a^{3}\right)^{T} \chi^{S_{3}}=0$, we have that $C \subset S_{2} \cup S_{3}$. This implies that $S_{1} \not \subset F \cup F_{1}$. Thus, $\left(a^{1}\right)^{T} x \geq 1$ in this case, and we conclude that the inequality is valid.
Let us briefly sketch the proof that $a^{T} x \geq 1$ is also facet-defining. Again, suppose that $b^{T} x \geq \beta$ is a facet-defining inequality of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$ that satisfies $F_{a}:=$ $\left\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I I}) \mid a^{T} x=1\right\} \subseteq F_{b}:=\left\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I I}) \mid b^{T} x=\beta\right\}$, and we show that b is a multiple of a.
First of all, one can easily convince oneselve that, for each edge $e \in K \cup F_{k}$, there exists a root P with $e \notin P$, for $k=1,2,3$. This shows that $b_{e}^{k}=0$ for all $e \in K \cup F_{k}, k=1,2,3$.
Moreover, for each edge $e \notin K \cup F_{k}$, one can find a root $P=\left(S_{1}, S_{2}, S_{3}\right)$ with $S_{r} \subseteq K \cup F_{r}$, for $r \neq k$ and $S_{k} \cap\left(V \backslash\left(K \cup F_{k}\right)\right)=\{e\}$, for $k=1,2,3$. This proves that $b_{e}^{k}=\beta$, and the result follows.
In fact, finding the appropriate Steiner tree packings as necessary is (somehow) straight-forward, but the description of the constructions is quite technical, so we omit the details here. A complete proof of Theorem 4.4 can be found in [M92].
One of the requirements in Theorem 4.4 is that the net list \mathcal{N} is disjoint. One can drop this assumption and still get facet-defining inequalities. In this case, however, the edge sets F_{2} and F_{3} must be extended. The following corollary describes one such case. We state this without a proof and refer the interested reader to [M92] for more details.

Corollary 4.5 Let $G=(V, E)$ be the complete graph on node set $V, \mathcal{N}=$ $\left\{T_{1}, T_{2}, T_{3}\right\}$ be a net list with $T_{1} \cup T_{2} \cup T_{3}=V,\left|T_{2}\right|=\left|T_{3}\right|=: l+1, l \geq 3$ and $T_{1}=\left\{t_{1}, t_{2}\right\}$ such that $T_{1} \cap T_{2}=\left\{t_{1}\right\}$ and $T_{1} \cap T_{3}=\left\{t_{2}\right\}$. Moreover, let $e_{i}, e_{j} \in\left[t_{1}: T_{2}\right], e_{i} \neq e_{j}$, and $e_{r}, e_{s} \in\left[t_{2}: T_{3}\right], e_{r} \neq e_{s}$. Suppose that C is an alternating cycle with respect to T_{2}, T_{3} with $V(C)=\left(T_{2} \cup T_{3}\right) \backslash T_{1}$. Finally, choose $f_{2} \in\left[t_{2}: T_{2}\right]$ and $f_{3} \in\left[t_{1}: T_{3}\right]$. Set $F:=C \cup\left\{e_{i}, e_{j}, e_{r}, e_{s}\right\}, F_{1}:=$ $E\left(T_{2}\right) \cup E\left(T_{3}\right), F_{2}:=\left(E\left(T_{3}\right) \cup\left[t_{2}: T_{3}\right] \cup\left\{f_{2}\right\}\right) \backslash\left\{e_{r}, e_{s}\right\}$ and $F_{3}:=\left(E\left(T_{2}\right) \cup\left[t_{1}:\right.\right.$ $\left.\left.T_{2}\right] \cup\left\{f_{3}\right\}\right) \backslash\left\{e_{i}, e_{j}\right\}$. Then, the 2-eared alternating cycle inequality

$$
\left(\chi^{E \backslash\left(F \cup F_{1}\right)}, \chi^{E \backslash\left(F \cup F_{2}\right)}, \chi^{E \backslash\left(F \cup F_{3}\right)}\right)^{T} x \geq 1
$$

defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$.

4.2 Composition of alternating cycles

In this subsection we present a class of ineqalities that involves an arbitrary number of nets. The idea behind our construction is to compose several facetdefining alternating cycle inequalities.

Theorem 4.6 Let $G=(V, E)$ be a complete graph with node set V, and let $\mathcal{N}=\left\{T_{1}, \ldots, T_{N}\right\}$ be a disjoint net list with $\cup_{k=1}^{N} T_{k}=V$ and $\left|T_{k}\right|=: l, l \geq 2$, for $k=1, \ldots, N$. Moreover, let C_{k} be be an alternating cycle with respect to T_{1}, T_{k} such that $V\left(C_{k}\right)=T_{1} \cup T_{k}$ for $k=2, \ldots, N$. Finally, set $F:=\cup_{k=2}^{N} C_{k}$ and $F_{k}:=\left\{\left[T_{p}: T_{q}\right] \mid p=1, \ldots, N, q=1, \ldots, N, q \neq k, p \neq k\right\}$ for $k=2, \ldots, N$ (see Figure 5) Then, the inequality

$$
\left(\chi^{E \backslash F}, \chi^{E \backslash\left(F \cup F_{2}\right)}, \ldots, \chi^{E \backslash\left(F \cup F_{N}\right)}\right)^{T} x \geq l-1
$$

defines a facet of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$.

Figure 5

Proof. Set $a=\left(\chi^{E \backslash F}, \chi^{E \backslash\left(F \cup F_{2}\right)}, \ldots, \chi^{E \backslash\left(F \cup F_{N}\right)}\right)$. We first show that the the inequality is valid. Let $P=\left(S_{1}, \ldots, S_{N}\right)$ be any edge-minimal Steiner tree packing. Let $I_{k}:=\left\{t \in T_{k} \mid \delta(t) \cap C_{k} \subset S_{1}\right\}$ denote the set of nodes of T_{k} that are isolated by S_{1} on the cycle C_{k}. Since $\left\{e \in E \mid a_{e}^{1}=0\right\}=F$, we have that $\left(a^{1}\right)^{T} \chi^{S_{1}} \geq l-1-\sum_{k=2}^{N}\left|I_{k}\right|$. Since S_{1} is edge-minimal, $T_{k} \backslash I_{k} \neq \emptyset$, for all $k=2, \ldots, N$. Moreover, $\left\{e \in \delta(t) \mid a_{e}^{k}=0\right\} \subset F$ for all $t \in T_{k}, k=2, \ldots, N$. These two facts imply that $\left(a^{k}\right)^{T} x \geq\left|I_{k}\right|$ for $k=2, \ldots, N$. Summing up, we obtain $a^{T} \chi^{P} \geq\left(l-1-\sum_{k=2}^{N}\left|I_{k}\right|\right)+\sum_{k=2}^{N}\left|I_{k}\right|=l-1$. Thus, the inequality is valid.

Now suppose $b^{T} x \geq \beta$ is a facet-defining inequality of $\operatorname{STP}(G, \mathcal{N}, \mathbb{I})$ such that $F_{a}:=\left\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I}) \mid a^{T} x=l-1\right\} \subseteq F_{b}:=\left\{x \in \operatorname{STP}(G, \mathcal{N}, \mathbb{I}) \mid b^{T} x=\beta\right\}$. We show that b is a multiple if a.

First, we observe the following. Consider two terminal sets T_{1} and T_{k} for some $k \in\{2, \ldots, N\}$. Let $V^{\prime}:=V\left(C_{k}\right)$ and $E^{\prime}=E\left(V^{\prime}\right)$, and set $F_{1}^{\prime}:=\emptyset$ and $F_{k}^{\prime}:=$ $E^{\prime} \cap F_{k}=E^{\prime}\left(T_{1}\right)$. Obviously, C_{k} is an alternating cycle in the complete graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, and F_{1}^{\prime} and F_{k}^{\prime} are maximal cross free with respect to C_{k}. Thus, due to Theorem 4.2, $a^{\prime}:=\left(\chi^{E^{\prime} \backslash\left(C_{k} \cup F_{1}^{\prime}\right)}, \chi^{E^{\prime} \backslash\left(C_{k} \cup F_{k}^{\prime}\right.}\right)^{T} x \geq l-1$ defines a facet for $\operatorname{STP}\left(G^{\prime},\left\{T_{1}, T_{k}\right\}, \mathbb{I I}\right)$. Every root $P^{\prime}=\left(S_{1}^{\prime}, S_{k}^{\prime}\right)$ of $\left(a^{\prime}\right)^{T} x \geq l-1$ can easily be extended to a root $P=\left(S_{1}, \ldots, S_{N}\right)$ of $a^{T} x \geq l-1$ by setting $S_{1}:=S_{1}^{\prime}, S_{k}:=S_{k}^{\prime}$ and $S_{r}:=C_{r}$ for all $r \in\{2, \ldots, N\}, r \neq k$. Therefore, from Theorem 4.2 we can conclude that
(1) $b_{e}^{k}=0$ for all $e \in F, k=1, \ldots, N$.
(2) $b_{e}^{k}=0$ for all $e \in F_{k}^{\prime}, k=2, \ldots, N$.
(3) $b_{e}^{k}=b_{e^{\prime}}^{k}$ for all $e, e^{\prime} \in E\left(T_{k}\right), k=1, \ldots, N$.
(4) $b_{e}^{1}=b_{e^{\prime}}^{k}$ for all $e \in E\left(T_{1}\right), e^{\prime} \in E\left(T_{k}\right), k=2, \ldots, N$.
(5) $b_{e}^{1}=b_{e^{\prime}}^{1}$ for all $e^{\prime} \in E\left(T_{1}\right), e \in\left[T_{1}: T_{k}\right], k=2, \ldots, N$.
(6) $b_{e}^{1}=b_{e^{\prime}}^{1}$ for all $e^{\prime} \in E\left(T_{1}\right), e \in E\left(T_{k}\right), k=2, \ldots, N$.
(7) $b_{e}^{k}=b_{e^{\prime}}^{k}$ for all $e \in E\left(T_{k}\right), e^{\prime} \in\left[T_{1}: T_{k}\right], k=2, \ldots, N$.

In the following we fix the remaining coefficients.
(8) $b_{e}^{k}=0$ for all $e \in F_{k} \backslash F_{k}^{\prime}, k=2, \ldots, N$.

Let $e \in F_{k} \backslash F_{k}^{\prime}$. Choose $S_{1}:=\left[t_{1}: T_{1}\right]$ for some $t_{1} \in T_{1}$, and set $S_{k}:=C_{k}$ for $k=2, \ldots, N$. Then, $P:=\left(S_{1}, \ldots, S_{N}\right)$ and $P^{\prime}:=P \cup_{k} e$ are Steiner tree packings with $\chi^{P}, \chi^{P^{\prime}} \in F_{a}$. So we obtain $0=b^{T} \chi^{P^{6}}-b^{T} \chi^{P}=b_{e}^{k}$.
(9) $b_{e}^{1}=b_{e^{\prime}}^{1}$, for all $e^{\prime} \in E\left(T_{1}\right), e \in\left[T_{p}: T_{q}\right], p, q \geq 2, p \neq q$,

Let $e=t_{p} t_{q}$ with $t_{p} \in T_{p}, t_{q} \in T_{q}$. Let $t_{1}, t_{1}^{\prime} \in T_{1}, t_{1} \neq t_{1}^{\prime}$ such that $t_{1} t_{p} \in C_{p}$ and $t_{1}^{\prime} t_{q} \in C_{q}$. Choose $S_{1}:=\left[t_{1}: T_{1}\right], S_{p}:=C_{p} \backslash\left\{t_{1} t_{p}\right\}, S_{q}:=C_{q} \backslash\left\{t_{1}^{\prime} t_{q}\right\}$ and $S_{i}:=C_{i}$ for all $i \in\{2, \ldots, N\} \backslash\{p, q\}$. Furthermore, let $S_{1}^{\prime}:=S_{1} \backslash\left\{t_{1} t_{1}^{\prime}\right\} \cup\left\{t_{1} t_{p}, t_{p} t_{q}, t_{q} t_{1}^{\prime}\right\}$. Then, $P:=\left(S_{1}, \ldots, S_{N}\right)$ and $P^{\prime}:=\left(S_{1}^{\prime}, S_{2}, \ldots, S_{N}\right)$ are Steiner tree packings with $a^{T} \chi^{P}, a^{T} \chi^{P^{\prime}} \in F_{a}$, and we get that $0=b^{T} \chi^{P^{\prime}}-b^{T} \chi^{P}=b_{t_{p} t_{q}}^{1}-b_{t_{1} t_{1}^{\prime}}^{1}$. This together with (3) proves the statement.
(10) $b_{e}^{k}=b_{e^{\prime}}^{k}$ for all $e \in\left[T_{k}: T_{p}\right], p \geq 2, p \neq k$ and $e^{\prime} \in E\left(T_{k}\right)$.

Let $e=t_{k} t_{p}$ for some $t_{k} \in T_{k}, t_{p} \in T_{p}$. Let $t_{k}^{\prime} \in T_{k} \backslash\left\{t_{k}\right\}$ and $t_{1} \in T_{1}$ such that $t_{1} t_{k}^{\prime} \in C_{k}$ and $t_{1} t_{p} \in C_{p}$. Choose $S_{1}:=C_{k} \backslash\left\{t_{1} t_{k}^{\prime}\right\}, S_{k}:=\left[t_{k}: T_{k}\right], S_{p}:=C_{p} \backslash\left\{t_{1} t_{p}\right\}$ and $S_{i}:=C_{i}$ for all $i \in\{2, \ldots, N\} \backslash\{p, k\}$. Furthermore, set $S_{k}^{\prime}:=S_{k} \backslash\left\{t_{k} t_{k}^{\prime}\right\} \cup$ $\left\{t_{k} t_{p}, t_{p} t_{1}, t_{1} t_{k}^{\prime}\right\}$. Then, $P:=\left(S_{1}, \ldots, S_{N}\right)$ and $P^{\prime}:=\left(P \backslash_{k} S_{k}\right) \cup_{k} S_{k}^{\prime}$ are Steiner tree packings with $a^{T} \chi^{P}, a^{T} \chi^{P^{\prime}} \in F_{a}$. Thus, we have that $0=b^{T} \chi^{P^{\prime}}-b^{T} \chi^{P}=$ $b_{t_{k} t_{p}}^{k}-b_{t_{k} t_{k}^{\prime}}^{k}$, and the result follows with (3).
(1) to (10) imply that b is a multiple of a, which completes the proof.

Note that, in Theorem 4.6, we generalize only one special case of Theorem 4.2 to an arbitrary number of nets, namely, where $F_{1}=\emptyset$. We believe that there also exist similar generalizations for $F_{1} \neq \emptyset$. But, the condition "maximal cross
free" is not sufficient anymore in this case. Up to now we do not know a good characterization for the general case.

5 Conclusions

In this paper we presented several new classes of inequalities for the Steiner tree packing polyhedron. It turned out that the conditions under which the inequalites define facets are quite complicated. However, the zero graphs have mostly nice (sub-) structures like cycles, matchings or trees that are more easily tractable. This gives hope to find good and efficient (not necessarily exact) separation algorithms and to successfully incorporate these inequalities in our cutting plane algorithm.

References

[F90] A. Frank: Packing paths, circuits, and cuts - a survey, in: B. Korte, L. Lovász, H. J. Prömel, A. Schrijver (eds.): "Paths, Flows, and VLSI-Layout", Springer-Verlag, Berlin Heidelberg, 1990, 47 - 100.
[FWW93] M. Formann, D. Wagner, F. Wagner: Routing through a dense channel with minimum total wire length, Journal of Algorithms 15, 1993, $267-283$.
[GMW92a] M. Grötschel, A. Martin, R. Weismantel: Packing Steiner trees: polyhedral investigations, Konrad-Zuse-Zentrum for Informationstechnik Berlin, Preprint SC 92-8, 1992.
[GMW92b] M. Grötschel, A. Martin, R. Weismantel: Packing Steiner trees: a cutting plane algorithm and computational results, Konrad-ZuseZentrum for Informationstechnik Berlin, Preprint SC 92-9, 1992.
[KL84] M.R. Kramer, J. van Leeuwen: The complexity of wire-routing and finding minimum area layouts for arbitrary VLSI circuits, F.P. Preparata (ed.), "Advances in Computing Research", Bd. 2: VLSI theory, Jai Press, London, 1984, 129 - 146.
[L90] T. Lengauer: Combinatorial algorithms for integrated circuit layout, Wiley, Chichester, 1990.
[M92] A. Martin: Packen von Steinerbäumen: Polyedrische Studien und Anwendung, Ph.D. Thesis, Technische Universität Berlin, 1992.
[MW93] A. Martin, R. Weismantel: Packing Paths and Steiner Trees: Routing of Electronic Circuits, CWI Quarterly 6, 1993, 185 - 204.
[S86] A. Schrijver: Theory of linear and integer programming, Wiley, Chichester, 1986.
[S90] A. Schrijver: Homotopic routing methods, in: B. Korte, L. Lovász, H. J. Prömel, A. Schrijver (eds.): "Paths, Flows, and VLSI-Layout", Springer-Verlag, Berlin Heidelberg, 1990, 329 - 371.
[Sa87] M. Sarrafzadeh: Channel-routing problem in the knock-knee mode is $\mathcal{N} \mathcal{P}$-complete, IEEE Transactions on Computer-Aided-Design CAD6, 1987, 503 - 506.

