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ABSTRACT
The performance evaluation of w-cdma networks is intri-
cate as cells are strongly coupled through interference. Pole
equations have been developed as a simple tool to analyze
cell capacity. Numerous scientific contributions have been
made on their basis. In the established forms, the pole
equations rely on strong assumptions such as homogeneous
traffic, uniform users, and constant downlink orthogonality
factor. These assumptions are not met in realistic scenar-
ios. Hence, the pole equations are typically used during
initial network dimensioning only. Actual network (fine-)
planning requires a more faithful analysis of each individual
cell’s capacity. Complex analytical analysis or Monte-Carlo
simulations are used for this purposes.

In this paper, we generalize the pole equations to include
inhomogeneous data. We show how the equations can be
parametrized in a cell-specific way provided the transmit
powers are known. This allows to carry over prior results to
realistic settings. This is illustrated with an example: Based
on the pole equation, we investigate the accuracy of “aver-
age snapshot” approximations for downlink transmit pow-
ers used in state-of-the-art network optimization schemes.
We confirm that the analytical insights apply to practice-
relevant settings on the basis of results from detailed Monte-
Carlo simulation on realistic datasets.

General Terms
Performance evaluation and modeling, Analytical Models,
Formal methods for analysis of wireless systems

Keywords
w-cdma, performance analysis, interference coupling, Monte-
Carlo simulation, pole equation
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1. INTRODUCTION
Third-generation cellular radio networks operating under
the w-cdma standard [7] frequently adapt to the current
situation on the radio channel and user demand. In a power-
control feedback loop, transmit powers are adjusted to the
lowest possible level in order to overcome channel variations
and avoid interference. This feature is essential, because all
transmissions take place in one shared band—we are consid-
ering the single carrier case—and interference is a limiting
factor. To determine the load of a system serving a given
set of users is therefore an complex task. The performance
of a radio cell depends on the position of its users as well as
on the state of the cells in a large neighborhood.

For initial network dimensioning, a network planner needs
to know how many users can be served simultaneously by
the system. This question can be answered using pole equa-
tions for the down- and the uplink [12]. The main influences
on network performance are roughly factored in and allow
to derive a cell’s pole capacity. Based on simplifying as-
sumptions, the capacity of a single cell has been studied
thoroughly with this approach and is now well understood.
The underlying assumptions, however, are strong: users are
uniformly distributed in hexagonal cells, interference cou-
pling between cells is fixed, the downlink orthogonality loss
factor does not vary, etc.

There have been attempts at formulating pole equations for
a more general setting, or to derive alternative heuristic
methods [6] for network evaluation. However, for detailed
network planning—in realistic settings featuring inhomoge-
neous user distribution, a diverse traffic mix, non-uniform
radio propagation conditions, and irregular cell layouts as
illustrated in Fig. 1—these schemes provide a very coarse
picture. To analyze the behavior of a network in detail,
static system models have been devised [5]. These mod-
els allow an accurate account of network performance for
a given set of users with arbitrary location and properties.
The relation between cell powers can be described in linear
interference coupling equation systems [9]. The solution of
these systems describe the power equilibrium at which the
system operates, assuming all demand to be served.

In the present contribution, we show how the intuitive form
of the pole equation can be retained in an inhomogeneous
setting. The formula is basically the same as before, only
the parameter values are derived in a way that removes the
simplifying assumptions. Using this technique, the analy-



sis of pole equations can now be applied during detailed,
realistic network planning.

We demonstrate the usefulness of our concept by a practice-
relevant example: In radio network planning and optimiza-
tion [8, 7], the traditional, Monte-Carlo simulation technique
is avoided for performance reasons. Various approximative
techniques have been developed that trade evaluation ac-
curacy for efficiency [13, 15]. A recent method for swiftly
estimating cell performance within optimization schemes is
to use an “average snapshot” [16, 11] or expected interfer-
ence coupling [2]. The accuracy of this technique has been
tested empirically [15], but not yet analyzed in theory. We
use the revised pole equations for analysis and compare the
results with Monte-Carlo simulation on realistic, inhomoge-
neous scenario data. It turns out that the analytical model
predicts and explains the behavior in practice very well.

For brevity, we focus on the downlink direction in this work.
The same technique, however, applies to the uplink.

2. CAPACITY OF W-CDMA NETWORKS
The downlink capacity required to serve users in a w-cdma

cell is measured in terms of the transmit power. Static sys-
tems models are commonly used to determine the average
transmit power of a cell serving a given traffic snapshot, i. e.,
a set of users with specific demands and locations.

2.1 Static Models
We denote the average total downlink transmit power of a
cell i serving a set Mi of users by p̄↓

i and the portion of

this power spent on user m by p↓
im. In addition, the cell

transmits common channels such as the pilot channel with

a fixed power p
(c)
i . Denoting the activity factor of user m

by α↓
m, the average total power of cell i is calculated as

p̄↓
i =

X

m∈Mi

α↓
m p↓

im + p
(c)
i (1)

For each user m the individual link power is adjusted such
that a specified cir-target µ↓

m is achieved.1 Under the as-
sumption of perfect power control, the ratio of link power
over noise and interference is adjusted to precisely this value:

µ↓
m =

γ↓
im p↓

im

γ↓
im ωm

`
p̄↓

i − α↓
m p↓

im

´
+

P

j 6=i γ↓
jm p̄↓

j + η↓
m

(2)

where γ↓
im is the end-to-end channel gain between cell i and

user m, ωm is the orthogonality loss factor applicable for the
specific connection, and η↓

m is the background noise (exterior
to the system, including thermal noise). The parameters
in (2) are user-specific and vary across a wide range. The
transmit activity α↓ and the cir-target µ↓ depend on the
user’s service; the path loss γ↓

im and possibly the noise η↓

depend on the user’s location; the orthogonality loss ω is
also related to the user’s environment.

1The cir-target corresponds to the Eb/N0-target minus the
processing gain:

µ = Eb/N0 ·
bit rate

chip rate
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Figure 1: Network configuration, best server areas,
and (normalized) downlink load distribution in the
Berlin scenario: Realistic planning problems have
irregular cell layout and inhomogeneous user load
distribution

In some contributions ([12], for example), the own signal is

fully accounted for as interference. The term p̄↓
i is then used

in place of (p̄↓
i − α↓

m p↓
im) in the denominator of (2).

The set of all equations (1) for each cell and (2) for each user
precisely describe the cell powers that prevail under perfect
power control.

2.2 Network Load with Interference Coupling
The system of the equations (1) and (2) can be rewritten
in a more condensed form by eliminating the individual link
power variables p↓

im. Defining the load factor of user m as

ℓ↓m :=
α↓

m µ↓
m

1 + ωmα↓
m µ↓

m

we solve (2) for α↓
m p↓

im and obtain a variant of (1):

p̄↓
i =

X

m∈Mi

“

ℓ↓mωm p̄↓
i +

X

j 6=i

ℓ↓m
γ↓

jm

γ↓
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p̄↓
j + ℓ↓m

η↓
m

γ↓
im

”

| {z }

=α
↓
m p

↓
im

+ p
(c)
i (3)

We do not add the own signal as interference here. If the own
signal is accounted for as interference, then α↓

mµ↓
m needs to

be substituted for ℓ↓m instead of our definition (3). Modulo
this modification, the same formula is derived in [7, 8, 12].

Let us introduce some notation to express this relation more
compactly. We define the downlink coupling elements to be

c↓ii :=
X

m∈Mi

ωmℓ↓m c↓ij :=
X

m∈Mi

γ↓
mj

γ↓
mi

ℓ↓m (j 6= i) (4)

The coupling between pairs of cells is illustrated in Fig. 2.
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Figure 2: Interference-coupling between cells:
Graphical representation of the off-diagonal entries
in the interference-coupling matrix

In addition to cell coupling, we define the aggregated con-
tributions of all mobiles to p̄↓

i that are independent of the
cells’ transmit powers as the downlink noise load

p
(η)
i :=

X

m∈Mi

η↓
m

γ↓
im

ℓ↓m (5)

Then, equation (3) is equivalent to

p̄↓
i = c↓ii p̄↓

i +
X

j 6=i

c↓ij p̄
↓
j + p

(η)
i + p

(c)
i (6)

In this form, the four different contributions to the cell’s
load are clearly laid out: capacity is needed to overcome
intra-cell interference, inter-cell interference, and noise at
the receiver.2 In addition, there is the fixed power on the
common channels.

The system of equation (6) for each cell is used for deter-
mining transmit powers in state-of-the-art network planning
software tools. It can be shown that the solution is unique
if a positive solution exists, see [14], for example.

2.3 Classical Pole Equation for Cell Capacity
An alternative version of interference coupling has been de-
rived using the other-to-own-cell interference ratio. We fol-
low the presentation for a downlink pole equation in [12].
Similar uplink versions exist [7]. The other-to-own-cell in-

terference is a receiver-specific performance indicator classi-
cally defined as

fm :=

P

j 6=i γ↓
jmp̄↓

j

γ↓
imp̄↓

i

(7)

An equivalent concept is the frequency reuse factor [1]. Us-
ing the other-to-own-cell interference ratio and rearranging

2In practice, the last contribution is negligible, as usually
p(η) ≪ p(c).

terms in (3), we obtain an expression for the cell power
equivalent to (6):

p̄↓
i =

p
(c)
i +

P

m η↓
mℓ↓m/γ↓

im

1 −
P

m ℓ↓m(ωm + fm)
| {z }

downlink loading

(8)

The classical pole equations are derived from (8) under ide-
alizing assumptions. The first assumption is that all cells
transmit with the same power. This is roughly true in a
regular (e. g., hexagonal) scenario with uniform traffic. Sec-
ondly, a global orthogonality loss factor value ω̄ is used.
Thirdly, there are N users, and all are assumed to have equal
properties (corresponding to a common user load factor ℓ↓).
In this case, an average other-to-own-cell interference ratio
can be defined as

f̄ :=
1

N

X

m

fm =
1

N

X

m

X

j 6=i

γ↓
im

γ↓
jm

(9)

and an average path loss as

1

γ̄↓
:=

1

N

X

m

1

γ↓
m

(10)

Eq. (8) then reads as the classical pole equation:

p̄↓ =
p(c) + N η↓ℓ↓/γ̄↓

1 − N ℓ↓(ω̄ + f̄)
(11)

This equation has important applications. One example is
the calculation of the approximate cell power needed to serve
a given number of users [12]. Another one is that the sys-
tem’s pole capacity Npole can be derived as the limit of the
number of users served as transmit power tends to infinity:

Npole = 1/ℓ↓(ω̄ + f̄) (12)

Numerous results have been obtained using variants of (11)
and (12): the maximum number of users and maximum data
rate in downlink have been calculated in [12]; the stochastic
relation between user load and blocking and the trade-off
between coverage and capacity in uplink has been investi-
gated in [17]; the capacity of a cell for a given maximum
blocking ratio has been determined in [18].

Some of the assumptions can be removed. For example, the
inclusion of an arbitrary service mix is no problem. How-
ever, the results are not commonly used in detailed network
planning because is is unclear how to find a suitable value
for f̄ . The cell’s average other-to-own-cell interference ra-
tio varies considerably from cell to cell in inhomogeneous
scenarios. This is illustrated in Fig. 3: the average other-
to-own-cell interference ratio of cells is plotted over the nor-
malized number of users in the cell. The computations have
been made on the realistic network scenario3 depicted in
Fig. 1. Even after discarding outliers, the average other-to-
own-cell interference ratio of most cells varies between 30 %
and over 100 %.4

3This is the Berlin scenario from the IST project Momem-

tum, available at momentum.zib.de.
4The depicted values are computed with the precise defini-
tion (14) below.

momentum.zib.de


3. DECOMPOSING THE COUPLING EQUA-
TION SYSTEM

From the interference coupling equation system we will now
derive new parameter settings that remove unrealistic as-
sumptions and that are valid for a slightly reformulated pole
equation. If the cell powers are known (for example, by solv-
ing the coupling equation system), the specific values can be
calculated for every cell.

3.1 Aggregated Other-to-own-cell Interference
The basis for our model is a definition of other-to-own-cell
interference ratio that is slightly different from the classical
one (7). We include the orthogonality loss factor that applies
to the own-cell interference:

ι̃↓m :=

P

j 6=i γ↓
jmp̄↓

j

ωmγ↓
imp̄↓

i

(13)

This form lacks a direct physical interpretation, since the
value ω captures an effect that is related to despreading the
signal. In this way, however, connection-specific orthogo-
nality values can be carried through the entire analysis in a
concise fashion.

In contrast to the “naive” definition of an average other-to-
own-cell interference ratio as the plain average over all users,
we use a weighted average. The weight of a user is her con-
tribution to the main diagonal element (4) of the coupling
matrix. The aggregated other-to-own-cell interference ratio
for cell i is then

ῑ↓i :=

P

m∈Mi
ωmℓ↓mι̃↓m

P

m∈Mi
ωmℓ↓m

=

P

m∈Mi
ℓ↓m

P

j 6=i

γ
↓
jm

γ
↓
im

p̄↓
j

P

m∈Mi
ωmℓ↓mp̄↓

i

=

P

j 6=i c↓ij p̄
↓
j

c↓iip̄
↓
i

(14)

Note that under the assumption of uniform transmit pow-
ers and identical users, the definition (14) is equivalent to
(9) modulo orthogonality. (The average path loss (10) is

accommodated in our definition of the noise power p(η).)
Examples of average other-to-own-cell interference ratio in
a realistic scenario are depicted in Fig. 3.

3.2 Pole Equation Revisited
Plugging the aggregated other-to-own-cell interference ratio
(14) into the interference coupling equation (6), we obtain

p̄↓
i = (1 + ῑ↓i ) c↓iip̄

↓
i + p

(η)
i + p

(c)
i (15)

By rearranging terms, we obtain the revised pole equation:

p̄↓
i =

p
(c)
i + p

(η)
i

1 − (1 + ῑ↓i )c
↓
ii

(16)

The expression (1+ ῑ↓i )c
↓
ii is our notion of the downlink load-

ing of cell i. We derive the following identity for ῑ↓i :

ῑ↓i =
1 − (p

(η)
i + p

(c)
i )/p̄↓

i

c↓ii
− 1 (17)

Eq. (17) provides a straightforward way of calculating ῑ↓i if
transmit powers are known. If we use the maximum cell

other-to
-own-cell
interference

0

1

5

normalized cell load c↓ii

0.1 0.5

ւ

1 − p(c)/p↓max

c↓ii
− 1

Figure 3: Other-to-own-cell interference values of
cells in a real network vary greatly with local condi-
tions; the solid line indicates the limiting value for
serving a given load with restricted transmit power

power p↓
max for p̄↓

i , this defines a limit curve as indicated in
Fig. 3. The curve basically expresses how a cell can serve a
large number of users only if the level of interference is low.

Analogous to the classical analysis, the pole capacity of a
cell is reached when the downlink loading approaches one.
The transmit power then tends to infinity. In real networks,
however, transmit powers are clipped at a limit p↓

max and
excess demand is rejected by admission control. The actual
transmit power in the cell is therefore

p̄↓
i =

8

<

:

p
(c)
i

+p
(η)
i

1−(1+ῑ
↓
i
)c

↓
ii

if (1 + ῑ↓i )c
↓
ii <

p↓
max−p

(c)
i

−p
(η)
i

p
↓
max

p↓
max otherwise

(18)

Here, we assume that admission control limits cell loading
precisely to the maximum allowed value. The extension of
the pole equation to reflect a more refined modeling of ad-
mission control is feasible using, for example, the concept of
perfect load control as presented in [3].

4. APPLICATION: ANALYZING THE AC-
CURACY OF POWER ESTIMATES

This section presents an application of the refined down-
link pole equation. We analyze the accuracy of an “aver-
age snapshot” approximation for estimating cell transmit
powers. This technique, also called expected interference-

coupling approximation, is used to obtain estimates for av-
erage transmit powers if Monte-Carlo simulation is too time
consuming. This is, for example, the case if search methods
such as simulated annealing are used for network optimiza-
tion and many candidate configurations have to be tested in
a short time [16, 2].

4.1 Expected Coupling of Transmit Powers
In the expected interference-coupling approach, a single sys-
tem of equations of type (6) is solved to obtain the average
coupling values. For a reference service with user load factor
ℓ↓r and spatial user density T(·), the mean coupling values



are calculated as integrals over the area Ai of cell i:

c̄↓ii := E(c↓ii) =

Z

Ai

ωpℓ↓rT(p) dp (19a)

c̄↓ij := E(c↓ij) =

Z

Ai

γ↓
pj

γ↓
pi

ℓ↓rT(p) dp (i 6= j) (19b)

p̄
(η)
i := E(p

(η)
i ) =

Z

Ai

η↓
p

γ↓
ip

ℓ↓rT(p) dp (19c)

The computation assumes that a user is always served by the
cell providing the strongest signal (best server). Variations
of the radio channel, i. e., stochastic attenuation values γ,
are not considered. If fading is taken into account, the cell
areas vary according to the current radio conditions and
the expected coupling elements can only be computed by
numerical integration [13, 15]. The mean coupling value for
a service mix is the sum over the individual components for
the services.

In the remainder of this paper, we analyze the error in esti-
mating the cell transmit powers p̄↓ using expected interference-
coupling approach in comparison to simulation results. While
similar investigations have been conducted before, our anal-
ysis based on the pole equation sheds a new light on the
factors governing the estimation error.

4.2 Simplified Setting
We consider one cell with a fixed average other-to-own-cell
interference ratio of ι̂↓. The following assumptions are made:
noise is neglected (i. e., p(η) = 0); all m users in the snapshot
wish to access a reference service r with a user load factor
of ℓ↓r (i. e., all users have exactly the same impact on the
system and a snapshot is completely described by its number
of users); load control admits the maximum number of users
m∗ ≤ m for which the system load is still within the desired
bounds.

The coupling element is calculated as

c↓(m) = m∗ℓ↓r

The pole equation for m users then reads

p̄↓(m) =
p(c)

1 − (1 + ι̂↓)ℓ↓rm∗
(20)

The maximum number of admissible users is calculated by
setting p̄↓ = p↓

max in (20):

m(max) :=
p↓
max − p(c)

p↓
max(1 + ι̂↓)ℓ↓r

Hence, the system will admit exactly

m∗ = min(⌊m(max)⌋, m)

users. The load factor (before admission control) is

(1 + ῑ↓)ℓ↓rm

We assume the number of users to be Poisson-distributed.
The probability that exactly m users are present is

P(m) = φme−φ/m!

c.o.v.

0.0 % (exp. cpl.)
13.1 % (voice)
35.0 % (video)

Avg. transmit
power [W]

0

10

p↓max

Avg. load factor

1

Figure 4: Theoretical analysis of average transmit
power vs. load factor for different traffic mixes

where φ ≥ 0 is the average number of users in the cell.
As the number of users is the only random influence, the
expected load factor is

E((1 + ῑ↓)ℓ↓rm) = (1 + ῑ↓)ℓ↓rφ (21)

and its variance is

Var((1 + ῑ↓)ℓ↓rm) = (1 + ῑ↓)2
`
ℓ↓r

´2
φ (22)

The true values for the expected powers thus are

E(p̄↓) =
P

m≤m(max) P(m)p̄↓(m)

+
P

m>m(max) P(m)p̄↓(⌊m(max)⌋)
(23)

The latter sum is an infinite series that converges necessarily.
The mean of the coupling element, on the other hand, is

E(c↓) = φℓ↓r

The expected-coupling estimates in the decoupled case are
therefore calculated according to (18) as

p̄↓ =

8

<

:

p(c)

1−(1+ι̂↓)ℓ
↓
rφ

if φ ≤ m(max)

p↓
max otherwise

(24)

Based on (24), we study the impact of user load “granular-
ity” on the average cell transmit in the next section.

4.3 Analysis
The values in (23) and the expected-coupling estimates (24)
for p̄↓ are exemplarily calculated with the parameter settings

p(c) = 2W p↓
max = 14W ι̂↓ = 1.08 ℓ↓r = 0.059, 0.008

The first choice for ℓ↓r = 0.008 corresponds to a speech ser-
vice with 50 % activity; the second value ℓ↓r = 0.059 is re-
alistic for a video call service with 100 % activity. The pa-
rameters have been chosen such that m(max) is integral.

The abscissa in Fig. 4 shows the mean load factor as stated
in (21). The three curves differ only in the variance (22) of
the load factor. Due to the fixed other-to-own-cell interfer-
ence ratio, the variance is determined by the service. At the
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(a) Speech service only: the simulation results correspond
to the middle curve from Fig. 4, the main inaccuracy of the
estimates is the overestimation for high load factors
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load
factor
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(b) Differentiated service mix: accuracy behaves as predicted
in theoretical analysis – higher underestimation for low load
factors and higher overestimation for high load factors

Figure 5: Monte-Carlo simulation results (dots) for mean downlink transmit powers vs. estimates (solid line),
Berlin scenario

same expected load, the more demanding video service leads
to a higher variance. The curves in Fig. 4 are thus labeled
by their coefficient of variation (c.o.v.), which is calculated
as the ratio of the standard deviation over the mean.

Fig. 4 reveals that expected-coupling approximations under-
estimate the power for a low average load factor. For high
load factors, the average power is overestimated. This is eas-
ily explained: When the average load factor is low, blocking
virtually plays no role. As the power is a strongly convex
function of the load factor, the situations with more than
average many users influence the mean more heavily than
those with fewer than average. In the region with “expected
overload”, on the other hand, expected-coupling approxi-
mation ignores the fact that those snapshots for which the
maximum power is not reached have a positive probability.
If the load factor has zero variance, the expected-coupling
estimate is exact. The higher the variance of the load factor,
the more pronounced is the deviation of actual values from
our estimate. This holds for the underestimation at low load
as well as for overestimation at high load.

5. COMPUTATIONAL VALIDATION
We conducted experiments on realistic data to validate the
insights from theoretical analysis. We do not provide a fully-
fledged quantitative statistical analysis of our results, as this
can be carried out without using our theoretical insights.
Similar computational tests (but not containing the above
analysis) are in fact presented in [15] for a classical hexago-
nal setting and led to comparable results. Instead, we stress
how the analysis of the pole equation explains effects ob-
served under realistic conditions.

5.1 Scenarios
We carried out Monte-Carlo simulations on two realistic
public planning data provided by the Momentum project [4,
10]. The network configuration, traffic intensity, and service

mix were varied. The normalized downlink traffic intensity
(aggregated user load) is based on population data, which
is spatially inhomogeneous. The distribution is indicated in
Fig. 1 for the Berlin scenario; the peak value of 5.2 corre-
sponds to about 650 speech users per square kilometer. The
traffic distribution for Lisbon is shown in Fig. 6.

Two service mixes are considered: an all-speech one as well
as a differentiated mix featuring 56 % speech load, 7% video
load, and a variety of downlink-biased data services (such as
www, download, email) for the residual users. Both traffic
mixes are adjusted to create a comparable total load and
differ mainly in the variance of user load. The radio prop-
agation predictions are based on a Okumura-Hata model
including diffraction based on terrain height data and clut-
ter type. The data has a resolution of 50 × 50 m (Berlin)
and 20 × 20 m (Lisbon).

We present results for two specific network configurations
depicted in Figs. 1 and 6. The results for various network
configurations are comparable at a qualitative level. As can
be seen in the figures, the irregular placement of base sta-
tions and propagation data cause an irregular cell layout.

5.2 Simulation vs. Expected Coupling
We compare the results from Monte-Carlo simulation with
expected-coupling estimates. The convergence criterion for
simulation was based on confidence intervals for individual
cell powers. The intervals have been computed on the as-
sumption of a lognormal power distribution of the cell pow-
ers [18]. The simulation has been run until the 99% con-
fidence interval was less than ±1% of the mean. Results
for the two service mixes in Berlin are shown in Fig. 5 and
for the differentiated service mix in Lisbon in Fig. 7. Each
dot represents the result for one cell, its ordinate is the av-
erage power as determined by simulation. The abscissae is
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Figure 6: Irregular cell layout and inhomogeneous
downlink load distribution (normalized), Lisbon sce-
nario

the approximation for expected downlink loading (1+ ῑ↓i )c↓ii
as estimated by expected-coupling analysis. The expected-
coupling estimate for downlink power is a function of this
value, which is specified in equation (18). The estimated
power is indicated in the plots by the light solid line.

Fig. 5(a) shows the accuracy of expected-coupling estimates
in the Berlin scenario for the case of only speech users. A cell
can typically handle 50 speech users simultaneously. Since
user load is of a fine granularity, the variance of a cell’s
load factor is rather low and the dots lie close to the line
indicating the estimates. As predicted by the analysis, the
largest estimation errors occur in regions of the higher load:
the average cell power is estimated as the maximum value
p↓
max, but the value observed in simulation is slightly lower.

The precision of expected-coupling estimates for the com-
plete service mix is shown in Fig. 5(b). The dots deviate
more heavily from the curve. This is because there are
fewer users, but they are more demanding, which increases
the granularity of users. The variance of the load factor is
hence larger, and the points deviate more from the curve.
This happens as predicted by the analysis: for lower load
values, there is more underestimation, whereas in highly
loaded cells, the overestimation is larger. In general, the
bias of estimation error is towards overestimation.

The bottom line is the following: the difference in accu-
racy of estimates for different service mixes observed be-
tween Figs. 5(a) and (b) is explained by the analysis pre-
sented in this paper. Fig. 5(a) corresponds to the “speech”
curve in Fig. 4, and Fig. 5(b) to the “video” curve for higher
variance. This was observed in all our experiments; Fig. 7
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Figure 7: Monte-Carlo simulation results (dots) for
mean downlink transmit powers vs. estimates (solid
line), Lisbon scenario. Also in this setting, experi-
ments confirm the theoretical analysis

contains comparable results in the Lisbon scenario (which
is significantly different from the Berlin scenario) for the
differentiated service mix.

Our results can also be used for calculating more accurate
estimates for the average transmit power, if this is of in-
terest: Based on the service mix and user distribution, the
variance of the load factor can be estimated. A correspond-
ing curve from Fig. 4 can be used as a finer approximation
than the solid lines in Figs. 5 and 7, which assume vanishing
variance. This is, however, out of the scope of the present
work.

5.3 Impact of Shadow Fading
The experiments conducted so far have not included varia-
tions of the radio channel, i. e., fading effects. We now study
the impact of log-normal fading using a model with angular
correlation [19] and a standard deviation of 8 dB.

The main consequence of shadowing is that cell areas vary
(if we assume a best-server connection). This implies that
the values calculated in (19) are no longer the mean of the
coupling elements. We address two questions: First, how
well do expected-coupling estimates with medians of atten-
uation approximate average transmit powers? Second, how
do precise expected-coupling estimates perform?

No closed formula is known for calculating the mean of the
coupling matrix in the presence of shadowing; the exist-
ing methods [13, 15] require numerical integration of multi-
dimensional functions. For our results, we determine the
mean by Monte-Carlo simulation.

Examples for the Berlin network are shown in Fig. 8. Fig. 8(a)
depicts results for the expected-coupling method with me-
dians of attenuation. The abscissae (load estimates) of the
data points are identical to those in Fig. 5(b). Because the
simulation now includes shadowing, the ordinates (observed
power) are different. The points are more scattered. The
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(a) If fading is considered, the simulation results are scat-
tered compared to the expected-coupling estimates using
medians of attenuation. The general trend is captured, but
individual cells deviate strongly
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(b) The same results as in (a) rearranged according to the
precise average downlink loading value from simulation: the
curve agrees with the theoretical analysis

Figure 8: Simulation results including shadowing (dots) and estimates (solid line) for downlink transmit
power, differentiated service mix

general tendency is similar: cells with low (estimated) load-
ing tend to expose a higher average transmit power than
estimated, while highly-loaded cells have less. In general,
the loading is higher with shadowing.

Fig. 8(b) depicts the results for a “exact” determination of
mean coupling elements. As the simulation is identical, the
ordinates (power values) of the cells’ data points are identi-
cal to those in Fig. 8(a). The estimates of mean loading, the
abscissae, however, are different. This is because the pre-
cise values are used. It can be observed that the estimates
for transmit powers are far more accurate if the computa-
tionally expensive estimates are afforded. The picture is
similar to Fig. 5(b), the main difference being that underes-
timation virtually does not occur anymore. This is because
the overall loading is higher under shadowing, so overesti-
mation prevails and this also influences the almost empty
cells through interference coupling.

6. CONCLUSION
The classical pole equations are a popular tool for cell capac-
ity analysis as they describe the behavior of a w-cdma cell
in an accessible way. In particular, the effects of stochastic
variations of the user load have been extensively studied.
We have formulated an alternative version of the classical
downlink pole equation. The alternative version differs only
slightly from the classical definition. This allows to carry
over all analytical insights obtained in the classical model.

The main achievement of the present contribution is an
alternative definition of the parameters in the pole equa-
tions, notably of a cell’s average other-to-own-cell interfer-
ence ratio, which accommodates all information of a detailed
planning scenario. With these generalized definitions, the
classical pole equation can be parameterized to the precise
working point of a specific cell in a realistic scenario. As

a consequence, all results obtained by analysis of the pole
equation—most prominently, stochastic results—can be di-
rectly used in practical, detailed network planning.

As one example for this technique, we have provided an
analysis of the accuracy of a method for quickly estimating
cell transmit powers. This method is used in state-of-the-
art network optimization. The so-called expected-coupling
estimates determine the transmit power for a hypothetical
“average snapshot” and can be calculated very efficiently.
Costly Monte-Carlo simulation is avoided. Based on the
pole equations, we have pointed out how the service mix in-
fluences the variation of the downlink loading and thereby
the accuracy of the estimates. The results of this analy-
sis have been shown to apply with surprising accuracy in a
realistic planning scenario featuring irregular traffic distri-
bution and cell layout. Our results furthermore highlight
how higher-order moments may be efficiently used for more
precise estimates.

7. REFERENCES
[1] S. Dehghan, D. Lister, R. Owen, and P. Jones.

w-cdma capacity and planning issues. Electron. &

Comm. Eng. J., 12(3):101–118, June 2000.

[2] A. Eisenblätter, H.-F. Geerdes, T. Koch, A. Martin,
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