
Some Integer Programs Arising in the

Design of Main Frame Computers

C�E� Ferreira M� Gr�otschel S� Kie� L� Krispenz

A� Martin R� Weismantel

Abstract

In this paper we describe and discuss a problem that arises in the (global)
design of a main frame computer. The task is to assign certain functional
units to a given number of so called multi chip modules or printed circuit
boards taking into account many technical constraints and minimizing a
complex objective function. We describe the real world problem. A thor-
ough mathematical modelling of all aspects of this problem results in a
rather complicated integer program that seems to be hopelessly difficult –
at least for the present state of integer programming technology. We in-
troduce several relaxations of the general model, which are also NP-hard,
but seem to be more easily accessible. The mathematical relations between
the relaxations and the exact formulation of the problem are discussed as
well.

� Introduction

This paper is the first in a series that grew out of a cooperation of Siemens
Nixdorf with a research group at the Konrad-Zuse-Zentrum Berlin. The paper
addresses certain problems that arise in the design of main frame computers. The
topic considered here comes up in the phase of the global design where certain
functional units (components) have been defined, where the networks connecting
the components have been determined and where decisions are made such as how
to group the components and how to integrate them on a given number of multi
chip modules and/or printed circuit boards. Decisions of this type are initially
rather tentative and are iteratively (and frequently) reconsidered after making

1

design changes or further progress in the details of the global design or of the
component layout.

The mathematical problem that arises by thoroughly modelling all (or at least the
most important) aspects of this question is a rather complicated integer program
with almost a million variables. The aim of this paper is a description of the real
world problem and our way of modelling it mathematically.

The full model appears to be hopelessly difficult – at least for the present state
of integer programming technology. In a series of follow up papers we will inves-
tigate a hierarchy of combinatorial relaxations of the complete model. Each of
these relaxations is NP-hard itself, but, for the instance sizes considered here,
structurally simpler and easier to solve. We will study these relaxed models theo-
retically using the theory of polyhedral combinatorics and develop algorithms for
their solution with the aim of combining these models and algorithms to obtain
an algorithmic machinery that provides provably good approximate solutions of
our real problem.

The overall organization of the paper is as follows:

In section 2 we describe the practical problem in full detail and, simultaneously,
our way of mathematically modelling it. The high complexity of the model as well
as its large size give rise to the study of relaxations of this model by discarding
some of its side constraints as well as some of its variables. Here, a first relaxation
consists of the multiple knapsack problem, which can be viewed as the task of
assigning a given set of items to a given set of knapsacks. The second relaxation
extends the multiple knapsack problem in the sense that nets running between
different modules are approximately taken into account. The last relaxation we
are going to consider improves the approximation of the nets and leads to a
hypergraph clustering problem. All these relaxations are explained in section 3.
Section 4 discusses the mathematical relations between the relaxations and the
exact formulation of the problem.

� The General Model

In this section we will first present a complete description of the practical problem.
It will turn out that some of the side constraints can be satisfied in a preprocessing
phase. This will be explained in the second subsection. We will then describe our
model of the problem, i.e., we will formulate the overall problem as a 0/1 integer
program.

2

Description of the Problem

In the application we want to solve we are given a list of electronic compo-
nents. For our problem, it is usual to view these components as two-dimensional
rectangles, but there may also be a few differently shaped units or “dummy com-
ponents” to reserve space on certain modules. The most important property of
the electronic circuits – for our purposes – is the area that these components
cover. We abstract from the technical details by saying that a set N of items
(the components) is given where each item i ∈ N has a weight fi ∈ IR+.

The electronic components have to be integrated on printed circuit boards, multi
chip modules or other devices. There may be various types of printed circuit
boards etc. Each of these devices is defined by several technical properties that
we do not intend to describe here. We call these devicesmodules from now on and
denote the set of modules that are available by M . Three properties of modules
are important for us. Every module k ∈ M has a capacity Fk, representing its
“area” or the weight it can hold, a cut capacity Sk, describing the number of wires
that can be connected to this module, and a (generic) cost Kk, representing the
corresponding fabrication cost of that particular module.

The electronic components have certain contact points, called pins, from which
wires can extend to pins of other components. In the logical design phase it
is determined which pins of which components have to be connected by a wire
to ensure certain functional properties. It is customary to call a collection of
pins that have to be connected a net. We simplify the situation by essentially
disregarding the pins (their number will only enter the objective function, see
below). We define a net to be a subset of the set of items and we ignore which
of the pins of the components are to be connected. The list of nets is denoted
by Z := {T1, . . . , Tz}. We set Z := {1, . . . , z} and, for simplicity, we will often
speak of net t ∈ Z instead of net Tt ∈ Z.

There are some nets t, where it is necessary to partition the set of items into two
subsets St and Rt (with St ∪ Rt = Tt, St ∩ Rt = ∅). The items of St are called
drivers. They transmit information over the wire to the items in Rt. Rt consists
of so-called “receivers” and “termination resistors”.

Our task is to assign the items (electronic components) N to the modules (printed
circuit boards, . . .)M in such a way that a certain objective function is minimized
and a number of technical side constraints is satisfied. Our way of approaching
the practical problem reduces the technical side constraints to three essential
requirements. Let us describe these now.

3

Suppose an assignment of items to modules a : N → M is given. For each module
k ∈ M , let B(k) denote the set of items that are assigned to module k. For an
assignment to be feasible, the following conditions must hold:

• Knapsack constraints:
For each module k, the weight of the items that are assigned to that module
must not exceed the capacity Fk of the module, i.e.,

∑
i∈B(k) fi ≤ Fk.

• Cut constraints:
The number of nets t with Tt ∩ B(k) �= ∅ and Tt �⊆ B(k) must not exceed
the cut capacity Sk of module k for all k ∈ M .

• Net constraints:
Some of the nets must satisfy one of the following two rules. These rules
read, for some net t ∈ Z, as follows.

(R1) All items of Tt must be assigned to the same module.

(R2) Either all items of Tt must be assigned to the same module or all items
of St must be assigned to the same module, say k, but none of the items of
Rt may be assigned to k.

Clearly, the knapsack constraints are meant to ensure that the items assigned
to some module fit onto that module. Note, however, that the 2-dimensional
problem of packing components onto devices is approximated in our model by
a 1-dimensional problem. It may, in fact, be possible that the components of a
feasible solution in the latter sense do not fit onto the board when the problem is
considered in its (real) 2-dimensional version. The reason for considering the 1-
dimensional simplification is that, at the time when the present model is is solved
(repeatedly), the exact design of the components is usually not completed. There
exist good estimates for the component areas and there is some flexibility with
respect to giving the components their final shape. Reasonably sized “dummy”
items produce empty spaces on the modules that help to finally place the com-
ponents. Thus, the 1-dimensional simplification is – at this stage of the process
– a reasonably good model of what the designer has in mind.

For each module k, there exists a so-called “connector” which contains a certain
number of pins. These pins can be employed to connect items placed on k to
items on other modules. The number of pins of the connector that can be used
for inter module wiring from k is the cut capacity Sk. Since every net that has
an item on k and at least one other not on k uses exactly one of these pins we
obtain the cut constraint.

4

The reason for introducing the (significantly complicating) net constraints is of
very technical nature; and we refrain from explaining the details here.

Let us now explain the objective function we came up with. The objective func-
tion is of the form

(∗) min
∑
k∈M

Kk · Ik(a) + λ · C(a).

We first describe the second term of the objective function, the so-called external
cost of the assignment a. The external cost C(a) depends only on the number
of nets whose items are assigned to different modules. In order to explain the
function C(a) exactly we must describe some technical issues of the problem in
more detail. Of course, the design of a main-frame computer is not finished after
assigning the items to the modules. Thereafter, the items must be physically
placed onto each module and the nets must be physically routed, i.e., connected
via wires. Routing of a net t whose items are assigned to different modules is done
as follows (see Figure 1). For each module k with B(k) ∩ Tt �= ∅ an additional
pin at the border of the module, a so-called external pin, is introduced (see the
black rectangles in Figure 1). A routing for net t is obtained by connecting the
items of B(k) ∩ Tt within each module with the external pin (see dotted lines in
Figure 1) and by connecting the external pins via a so-called external wire (see
dashed lines in Figure 1).

Figure 1:

The cost of an external wire is approximated in the objective function by the
number of external pins. If p(t) denotes the number of external pins for some
net t (where p(t) := 0, if all items of net t are assigned to the same module),
we define C(a) :=

∑
t∈Z p(t). The factor λ in the second term of the objective

5

�

�

.....................................
ηk1

ck1

ck1 + ck2

ck1 + ck2 + ck3

ηk1 + ηk2 + ηk3ηk1 + ηk2

n(k)

Figure 2: The internal cost function Ik of some module k

function is a penalty parameter that weighs the external cost in relation to the
first term of the objective function, the so-called internal cost.

The internal costs consist of the sum of the internal costs for each module. Con-
sider some module k ∈ M . The routing of the nets inside module k is performed
on so-called layers. On each layer only a certain number of nets can be con-
nected. The number of layers necessary to do the complete routing strongly
depends on the technology used to produce the printed circuit board or the multi
chip module. In our case it is estimated as follows. For each net t ∈ Z, we set

wk(t) :=

⎧⎪⎨
⎪⎩

|Tt| − 1, if Tt ⊆ B(k),
|Tt ∩ B(k)|, if Tt ∩B(k) �= ∅, Tt �⊆ B(k),
0, else,

and we define an auxiliary number n(k) by n(k) :=
∑

t∈Z wk(t). The larger the
number n(k) is, the more layers are necessary. The production cost of one module
mainly depends on the number of layers that are necessary. Each installation of
a layer costs a certain amount, but the total cost of a module grows superlinearly
with the number of layers, since production faults in a later stage usually destroy
successful work on the initial layers. This cost function can be expressed by
a staircase function (denoted in the objective function by Ik(a)). Let us now
explain this function in more detail (see also Figure 2). For each layer l, we

6

denote by ckl the installation cost for layer l and by ηkl the “capacity” of layer l.
Let l∗ denote the smallest integer such that

∑l∗
l=1 η

k
l ≥ n(k), i.e., l∗ is the smallest

number such that the system of nets that connects the components and external
pins on module k can (probably) be routed when module k is designed as a device
with l∗ layers. Then, Ik(a) is set to

∑l∗
l=1 c

k
l .

Summing up our previous discussions we can formulate the module design prob-
lem for a main-frame computer that we treat here as follows.

(Module Design Problem)

Given data:

• A set N of items. Each item i ∈ N has some weight fi.

• A setM of modules. With each module k ∈ M a capacity Fk, a cut capacity
Sk and a cost factor Kk are associated.

• A list of nets Z = {T1, . . . , Tz} with Tt ⊆ N for t ∈ Z = {1, . . . , z}.

Problem:

Find an assignment of the items to the modules such that the knap-
sack constraints, the cut constraints and the net constraints are sat-
isfied and such that the objective function (∗) is minimized.

Our problem analysis has revealed that some of the technical requirements can
be taken care of easily. We do this in a preprocessing stage and describe here two
such cases concerning the net constraints.

Preprocessing

Suppose t is a net that must satisfy net constraint (R1). In this case we simply
define a new item i′ with weight fi′ :=

∑
i∈Tt

fi. The new set of items is N ′ :=
(N \ Tt) ∪ {i′}. Thus, the net constraint (R1) is automatically satisfied if we
assign the items of N ′ to the modules of M by taking all other constraints into
account.

In the same manner we can simplify net constraint (R2). Suppose t is a net
that must meet (R2). Let St be the set of senders and Rt the set of receivers or

7

termination resistors, respectively. Again, we introduce a new item i′ with weight
fi′ :=

∑
i∈St

fi and set N ′ := (N \ St) ∪ {i′}. After doing this iteratively we can
assume that each net t which must satisfy net constraint (R2) has exactly one
sender, i.e., |St| = 1.

These changes, of course, imply an obvious redefinition of the nets and an ad-
justment of the objective function.

The ��� Program

In this subsection we provide a 0/1 programming formulation of the module
design problem. For that purpose we introduce the following four sets of 0/1
variables.

For all items i ∈ N and all modules k ∈ M , we introduce a variable xik with the
interpretation

xik :=

{
1, if item i is assigned to module k,
0, else.

For every net t ∈ Z and every module k ∈ M , we introduce three variables ytk, y
1
tk

and y2tk with the following interpretation.

ytk :=

⎧⎪⎨
⎪⎩

1, if some items of Tt are assigned to module k
but not all of them,

0, else.

y1tk :=

{
1, if at least one item of Tt is not assigned to module k,
0, else.

y2tk :=

{
1, if at least one item of Tt is assigned to module k,
0, else.

Note that there are dependencies between the ytk-, y
1
tk- and y2tk-variables. How-

ever, for ease of exposition of the constraints, it is convenient to introduce all
three sets of variables. For every module k, there is an upper bound lk, say, of
layers, available. This integer depends on the production technology used. In
order to model the staircase function Ik, we introduce a variable vkl for each layer
l = 1, . . . , lk and each module k ∈ M .

8

These variables have the following meaning:

vkl :=

{
1, if n(k) ≥ ∑l

r=1 η
k
r ,

0, else.

With these four sets of variables we are able to model the side constraints of the
module design problem, i.e., the knapsack constraints, the cut constraints and
the net constraints.

(2.1)
∑
k∈M

xik = 1, for all i ∈ N,

i.e., each item is assigned to exactly one module.

(2.2)
∑
i∈N

fixik ≤ Fk, for all k ∈ M,

i.e., the knapsack constraints must be satisfied.

(2.3)
∑
t∈Z

ytk ≤ Sk, for all k ∈ M,

i.e., the cut constraints must be met.

(2.4) xsk + xik ≤ 2− y1tk, for all nets t ∈ Z that must satisfy
net constraint (R2) and for all i ∈ Rt

(where {s} = St).

These inequalities are derived from the following reasoning. If y1
tk = 0, that is all

items of net t are assigned to module k, inequality (2.4) is obviously valid. On the
other hand, if y1tk = 1, which means that at least one item of net t is not assigned
to module k , the sender s and a receiver (resp. termination resistor) i ∈ Rt

cannot both be assigned to module k. Thus, (2.4) ensures that the net costraints
(R2) are met. Note that net constraints (R1) are handled in the preprocessing
phase.

The following constraints (2.5) to (2.9) are necessary to logically connect the
involved variables.

(2.5)
∑
i∈Tt

xik + |Tt|y1tk ≥ |Tt|, for all k ∈ M, t ∈ Z,

i.e., if
∑

i∈Tt
xik < |Tt|, which means that not all items of net Tt are assigned to

module k, y1
tk must be one.

(2.6)
∑
i∈Tt

xik + y1tk ≤ |Tt|, for all k ∈ M, t ∈ Z,

9

i.e., if
∑

i∈Tt
xik = |Tt|, which means that all items of net Tt are assigned to

module k, y1
tk must be zero.

(2.7)
∑
i∈Tt

xik − |Tt|y2tk ≤ 0, for all k ∈ M, t ∈ Z,

i.e., if
∑

i∈Tt
xik ≥ 1, which says that at least one item of net Tt is assigned to

module k, y2
tk must be one.

(2.8)
∑
i∈Tt

xik − y2tk ≥ 0, for all k ∈ M, t ∈ Z,

i.e., if
∑

i∈Tt
xik = 0, that is, no item of net Tt is assigned to module k, y2

tk must
be zero.

(2.9) y1tk + y2tk = 1 + ytk, for all k ∈ M, t ∈ Z,

i.e., if ytk = 0 either y1tk or y2tk must be zero. On the other hand, if ytk = 1 both
y1tk and y2tk must be one. From equation (2.9) we conclude that, for each pair tk,
one of the variables y1tk, y

2
tk or ytk is redundant. However, we have introduced all

three types of variables here to simplify the explanation of the model.

In order to obtain a correct formulation of the objective function, the following
constraints are introduced.

(2.10)
∑
t∈Z

∑
i∈Tt

(xik + ytk − y2tk)−
lk∑
l=1

ηkl v
k
l ≤ 0,

vk1 ≥ vk2 ≥ . . . ≥ vklk , for all k ∈ M .

It is easy to see that wk(t) =
∑

i∈Tt
(xik − ytk − y2tk). This implies that n(k) =∑

t∈Z
∑

i∈Tt
(xik − ytk − y2tk). Hence, this set of inequalities models that vk

l = 1
for all l = 1, . . . , l∗, where l∗ is the smallest integer such that

∑l∗
l=1 η

k
l ≥ n(k).

All other variables vkl , l ∈ {l∗ + 1, . . . , lk}, are equal to zero, since the (positive)
internal costs are minimized in the objective function.

Finally, we require that every variable is either zero or one.

xik ∈ {0, 1}, for all i ∈ N, k ∈ M,
(2.11) ytk, y

1
tk, y

2
tk ∈ {0, 1}, for all t ∈ Z, k ∈ M,
vkl ∈ {0, 1}, for all l = 1, . . . , lk, k ∈ M.

These eleven sets of inequalities model all technical side constraints considered
in our version of the real task. The objective function expressed in terms of the
0/1 variables is of the form

10

(2.12) min
∑
k∈M

Kk

lk∑
l=1

ckl v
k
l + λ

∑
t∈Z

∑
k∈M

ytk.

This objective function corresponds to the one depicted in (∗). This follows from
the fact that constraints (2.10) ensure that, for every k ∈ M , the expression∑lk

l=1 c
k
l v

k
l models the staircase function Ik. Moreover, for each net t ∈ Z, the

term
∑

k∈M ytk corresponds to the number of external pins p(t).

� Relaxations for the General Model

The Multiple Knapsack Problem

In this subsection we present a first relaxation of the general model. Here, we
neglect the nets completely and concentrate on the packing aspect of the prob-
lem. More precisely, let us introduce the variables xik, i ∈ N, k ∈ M, with the
interpretation

xik =
{
1, if item i is assigned to module k,
0, otherwise.

Using these variables we can model the requirement that every item is assigned
to some module such that the capacities of the modules are not exceeded. This
can be expressed in the following inequalities:

(3.1)
∑
k∈M

xik = 1, for all i ∈ N.

(3.2)
∑
i∈N

fixik ≤ Fk, for all k ∈ M,

saying that the sum of weights corresponding to the items assigned to module k
must not exceed the capacity of module k.

(3.3) xik ∈ {0, 1}, for all i ∈ N, k ∈ M.

11

The objective function estimates the cost for the number of wires running within
some module. More precisely, we approximate the staircase function Ik, intro-
duced in section 2, via

Dk :=
Kk

lk
(

lk∑
r=1

ckr
ηkr

).

Then, the objective function can be stated as follows:

(3.4) min
∑
k∈M

Dk

z∑
t=1

(
∑
i∈Tt

xik).

This is only a rough estimate, since wires running between different modules are
completely neglected. Also, some net t for which all items of Tt are assigned to
the same module, k say, contributes to the overall objective value the amount
Dk|Tt|, rather than the amount Dk(|Tt| − 1).

Let us now perform a transformation that shows that the model defined via
(3.1), . . . , (3.4) is equivalent to a well known combinatorial problem, namely the
multiple knapsack problem. We replace conditions (3.1) by

(3.1′)
∑
k∈M

xik ≤ 1 for all i ∈ N,

by slightly modifying the objective function (3.4) using a transformation that was
employed in [MT91]. More precisely, with every constraint (3.1) we associate a
slack variable γi, i ∈ N , and introduce a number Q :=

∑
k∈M Dk|N ||M ||Z|. Now,

consider the optimization problem

min
∑
k∈M

Dk

∑
t∈Z

(
∑
i∈Tt

xik) +
∑
i∈N

Qγi

s.t.
∑
k∈M

xik + γi = 1, i ∈ N

and x satisfies (3.2), (3.3)

γi ∈ {0, 1}, i ∈ N.

Clearly, in every optimal solution of this problem, all variables γi are equal to
zero. Thus, this optimization problem is equivalent to the one defined by (3.1),
(3.2), (3.3), (3.4). If we now eliminate the variables γi again by substituting γi =
1−∑

k∈M xik, we obtain, up to a constant term |N |Q, an equivalent formulation:

12

min
∑
k∈M

∑
i∈N

cikxik

s.t
∑
k∈M

xik ≤ 1, i ∈ N

and x satisfies (3.2), (3.3),

where cik := Dk|{t ∈ Z | i ∈ Tt}| −Q.

The latter problem is the multiple knapsack problem and hence, this multiple
knapsack problem is a (rather coarse) combinatorial relaxation of our module
design problem.

The Graph Clustering Problem

To estimate the number of nets running between different modules we extend the
previous model by introducing an additional class of Boolean variables. We define
a graph G = (V,E), where V = N is the set of nodes (representing the items)
and the edge set E is the set of pairs ij such that items i and j are simultaneously
contained in at least one net Tt. For every edge ij ∈ E we introduce a 0/1-variable
ηij with the interpretation:

ηij =

⎧⎨
⎩
1, if items i and j are assigned

to different modules,
0, otherwise,

Our second relaxation has the following form.

The set of constraints (3.5) – (3.7) models – as before – that every item is assigned
to some module and that the capacities of the modules are not exceeded.

(3.5)
∑
k∈M

xik = 1, for all i ∈ N,

(3.6)
∑
i∈N

fixik ≤ Fk, for all k ∈ M,

13

(3.7) xik ∈ {0, 1}, for all i ∈ N, k ∈ M.

In addition to these constraints we must introduce side constraints that reflect
the linking between the x- and η-variables. This can be done as follows:

(3.8a) xik + xjl − ηij ≤ 1, for all ij ∈ E, k, l ∈ M, k �= l,

(3.8b) xik + xjk + ηij ≤ 2, for all ij ∈ E, k ∈ M.

Finally, we must require that the η-variables are either zero or one.

(3.9) ηij ∈ {0, 1}, for all ij ∈ E.

The constraints of type (3.8a) ensure that, whenever some item i is assigned to
some module k and some item j is assigned to some module l different from k,
the variable ηij must be set to one. Similarly, if both of the items i and j are
assigned to the same module, the corresponding variable ηij must be equal to
zero. This is the interpretation of the constraints (3.8b).

For the exposition of the objective function, let λ denote the cost for a wire that
runs between different modules (cf. section 2). Moreover, for every ij ∈ E let us
introduce some weighting factor τij . This parameter, to be set by the designer,
should reflect the number of times items i and j appear in some net and the
cardinalities of the nets involved. By using this parameter τij , we try to avoid
that nets of high cardinality are completely overestimated. With the coefficients
Dk as introduced in the previous model, the objective function can be formulated
as follows:

(3.10) min
∑
k∈M

Dk

∑
t∈Z

(
∑
i∈Tt

xik) + λ
∑
ij∈E

τijηij .

Let us briefly discuss this model.

First of all, the cut constraints are still completely neglected. Moreover, the
objective function provides only a very rough estimate of the original one, yet
obviously improves the one of the previous model.

14

In graphtheoretic terms, every feasible solution of this model can be interpreted
as follows. For every k ∈ M , we set Pk := {i ∈ V | xik = 1}. Let M ′ :=
{k1, . . . , km′} ⊆ M denote the set of indices such that Pk �= ∅, i.e., the set
of modules to which at least one item is assigned. Then, (Pk1 , . . . , Pkm′) is
a partition of the node set V into no more than m clusters such that certain
knapsack constraints are satisfied. The set E ′ := {ij ∈ E | ηij = 1} corresponds
to the set of edges ij ∈ E such that items i and j are contained in different
elements of the partition (Pk1 , . . . , Pkm′). This problem is called graph clustering
problem and can be viewed as a generalization of the well known multicut problem
in graphs.

Finally, we employ the transformation described in the previous subsection to
this model, yielding the following optimization problem:

min
∑
k∈M

∑
i∈N

cikxik + λ
∑
ij∈E

τijηij

s.t.
∑
k∈M

xik ≤ 1, for all i ∈ N,

and x, η satisfies (3.6), (3.7), (3.8a), (3.8b), (3.9).

The Hypergraph Clustering Problem

The first two relaxations neglect the cut constraints. The third relaxation, pre-
sented now, reduces this drawback, although it does not completely take all the
constraints into account.

We use again the variables xik, i ∈ N, k ∈ M, with the interpretation outlined
above. In addition, with every net t ∈ Z and module k ∈ M we associate a
Boolean variable ytk with the interpretation

ytk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1, if some item of Tt is assigned to module k,

but not all of the items belonging to Tt

are assigned to k,
0, otherwise.

Using these two classes of variables the constraints of our third model can be
stated as follows:

15

(3.11)
∑
k∈M

xik = 1, for all i ∈ N,

(3.12)
∑
i∈N

fixik ≤ Fk, for all k ∈ M,

(3.13) xik ∈ {0, 1}, for all i ∈ N, k ∈ M,

(3.14a) xik + xjl − ytk ≤ 1, for all t ∈ Z, i, j ∈ Tt, k, l ∈ M, k �= l,

(3.14b)
∑
i∈Tt

xik + ytk ≤ |Tt|, for all t ∈ Z, k ∈ M,

(3.14c) − ∑
i∈Tt

xik + ytk ≤ 0, for all t ∈ Z, k ∈ M,

(3.15)
∑
t∈Z

ytk ≤ Sk, for all k ∈ M,

(3.16) ytk ∈ {0, 1}, for all t ∈ Z, k ∈ M.

Constraints (3.14a), (3.14b) and (3.14c) are the linking constraints between the
x- and y-variables. In particular, the constraints (3.14b) guarantee that variable
ytk is equal to 0, if all the items belonging to Tt are assigned to module k.
Analogously, if none of the items of Tt is assigned to module k, the corresponding
ytk-variable must be set to zero. This is expressed in the constraints (3.14c).

Conversely, conditions (3.14a) make sure that the value of variable ytk equals one,
if a proper subset of Tt is assigned to module k.

The inequalities (3.15) model the cut capacity of the modules, i.e., the require-
ment that the number of wires leaving module k must not exceed the value Sk.

16

Our objective function,

(3.17) min
∑
k∈M

Dk

∑
t∈Z

(
∑
i∈Tt

xik) + λ
∑
t∈Z

∑
k∈M

ytk,

reflects an estimate for the number of pins within the modules. This is expressed
by the first term of the sum. For every t ∈ Z, the value

∑
k∈M ytk amounts to

the number of external pins of net t. Hence, the second term of the objective
function approximates the external cost (cf. the explanation of the objective
function, section 2).

With this model we associate the hypergraph H = (N,Z), where every item in
N is represented by a node in H. Moreover, every net in Z corresponds to a
hyperedge in H and vice versa. Using this notation, every feasible solution of the
above model can be interpreted as follows: For every k ∈ M , we set Pk := {i ∈
V | xik = 1} and we define Ek := {t ∈ Z | ytk = 1}. Let M ′ := {k1, . . . , km′} ⊆ M
denote the set of indices such that Pk �= ∅. Then, (Pk1 , . . . , Pkm′) is a partition
of the node set V into no more than m clusters such that certain knapsack
constraints are satisfied. The set Ek consists of all hyperedges t ∈ Z such that
a proper subset of the nodes of t belongs to Pk. This graphtheoretic formulation
of our model will be called hypergraph clustering problem.

Finally, we apply the transformation mentioned in the previous subsections to
this model. Then, the model translates into the following optimization problem:

min
m∑

k=1

∑
i∈N

cikxik + λ
∑
k∈M

∑
t∈Z

ytk

s.t.
∑
k∈M

xik ≤ 1, i ∈ N

and x, y satisfies (3.12), (3.13),

(3.14a), (3.14b), (3.14c), (3.15), (3.16).

17

� Mathematical Relations between the Relax�

ations

With each of the three models introduced in section 3 we will associate a poly-
hedron whose vertices are in one to one correspondence to the feasible solutions
of the model. Then, solving one of the models is equivalent to optimizing a
linear objective function over the corresponding polyhedron. In order to apply
linear programming techniques, we need a description of this polytope by means
of equations and inequalities. Thus, a first step in solving these problems via a
polyhedral approach consists in a thorough investigation of the underlying poly-
hedra. However, our true objective is to find good solutions for the general model
introduced in section 2. This model gave rise to the three relaxations presented
in section 3. If we now start investigating the polyhedra associated with the
three relaxations, these studies contribute to a better understanding of the gen-
eral model if and only if properties of one of these polytopes help to understand
the general model or another relaxation. In other words, if, for example, valid or
facet defining inequalities for the polytope associated with the first relaxation are
inherited by the second polytope or at least provide ideas how to find inequal-
ities for the polytope associated with the second relaxation, then this justifies
the study of the polytope associated with the first relaxation. Clearly, the same
relation should hold for the polytope associated with the second and third re-
laxation. This issue will be addressed in the remainder of this section. Before
investigating these polytopes in more detail, let us introduce some notation that
will be used troughout this section.

We denote by ei ∈ IRn the unit vector with value one in the i-th component and
zero otherwise. Let be given a subset S of some vector space. The dimension
of S is defined as the maximum number of affinely independent elements of S
minus 1. A polyhedron is the intersection of a finite number of half spaces. An
inequality aTx ≤ α is valid with respect to a polyhedron P if P ⊆ {x | aTx ≤ α}.
The set {x | aTx = α} is called the face of P defined by aTx ≤ α. A vertex
is a face of dimension 0. A bounded polyhedron is called polytope. Note that a
polytope is uniquely described as the convex hull of its vertices. Let be given a
polyhedron and an inequality aTx ≤ α that is valid for P . If the face defined by
aTx ≤ α is not the empty set and if the dimension of this face is one less than
the dimension of P , it is called a facet and aTx ≤ α is called facet-defining. Let
aTx ≤ α be a valid inequality for a polytope P , and define EQ(P, aTx ≤ α) :=
{x′ ∈ P | aTx′ = α}. In order to simplify notation, we frequently abbreviate
EQ(P, aTx ≤ α) by EQ(aTx ≤ α), if there is no confusion possible. For a subset
N ′ ⊆ {1, . . . , n} and a vector (f1, . . . , fn)

T , we introduce the symbol f(N ′) to
denote the value

∑
i∈N ′ fi. Finally, for the exposition of the proofs that will be

18

given in this section we need some graphtheoretic concepts. Let G = (V,E)
denote a graph with node set V and edge set E. A path in G from u ∈ V to v ∈ V
is an edge set {e1, . . . , er} such that ei = {ui, ui+1} i = 1, . . . r−1, u1 = u, ur = v
and u �= ui, v �= ui �= uj �= u, uj �= v for all i, j ∈ {2, . . . , r − 1}, i �= j. A path is
called a cycle if u = v. A graph is connected, if for every pair of disjoint nodes
u and v there exists a path from u to v in G. Let be given a graph G = (V,E)
and a set W ⊆ V . By E(W) we denote the set of all edges with both endnodes
in W . For F ⊆ E the symbol V (F) denotes the set of all nodes in V which
are incident to at least one edge in F . For hypergraphs H = (V,E) , the terms
”connected, path, hypercycle” and the symbols V (F) (F ⊆ E), E(W) (W ⊆ V)
can be defined accordingly. In particular, we say that a hypergraph is connected
if for every pair of nodes there exists a sequence of nodes u1, . . . , ur such that
ui is incident to ui+1 (i = 1, . . . , r − 1) and u1 = u and ur = v. A hypercycle
is a set of hyperedges {e1, . . . , er} with the following property: there exist nodes
u1, . . . , ur such that {ui, ui+1} ⊆ ei i = 1, . . . r − 1, u1 = ur and u1 �= ui �= uj for
all i, j ∈ {2, . . . , r − 1}, i �= j.

Let be given a subset N of items and a set M of modules. Let f = (f1, . . . , fn)
denote the list of weights for the items and assume, F = (F1, . . . , Fk) is the list
of module capacities. Moreover, let us denote the index set for the nets by Z
and define S = (S1, . . . , Sk) as the cut capacities for the modules. The graph
associated with the graph clustering problem will be denoted by G = (V,E).
We introduce the following three polytopes associated with the three relaxations
discussed in section 3.

MK(N ×M, f, F) := conv{x ∈ IR|N×M | s.t.∑
i∈N fixik ≤ Fk, for all k ∈ M,∑
k∈M xik ≤ 1, for all i ∈ N,

xik ∈ {0, 1}, for all i ∈ N, k ∈ M}.

C(N ×M, f, F, E) := conv{(xT , ηT)T , x ∈ IR|N×M |, η ∈ IRE s.t.∑
i∈N fixik ≤ Fk, for all k ∈ M,∑
k∈M xik ≤ 1, for all i ∈ N,

xik + xjl − ηij ≤ 1, for all ij ∈ E, k, l ∈ M, k �= l,
xik + xjk + ηij ≤ 2, for all ij ∈ E, k ∈ M,
xik ∈ {0, 1}, for all i ∈ N, k ∈ M,
ηij ∈ {0, 1}, for all ij ∈ E}.

19

HC(N ×M, f, F, Z, S) := conv{(xT , yT)T , x ∈ IR|N×M |, y ∈ IR|Z×M | s.t.∑
i∈N fixik ≤ Fk, for all k ∈ M,∑
k∈M xik ≤ 1, for all i ∈ N,

xik + xjl − ytk ≤ 1, for all t ∈ Z, i, j ∈ Tt, i �= j,
k, l ∈ M, k �= l,∑

i∈Tt
xik + ytk ≤ |Tt| for all t ∈ Z, k ∈ M,

−∑
i∈Tt

xik + ytk ≤ 0 for all t ∈ Z, k ∈ M,∑
t∈Z ytk ≤ Sk, for all k ∈ M,

xik ∈ {0, 1}, for all i ∈ N, k ∈ M,
ytk ∈ {0, 1}, for all t ∈ Z, k ∈ M}.

MK(N×M, f, F) is the polytope associated with the multiple knapsack problem.
The polytopes C(N ×M, f, F, E) and HC(N ×M, f, F, Z, S) correspond to the
graph - and hypergraph clustering models, respectively, that were introduced in
section 3.

For our line of investigation, the polytope parameter that has to be determined
first is its dimension.

Here, it is easy to see that the dimension of MK(N ×M, f, F) equals |N ||M |, if
and only if fi ≤ Fk for all i ∈ N, k ∈ M , since the |N ||M |+1 affinely independent
vectors 0 and eik, i ∈ N, k ∈ M are elements of the polytope if and only if fi ≤ Fk

for all i ∈ N, k ∈ M . Similarly, C(N ×M, f, F, E) has dimension |N ||M |+ |E|,
if and only if fi ≤ Fk for all i ∈ N, k ∈ M . Finally, one can convince oneself that
the dimension of the polytope HC(N ×M, f, F, Z, S) equals |N ||M |+ |Z||M | if
and only if fi ≤ Fk for all i ∈ N, k ∈ M .

In the following we assume w.l.o.g. that fi ≤ Fk holds for all i ∈ N, k ∈ M .

The subsequent theorem states that every valid or facet-defining inequality for
the polytope MK(N ×M, f, F) is valid or facet-defining for C(N ×M, f, F, E).

Theorem 4.1 Let aTx ≤ β be a valid inequality for the multiple knapsack poly-
tope MK(N ×M, f, F) and define the vector a′ via a′ik = aik for all i ∈ N, k ∈ M
and a′ij = 0 for all ij ∈ E. Then, a′T(xT , ηT)T ≤ β is valid for the polytope
C(N ×M, f, F, E). In case, aTx ≤ β defines a facet of MK(N ×M, f, F) and is
not a multiple of the inequalities

∑
k∈M xik ≤ 1, i ∈ N or xik ≤ 1, i ∈ N, k ∈ M ,

the inequality a′T (xT , ηT)T ≤ β defines a facet of C(N ×M, f, F, E).

20

Proof. By definition, every inequality valid for MK(N ×M, f, F) is valid for
C(N ×M, f, F, E) as well.

Now suppose, EQ(C(N ×M, f, F, E), a′T (xT , ηT)T ≤ β) ⊆ EQ(C(N ×M, f, F,
E), âTx+ b̂T η ≤ β̂) such that âTx+ b̂Tη ≤ β̂ defines a facet of C(N×M, f, F, E).

Let be given rs ∈ E and suppose, x0 ∈ EQ(MK(N × M, f, F), aTx ≤ β) is a
vector such that x0

rk = 0 for all k ∈ M. The vector x0 exists, since otherwise
EQ(MK(N × M, f, F), aTx ≤ β) ⊆ EQ(MK(N × M, f, F),

∑
k∈M xrk ≤ 1),

which contradicts the assumption.

We define η(rs) via :

η(rs)ij =

⎧⎨
⎩
0, if ij = rs or ij ∈ E and

i and j are assigned to the same module,
1, otherwise.

Then, the vectors (x0, η(rs)) and (x0, η(rs)+ ers) belong to the face EQ(C (N ×
M, f, F, E), âTx+ b̂Tη ≤ β̂). Thus, they also satisfy the equation âTx+ b̂T η = β̂.
This yields b̂rs = 0 for all rs ∈ E.

Finally, let x ∈ IR|N×M | be an element of the face EQ(MK(N ×M, f, F), aTx ≤
β). We define η′ ∈ IRE via:

η′ij =

⎧⎨
⎩
0, if ij ∈ E and

i and j are assigned to the same module,
1, otherwise.

Then, the vector (x, η′) is valid and satisfies the equations a′Tx = aTx = β and
thus âTx+b̂Tη′ = β̂. Hence, every vector x ∈ EQ(MK(N×M, f, F), a′Tx+b′Tη ≤
β) yields a vector (x, η′) ∈ EQ(C(N ×M, f, F, E), âTx+ b̂Tη ≤ β̂). Since b̂ij = 0
for all if ∈ E and since aTx ≤ β defines a facet, we conclude that âik = a′ik = aik
for all i ∈ N, k ∈ M . This proves the statement.

Example: Let S ⊆ N be a subset of items such that f(S) > Fk for some k ∈ M
and f(S \ {s}) ≤ Fk for every s ∈ S. The inequality

∑
i∈S

xik ≤ |S| − 1

is valid for the polytope MK(N × M, f, F) and defines a facet for MK(S ×
M, f, F). A subset S with the above properties is called a minimal cover with
respect to module k. The corresponding inequality is called minimal cover in-
equality and was discussed in [B75], [HJP75], [W75]. By applying the above

21

theorem we can conclude that the minimal cover inequality defines a facet of the
polytope C(S ×M, f, F, E).

For other classes of inequalities that are valid or facet-defining for MK(N ×
M, f, F) we refer the reader to [P80], [GR90a], [GR90b] and [FMW92].

As mentioned before, the above theorem serves as a theoretical justification for the
study of the polytope MK(N ×M, f, F) before investigating the more complex
polytope C(N ×M, f, F, E), since inequalities for the first one are inherited by
the second one.

Unfortunately, the same relation does not hold between the polytope MK(N ×
M, f, F) and HC(N×M, f, F, Z, S). More precisely, given an inequality aTx ≤ α
that defines a facet for MK(N × M, f, F), then aTx ≤ α does not necessarily
define a facet for the polytope HC(N ×M, f, F, Z, S). An example of this kind
is shown below.

Example: Let be given an instance of the general model with M = {1, 2},
N = {1, 2, 3, 4, 5, 6} , Z = {T1} with T1 = {1, 2, 3, 4, 5, 6}. We set F1 = F2 = 12
and f1 = 2, f2 = 3, f3 = 4, f4 = 4, f5 = 5, f6 = 7. Under these assumptions, the
set S = {1, 2, 3, 4} is a minimal cover. The set T = {5, 6} satisfies f(T) ≤ F2 and
for every i ∈ S, the set T ∪{i} is a minimal cover. Finally, the set T \{5}∪{1, 2}
satisfies f(T \ {5} ∪ {1, 2}) = 12 ≤ F2. The inequality

∑
i∈S

xi1 +
∑

j∈S∪T
xj2 ≤ |S|+ |T | − 1

is called extendend cover inequality. It is shown in [FMW92] that it defines a
facet for the polytope MK(S ×M ∪ T × {2}, f, F).

However, it can easily be checked that every vector (x, y) ∈ HC(N×M, f, F, Z, S)
such that

∑
i∈S xi1+

∑
j∈S∪T xj2 = |S|+ |T |−1 holds, also satisfies y1,1 = y1,2 = 1.

This proves that this particular extended cover inequality does not define a facet
for the polytope HC(S ×M ∪ T × {2}, f, F, Z, S).

This example shows that facets for the polytope C(N ×M, f, F, E) are not nec-
essarily inherited by the polytope HC(N × M, f, F, Z, S). Yet, the following
example demonstrates that the “logic” that characterizes a particular class of
facet-defining inequalities for C(N ×M, f, F, E) can be used to obtain facets for
HC(N ×M, f, F, Z, S).

Theorem 4.2 Let be given an instance of the general model, i.e., a set N of
items, a set M of modules, a net list Z, item weights f , module capacities F and

22

a list of cut capacities S. With this instance we associate the graph G = (V,E)
as described before. Suppose |M | ≥ 2 and Fk = Fl for all k, l ∈ M, k �= l. Let W
denote a cycle in G = (V,E) and assume, V (W) defines a minimal cover with
respect to some k ∈ M (note that the capacities are all equal, i.e., V (W) is a
minimal cover with respect to every module). Then, the inequality

2
∑
k∈M

∑
i∈V (W)

xik −
∑
ij∈W

yij ≤ 2(|V (W)| − 1)

is called cycle inequality. It defines a facet for the polytope C(V (W)×M, f, F,W).

A paper containing the proof of this statement is in preparation.

Now, let us use the “logic” that characterizes the cycle inequality and create a
facet-defining inequality for the appropriate hypergraph clustering polytope.

Theorem 4.3 Again, let be given an instance of the general model, i.e., a set N
of items, a set M of modules, a net list Z, item weights f , module capacities F
and a list of cut capacities S. Suppose |M | ≥ 2 and Fk = Fl for all k, l ∈ M, k �= l.
With this instance we associate the hypergraph H = (N,Z), where every item in
N is represented by a node in H and a net t ∈ Z corresponds to a hyperedge
in H = (N,Z). Let W denote a hypercycle in H = (N,Z) which satisfies the
additional requirements: no hyperedge of W is a subset of another; every node of
N(W) is contained in exactly two hyperedges and every hyperedge has a nonempty
intersection with exactly two other hyperedges. Moreover, assume that N(W)
defines a minimal cover with respect to every k ∈ M . Then, for every k ∈ M the
inequality

2
∑
l∈M

∑
i∈N(W)

xil −
∑

l∈M\{k}

∑
t∈W

ytl ≤ 2(|N(W)| − 1)

defines a facet for the polytope HC(N(W)×M, f, F,W, S).

A proof of theorem 4.3 will also appear in a subsequent paper.

This example shows, indeed, that there is a strong relation between facet defining
inequalties for these two polytopes.

As a final statement, let us remark that it is also true that valid inequalities for
C(N ×M, f, F, E) translate into valid inequalities for HC(N ×M, f, F, Z, S) in
the following sense.

23

Theorem 4.4 Let aTx+bTη ≤ α be a valid inequality for the polytope C(N×M,
f, F, E) such that aik ≥ 0 for all i ∈ N, k ∈ M and bij ≤ 0 for all ij ∈ E.

We define coefficients b̂tk :=

∑
i,j∈Tt,i�=j

bij

2
for t ∈ Z and k ∈ M .

Then, the inequality aTx+b̂Ty ≤ α is valid for the polytopeHC(N×M, f, F, Z, S).

Proof.

For every ij ∈ E we define Zij = {t ∈ Z | {i, j} ⊆ Tt}, i.e. Zij is the set of all
nets Tt such that items i and j are simultaneously contained in Tt.

Let (x, y) be any element of HC(N ×M, f, F, Z, S). With the vector x ∈ IR|N ||M |

we associate a feasible solution (x, η) of the polytope C(N×M, f, F, E) as follows:

For every ij ∈ E we set

ηij =

⎧⎨
⎩
1, if there exist k, l ∈ M, k �= l such that

xik = 1 and xjl = 1,
0, otherwise.

Clearly, (x, η) ∈ C(N ×M, f, F, E), which implies that aTx+ bTη ≤ α holds.

Moreover, let be given ij ∈ E with ηij = 1. Then, we can conclude that for
every t ∈ Zij there exist k, l ∈ M, k �= l such that ytk = ytl = 1. Set Y := {t ∈
Z | there exist k, l ∈ M, k �= l and i, j ∈ Tt, i �= j such that xik = xjl = 1} and
Y 2 := {ij ∈ E | there exist k, l ∈ M, k �= l such that xik = xjl = 1}.

Taking all together, we obtain

aTx+ b̂Ty =

aTx+
∑
t∈Z

∑
k∈M

b̂tkytk =

aTx+
∑
t∈Z

∑
k∈M

∑
i,j∈Tt,i �=j bij

2
ytk ≤

aTx+
∑
t∈Y

∑
i,j∈Tt,i �=j

bij ≤

aTx+
∑

ij∈Y 2

bij =

aTx+
∑
ij∈E

bijηij = aTx+ bT η.

24

This implies that the inequality aTx+ b̂Ty ≤ α is valid for the polytope HC(N ×
M, f, F, Z, S), which completes the proof.

These theorems support our opinion that it is a reasonable idea to study the
polytope C(N × M, f, F, E) before investigating HC(N × M, f, F, Z, S), since
inequalities for HC(N × M, f, F, Z, S) are much more complex than the corre-
sponding ones for C(N ×M, f, F, E). Second, there is still a close relationship
beween the two polytopes (see the example above), and experiences made with
C(N ×M, f, F, E) may be very important on the way towards a solution of the
real instances associated with the polytope HC(N ×M, f, F, Z, S).

Finally, we mention a few relationships between the model associated with the
polytope HC(N ×M, f, F, Z, S) and the general model introduced in section 2.

The hypergraph clustering model considers the exact formulation of the capacity
constraints concerning the items as well as the modules. Thus, by applying the
preprocessing phase of section 2 the most important side constraints of the gen-
eral model are taken into account. The only difference between the two models
is that the hypergraph clustering relaxation neglects the net constraints, and it
uses a simplified objective function which provides just a heuristic estimate of
what should really be minimized. However, if one is able to handle the polytope
HC(N × M, f, F, Z, S) from a theoretical as well as from a practical point of
view, one could start with some objective function and optimize over the poly-
tope HC(N ×M, f, F, Z, S). If the solution is feasible for the general model, we
stop. Otherwise, we modify the estimate of the objective function in a Lagrangian
fashion and repeat this process until we terminate with a globally feasible solu-
tion. Surely, the solution provided that way is not necessarily optimal for the
original problem. However, the objective function is somehow related to the orig-
inal one. Thus, an optimal solution to the hypergraph clustering model that is
still feasible for the original one should be not too bad for practical purposes.

Our mathematical model of the module design problem for main frame computers
introduced in section 2, although already a simplification of the real task, seems
to be way beyond our present algorithmic and computational capabilities. The
parameters of the practical instances of our application are in the following ranges:

number of items: [250, 2000],

number of modules: [4, 30],

number of nets: [5000, 100000].

Taking largest sizes, this leads to an integer programming formulation for the

25

Module Design Problem involving more than 12.000.000 variables. In order to
generate primal and dual information, in particular, reasonable solutions, we de-
rived the three (somewhat simpler) combinatorial relaxations explained in Section
3 and showed that they are intimitely related to the original problem in a precise
polyhedral sense. To pave the way for the solution of the real problem we are
presently investigating the three relaxations from both the theoretical and algo-
rithmic point of view. We will report about our results in a series of forthcoming
papers that, hopefully, will help solve the original module design problem for
main frame computers in a satisfactory way.

References

[B75] E. Balas, “Facets of the Knapsack Polytope”, Mathematical Pro-
gramming 8, 146 - 164 (1975).

[FMW93] C. E. Ferreira, A. Martin and R.Weismantel, “Facets for the Multiple
Knapsack Problem”, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Preprint SC 93-4 (1993).

[GR90a] E. S. Gottlieb e M. R. Rao, “The Generalized Assignment Problem:
Valid Inequalities and Facets”, Mathematical Programming 46, 31 -
52 (1990).

[GR90b] E. S. Gottlieb e M. R. Rao, “(1,k)-Configuration Facets for the Gen-
eralized Assignment Problem”, Mathematical Programming 46, 53 -
60 (1990).

[HJP75] P. L. Hammer, E. L. Johnson and U. N. Peled, “Facets of Regular
0-1 Polytopes”, Mathematical Programming 8, 179 - 206 (1975).

[MT91] S. Martello and P. Toth, Knapsack Problems - Algorithms and Com-
puter Implementations, John Wiley and Sons, New York (1991).

[P80] M. W. Padberg, “(1,k)-Configurations and Facets for Packing Prob-
lems”, Mathematical Programming 18, 94 - 99 (1980).

[W75] L. A. Wolsey, “Faces of Linear Inequalities in 0-1 Variables”, Math-
ematical Programming 8, 165 - 178 (1975).

26

