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Short summary

Periodic timetabling is a challenging planning task in public transport. As safety requirements
are crucial, track allocation is indispensable for validating the practical feasibility of a railway
timetable. For busy stations with limited capacities, this requires a detailed planning of turn-
arounds. It is therefore desirable to integrate timetabling not only with track allocation, but
also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning
and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has
been demonstrated to be effective for construction site railway rescheduling, as long as a good
quality initial solution is available. In this paper, we discuss how to generate such a solution by
extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track
occupation, and minimum service frequency components. The SAT approach is superior to pure
MIP on real-world instances of the S-Bahn Berlin network.
Keywords: Periodic Timetabling, Railway Timetabling, Railway Track Allocation, Boolean Sat-
isfiability Problem, Rescheduling, Line Planning

1 Introduction

The timetable is a key component of a well-functioning public transport system. It is not only
important to organise and communicate the service, but it also serves as a base for subsequent
planning steps, e.g., vehicle scheduling. In turn, the timetable relies on a line concept. Line
planning, timetabling, and vehicle scheduling are typically performed in a sequential order (see,
e.g., Bussieck, 1998). This has the great drawback that a decision in a previous step might inhibit
high quality solutions in the succeeding step. For example, a timetable might be infeasible if, e.g.,
turning capacities at a station are insufficient. Therefore, designing a timetable should answer
how and where vehicles are supposed to turn, but these are traditionally questions in the realm of
vehicle scheduling and line planning. Moreover, in the context of railway timetabling, an allocation
of timetabled trips to tracks is necessary to ensure that all safety requirements are met. For
periodic timetables, which will be considered throughout this paper, this requires to resolve the
track occupation problem Masing et al. (2023b). To address these issues, several ideas of integrating
line planning, periodic timetabling, vehicle scheduling, and track allocation have been developed
(Schöbel, 2017; Schiewe, 2020; Fuchs et al., 2022).
Masing et al. (2023a) present the Integrated Line Planning and Turn-Sensitive Periodic Timetabling
Problem with Track Choice (LPTT) that covers all these aspects and unifies them by an extension of
the Periodic Event Scheduling Problem (PESP, Serafini & Ukovich, 1989) with flexible track choice
as proposed by Wüst et al. (2019). It has been demonstrated by Masing et al. (2023a) and Lindner
et al. (2024) that a mixed-integer programming (MIP) formulation of LPTT is usable in practice:
Commercial MIP solvers were able to determine qualitative solutions within a reasonable amount
of time for practical applications. However, cold-started instances resulted often in bad quality
solutions, whereas warm starts initialised with a decent starting solution could even improve the
solution further. In other words, a MIP solver might take a long time to finally reach the quality
of a hand-crafted solution, but is still able to improve those solutions. Moreover, certificates of
optimality are hard to obtain, due to the weak dual bounds. Lastly, the difficulty of the problem
is more dependent on the number of safety constraints than on the size of the input event-activity-
network.
Our goal now is to provide a fast way to find qualitative solutions to LPTT. In the past, Boolean
satisfiability (SAT) approaches have worked astonishingly well for PESP (Großmann et al., 2012;
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Kümmling et al., 2015; Roth, 2019; Borndörfer et al., 2020), as well as its extensions, e.g., with
included track choice in an iterative framework (Fuchs et al., 2022), or passenger routing (Gat-
termann et al., 2016). These insights cannot be used one-to-one in our case however, mainly due
to two issues: Feasibility is no issue for LPTT – not scheduling any vehicles is a feasible, albeit
trivial solution. Moreover, the track occupation constraints that model safety requirements ade-
quately in periodic timetabling problems have not been considered in previous SAT applications.
Nevertheless, we examine how SAT techniques can be applied to our case: We modify our problem
slightly by enforcing flow – and thus prohibiting the trivial solution – and propose a SAT encoding
for LPTT including track choice, track occupation and minimum service frequency constraints.
This allows us to perform two comparative studies on real-world scenarios, where we examine the
speedup that a black-box SAT solver can obtain in comparison to a pure MIP approach with a
commercial solver.

2 Methodology

We first recall the Periodic Event Scheduling Problem before proceeding to the track occupation
problem. We then discuss the Integrated Line Planning and Turn-Sensitive Periodic Timetabling
Problem with Track Choice (LPTT) and its MIP formulation, and present our SAT reformulation.

The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) is the standard model for periodic timetabling
problems in public transport, originally introduced by Serafini & Ukovich (1989). For an event-
activity network N , a period time T P Ně3, lower and upper bounds ℓ, u P NApN q

ě0 with 0 ď ℓ ď u,
the goal is to find a periodic timetable, i.e., to assign values πi to every event i P VpN q such
that the periodic tension xij of each activity pi, jq P ApN q satisfies xij ” πj ´ πi mod T and is
within the activity bounds, i.e., ℓij ď xij ď uij . In the optimisation version, the goal is to find
a timetable such that the corresponding weighted tension, i.e.,

ř

pi,jqPApN q wijxij for some weight
vector w P RApN q is minimised.
The interpretation is that the timetable corresponds to timestamps at which the events occur
periodically every T time units. The activities describe the transition from one event to another,
e.g., driving between two stations or dwelling at a platform, and the periodic tension models the
activity duration. Instead of using the periodic tension, one can equivalently formulate the problem
via the periodic slack y “ x´ℓ. PESP can easily be described as a MIP by introducing the periodic
offset variables p P ZApGq to express the modulo relation between periodic timetable and tension:

min
ÿ

pi,jqPApN q

wijyij

s.t. yij ` ℓij “ πj ´ πi ` Tpij pi, jq P ApN q
0 ď yij ď uij ´ ℓij pi, jq P ApN q
0 ď πi ď T ´ 1 i P VpN q
pij P Z pi, jq P ApN q

The Track Occupation Problem

Basic security requirements can be modelled within the PESP framework by introducing headway
activities (Liebchen & Möhring, 2007). There are some limitations with this approach however, as
this ensures only the separation of events, not of activities. This is discussed in Masing et al. (2023b)
in detail. One way to remedy this issue is to enforce additional constraints on the periodic offsets:
Suppose there are two activities pi1, j1q and pi2, j2q assigned to the same infrastructure point.
Let further pj1, i2q and pi2, i1q be the corresponding headway activities. To exclude simultaneous
occurrences of events, it is reasonable to assume that the security bounds are nontrivial, i.e., ℓa ą 0
and ua ă T for a P tpi1, j1q, pi2, j2qu. By adding the track occupation constraint

pi1j1 ` pj1i2 ` pi2i1 “ 1 (1)

we ensure that the event i2 occurs outside of the track occupation interval of activity pi1, j1q by
the following reasoning: Assuming that 0 ď ℓ ď u ă T , as no two activities with a tension of T or
larger can be associated to the same infrastructure point, and using that the π-values are restricted
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Figure 1: EAN (below) based on the tracks (above) for two line fragments coupled at all possible
points. A section of possible vehicle circulation is highlighted in blue.

to r0, T ´ 1s, we have that pij P t0, 1u. More precisely, if πi ď πj , we obtain pij “ 0 and pij “ 1
otherwise. Consequently, it is guaranteed that exactly one of the following occurs:

πi1 ď πj1 ď πi2 or πj1 ď πi2 ď πi1 or πi2 ď πi1 ď πj1 .

We will denote the set of all pairs ppi1, j1q, pi2, j2qq of activities that are associated to the same
infrastructure point by P. We further let H denote the graph consisting of all additional headway
activities pj1, i2q and pi1, i2q for all ppi1, j1q, pi2, j2qq P P.

Integrating Line Planning and Vehicle Scheduling via Track Choice

The Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice
(LPTT) has been presented in (Masing et al., 2023a) and without the line planning component
in (Masing et al., 2023b). The main player is a turn-sensitive event-activity network (EAN) N
that consists of subnetworks for each potential line of a given line pool on a mesoscopic level, i.e.,
activities are associated to certain infrastructure points, e.g., platforms or siding tracks. These
subnetworks are connected by transition arcs that reflect vehicle transitions from one line to
another. A periodic vehicle schedule then corresponds to a vehicle circulation, i.e., a collection of
simple directed cycles in N . A vehicle circulation hence determines an allocation of vehicle trips
to a sequence mesoscopic infrastructure points, and a fortiori a line plan on a macroscopic level.
An illustrating example is given in Figure 1.
A solution to LPTT is then comprised of a vehicle circulation and a solution to PESP on the
restriction of the N to the activities contained in the vehicle circulation, that additionally obeys
all track occupation constraints for all pairs in P.
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MIP Formulation

We consider the following MIP formulation of LPTT (Masing et al., 2023a):

min
ÿ

aPApSq

ca (2)

s.t. yij ` ℓijhij “ πj ´ πi ` Tpij pi, jq P ApN q (3)
yij ď uij ´ ℓij ` pT´1´uij`ℓijqp1´hijq pi, jq P ApN q (4)

ÿ

jPδ`piq

hij “
ÿ

jPδ´piq

hji i P VpN q (5)

ÿ

jPδ`piq

hij ď 1 i P VpN q (6)

ca `
ÿ

pi,jqPApN q:
pσpiq,σpjqq“a

hij ě fa a P ApSq (7)

πi2 ´ πi1 ` Tpi2i1 ď pT ´ δqp3´ hi1j1 ´ hi2j2q ppi1, j1q, pi2, j2qq P P (8)
πi2 ´ πi1 ` Tpi2i1 ě δphi1j1 ` hi2j2 ´ 1q ppi1, j1q, pi2, j2qq P P (9)
πj2 ´ πi1 ` Tpi2j1 ď pT ´ εqp3´ hi1j1 ´ hi2j2q ppi1, j1q, pi2, j2qq P P (10)
πj2 ´ πi1 ` Tpi2j1 ě εphi1j1 ` hi2j2 ´ 1q ppi1, j1q, pi2, j2qq P P (11)
pi1j1 ` pj1i2 ` pi2i1 ď 2p2´ hi1j1 ´ hi2j2q ` 1 ppi1, j1q, pi2, j2qq P P (12)
pi1j1 ` pj1i2 ` pi2i1 ě ´p2´ hi1j1 ´ hi2j2q ` 1 ppi1, j1q, pi2, j2qq P P (13)

yij ě 0 pi, jq P ApN q (14)
ca ě 0 a P ApSq (15)
pij P t0, 1, 2u pi, jq P ApN q (16)
pij P t0, 1u pi, jq P ApHq (17)
hij P t0, 1u pi, jq P ApN q (18)

0 ď πi ď T ´ 1 i P VpN q (19)

We briefly explain the key ingredients of this model: The vehicle circulation and hence the track
choice in the turn-sensitive EAN N is modelled by means of the binary variables hij (18) for
each activity pi, jq P ApN q. The constraints (5) and (6) ensure that the circulation decomposes
into simple directed cycles. If hij “ 1, then (3), (4). (14), (16), (19) are the classic PESP
constraints with yij ` ℓij P rℓij , uijs. For hij “ 0, (3) and (4) turn the activity duration bounds
into yij P r0, T ´ 1s, which does not impose any restrictions.
The constraints (8)-(13) and (17) resolve the track occupation problems by means of (1) for all
pairs of activities ppi1, j1q, pi2, j2qq P P on the same infrastructure point. They are only activated
if both hi1,j1 “ 1 and hi2,j2 “ 1. The additional headway activities in ApHq have the bounds
rδ, T ´ δs for activities of the form pi2, i1q and rε, T ´ εs for pj1, i2q.
Finally, (7) in conjunction with the objective (2) and (15) motivate to maximise the number of
driving activities pi, jq P ApN q that connect a given pair a “ pσpiq, σpjqq of stations. We collect all
such pairs of connected stations in a macroscopic graph S. We assume that there is a minimum
intended service frequency fa for each a P ApSq, and punish lower frequencies, but do not reward
higher frequencies than fa. This is an incarnation of minimum edge frequency requirements in line
planning (see, e.g., Schöbel, 2012). Since the goal of this paper is to find feasible solutions only,
we do not introduce other objectives here and refer instead to (Masing et al., 2023a) and (Masing
et al., 2023b).

SAT Reformulation

We describe now how to encode the constraints (3)-(19) into a Boolean formula.

Track choice variables and clauses. We start with the track choice variables hij and model them
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by a binary variable with the same name. Flow conservation (5) is modelled by

␣hik _
ł

jPδ´piq

hji i P VpN q, k P δ`piq (20)

␣hki _
ł

jPδ`piq

hij i P VpN q, k P δ´piq (21)

and the simple cycle constraints (6) by
ľ

tj,kuĎδ`piq,j‰k

p␣hij _␣hikq i P VpN q (22)

ľ

tj,kuĎδ´piq,j‰k

p␣hji _␣hkiq i P VpN q (23)

This is different to the modelling used by Fuchs et al. (2022), where the flow variables are based
on vertices, not on arcs.

Timetabling variables and clauses. Großmann et al. (2012) have introduced a reformulation of
PESP in terms of SAT. Discretising time, a timetable π P t0, . . . , T ´1uVpN q is encoded by Boolean
variables ti,k for i P VpN q and k P t´1, . . . , T ´ 1u such that ti,k is true if and only if πi ď k. This
is realised by the following:

␣ti,´1 i P VpN q (24)
ti,T´1 i P VpN q (25)
␣ti,k´1 _ ti,k i P VpN q, k P t1, . . . , T ´ 2u (26)

Note that assuming integral values for π is no restriction due to total unimodularity (Odijk, 1994).
For an arc pi, jq P ApN q, the set of pairs pπi, πjq P t0, . . . , T ´ 1u ˆ t0, . . . , T ´ 1u that violate the
activity bounds rℓij , uijs is then covered by a set of rectangles Rij (Großmann et al., 2012). It is
possible to explicitly construct such a covering Rij with a minimum number of rectangles (Roth,
2019). We obtain the following clauses that translate (3) and (4):

␣hij _␣ti,bi _ ti,ai´1 _␣tj,bj _ tj,aj´1 pi, jq P ApN q, rai, bis ˆ raj , bjs P Rij (27)

As with the MIP, there is no restriction if hij is false.

Track occupation variables and clauses. To encode the track occupation constraints (8)-(13), con-
sider a pair ppi1, i2q, pj1, j2q P P. We first model the additional headway arcs pj1, i2q, pi2, i1q P ApHq
with their bounds in the same way in the timetabling part by means of the clauses (24)-(26), but
adapting (27) by replacing the first literal ␣hij by ␣hi1j1 _␣hi2j2 .
We then introduce new binary variables qij for pi, jq P tpi1, j1q, pj1, i2q, pi2, i1qu with the property
that qij being set to true implies that that pij “ 0 for the periodic offset variable pij (16), (17).
As noted before, this is equivalent to πi ď πj . We cover

tpπi, πjq P t0, . . . , T ´ 1u ˆ t0, . . . , T ´ 1u | πi ě πj ` 1u

with a set of rectangles R̃ij , and exclude those rectangles by

␣qij _␣hi1j1 _␣hi2j2 _␣ti,bi _ ti,ai´1 _␣tj,bj _ tj,aj´1

pi, jq P tpi1, j1q, pj1, i2q, pi2, i1qu, rai, bis ˆ raj , bjs P R̃ij (28)

To ensure (1), we add the clauses

pqi1j1 _ qj1i2q ^ pqj1i2 _ qi2i1q ^ pqi2i1 _ qi1j1q (29)

that state that at least two qij must be true and hence at least two pij are 0. Note that there is
no need to couple (29) to the h variables.

Flow induction. By now, we have transformed almost all constraints of the MIP to a Boolean
formula – with the exception of the objective-related (7). Setting all hij to false would however be
trivially feasible. We therefore will turn (7) into the hard constraint

ÿ

pi,jqPApN q:
pσpiq,σpjqq“a

hij ě fa a P ApSq (30)
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SAT MIP
Scenario Vars Clauses Integer Vars Cont. Vars Constraints
BBER-BBU 38 866 176 732 428 443 1 214
BGAS-BKW 107 549 966 483 1 760 1 259 6 126
BBUP 176 305 5 468 063 5 365 1 968 32 422
BBOS-BWIN-BTG 275 639 4 172 538 5 002 3 140 25 324
BBKS-BWT 410 369 41 217 305 14 472 4 007 244 686
BOSB 432 516 31 428 806 19 632 4 244 192 414
BSW 511 612 33 478 214 18 629 5 250 203 884
BGB-BWES 675 946 56 603 646 23 056 7 451 329 658

Table 1: Metrics of the SAT and MIP models for our 8 scenarios showing the number of SAT
variables and clauses in conjunctive normal form, the number of integer and continuous MIP
variables, and the number of MIP constraints. These are the instances for Test 1, the figures are
similar for Test 2.

The rationale is that a public transport planner might have an intuition about what a good
minimum service frequency could be, and this is easier to grasp on a macroscopic level. Since we
are only interested in a feasible solution to LPTT, any choice of fa serves the purpose, with higher
values of fa giving rise to better solutions, but risking infeasibility.
There are several ways in the literature to model the cardinality constraint (30) in terms of a
Boolean formula. We choose a sequential counter-based version (Sinz, 2005; Bittner et al., 2019).
To this end, let a P ApSq, and let tpi1, j1q, . . . , pina , jnaqu be the set of arcs pi, jq P ApN q with
pσpiq, σpjqq “ a. We introduce new binary variables rk,ℓ for k P t1, . . . , nau and ℓ P t1, . . . , na´fau

with the interpretation that rk,ℓ is true if and only if at least ℓ out of hi1j1 , . . . , hikjk are false, and
add the following clauses (Sinz, 2005):

␣r1,ℓ ℓ P t2, . . . , na ´ fau (31)

␣rk´1,ℓ _ rk,ℓ k P t1, . . . , na ´ 1u, ℓ P t1, . . . , na ´ fau (32)
hikjk _ rk,1 k P t1, . . . , na ´ 1u (33)

hikjk _␣rk´1,ℓ´1 _ rk,ℓ k P t1, . . . , na ´ 1u, ℓ P t2, . . . , na ´ fau (34)
hikjk _␣rk´1,na´fa

k P t1, . . . , nau (35)

Note that this is only reasonable for 2 ď fa ă na, the other cases can be handled without any
difficulties.
This finishes the SAT formulation for LPTT with the additional constraint (30) instead of (7). We
will denote this modified problem by LPTTf .

3 Results and discussion

We finally compare the practical performance of a SAT and a MIP solver with respect to finding
an initial solution to LPTTf . To this end, we consider 8 scenarios based on real construction sites
in the S-Bahn network of Berlin of the years 2021-2023. S-Bahn Berlin operates a suburban rail
network with a periodic timetable that repeats every 20 minutes. On the most busy sections, up
to 7 trains run per direction within 20 minutes. For planning purposes, the timetable resolution
is 0.1 minutes, so that we consider a period time of T “ 200. Due to construction sites, certain
parts of the network become unavailable and the regular timetable cannot be adhered to anymore,
calling for the need to reschedule. The size of the part of the network that has to be adjusted
varies across our scenarios. Some key size metrics of the SAT and MIP models of the 8 scenarios
have been collected in Table 1.
We conduct two sets of experiments with the aim to find good quality feasible solutions for LPTTf .
In all experiments, we compare our SAT formulation with the MIP formulation making use of a
black-box solver. As a SAT solver, we use Cadical 1.9.4 (Biere et al., 2020), which has been
decorated at several SAT competitions. Gurobi 10.0.1 (Gurobi Optimization, LLC, 2023) is used
as a MIP solver. All computations have been run on an Intel Xeon E3-1270 v6 CPU machine with
32 GB RAM and a wall time limit of one hour.
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Scenario SAT/Cadical MIP/Gurobi
BBER-BBU ă 1 ă 1
BGAS-BKW ă 1 ă 1
BBUP 10 349
BBOS-BWIN-BTG 2 2
BBKS-BWT 846 timeout
BOSB 868 timeout
BSW 74 2 170
BGB-BWES 1 406 timeout

Table 2: Results of Test 1: Time until the first feasible solution was found, rounded to full seconds.
The wall time limit is 3 600 seconds.

Scenario SAT/Cadical MIP/Gurobi Status
BBER-BBU ă 1 ă 1 feasible
BGAS-BKW ă 1 ă 1 feasible
BBUP 5 99 infeasible
BBOS-BWIN-BTG 1 ă 1 infeasible
BBKS-BWT 14 2 infeasible
BOSB 2 497 timeout feasible
BSW 198 timeout infeasible
BGB-BWES timeout timeout unknown

Table 3: Results of Test 2: Time until an (in)feasibility certificate was obtained, rounded to full
seconds. The wall time limit is 3 600 seconds.

Test 1: Reduced Service Frequencies

In the first series, we demand that the minimum service frequency is at least the one that has
been operated in the actual construction site timetable, but at most the one of the regular annual
timetable. In particular, the resulting LPTTf instances are always feasible, and the question is
which method – SAT or MIP solver – is faster in finding an initial solution.
The results are summarised in Table 2. Despite the fact that the SAT solver is slowed down on
small instances due to the enormous number of variables and clauses, SAT is clearly faster than
the MIP solver and can find an initial solution for all instances. In contrast, Gurobi is not able to
find a feasible solution for 3 instances within the time limit. This is even more remarkable, because
Cadical runs on a single thread only and Gurobi can make use of up to 8 threads on our machine.

Test 2: Regular Service Frequencies

In the second set of computational experiments, we set the minimum frequency of all parts of the
network that are still available to the one given by the annual timetable. This is mostly – but not
always – infeasible, and creates harder instances. The question here is which approach – SAT or
MIP solver – detects (in)feasibility faster. Table 3 summarises the results. Again, SAT is typically
faster than MIP, with a large advantage for larger instances. One exception is the BBKS-BWT
instance, where in fact the root LP is already infeasible. The feasibility or infeasibility of the large
BGB-BWES instance, where roughly half of the network is allowed to be replanned, cannot be
decided by either method within one hour.

4 Conclusions

We developed a SAT formulation for the Integrated Line Planning and Turn-Sensitive Periodic
Timetabling Problem with Track Choice and a given macroscopic minimum service frequency level.
Using a black-box SAT solver boosts performance in finding an initial solution to the LPTTf

compared to a black-box MIP solver on real-world instances. As in other periodic timetabling
applications, SAT turns out to be once more a superior choice for the feasibility question. The
success of the SAT approach indicates that it might be worthwhile to investigate a branch-and-
bound framework combining both methods to quickly determine optimal LPTT solutions, not only
in the context of construction site scenarios.
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