
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

VOLKER KAIBEL MATTHIAS PEINHARDT MARC E. PFETSCH

Orbitopal Fixing

Supported by the DFG Research Center MATHEON “Mathematics for key technologies”
During the research of this work the first author was a visiting professor at the Technical University of Berlin.

ZIB-Report 06-48 (November 2006)

ORBITOPAL FIXING

VOLKER KAIBEL, MATTHIAS PEINHARDT, AND MARC E. PFETSCH

Abstract. The topic of this paper are integer programming models in
which a subset of 0/1-variables encode a partitioning of a set of objects
into disjoint subsets. Such models can be surprisingly hard to solve
by branch-and-cut algorithms if the permutation of the subsets of the
partition is irrelevant. This kind of symmetry unnecessarily blows up
the branch-and-cut tree.

We present a general tool, called orbitopal fixing, for enhancing the
capabilities of branch-and-cut algorithms in solving this kind of sym-
metric integer programming models. We devise a linear time algorithm
that, applied at each node of the branch-and-cut tree, removes redun-
dant parts of the tree produced by the above mentioned permutations.
The method relies on certain polyhedra, called orbitopes, which have
been investigated in [11]. However, it does not add inequalities to the
model, and thus, it does not increase the difficulty of solving the linear
programming relaxations. We demonstrate the computational power of
orbitopal fixing at the example of a graph partitioning problem moti-
vated from frequency planning in mobile telecommunication networks.

1. Introduction

Being welcome in most other contexts, symmetry causes severe trouble
in the solution of many integer programming (IP) models. This paper de-
scribes a method to enhance the capabilities of branch-and-cut algorithms
with respect to handling symmetric models of a certain kind that frequently
occurs in practice.

We illustrate this kind of symmetry by the example of a graph partitioning
problem (another notorious example is the vertex coloring problem). Here,
one is given a graph G = (V,E) with nonnegative edge weights w ∈ QE

≥0
and an integer q ≥ 2. The task is to partition V into q disjoint subsets such
that the sum of all weights of edges connecting nodes in the same subset is
minimized.

A straight-forward IP model arises by introducing 0/1-variables xij for all
i ∈ [p] := {1, . . . , p} and j ∈ [q] that indicate whether node i is contained
in subset j (where we assume V = [p]). In order to model the objective
function, we furthermore need 0/1-variables yik for all edges {i, k} ∈ E

Date: 11/17/2006.
2000 Mathematics Subject Classification. Primary 90C10; Secondary 90C57, 52B12.
Key words and phrases. integer programming, symmetry breaking, variable fixing,

orbitopes.
Supported by the DFG Research Center Matheon in Berlin.
During the research of this work the first author was a visiting professor at the Technical

University of Berlin.

1

2 KAIBEL, PEINHARD, AND PFETSCH

indicating whether both nodes i and k are contained in the same subset.
This yields the following model (see, e.g., [5]):

min
∑

{i,k}∈E

wik yik

s.t.

q
∑

j=1

xij = 1 for all i ∈ [p]

xij + xkj − yik ≤ 1 for all i ∈ [p], j ∈ [q]

xij ∈ {0, 1} for all i ∈ [p], j ∈ [q]

yik ∈ {0, 1} for all {i, k} ∈ E.

(1)

The x-variables form 0/1-matrices of size p×q with exactly one 1-entry per
row. They encode the assignment of the nodes to the subsets of the partition.
The methods that we discuss in this paper do only rely on this structure and
thus can be applied to many other models as well. We use the example
of the graph partitioning problem as a prototype application and report
on computational experiments in Sect. 5. Graph partitioning problems are
discussed in [5, 3, 4], for instance as a relaxation of frequency assignment
problems in mobile telecommunication networks. The maximization version
is relevant as well [12, 6]. Also capacity bounds on the subsets of the partition
(which can easily be incorporated into the model) are of interest, in particular
the graph equipartitioning problem [15, 16, 7, 8]. For the closely related
clique partitioning problem, see [9, 10].

As it is given above, the model is unnecessarily difficult for state-of-the-art
IP solvers. Even small instances require enormous efforts (see Sect. 5). One
reason is that every feasible solution (x, y) to this model can be turned into q!
different ones by permuting the columns of x in an arbitrary way, thereby not
changing the structure of the solution (in particular: its objective function
value). Phrased differently, the symmetric group of all permutations of the
set [q] operates on the solutions by permuting the columns of the x-variables
in such a way that the objective function remains constant along each orbit.
Therefore, when solving the model by a branch-and-cut algorithm, basically
the same work will be done in the tree at many places. Thus there should
be potential for reducing the running times significantly by exploiting the
symmetry. A more subtle second point is that the barycenters of the orbits
are responsible for quite weak linear programming (LP) bounds. However,
we will not address this second point in this paper.

In order to remove symmetry, the above model for the graph partition-
ing problem in the literature is often replaced by models containing only
edge variables [7]. However, for this to work the underlying graph has to
be complete, which might introduce many unnecessary variables. Moreover,
formulation (1) is sometimes favorable, e.g., if node-weighted capacity con-
straints should be incorporated.

One way to deal with symmetry is to restrict the feasible region in each of
the orbits to a single representative, e.g., to the lexicographically maximal
(with respect to the row-by-row ordering of the x-components) element in
the orbit. In fact, this can be done by adding some inequalities to the model

ORBITOPAL FIXING 3

that enforce the columns of x to be sorted in a lexicographically decreasing
way. This can be achieved by O(pq) many column inequalities. In [11] even
a complete (and irredundant) linear description of the convex hull of all 0/1-
matrices of size p× q with exactly one 1-entry per row and lexicographically
decreasing columns (called an orbitope) is derived. The description basi-
cally consists of an exponentially large superclass of the column inequalities,
called shifted column inequalities, for which there is a linear time separation
algorithm available. We recall some of these results in Sect. 2.

Incorporating the inequalities from the orbitope description into the IP
model removes symmetry. At each node of the branch-and-cut tree this en-
sures that the corresponding IP is infeasible as soon as there is no represen-
tative in the subtree rooted at that node. Of course, the column inequalities
are sufficient for this purpose already.

In this paper, we investigate a way to utilize these inequalities (or the
orbitope that they describe) without adding any of the inequalities to the
models explicitly. The reason for doing this is the unpleasant effect that
adding (shifted) column inequalities to the models results in more difficult
LP relaxations. One way to avoid adding these inequalities to the LPs is
to exploit them for deriving logical implications instead: If we are working
in a branch-and-cut node at which the x-variables corresponding to index
subsets I0 and I1 are fixed to zero and one, respectively, then there might
be a (shifted) column inequality yielding implications for all representatives
in the subtree rooted at the current node. For instance, it might be that for
some (i, j) 6∈ I0 ∪ I1 we have xij = 0 for all feasible solutions in the subtree.
In this case, xij can be fixed to zero at the current node, enlarging I0. We
call the iterated process of searching for such additional fixings sequential
fixing with (shifted) column inequalities.

Let us mention at this point that deviating from parts of the literature, we
do not distinguish between “fixing“ and “setting“ of variables in this paper.

Sequential fixing with (shifted) column inequalities is a special case of con-
straint propagation, which is well known from constraint logic programming.
Modern IP solvers like SCIP [1] use such strategies also in branch-and-cut
algorithms. However, with orbitopes we can aim at something better: Con-
sider a branch-and-cut node identified by fixing the variables corresponding
to sets I0 and I1 to zero and one, respectively. Denote by W (I0, I1) the set
of all vertices x of the orbitope with xij = 0 for all (i, j) ∈ I0 and xij = 1
for all (i, j) ∈ I1. Define the sets I⋆

0 and I⋆
1 of indices of all variables, for

which no x in W (I0, I1) satisfies xij = 1 for some (i, j) ∈ I⋆
0 or xij = 0 for

some (i, j) ∈ I⋆
1 . Fixing of the corresponding variables is called simultaneous

fixing at the branch-and-cut node. Simultaneous fixing is always at least as
strong as sequential fixing.

Investigations of sequential and simultaneous fixing for orbitopes are the
central topic of the paper. The main contributions and results are the fol-
lowing:

◦ We give a linear time algorithm for orbitopal fixing, i.e., for solving the
problem to compute simultaneous fixings for orbitopes (Theorem 12).

◦ While, for general 0/1-polytopes, sequential fixing even with complete
and irredundant linear descriptions is weaker than simultaneous fixing

4 KAIBEL, PEINHARD, AND PFETSCH

(Theorem 3), we prove that sequential fixing with the whole set of shifted
column inequalities is as strong as orbitopal fixing (Theorem 11). How-
ever, in general, sequential fixing with only column inequalities is weaker
(Theorem 10).

◦ We report on computer experiments (Sect. 5) with the graph partitioning
problem described above showing that orbitopal fixing leads to significant
performance improvements for branch-and-cut algorithms. These im-
provements remain significant if compared to the improvements that com-
mercial IP-solvers like CPLEX 10.01 achieve by their symmetry breaking
tools.

To summarize, orbitopal fixing is a “plug-and-play tool” for significantly en-
hancing the performance of branch-and-cut based IP solvers on models that
exhibit the partitioning-type symmetry described above. We believe that
it will be as valuable for several different problems exhibiting that kind of
symmetry as it seems to be for the graph partitioning problem.

Margot [13, 14] considers a related method for symmetry handling. His
approach works for more general types of symmetries than ours. Similarly to
our approach, the basic idea is to assure that only (partial) solutions which
are lexicographical maximal in their orbit are explored in the branch-and-cut
tree. This is guaranteed by an appropriate fixing rule. The fixing and prun-
ing decisions are done by means of a Schreier-Sims table for representing the
group action. While Margot’s approach is much more generally applicable
than orbitopal fixing, the latter seems to be more powerful in the special sit-
uation of partitioning-type symmetries. One reason is that Margot’s method
requires to choose the branching variables according to an ordering that is
chosen globally for the entire branch-and-cut tree. We will elaborate on the
relation between the two approaches in more detail in the full version of the
paper.

2. Orbitopes

Throughout the paper, let p and q be positive integers with p ≥ q ≥ 2.
The orbitope O=

p,q is the convex hull of all 0/1-matrices x ∈ {0, 1}[p]×[q] with
exactly one 1-entry per row whose columns are in decreasing lexicographical
order (i.e., they satisfy

∑p
i=1 2p−ixij >

∑p
i=1 2p−ixi,j+1 for all j ∈ [q − 1]).

As these 0/1-matrices have xij = 0 for all (i, j) with i < j, we drop these
components and consider O=

p,q as a subset of the space RIp,q with Ip,q :=

{(i, j) ∈ {0, 1}[p]×[q] : i ≥ j}. Thus, we consider matrices, in which the i-th
row has only q(i) := min{i, q} components.

Let the symmetric group of size q act on {0, 1}Ip,q via permuting the
columns of all x ∈ {0, 1}Ip,q . Then the vertices of O=

p,q are exactly the
lexicographically maximal matrices (with respect to the row-by-row ordering
of the components) in those orbits whose elements are matrices with exactly
one 1-entry per row. In [11], in the context of more general orbitopes, O=

p,q is
referred to as the partitioning orbitope with respect to the symmetric group.
As we will confine ourselves with this one type of orbitopes in this paper, we
will simply call it orbitope.

ORBITOPAL FIXING 5

i

j
η

(a)

i

j

(b)

i

j

(c)

i

j

(d)

Figure 1: (a) Example for coordinates (9, 5) = 〈5, 5〉. (b), (c), (d) Three shifted column
inequalities, the left one of which is a column inequality

The main result in [11] is a complete linear description of O=
p,q. In order

to describe the result, it will be convenient to address the elements in Ip,q

via a different “system of coordinates”:

〈η, j〉 := (j + η − 1, j) for j ∈ [q], 1 ≤ η ≤ p − j + 1.

Thus (as before) i and j denote the row and the column, respectively, while η
is the index of the diagonal (counted from above) containing the respective
element; see Figure 1 (a) for an example.

A set S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂ Ip,q with c1 ≤ c2 ≤ · · · ≤ cη

and η ≥ 1 is called a shifted column. For (i, j) = 〈η, j〉 ∈ Ip,q, the set
B = {(i, j), (i, j + 1), . . . , (i, q(i))}, and a shifted column

S = {〈1, c1〉, 〈2, c2〉, . . . , 〈η, cη〉} ⊂ Ip,q

with cη < j, we call x(B)− x(S) ≤ 0 a shifted column inequality. The set B
is called its bar. In case of c1 = · · · = cη = j−1 the shifted column inequality
is called a column inequality. See Figure 1 for examples.

Finally, a bit more notation is needed. For each i ∈ [p], we define rowi :=
{(i, j) : j ∈ [q(i)]}. For A ⊂ Ip,q and x ∈ RIp,q , as usual, x(A) denotes the
sum

∑

(i,j)∈A xij .

Theorem 1 (see [11]). The orbitope O=
p,q is completely described by the non-

negativity constraints xij ≥ 0, the row-sum equations x(rowi) = 1, and the
shifted column inequalities.

In fact, in [11] it is also shown that, up to a few exceptions, the inequalities
in this description define facets of O=

p,q. Furthermore, a linear time separation
algorithm for the exponentially large class of shifted column inequalities is
given.

3. The Geometry of Fixing Variables

In this section, we deal with general 0/1-integer programs and, in partic-
ular, their associated polytopes. We will define some basic terminology used
later in the special treatment of orbitopes and we are going to shed some
light on the geometric situation of fixing variables.

We denote by [d] the set of indices of variables, and by Cd = {x ∈ Rd :
0 ≤ xi ≤ 1 for all i ∈ [d]} the corresponding 0/1-cube. For two disjoint sub-
sets I0, I1 ⊆ [d] (with I0 ∩ I1 = ∅) we call

{x ∈ Cd : xi = 0 for all i ∈ I0, xi = 1 for all i ∈ I1}

6 KAIBEL, PEINHARD, AND PFETSCH

the face of Cd defined by (I0, I1). All faces of Cd are of this type.
For a polytope P ⊆ Cd and for a face F of Cd defined by (I0, I1), we denote

by FixF (P) the smallest face of Cd that contains P∩F∩{0, 1}d (i.e., FixF (P)
is the intersection of all faces of Cd that contain P ∩F ∩{0, 1}d). If FixF (P)
is the cube face defined by (I⋆

0 , I⋆
1), then I⋆

0 and I⋆
1 consist of all i ∈ [d] for

which xi = 0 and xi = 1, respectively, holds for all x ∈ P ∩ F ∩ {0, 1}d. In
particular, we have I0 ⊆ I⋆

0 and I1 ⊆ I⋆
1 . Thus, if I0 and I1 are the indices

of the variables fixed to zero and one, respectively, in the current branch-
and-cut node (with respect to an IP with feasible points P ∩ {0, 1}d), the
sets I⋆

0 and I⋆
1 yield the maximal sets of variables that can be fixed to zero

and one, respectively, for the whole subtree rooted at this node. We call
(I⋆

0 , I⋆
1) the fixing of P at (I0, I1). Similarly, we use the notion of fixing for

the corresponding cube faces.

Remark 2. If P,P ′ ⊆ Cd are two polytopes with P ⊆ P ′ and F and F ′ are
two faces of Cd with F ⊆ F ′, then FixF (P) ⊆ FixF ′(P ′) holds.

In general, it is not clear how to compute fixings efficiently. Indeed, com-
puting the fixing of P at (∅, ∅) includes deciding whether P ∩ {0, 1}d = ∅,
which, of course, is NP-hard in general. Instead, one can try to derive as
large as possible subsets of I⋆

0 and I⋆
1 by looking at relaxations of P . In case

of an IP that is based on an intersection with an orbitope, one might use
the orbitope as such a relaxation. We will deal with the fixing problem for
orbitopes in Sect. 4.

If P is given via an inequality description, one possibility is to use the
knapsack relaxations obtained from single inequalities out of the description.
For each of these relaxations, the fixing can easily be computed. If the
inequality system describing P is exponentially large, and the inequalities are
only accessible via a separation routine, it might still be possible to decide
efficiently whether any of the exponentially many knapsack relaxations allows
to fix some variable (see Sect. 4.2).

Suppose, P = {x ∈ Cd : Ax ≤ b} and P1, . . . , Pm are the knapsack
relaxations of P obtained from the m inequalities in Ax ≤ b. Let F be
some face of Cd. The face G of Cd obtained by setting G := F and then
iteratively replacing G by FixG(Pr) as long as there is some r ∈ [m] with
FixG(Pr) (G, is denoted by FixF (Ax ≤ b). Note that the outcome of this
procedure is independent of the choices made for r due to Remark 2. We
call the pair (Ĩ0, Ĩ1) defining the cube face FixF (Ax ≤ b) the sequential fixing
of Ax ≤ b at (I0, I1). In the context of sequential fixing we often refer to
FixF (P) by the notion of simultaneous fixing.

Due to Remark 2 it is clear that FixF (P) ⊆ FixF (Ax ≤ b) holds.

Theorem 3. In general, even for a system of facet-defining inequalities de-
scribing a 0/1-polytope, sequential fixing is weaker than simultaneous fixing.

Proof. The following example shows this. Let P ⊂ C4 be the 4-dimensional
polytope defined by the trivial inequalities xi ≥ 0 for i ∈ {1, 2, 3}, xi ≤ 1 for
i ∈ {1, 2, 4}, the inequality −x1 +x2 +x3−x4 ≤ 0 and x1−x2 +x3−x4 ≤ 0.
Let F be the cube face defined by ({4}, ∅). Then, sequential fixing does
not lead to fixing any further variable, although simultaneous fixing yields

ORBITOPAL FIXING 7

I⋆
0 = {3, 4} (and I⋆

1 = ∅). Note that P has only 0/1-vertices, and all the
inequalities are facet defining (x4 ≥ 0 and x3 ≤ 1 are implied). �

4. Fixing Variables for Orbitopes

For this section, suppose that I0, I1 ⊆ Ip,q are subsets of indices of orbitope
variables with the following properties:

(P1) |I0 ∩ rowi| ≤ q(i) − 1 for all i ∈ [p]
(P2) For all (i, j) ∈ I1, we have (i, ℓ) ∈ I0 for all ℓ ∈ [q(i)] \ {j}.

Let F be the face of the 0/1-cube CIp,q defined by (I0, I1). Note that
if P1 is not fulfilled, then O=

p,q ∩F = ∅. The following statement follows
immediately from Property P2.

Remark 4. If a vertex x of O=
p,q satisfies xij = 0 for all (i, j) ∈ I0, then

x ∈ F .

We assume that the face FixF (O=
p,q) is defined by (I⋆

0 , I⋆
1). Orbitopal fixing

is the problem to compute the simultaneous fixing (I⋆
0 , I⋆

1) from (I0, I1).

Remark 5. It is enough to determine I⋆
0 , as we have (i, j) ∈ I⋆

1 if and only
if (i, ℓ) ∈ I⋆

0 holds for for all ℓ ∈ [q(i)] \ {j}.

4.1. The Walls of Orbitopes

Since O=
p,q ⊂ CIp,q is a 0/1-polytope (i.e., it is integral), we have

conv(O=
p,q ∩F ∩ {0, 1}Ip,q) = O=

p,q ∩F.

Thus, FixF (O=
p,q) is the smallest cube face that contains the face O=

p,q ∩F of
the orbitope O=

p,q. Such faces of O=
p,q arising from intersections of O=

p,q with
cube faces are called walls of O=

p,q.
Let us, for i ∈ [p], define values αi := αi(I0) ∈ [q(i)] recursively by setting

α1 := 1 and, for all i ∈ [p] with i ≥ 2,

αi :=

{

αi−1 if αi−1 = q(i) or (i, αi−1 + 1) ∈ I0

αi−1 + 1 otherwise.

The set of all indices of rows, in which the α-value increases, is denoted by

Γ(I0) := {i ∈ [p] : i ≥ 2, αi = αi−1 + 1} ∪ {1}

(where, for technical reasons 1 is included).
The following observation follows readily from the definitions.

Remark 6. For each i ∈ [p] with i ≥ 2 and αi(I0) < q(i), the set

Si(I0) := {(k, αk(I0) + 1) : k ∈ [i] \ Γ(I0)}

is a shifted column with Si(I0) ⊆ I0.

Lemma 7. For each i ∈ [p], no vertex of O=
p,q ∩F has its 1-entry in row i

in a column j ∈ [q(i)] with j > αi(I0).

Proof. Let i ∈ [p] and j ∈ [q(i)]. We may assume αi(I0) < q(i), be-
cause otherwise the statement trivially is true. Thus, B := {(i, j) ∈ rowi :
j > αi(I0)} 6= ∅.

8 KAIBEL, PEINHARD, AND PFETSCH

Let us first consider the case i ∈ Γ(I0). As we have αi(I0) < i and
α1(I0) = 1, there must be some k < i such that k 6∈ Γ(I0). Let k be maximal
with this property, thus we have k′ ∈ Γ(I0) for all 1 < k < k′ ≤ i. According
to Remark 6 x(B) − x(Sk(I0)) ≤ 0 is a shifted column inequality with
x(Sk(I0)) = 0, showing x(B) = 0 as claimed in the lemma.

Thus, let us suppose i ∈ [p] \ Γ(I0). If αi(I0) ≥ q(i) − 1, the the claim
holds trivially. Otherwise, B′ := B \ {(i, αi(I0))} 6= ∅. Similarly to the first
case, now the shifted column inequality x(B′)−x(Si−1(I0)) ≤ 0 proves the
claim. �

For each i ∈ [p] we define

µi(I0) := min{j ∈ [q(i)] : (i, j) 6∈ I0}.

Because of Property P1, the sets over which we take minima here are non-
empty.

Lemma 8. If µi(I0) ≤ αi(I0) holds for all i ∈ [p], then the point x⋆ =
x⋆(I0) ∈ {0, 1}Ip,q with

x⋆
i,αi(I0) = 1 for all i ∈ Γ(I0),

x⋆
i,µi(I0) = 1 for all i ∈ [p] \ Γ(I0),

and all other components being zero, is contained in O=
p,q ∩F .

Proof. Due to αi(I0) ≤ αi−1(I0) + 1 for all i ∈ [p] with i ≥ 2, the point x⋆

is contained in O=
p,q. It follows readily from the definitions that x⋆ does not

have any 1-entry at a position in I0. Thus, by Remark 4, we have x⋆ ∈ F . �

Now we are prepared to characterize the case O=
p,q ∩F = ∅ (leading to

pruning the corresponding node in the branch-and-cut tree) and to describe
the set I⋆

0 .

Proposition 9.

(1) We have O=
p,q ∩F = ∅ if and only if there exists i ∈ [p] with µi(I0) >

αi(I0).
(2) If µi(I0) ≤ αi(I0) holds for all i ∈ [p], then the following is true.

(a) For all i ∈ [p] \ Γ(I0), we have

I⋆
0 ∩ rowi = {(i, j) ∈ rowi : (i, j) ∈ I0 or j > αi(I0)}.

(b) For all i ∈ [p] with µs(I0) = αs(I0), we have

I⋆
0 ∩ rowi = rowi \{(i, αi(I0))}.

(c) For all s ∈ Γ(I0) with µs(I0) < αs(I0) the following holds: If there
is some i ≥ s with µi(I0) > αi(I0 ∪ {(s, αs(I0)}), then we have I⋆

0 ∩
rows = rows \{(s, αs(I0))}. Otherwise, we have

I⋆
0 ∩ rows = {(s, j) ∈ rows : (s, j) ∈ I0 or j > αs(I0)}.

Proof. Part 1 follows from Lemmas 7 and 8.
In order to prove Part 2, let us assume that µi(I0) ≤ αi(I0) holds for all

i ∈ [p]. For Part 2a, let i ∈ [p] \ Γ(I0) and (i, j) ∈ rowi. Due to I0 ⊂ I⋆
0 , we

only have to consider the case (i, j) 6∈ I0. If j > αi(I0), then, by Lemma 7,
we find (i, j) ∈ I⋆

0 . Otherwise, the point that is obtained from x⋆(I0) (see

ORBITOPAL FIXING 9

0
0 00

0

01
1

(a)

0
0

0 0

0

1

1
1

(b)

0

0

00

0

1

1

(c)

Figure 2: (a): Example for Prop. 9 (1). Light-gray entries indicate the entries (i, µi(I0))

and dark-gray entries indicate entries (i, αi(I0)). (b): Example of fixing an entry to 1 for
Prop. 9 (2c). As before light-gray entries indicate entries (i, µi(I0)). Dark-gray entries
indicate entries (i, αi(I0 ∪ {(s, αs(I0)})) with s = 3. (c): gray entries show the SCI in the
proof of Thm. 10.

Lemma 8) by moving the 1-entry in position (i, µi(I0)) to position (i, j) is
contained in O=

p,q ∩F , proving (i, j) 6∈ I⋆
0 .

In the situation of Part 2b, the claim follows from Lemma 7 and the fact
that O=

p,q ∩F 6= ∅ (due to Part 1).
For Part 2c, let s ∈ Γ(I0) with µs(I0) < αs(I0) and define I ′0 := I0 ∪

{(s, αs(I0))}. It follows that we have µi(I
′
0) = µi(I0) for all i ∈ [p].

Let us first consider the case that there is some i ≥ s with µi(I0) > αi(I
′
0).

Part 1 (applied to I ′0 instead of I0) implies that the O=
p,q ∩F does not contain

any vertex x with xs,αs(I0) = 0. Therefore, we have (s, αs(I0)) ∈ I⋆
1 , and thus

I⋆
0 ∩ rows = rows \{(s, αs(I0))} holds (where for “⊆“ we exploit O=

p,q ∩F 6= ∅

by Part 1, this time applied to I0).
The other case of Part 2c follows from s 6∈ Γ(I ′0) and αs(I

′
0) = αs(I0)− 1.

Thus, Part 2a applied to I ′0 and s instead of I0 and i, respectively, yields the
claim (because of (s, αs(I0)) 6∈ I⋆

0 due to s ∈ Γ(I0) and O=
p,a ∩F 6= ∅). �

4.2. Sequential Fixing for Orbitopes

Let us, for some fixed p ≥ q ≥ 2, denote by Ax ≤ b the system of
the inequalities 0 ≤ x ≤ 1, the row-sum equations (each one written as
two inequalities, in order to be formally correct) and all shifted column
inequalities. Thus, as mentioned in Sect. 2, we have O=

p,q = {x ∈ RIp,q :

Ax ≤ b}. Let A′x ≤ b′ be the subsystem of Ax ≤ b that does not contain
any shifted column inequality that is not a column inequality.

Theorem 10. For partitioning orbitopes O=
p,q, sequential fixing with col-

umn inequalities only is, in general, weaker than sequential fixing with all
shifted column inequalities, i.e., there are examples with FixAx≤b(O

=
p,q) (

FixA′x≤b′(O
=
p,q).

Proof. The smallest example for this behavior is obtained from choosing
p = 6, q = 4, I0 = {(2, 2), (5, 3), (6, 1), (6, 2), (6, 3)} and I1 = {(1, 1), (6, 4)}.
The shifted column inequality with shifted column {(2, 2), (3, 2), (5, 3)} and
bar {(6, 4)} allows to fix x32 to one (see Fig. 2 (c)), while no column inequality
(and no nonnegativity constraint and no row-sum equation) allows to fix any
variable. �

10 KAIBEL, PEINHARD, AND PFETSCH

Algorithm 1 Orbitopal Fixing

1: Set I⋆
0 ← I0, I⋆

1 ← I1, µ1 ← 1, α1 ← 1, and Γ = ∅.
2: for i = 2, . . . , p do

3: compute µi ← min{j : (i, j) 6∈ I0}.
4: if αi−1 = q(i) or (i, αi−1 + 1) ∈ I0 then

5: αi ← αi−1

6: else

7: αi ← αi−1 + 1, Γ← Γ ∪ {i}
8: if µi > αi then

9: return “branch-and-cut node infeasible”
10: Set I⋆

0 ← I⋆
0 ∪ {(i, j) : j > αi}.

11: if |I⋆
0 ∩ rowi | = q(i)− 1 then

12: set I⋆
1 ← I⋆

1 ∪ (rowi \I
⋆
0).

13: for all s ∈ Γ with (s, αs) /∈ I⋆
1 do

14: Set βs ← αs − 1.
15: for i = s + 1, . . . , p do

16: if βi−1 = q(i) or (i, βi−1 + 1) ∈ I0 then

17: βi ← βi−1

18: else

19: βi ← βi−1 + 1
20: if µi > βi then

21: I⋆
1 ← I⋆

1 ∪ {(s, αs)} and I⋆
0 ← rows \{(s, αs)}.

22: Proceed with the next s in Step 13.

At first sight, it is not clear whether sequential fixing with the exponen-
tially large system Ax ≤ b can be done efficiently. A closer look at the
problem reveals, however, that one can utilize the linear time separation al-
gorithm for shifted column inequalities (mentioned in Sect. 2) in order to
devise an algorithm for this sequential fixing whose running time is bounded
by O(̺pq), where ̺ is the number of variables that are fixed by the procedure.

However, it turns out that this is not the preferable choice for doing the
fixing. In fact, we will describe below a linear time algorithm for the problem
to solve the orbitopal fixing problem, i.e., to compute, for a given cube
face F , the simultaneous fixing FixF (O=

p,q) rather than the sequential fixing
FixF (Ax ≤ b). While this is very efficient, the next result shows that (despite
the situation for 0/1-polytopes in general, see Proposition 3) it does not yield
a stronger fixing than the sequential fixing with shifted column inequalities
does.

Theorem 11. For partitioning orbitopes O=
p,q, sequential fixing with shifted

column inequalities (and row-sum equations and nonnegativity constraints)
is as strong as orbitopal fixing, i.e., we have FixF (O=

p,q) = FixAx≤b(O
=
p,q) if F

is the cube face defined by (I0).

We omit the proof, which uses similar arguments as above.

4.3. An Algorithm for Orbitopal Fixing

Algorithm 1 describes a method to compute the simultaneous fixing (I⋆
0 , I⋆

1)
from (I0, I1) (which are assumed to satisfy Properties P1 and P2). Note that
we use βi for αi(I0 ∪ {αs(I0)}).

Theorem 12. A slight modification of Algorithm 1 can be implemented in
such a way that it solves the orbitopal fixing problem in time O(pq).

ORBITOPAL FIXING 11

Proof. The correctness of the algorithm follows by the structural results given
in Proposition 9.

In order to prove the statement on the running time, let us assume that
the data structures for the sets I0, I1, I⋆

0 , and I⋆
1 allow both membership

testing and addition of single elements in constant time (e.g., the sets can
be stored as bit vectors).

As none of the Steps 3 to 12 needs more time than O(q), we only have to
take care of the second part of the algorithm starting in Step 13. (In fact,
used verbatim as described above, the algorithm might need time Ω(p2).)

For s, s′ ∈ Γ with s < s′ denote the corresponding β-values by βi (i ≥ s)
and by β′

i (i ≥ s′), respectively. We have βi ≤ β′
i for all i ≥ s′, and

furthermore, if equality holds for one of these i, we can deduce βk = β′
k

for all k ≥ i. Thus, as soon as a pair (i, βi) is used a second time in Step 20,
we can break the for-loop in Step 15 and reuse the information that we have
obtained earlier.

This can, for instance, be organized by introducing, for each (i, j) ∈ Ip,q,
a flag f(i, j) ∈ {red, green,white} (initialized by white), where f(i, j) =
red / green means that we have already detected that βi = j eventually leads
to a positive/negative test in Step 20. The modifications that have to be
applied to the second part of the algorithm are the following: The selection
of the elements in Γ in Step 13 must be done in increasing order. Before
performing the test in Step 20, we have to check whether f(i, βi) is green.
If this is true, then we can proceed with the next s in Step 13 after setting
all flags f(k, βk) to green for s ≤ k < i. Similarly, we need to set all flags
f(k, βk) to red for s ≤ k ≤ i before switching to the next s in Step 22. And
finally, we have to set all flags f(k, βk) to green for s ≤ k ≤ p at the end of
the body of the s-loop starting in Step 13.

As the running time of this part of the algorithm is proportional to the
number of flags changed from white to red or green, the total running time
indeed is bounded by O(pq) (since a flag is never reset). �

5. Computational Experiments

We performed computational experiments for the graph partitioning prob-
lem mentioned in the Introduction. The code is based on the SCIP frame-
work by Achterberg [1], and we use CPLEX 10.01 as the basic LP solver.
The computations were performed on a 3.4 GHz Pentium 4 machine running
Linux. All computation times are CPU seconds and are subject to a time
limit of two hours. Since in this paper we are not interested in the perfor-
mance of heuristics we initialized all computations with the optimal primal
solution. We compare different variants of the code by counting winning
instances. An instance is a winner for variant A compared to variant B, if A
finished within the time limit and B did not finish or needed a larger cpu
time; if A did not finish, then the instance is a winner for A, if B did not
finish and has a larger gap. If the difference between the times and gaps are
below 1 sec. and 0.1, respectively, the instance is not counted.

In all variants, we fix the variables xij with j > i to zero. Furthermore,
we heuristically separate clique inequalities

∑

i,j∈C yij ≥ 1, where C ⊆ V is

a clique of size at least q + 1. We follow the ideas of Eisenblätter [5]: we

12 KAIBEL, PEINHARD, AND PFETSCH

Table 1: Results of the branch-and-cut algorithm. All entries are averages over three
instances.

basic OF OF – first

m q nsub cpu nsub cpu #OF nsub cpu #OF

200 3 905.7 4.77 719.7 4.22 5.7 858.3 2.47 5.7

200 6 406.3 1.06 98.3 0.31 49.0 245.3 0.41 150.3

200 9 1.0 0.04 1.0 0.05 0.0 1.0 0.04 0.0

200 12 1.0 0.06 1.0 0.05 0.0 1.0 0.05 0.0

300 3 3657.7 79.86 2849.0 63.35 7.0 2910.3 45.18 7.0

300 6 99040.3 460.73 10839.7 48.96 363.0 45473.3 140.38 14149.7

300 9 16260.7 55.13 330.0 1.47 249.0 986.3 2.79 1394.7

300 12 1.0 0.13 1.0 0.14 0.0 1.0 0.14 0.0

400 3 22400.3 1155.93 17276.3 927.35 8.3 22474.3 921.62 8.3

400 6 163737.0 7200.06 334417.0 7062.46 1547.0 305555.0 7200.04 134886.3

400 9 272622.0 7200.02 52378.3 662.64 6689.3 586002.7 5499.17 434991.0

400 12 616485.0 7200.01 4345.0 41.64 2746.3 38294.0 200.80 58536.3

250 s250 s250 s

500 s500 s500 s

750 s750 s750 s

1000 s1000 s1000 s

333 333 333 666 666 666 999 999 999 121212 121212 121212

1800 s1800 s1800 s1800 s1800 s

3600 s3600 s3600 s3600 s3600 s

5400 s5400 s5400 s5400 s5400 s

7200 s7200 s7200 s7200 s7200 s
10%10%10%10%10%
20%20%20%20%20%
30%30%30%30%30%

33333 33333 33333 66666 66666 66666 99999 99999 99999 1212121212 1212121212 1212121212

Figure 3: Computation times/gaps for the basic version (dark gray) and the version with

orbitopal fixings (light gray). Left for all instances with m = 300 and right for m = 400.
The number of partitions q is indicated on the x-axis. Values above 7200.0 indicate the
gap in percent.

generate the graph G′ = (V,E′) with {i, k} ∈ E′ if and only if {i, k} ∈ E
and y⋆

ik < q(q+1)/2, where y⋆ is the y-part of an LP-solution. We search for
maximum cliques in G′ with the branch-and-bound method implemented in
SCIP (with a node limit of 10 000).

Our default branching rule combines first index and reliability branching.
We branch on the first fractional variable in the variable order used for
defining orbitopes, but we skip columns in which a 1 has appeared before.
If no fractional variable could be found, we perform reliability branching as
described by Achterberg, Koch, and Martin [2].

We generated 9 random instances with 30 vertices each. The graphs have
m = 200 (sparse), 300 (medium), and 400 (dense) edges, where edges are
picked uniformly at random (without recourse) until the specified number
of edges is reached. For each size we generated three instances. For each
instance we computed results for q = 3, 6, 9, and 12.

In a first experiment we tested the speedup that can be obtained by per-
forming orbitopal fixing. For this we compare the basic variant (basic) with-
out symmetry breaking (except the zero-fixing of the upper right variables)
and the version in which we use orbitopal fixing (OF), see Table 1 for the
results. Columns “nsub” give the number of nodes in the branch-and-bound
tree. The results show that orbitopal fixing is clearly superior (OF winners:
22, basic winners: 0), see also Figure 3.

Table 1 shows that the sparse instances are extremely easy, the instances
with m = 300 are quite easy, while the dense instances are hard. One effect

ORBITOPAL FIXING 13

is that often for small m and large q the optimal solution is 0 and hence no
work has to be done. For m = 300, 400, the hardest instances arise when
q = 6. It seems that for q = 3 the small number of variables helps, while for
q = 12 the small objective function values help. On the other side, symmetry
breaking methods get more effective when q gets larger.

In a second experiment we investigated the symmetry breaking built into
CPLEX. We suspect that it breaks symmetry within the tree, but no de-
tailed information was available. We ran CPLEX 10.01 on the IP formu-
lation stated in Sect. 1. In one variant, we fixed variables xij with j > i
to zero, but turned symmetry breaking off. In a second variant, we turned
symmetry breaking on and did not fix variables to zero (otherwise CPLEX
seems not to recognize the symmetry). These two variants performed about
equally good (turned-on winners: 13, turned-off winners: 12). The variant
with no symmetry breaking and no fixing of variables performed extremely
badly. The results obtained by the OF-variant above are superior to the best
CPLEX results (CPLEX could not solve 10 instances within the time limit,
while OF could not solve 2). Probably this is at least partially due to the
separation of clique inequalities and the special branching rule in our code.

The third experiment concerns branching rules. We used orbitopal fixing
and compared our default branching rule with first index branching. First
index branching with orbitopal fixing is close to Margot’s approach (men-
tioned in the Introduction) with the row-by-row variable order. It turns out
that the version using our branching rule beats the first index rule (default
winners: 14, first index: 8 – the total avg. running times are 777.59 and
1236.45 sec., respectively), see Table 1. Indeed, it seems that our branch-
ing rule avoids much of the symmetry, whereas the first index variant needs
many more orbitopal fixings to do the same (see column “#OF”). Appar-
ently, the additional freedom to choose an arbitrary branching rule improves
the performance.

Finally, we turned off orbitopal fixing and separated shifted column in-
equalities in every node of the tree. The results are that the OF-version is
better than this variant (OF winners: 12, SCI winners: 3), but the results
are relatively close together (OF average time: 777.59, SCI average time:
792.82). Although in theory, the SCI-version does not produce more nodes
in the tree, the LPs get harder and the process slows down a bit.

References

[1] T. Achterberg, SCIP – A framework to integrate constraint and mixed integer pro-

gramming, Report 04–19, ZIB, 2004. http://www.zib.de/Publications/abstracts/
ZR-04-19/.

[2] T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Oper. Res.
Lett., 33 (2005), pp. 42–54.

[3] S. Chopra and M. Rao, The partition problem., Math. Programming, 59 (1993),
pp. 87–115.

[4] , Facets of the k-partition polytope., Discrete Appl. Math., 61 (1995), pp. 27–48.
[5] A. Eisenblätter, Frequency Assignment in GSM Networks: Models, Heuristics,

and Lower Bounds, PhD thesis, TU Berlin, 2001.
[6] J. Falkner, F. Rendl, and H. Wolkowicz, A computational study of graph par-

titioning., Math. Programming, 66 (1994), pp. 211–239.

14 KAIBEL, PEINHARD, AND PFETSCH

[7] C. Ferreira, A. Martin, C. de Souza, R. Weismantel, and L. Wolsey, For-

mulations and valid inequalities of the node capacitated graph partitioning problem.,
Math. Programming, 74 (1996), pp. 247–266.

[8] , The node capacitated graph partitioning problem: A computational study.,
Math. Programming, 81 (1998), pp. 229–256.

[9] M. Grötschel and Y. Wakabayashi, A cutting plane algorithm for a clustering

problem., Math. Programming, 45 (1989), pp. 59–96.
[10] , Facets of the clique partitioning polytope., Math. Programming, 47 (1990),

pp. 367–387.
[11] V. Kaibel and M. E. Pfetsch, Packing and partitioning orbitopes. To appear in:

Math. Programming, Ser. A.
[12] G. Kochenberger, F. Glover, B. Alidaee, and H. Wang, Clustering of mi-

croarray data via clique partitioning., J. Comb. Optim., 10 (2005), pp. 77–92.
[13] F. Margot, Pruning by isomorphism in branch-and-cut, Math. Programming, 94

(2002), pp. 71–90.
[14] F. Margot, Exploiting orbits in symmetric ILP., Math. Programming, 98 (2003),

pp. 3–21.
[15] A. Mehrotra and M. A. Trick, Cliques and clustering: A combinatorial ap-

proach., Oper. Res. Lett., 22 (1998), pp. 1–12.
[16] M. M. Sørensen, Polyhedral computations for the simple graph partitioning problem,

tech. rep., AArhus School of Business, 2005.

Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

E-mail address: [kaibel,peinhardt,pfetsch]@zib.de

