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Abstract

We consider a system where the arrivals form a Poisson process and
the required service times of the requests are exponentially distributed.
According to the generalized processor sharing discipline, each request
in the system receives a fraction of the capacity of one processor which
depends on the actual number of requests in the system. We derive sys-
tems of ordinary differential equations for the LST and for the moments
of the conditional waiting time of a request with given required service
time as well as a stable and fast recursive algorithm for the LST of
the second moment of the conditional waiting time, which in particular
yields the second moment of the unconditional waiting time. Moreover,
asymptotically tight upper bounds for the moments of the conditional
waiting time are given. The presented numerical results for the first two
moments of the sojourn times in the M/M/m − PS system show that
the proposed algorithms work well.
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1 Introduction

Processor Sharing (PS) systems have been widely used in the last decades
for modeling and analyzing computer and communication systems. Early

1This work was supported by a grant from the Siemens AG.
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work on PS systems was motivated in the analysis of time sharing systems,
like multi-programmed computer systems, cf. e.g. [Kle], [CMT], [YK]. In
the last years PS systems became popular for studying bandwidth shar-
ing among flows in links of telecommunication networks, cf. e.g. [MR], and
job schedulers in web servers. Generalized processor sharing disciplines –
combined with leaky bucket admission control – for packet schedulers in IP
routers and ATM switches are found to have good properties. By choosing
appropriate weights for the generalized processor sharing discipline, a cer-
tain quality of service (QoS) can be guaranteed for different packet streams
with different bandwidth requirements, cf. e.g. [PG], [ZTK], [EM], [BBJ].
Generalized processor sharing disciplines are appropriate for modeling very
complex scheduling strategies, including multi-class and multi-buffer sys-
tems as well as multi-processor systems. During the last two decades a huge
number of models and various kinds of processor and generalized processor
sharing disciplines have been investigated. We mention here only a few of
them: [AH], [AAB], [BMU], [BP], [BB1]–[BB4], [GRZ], [Mo2], [Nun], [RS],
[SGB], [Ya1], [Ya2] and the references therein.

In this paper we deal with waiting times of requests in a node, where the
requests are served according to the following Generalized Processor Sharing
(GPS) discipline, cf. [Coh]. If there are n ∈ N := {1, 2, . . .} requests in the
node then each of them receives a positive fraction ϕ(n) of the capacity
of one processor, i.e., each of the n requests receives during an interval of
length ∆τ the amount ϕ(n)∆τ of service. Concerning the fractions ϕ(n)
we assume that 0 < ϕ(n) ≤ 1, n ∈ N, and that there exists a n ∈ N such
that ϕ(n) < 1, ensuring that the waiting times are non-negative1. In case
of ϕ1(n) = 1/n, n ∈ N, we obtain the dynamics of the well-known single
server PS system, also called single server system with Egalitarian Processor
Sharing (EPS) discipline, cf. [CMT], [Ya2], in case of ϕ1,k(n) = 1/(n + k),
n ∈ N, we have a single server PS system with k ∈ N permanent requests
in the system, cf. [YY], [BB], in case of ϕm(n) = min(m/n, 1), n ∈ N, a
m-server PS system, where all requests are served in a PS mode, but each
request receives at most the capacity of one processor, cf. [Coh] p. 283, [Br1],
[Br2], [GRZ], in case of ϕm,k(n) = min(m/(n + k), 1), n ∈ N, a m-server PS
system with k ∈ N permanent requests.

A system working under the GPS discipline and where the requests ar-
rive according to a Poisson process of intensity λ, the required service times
are i.i.d. with df. B(x) := P (S ≤ x), where S denotes a generic service

1In case of ϕ(n) = 1, n ∈ N, the system corresponds to a M/GI/∞ system, where no
waiting occurs.
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time, and finite mean ES and independent of the arrival process is de-
noted by M/GI/GPS, the corresponding m-server PS system is denoted by
M/GI/m − PS.

Networks with nodes working under the GPS discipline are investigated
in [Coh], [BP]. In particular, for the M/GI/GPS system the following basic
results are known, cf. [Coh] (7.18) and (7.19). If the stability condition

∞
∑

n=0

n
∏

j=1

̺χ(j)

j
< ∞, (1.1)

where

χ(n) :=
1

ϕ(n)
, n ∈ N, χ(0) := 0 (1.2)

and ̺ := λES denotes the offered load, is satisfied, then the distribution
p(n) := P (N = n), n ∈ Z+, of the stationary number N of requests in the
system exists and is given by

p(n) =

( ∞
∑

m=0

m
∏

j=1

̺χ(j)

j

)−1 n
∏

j=1

̺χ(j)

j
, n ∈ Z+. (1.3)

Moreover, the stationary distribution of the Markov process of the vector of
the number of requests in the system and their attained as well as residual
service times is also of a product form, cf. [Coh] p. 279.

Let V the sojourn time of an arbitrary arriving request with required
service time S. Then W := V − S is its waiting time, and Little’s law
provides

EV =
1

λ
EN, EW = EV − ES. (1.4)

From (1.3) it follows that (1.4) is equivalent to

EV = ES E[χ(N+1)], EW = ES E[χ(N+1)−1]. (1.5)

Further, for the conditional sojourn time V (τ) and conditional waiting time
W (τ) := V (τ)−τ of a request with required service time τ ∈ R+ it is stated
that

EV (τ) =
τ

ES
EV, EW (τ) =

τ

ES
EW, (1.6)

cf. [Coh] (7.27). It seems that in case of the general M/GI/GPS system for
V , W and V (τ), W (τ) besides (1.4)–(1.6) there are known only asymptotic
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results for heavy tailed service times, cf. [GRZ]. However, for special cases
several results are well-known. For the M/M/1 − PS system in [CMT],
[Mo1], [SJ] there are given analytical results and numerical algorithms for
conditional sojourn time characteristics, in particular for the LST, the dis-
tribution function and the variance of V (τ), cf. also [Ya2] (4.1)–(4.4).

For the M/GI/1 − PS system the LST of V (τ) was firstly derived in
[KY], cf. also [Ya1], leading in particular to expressions for the variance
of V (τ). Corresponding results for the M/GI/1 − PS system with k per-
manent requests are given in [BB], [YY]. For the M/PH/1 − PS system
recently in [SGB] it is presented a numerical algorithm – basing on a uni-
formization procedure – for computing sojourn time characteristics. For the
M/M/2−PS system in [Tol] the second moment of V (τ) is given. The gen-
eral M/M/m−PS system is treated in [Br1], [Br2]. By using the approach
of [CMT], for the LST’s of the conditional waiting times Wn(τ) of a request
with required service time τ and which finds n requests at its arrival in the
system, a system of differential equations is derived. Further, numerical
algorithms for computing the first two moments of the conditional waiting
times Wn of a tagged request which finds at its arrival n requests in the
system are presented and illustrated, where numerical problems in case of
light traffic are reported.

The aim of this paper is to derive stable and efficient numerical algo-
rithms for the variances var(W ) and var(W (τ)) in the general M/M/GPS
system. The paper is organized as follows. In Section 2 for the M/M/GPS
system first we derive a linear system of differential equations for the LST’s
of Wn(τ) by using the approach from [CMT] and [Br1], which provides
asymptotically tight upper bounds for the moments of W (τ) as well as cor-
responding linear systems of differential equations for the moments of Wn(τ)
and linear systems of algebraic equations for the LST’s of the moments of
Wn(τ). In Section 3 we derive a stable and fast recursive algorithm for com-
puting the LST of the second moment of W (τ) in the right half plane, which
in particular yields the second moment of W . The first two moments of the
sojourn times V and V (τ) in the M/M/GPS system as well as numerical
results for the M/M/m − PS system are given in Section 4.

2 Moments of the conditional waiting times

Consider a M/M/GPS system with arrival intensity λ and exponential ser-
vice times with parameter µ := 1/ES in steady state, i.e., let the stability
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condition (1.1) be satisfied. For complex s with ℜs > 0 let

wn(s, τ) := E[e−sWn(τ)], n ∈ Z+, τ ∈ R+,

be the LST of the waiting time of a request with required service time τ and
finding at its arrival n requests in the system. Extending the ideas given in
[CMT] and [Br1] for the M/M/1 − PS and M/M/m − PS system, respec-
tively, we obtain the following system of ordinary differential equations:

Lemma 2.1 For fixed complex s with ℜs > 0, the LST’s wn(s, τ) of the
conditional waiting time distributions in the M/M/GPS system satisfy the
linear system of ordinary differential equations

∂

∂ τ
wn(s, τ) = nµ w(n−1)+(s, τ)

− (nµ + λχ(n+1) + s(χ(n+1)−1))wn(s, τ)

+ λχ(n+1)wn+1(s, τ), n ∈ Z+, τ ∈ (0,∞), (2.1)

with the initial condition

wn(s, 0) = 1, n ∈ Z+. (2.2)

Proof Let τ > 0. Consider a tagged request with required residual service
time τ + ∆τ , where n further requests are in the system. Then during the
time interval I of length χ(n + 1)∆τ the tagged request receives an amount
∆τ of service time and the waiting time during I is (χ(n+1)−1)∆τ , provided
that there is whether an arrival nor a departure during I. Neglecting terms
of order o(∆τ), the probability of an arrival during I is λχ(n+1)∆τ , and the
probability of a departure is nϕ(n + 1)µχ(n + 1)∆τ = nµ∆τ as the tagged
request with required residual service time τ + ∆τ cannot depart during I
if ∆τ is sufficiently small. In view of the Markov property, thus we obtain

E[e−sWn(τ+∆τ)] = λχ(n+1)∆τE[e−sWn+1(τ)]

+ (1 − (λχ(n+1) + nµ)∆τ)E[e−s((χ(n+1)−1)∆τ+Wn(τ))]

+ nµ∆τ E[e
−sW(n−1)+

(τ)
] + o(∆τ). (2.3)

Rearranging the terms in (2.3) appropriately and taking the limit ∆τ ↓ 0, it
follows (2.1). The initial condition (2.2) is an immediate consequence from
Wn(0) ≡ 0, n ∈ Z+, in view of the GPS discipline and ϕ(n) > 0, n ∈ N.
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2.1 Moments of W (τ)

Let

M (k)
n (τ) := EW k

n (τ), k ∈ Z+, (2.4)

be the k-th moments of the waiting times Wn(τ), n ∈ Z+, τ ∈ R+. Note

that M
(0)
n (τ) = 1 for n ∈ Z+, τ ∈ (0,∞) and M

(k)
n (0) = 0 for k ∈ Z+,

n ∈ Z+. Further, let

M (k)(τ) := EW k(τ) =
∞
∑

n=0

p(n)M (k)
n (τ), k ∈ Z+, τ ∈ R+, (2.5)

be the k-th moment of the conditional waiting time W (τ) of an arriving
request with required service time τ .

Lemma 2.2 For k ∈ N, τ ∈ R+ it holds

M (k)(τ) ≤ τk
∞
∑

n=0

(χ(n+1)−1)kp(n), (2.6)

∞
∑

n=0

(χ(n+1)−1)p(n)M (k−1)
n (τ) ≤ τk−1

∞
∑

n=0

(χ(n+1)−1)kp(n). (2.7)

Proof For s ∈ (0,∞), τ ∈ R+, k ∈ Z+, n ∈ Z+ let

M (k)
n (s, τ) := E[e−sWn(τ)W k

n (τ)] = (−1)k
∂k

∂sk
wn(s, τ), (2.8)

M (k)(s, τ) := E[e−sW (τ)W k(τ)] =

∞
∑

n=0

p(n)M (k)
n (s, τ). (2.9)

Note that these expectations are bounded by k!s−k because of ex ≥ xk/k! for
x ∈ R+. For fixed s ∈ (0,∞), k ∈ N, (2.1) yields the system of differential
equations

∂

∂τ
M (k)

n (s, τ) = nµM
(k)
(n−1)+

(s, τ)

− (nµ + λχ(n+1) + s(χ(n+1)−1))M (k)
n (s, τ)

+ λχ(n+1)M
(k)
n+1(s, τ) + k(χ(n+1)−1)M (k−1)

n (s, τ),

n ∈ Z+, τ ∈ (0,∞). (2.10)
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Multiplying (2.10) by p(n) and using (1.3) and (1.2), it follows that (2.10)
is equivalent to

∂

∂τ
( p(n)M (k)

n (s, τ)) = λχ(n)p((n−1)+)M
(k)
(n−1)+

(s, τ)

− (nµ + λχ(n+1) + s(χ(n+1)−1))p(n)M (k)
n (s, τ)

+ (n+1)µp(n+1)M
(k)
n+1(s, τ) + k(χ(n+1)−1)p(n)M (k−1)

n (s, τ),

n ∈ Z+, τ ∈ (0,∞). (2.11)

For k ∈ N \ {1}, τ ∈ (0,∞) by means of Hölder’s inequality we find

M (k−1)
n (s, τ) = E[e−sWn(τ)W k−1

n (τ)]

≤ (E[e−sWn(τ)])1/k(E[e−sWn(τ)W k
n (τ)])(k−1)/k

≤ (M (k)
n (s, τ))(k−1)/k .

Using the above inequality, applying Hölder’s inequality to the series and
taking into account (2.9) provides

∞
∑

n=0

(χ(n+1)−1)p(n)M (k−1)
n (s, τ)

≤

∞
∑

n=0

(χ(n+1)−1)p(n)(M (k)
n (s, τ))(k−1)/k

≤

( ∞
∑

n=0

(χ(n+1)−1)kp(n)

)1/k( ∞
∑

n=0

p(n)M (k)
n (s, τ)

)(k−1)/k

=

( ∞
∑

n=0

(χ(n+1)−1)kp(n)

)1/k

(M (k)(s, τ))(k−1)/k . (2.12)

Note that (2.12) also holds for k = 1 in view of (2.8). Assume now that

∞
∑

n=0

(χ(n+1)−1)p(n) < ∞.

Since the sequence (M
(k)
n (s, τ))n∈Z+ is bounded, summing up (2.11) over

n ∈ Z+ and taking into account (2.9) provides that for s ∈ (0,∞), k ∈ N

∂

∂τ
M (k)(s, τ) =

∞
∑

n=0

(χ(n+1)−1)p(n)(kM (k−1)
n (s, τ)−sM (k)

n (s, τ)),

τ ∈ (0,∞). (2.13)
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For k ∈ N, τ ∈ (0,∞) from (2.13) and (2.12) it follows

∂

∂τ
M (k)(s, τ) ≤ k

( ∞
∑

n=0

(χ(n+1)−1)kp(n)

)1/k

(M (k)(s, τ))(k−1)/k ,

which is equivalent to

∂

∂τ
(M (k)(s, τ))1/k ≤

( ∞
∑

n=0

(χ(n+1)−1)kp(n)

)1/k

. (2.14)

Because of M (k)(s, 0) = 0, integrating and taking the k-th power yields that

M (k)(s, τ) ≤ τk
∞
∑

n=0

(χ(n+1)−1)kp(n), k ∈ N, τ ∈ R+. (2.15)

Taking into account (2.9), (2.5), the limit s ↓ 0 provides (2.6). For k ∈ N,
τ ∈ (0,∞) from (2.12) and (2.15) we find (2.7) after taking the limit s ↓ 0.

Theorem 2.1 The k-th moments M
(k)
n (τ) and M (k)(τ) are finite if

E[(χ(N+1)−1)k ] < ∞. (2.16)

For k ∈ N it holds

M (k)(τ) ≤ τkE[(χ(N+1)−1)k ], τ ∈ R+, (2.17)

lim
τ↓0

M (k)(τ)

τk
= E[(χ(N+1)−1)k ]. (2.18)

Proof Obviously, (2.17) is equivalent to (2.6). Because of (2.17) and (2.5),

M (k)(τ) and the M
(k)
n (τ) are finite if (2.16) is fulfilled. For s ∈ (0,∞),

τ ∈ (0,∞), k ∈ N, n ∈ Z+ from (2.10) it follows

∂

∂τ
(e(nµ+λχ(n+1)+s(χ(n+1)−1))τ M (k)

n (s, τ))

≥ k(χ(n+1)−1)e(nµ+λχ(n+1)+s(χ(n+1)−1))τ M (k−1)
n (s, τ).

Because of M
(k)
n (s, 0) = 0, integrating and taking the limit s ↓ 0 yields

e(nµ+λχ(n+1))τ M (k)
n (τ) ≥ k(χ(n+1)−1)

∫ τ

0
e(nµ+λχ(n+1))ξM (k−1)

n (ξ)dξ,
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and because of M
(0)
n (τ) = 1 for n ∈ Z+, τ ∈ (0,∞), by induction over k ∈ N

we find

e(nµ+λχ(n+1))τ M (k)
n (τ) ≥ τk(χ(n+1)−1)k.

Multiplying by p(n)e−(nµ+λχ(n+1))τ , summing up over n ∈ Z+ and taking
into account (2.5) implies

M (k)(τ) ≥ τk
∞
∑

n=0

(χ(n+1)−1)kp(n)e−(nµ+λχ(n+1))τ . (2.19)

The estimates (2.6) and (2.19) provide (2.18).

For the variance of W (τ) from (2.5), (1.6), (1.5), (2.17) and (2.18) we find

Corollary 2.1 Let (2.16) be fulfilled for k = 2. Then it holds

var(W (τ)) ≤ τ2var(χ(N+1)), τ ∈ R+, (2.20)

lim
τ↓0

var(W (τ))

τ2
= var(χ(N+1)). (2.21)

Let k ∈ N be fixed such that (2.16) is fulfilled, i.e., we assume that the
k-th moment of χ(N + 1) − 1 is finite. In view of Theorem 2.1, taking the
limit s ↓ 0 in (2.10) provides

d

dτ
M (k)

n (τ) = nµM
(k)
(n−1)+

(τ) − (nµ + λχ(n+1))M (k)
n (τ)

+ λχ(n+1)M
(k)
n+1(τ) + k(χ(n+1)−1)M (k−1)

n (τ),

n ∈ Z+, τ ∈ (0,∞), (2.22)

and because of Lemma 2.2,

sM (k)
n (s, τ) = E[(e−sWn(τ)sWn(τ))W k−1

n (τ)] ≤ M (k−1)
n (τ),

n ∈ Z+, τ ∈ (0,∞),

and Lebesgue’s theorem, taking the limit s ↓ 0 in (2.13) yields

d

dτ
M (k)(τ) = k

∞
∑

n=0

(χ(n+1)−1)p(n)M (k−1)
n (τ), τ ∈ (0,∞). (2.23)
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Therefore, M (k)(τ) is a monotonically increasing and convex function of τ .
Integrating (2.23) and taking into account M (k)(0) = 0, it follows

M (k)(τ) = k

∞
∑

n=0

(χ(n+1)−1)p(n)H(k−1)
n (τ), τ ∈ R+, (2.24)

where

H(ℓ)
n (τ) :=

∫ τ

0
M (ℓ)

n (ξ)dξ, ℓ ∈ {0, 1, . . . , k}, n ∈ Z+, τ ∈ R+, (2.25)

and

H(0)
n (τ) = τ, n ∈ Z+, τ ∈ R+, (2.26)

in view of M
(0)
n (τ) = 1 for n ∈ Z+, τ ∈ (0,∞). Integrating (2.22), for fixed

ℓ ∈ {1, . . . , k} for the integrals H
(ℓ)
n (τ), n ∈ Z+, we obtain the system of

ordinary differential equations

d

dτ
H(ℓ)

n (τ) = nµH
(ℓ)
(n−1)+

(τ) − (nµ + λχ(n+1))H(ℓ)
n (τ)

+ λχ(n+1)H
(ℓ)
n+1(τ) + ℓ(χ(n+1)−1)H(ℓ−1)

n (τ),

n ∈ Z+, τ ∈ R+, (2.27)

with the initial condition

H(ℓ)
n (0) = 0, n ∈ Z+. (2.28)

Remark 2.1 Let (2.16) be fulfilled for k = 1. From (2.5), (2.24) for k = 1
and (2.26) it follows

EW (τ) = τE[χ(N+1)−1], τ ∈ R+.

In view of (1.5), we have a simple proof of (1.6) in case of a M/M/GPS
system.

Consider the case of k = 2 in more detail. For computing the second

moment M (2)(τ) via (2.24), we need the H
(1)
n (τ), n ∈ Z+, which are given by

(2.26)–(2.28) for ℓ = 1. This system of differential equations can be solved
by numerical integration in an efficient manner, cf. Section 4.1. Another
approach for computing the second moment M (2)(τ) – not outlined in this
paper – is based on a numerical computation of its LST in the right half
plane and an application of the inversion formula for LST’s. This approach
would make use of results given in the following, too.
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2.2 LST’s of the moments of W (τ) and the moments of W

Let k ∈ N be fixed such that (2.16) is fulfilled. For complex s with ℜs > 0
and ℓ ∈ {0, 1, . . . , k} let

L(ℓ)
n (s) :=

∫

R+

e−sτdM (ℓ)
n (τ), n ∈ Z+, (2.29)

L(ℓ)(s) :=

∫

R+

e−sτdM (ℓ)(τ) =

∞
∑

n=0

p(n)L(ℓ)
n (s), (2.30)

be the LST’s of M
(ℓ)
n (τ) and M (ℓ)(τ), respectively, where

L(0)
n (s) = L(0)(s) = 1, n ∈ Z+,

in view of M
(0)
n (τ) = M (0)(τ) = I{τ > 0}, n ∈ Z+, τ ∈ R+.

Remark 2.2 Using integration by parts, for σ ∈ (0,∞) from (2.30), (2.17)
we find

L(k)(σ) = σ

∫

R+

e−στM (k)(τ)dτ ≤ k!σ−kE[(χ(N+1)−1)k ], (2.31)

which is tight for k = 1 and always asymptotically tight for σ → ∞, cf.
Theorem 2.1. Because of (2.31) and (2.16), L(k)(σ) exists for σ ∈ (0,∞).
Note that the existence of L(k)(σ) for fixed σ ∈ (0,∞) implies the existence

of L
(k)
n (σ) for n ∈ Z+ in view of (2.30), and hence the existence of the LST’s

L
(k)
n (s) and L(k)(s) for complex s with ℜs ≥ σ.

As the service times are exponentially distributed with parameter µ, the

moments M
(ℓ)
n := EW ℓ

n and M (ℓ) := EW ℓ are just given by

M (ℓ)
n = L(ℓ)

n (µ), ℓ ∈ {0, 1, . . . , k}, n ∈ Z+, (2.32)

M (ℓ) = L(ℓ)(µ), ℓ ∈ {0, 1, . . . , k}, (2.33)

where

M (0)
n = M (0) = 1, n ∈ Z+.

Multiplying (2.22) by se−sτ , integrating over R+ with respect to τ , using

integration by parts and that M
(k)
n (0) = M

(k−1)
n (0) = 0 for n ∈ Z+, for fixed

s with ℜs > 0 we obtain the linear system of algebraic equations

nµL
(k)
(n−1)+

(s) − (nµ + λχ(n+1) + s)L(k)
n (s) + λχ(n+1)L

(k)
n+1(s)

= −k(χ(n+1)−1)L(k−1)
n (s), n ∈ Z+. (2.34)
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Remark 2.3 In view of L
(0)
n (s) = 1, n ∈ Z+, for fixed s with ℜs > 0, in

principle the sequences (L
(k)
n (s))n∈Z+ can be computed by solving a suitable

finite version of the linear system of equations (2.34) iteratively, recursively
with respect to k, cf. (3.11), (3.28), (3.2) in Section 3 for the case of k = 1.

Multiplying (2.34) by p(n) and using (1.3) and (1.2), it follows that (2.34)
is equivalent to

λχ(n)p((n−1)+)L
(k)
(n−1)+

(s) − (nµ + λχ(n+1) + s)p(n)L(k)
n (s)

+ (n+1)µp(n+1)L
(k)
n+1(s)

= −k(χ(n+1)−1)p(n)L(k−1)
n (s), n ∈ Z+. (2.35)

Multiplying (2.23) by se−sτ , integrating over R+ with respect to τ , using

integration by parts and that M
(k−1)
n (0) = 0 for n ∈ Z+, for fixed s with

ℜs > 0 we obtain

L(k)(s) =
k

s

∞
∑

n=0

(χ(n+1)−1)p(n)L(k−1)
n (s). (2.36)

Because of L
(0)
n (s) = 1 for n ∈ Z+, from (2.36) for k = 1 we find

L(1)(s) =
1

s

∞
∑

n=0

(χ(n+1)−1)p(n), (2.37)

which is the LST translation of (1.6), and for k = 2 we obtain

L(2)(s) =
2

s

∞
∑

n=0

(χ(n+1)−1)p(n)L(1)
n (s). (2.38)

For s = µ from (2.36), (2.32), (2.33) it follows

M (k) =
k

µ

∞
∑

n=0

(χ(n+1)−1)p(n)M (k−1)
n . (2.39)

The second moment of the waiting time W is given by L(2)(µ), cf. (2.33). In
Section 3 we present a stable recursive numerical algorithm for computing
L(2)(s) for fixed complex s with ℜs > 0 via (2.35) for k = 1 and (2.38).
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3 A recursive algorithm for computing L(2)(s)

In this section we derive a stable and fast recursive algorithm for computing
L(2)(s). We assume that

E[(χ(N+1)−1)2] < ∞ (3.1)

is fulfilled. Let ℜs > 0 in the following, and let

zn(s) := p(n)L(1)
n (s), n ∈ Z+. (3.2)

From (2.29) for ℓ = 1 it follows

|zn(s)| =

∣

∣

∣

∣

p(n)

∫

R+

e−sτdM (1)
n (τ)

∣

∣

∣

∣

≤ p(n)

∫

R+

|e−sτ |dM (1)
n (τ) ≤ zn(σ),

ℜs ≥ σ > 0, n ∈ Z+. (3.3)

Because of (3.1), (2.30) for ℓ = 1 and (2.38), we have

L(1)(s) =
∞

∑

n=0

zn(s), (3.4)

L(2)(s) =
2

s

∞
∑

n=0

(χ(n+1)−1)zn(s). (3.5)

The representations (3.4) and (3.5) imply that

lim
n→∞

χ(n+1)zn(s) = 0. (3.6)

In view of (2.35) for k = 1 and L
(0)
n (s) = 1, the zn(s), n ∈ Z+, satisfy

the recursion

λχ(n)z(n−1)+(s) − (nµ + λχ(n+1) + s)zn(s) + (n+1)µzn+1(s)

= −(χ(n+1)−1)p(n), n ∈ Z+, (3.7)

and because of (2.34) for k = 1 and L
(0)
n (s) = 1, for fixed ℓ ∈ N we have the

linear system of equations

zn(s)

p(n)
= (nµ + λχ(n+1) + s)−1

(

nµ
z(n−1)+(s)

p((n−1)+)
+ λχ(n+1)

zn+1(s)

p(n+1)
+ (χ(n+1)−1)

)

,

n = 0, . . . , ℓ−1, (3.8)
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for (zn(s)/p(n))n∈{0,...,ℓ−1} if zℓ(s)/p(ℓ) is given. For fixed ℓ ∈ Z+ let

(a
(ℓ)
n (s))n∈Z+ the solution of the homogeneous version of the recursion (3.7)

λχ(n)z̃(n−1)+(s) − (nµ + λχ(n+1) + s)z̃n(s) + (n+1)µz̃n+1(s) = 0,

n ∈ Z+, (3.9)

with the inhomogeneous side condition a
(ℓ)
ℓ (s) := 1, and for fixed ℓ ∈ Z+

let (b
(ℓ)
n (s))n∈Z+ the solution of the inhomogeneous recursion (3.7) with the

homogeneous side condition b
(ℓ)
ℓ (s) := 0. Dividing (3.9) by p(n) and taking

into account (1.3), for fixed ℓ ∈ N it follows that (a
(ℓ)
n (s)/p(n))n∈{0,...,ℓ−1} is

given by the uniquely determined solution of the linear system of equations

a
(ℓ)
n (s)

p(n)
= (nµ + λχ(n+1) + s)−1

(

nµ
a

(ℓ)
(n−1)+

(s)

p((n−1)+)
+ λχ(n+1)

a
(ℓ)
n+1(s)

p(n+1)

)

,

n = 0, . . . , ℓ−1, (3.10)

where a
(ℓ)
ℓ (s)/p(ℓ) = 1/p(ℓ). Analogously, dividing (3.7) by p(n) and taking

into account (1.3), for fixed ℓ ∈ N it follows that (b
(ℓ)
n (s)/p(n))n∈{0,...,ℓ−1} is

given by the uniquely determined solution of the linear system of equations

b
(ℓ)
n (s)

p(n)
= (nµ + λχ(n+1) + s)−1

(

nµ
b
(ℓ)
(n−1)+

(s)

p((n−1)+)
+ λχ(n+1)

b
(ℓ)
n+1(s)

p(n+1)
+ (χ(n+1)−1)

)

,

n = 0, . . . , ℓ−1, (3.11)

where b
(ℓ)
ℓ (s)/p(ℓ) = 0, cf. (3.8). Moreover, from (3.8) and (3.11) we obtain

zn(s)−b
(ℓ)
n (s)

p(n)
= (nµ + λχ(n+1) + s)−1

(

nµ
z(n−1)+(s)−b

(ℓ)
(n−1)+

(s)

p((n−1)+)
+ λχ(n+1)

zn+1(s)−b
(ℓ)
n+1(s)

p(n+1)

)

,

n = 0, . . . , ℓ−1, (3.12)

where (zℓ(s) − b
(ℓ)
ℓ (s))/p(ℓ) = zℓ(s)/p(ℓ). The linear systems of equations

(3.10)–(3.12) can be solved iteratively due to the row sum criterion. In view
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of a
(ℓ)
ℓ (s) = a

(ℓ)
ℓ (σ) = 1, b

(ℓ)
ℓ (s) = b

(ℓ)
ℓ (σ) = 0 and (3.3) for n = ℓ, by starting

the iterations from zero, by induction over the iteration steps and taking
the limit thus it follows that for ℜs ≥ σ > 0 and n ∈ {0, . . . , ℓ} it holds

|a(ℓ)
n (s)| ≤ a(ℓ)

n (σ), (3.13)

|b(ℓ)
n (s)| ≤ b(ℓ)

n (σ), (3.14)

|zn(s)−b(ℓ)
n (s)| ≤ zn(σ)−b(ℓ)

n (σ). (3.15)

Assume that there exists j ∈ Z+ such that a
(ℓ)
j (s) = 0. Then the se-

quence (a
(j)
n (s)+a

(ℓ)
n (s))n∈Z+ satisfies (3.9) and the side condition of the se-

quence (a
(j)
n (s))n∈Z+ , and thus it follows a

(j)
n (s) + a

(ℓ)
n (s) = a

(j)
n (s), n ∈ Z+,

in contradiction to a
(ℓ)
ℓ (s) = 1. Hence it holds

a(ℓ)
n (s) 6= 0, n ∈ Z+. (3.16)

Since the sequences (a
(ℓ)
n (s))n∈Z+ and (b

(ℓ)
n (s))n∈Z+ are uniquely determined,

further we obtain

a(ℓ+1)
n (s) =

a
(ℓ)
n (s)

a
(ℓ)
ℓ+1(s)

, n ∈ Z+, (3.17)

as the r.h.s. satisfies (3.9) and takes the value 1 for n = ℓ + 1, as well as

b(ℓ+1)
n (s) = b(ℓ)

n (s) −
b
(ℓ)
ℓ+1(s)

a
(ℓ)
ℓ+1(s)

a(ℓ)
n (s), n ∈ Z+, (3.18)

as the r.h.s. satisfies (3.7) and takes the value 0 for n = ℓ + 1.
Summation of (3.7) over n = 0, . . . , j and interchanging n and j, respec-

tively, yield that the zn(s), n ∈ Z+, satisfy also the recursion

zn+1(s) =
λχ(n+1)

(n+1)µ
zn(s) +

s

(n+1)µ

n
∑

j=0

zj(s)

−
1

(n+1)µ

n
∑

j=0

(χ(j+1)−1)p(j), n ∈ Z+. (3.19)

Multiplying (3.19) by (n + 1) and taking the limit n → ∞, because of (3.6),
(3.4) and (2.37) we find the boundary condition

lim
n→∞

nzn(s) = 0. (3.20)
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Analogously, for fixed ℓ ∈ Z+ the sequence (a
(ℓ)
n (s))n∈Z+ satisfies the homo-

geneous recursion

a
(ℓ)
n+1(s) =

λχ(n+1)

(n+1)µ
a(ℓ)

n (s) +
s

(n+1)µ

n
∑

j=0

a
(ℓ)
j (s), n ∈ Z+, (3.21)

and the sequence (b
(ℓ)
n (s))n∈Z+ satisfies the inhomogeneous recursion

b
(ℓ)
n+1(s) =

λχ(n+1)

(n+1)µ
b(ℓ)
n (s) +

s

(n+1)µ

n
∑

j=0

b
(ℓ)
j (s)

−
1

(n+1)µ

n
∑

j=0

(χ(j+1)−1)p(j), n ∈ Z+. (3.22)

Theorem 3.1 For ℓ ∈ Z+ let (b
(ℓ)
n (s))n∈Z+ the uniquely determined se-

quence satisfying (3.22) and the side condition b
(ℓ)
ℓ (s) = 0. Then for ℜs > 0

it holds

L(1)(s) = lim
ℓ→∞

ℓ
∑

n=0

b(ℓ)
n (s), (3.23)

L(2)(s) = lim
ℓ→∞

2

s

ℓ
∑

n=0

(χ(n+1)−1)b(ℓ)
n (s). (3.24)

Proof Let σ ∈ (0,∞) be fixed. Because of a
(0)
0 (σ) = 1, from (3.21) for

ℓ = 0 and s = σ by induction we find

a(0)
n (σ) >

σ

nµ
, n ∈ N. (3.25)

Let ℓ ∈ N be given. As (zn(σ))n∈Z+ and (b
(ℓ)
n (σ))n∈Z+ satisfy (3.22) for

s = σ, cf. (3.19), and (a
(ℓ)
n (σ))n∈Z+ satisfies the corresponding homogeneous

recursion (3.21) for s = σ, the sequence

(zn(σ) − b(ℓ)
n (σ) − (zℓ(σ)/a

(0)
ℓ (σ))a(0)

n (σ))n∈Z+

satisfies the homogeneous recursion (3.21) for s = σ, too. All terms of this
sequence are zero as obviously the term with index n = ℓ is zero and the

sequence (a
(ℓ)
n (σ))n∈Z+ is uniquely determined by the homogeneous recursion

(3.21) for s = σ and the side condition a
(ℓ)
ℓ (σ) = 1. Thus it holds

zn(σ)−b(ℓ)
n (σ) = (zℓ(σ)/a

(0)
ℓ (σ))a(0)

n (σ), n ∈ Z+. (3.26)
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Hence from (3.15) and (3.25) for n = ℓ, for ℜs ≥ σ > 0 we obtain

|zn(s)−b(ℓ)
n (s)| ≤ zn(σ)−b(ℓ)

n (σ) <
µ

σ
a(0)

n (σ) ℓzℓ(σ), n ∈ Z+, ℓ ∈ N.

(3.27)

Because of (3.20), therefore we conclude that for fixed n ∈ Z+

zn(s) = lim
ℓ→∞

b(ℓ)
n (s) (3.28)

locally uniformly for ℜs > 0. For fixed n ∈ Z+ and ℜs ≥ σ > 0 thus the

sequence (I{n ≤ ℓ}b
(ℓ)
n (s))ℓ∈Z+ converges to zn(s) and is bounded by zn(σ)

because of (3.14), (3.15). Hence (3.4) and (3.5) imply (3.23) and (3.24),
respectively, due to Lebesgue’s theorem.

Now we are in a position to present a stable recursive algorithm for
computing L(2)(s). For fixed complex s with ℜs > 0 and ℓ ∈ Z+ let

x
(ℓ)
1 :=

ℓ
∑

n=0

sb(ℓ)
n (s), (3.29)

x
(ℓ)
2 :=

ℓ
∑

n=0

(χ(n+1)−1)b(ℓ)
n (s), (3.30)

x
(ℓ)
3 :=

ℓ
∑

n=0

(χ(n+1)−1)p(n), (3.31)

x
(ℓ)
4 :=

ℓ
∑

n=0

sa(ℓ)
n (s), (3.32)

x
(ℓ)
5 :=

ℓ
∑

n=0

(χ(n+1)−1)a(ℓ)
n (s). (3.33)

In view of a
(0)
0 (s) = 1 and b

(0)
0 (s) = 0, we have the initial values

x
(0)
1 = 0, x

(0)
2 = 0, x

(0)
3 = (χ(1)−1)p(0), x

(0)
4 = s,

x
(0)
5 = χ(1)−1. (3.34)
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The recursion runs as follows: Let we are given x
(ℓ)
1 , . . . , x

(ℓ)
5 for a fixed

ℓ ∈ Z+. Because of a
(ℓ)
ℓ (s) = 1, b

(ℓ)
ℓ (s) = 0, (3.21) and (3.22), then we have

a
(ℓ)
ℓ+1(s) =

1

(ℓ+1)µ
(λχ(ℓ+1) + x

(ℓ)
4 ), (3.35)

b
(ℓ)
ℓ+1(s) =

1

(ℓ+1)µ
(x

(ℓ)
1 − x

(ℓ)
3 ), (3.36)

and because of a
(ℓ+1)
ℓ+1 (s) = 1, b

(ℓ+1)
ℓ+1 (s) = 0, (3.17) and (3.18), we obtain

x
(ℓ+1)
1 =

ℓ
∑

n=0

s
(

b(ℓ)
n (s) −

b
(ℓ)
ℓ+1(s)

a
(ℓ)
ℓ+1(s)

a(ℓ)
n (s)

)

= x
(ℓ)
1 −

b
(ℓ)
ℓ+1(s)

a
(ℓ)
ℓ+1(s)

x
(ℓ)
4 , (3.37)

x
(ℓ+1)
2 =

ℓ
∑

n=0

(χ(n+1)−1)
(

b(ℓ)
n (s) −

b
(ℓ)
ℓ+1(s)

a
(ℓ)
ℓ+1(s)

a(ℓ)
n (s)

)

= x
(ℓ)
2 −

b
(ℓ)
ℓ+1(s)

a
(ℓ)
ℓ+1(s)

x
(ℓ)
5 , (3.38)

x
(ℓ+1)
3 = x

(ℓ)
3 + (χ(ℓ+2)−1)p(ℓ+1), (3.39)

x
(ℓ+1)
4 =

ℓ
∑

n=0

s
a

(ℓ)
n (s)

a
(ℓ)
ℓ+1(s)

+ s =
1

a
(ℓ)
ℓ+1(s)

x
(ℓ)
4 + s, (3.40)

x
(ℓ+1)
5 =

ℓ
∑

n=0

(χ(n+1)−1)
a

(ℓ)
n (s)

a
(ℓ)
ℓ+1(s)

+ (χ(ℓ+2)−1)

=
1

a
(ℓ)
ℓ+1(s)

x
(ℓ)
5 + (χ(ℓ+2)−1). (3.41)

Theorem 3.1 now reads

L(1)(s) =
1

s
lim
ℓ→∞

x
(ℓ)
1 , L(2)(s) =

2

s
lim
ℓ→∞

x
(ℓ)
2 . (3.42)

Moreover, (2.37) implies

L(1)(s) =
1

s
lim
ℓ→∞

x
(ℓ)
3 , (3.43)

which can be used for controlling the numerical accuracy.
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Remark 3.1 Note that the recursive computation of x
(ℓ)
2 is of complexity

O(ℓ). Our non-linear recursion avoids the numerical instability of a direct

recursive computation of (b
(ℓ)
n (s))n∈{0,...,ℓ−1} via (3.10) and (3.11), cf. [Br1]

p. 69 for the case of a M/M/m − PS system and s = µ, as well as the
solution of the ℓ-dimensional linear system of equations (3.11) by iteration,
being of much higher complexity.

4 Mean and variance of the sojourn times

We assume that

E[(χ(N+1)−1)2] < ∞ (4.1)

is fulfilled. Because of

V = W + S, V (τ) = W (τ) + τ, (4.2)

the means EV and EW of the sojourn time V and waiting time W are
related by EV = EW + ES, and the conditional means EV (τ) and EW (τ)
by EV (τ) = EW (τ) + τ . In view of (4.2), for the conditional variances
obviously it holds

var(V (τ)) = var(W (τ)). (4.3)

Because of (1.6) and (4.3), for the second moments EV 2, EW 2 we obtain

EV 2 −
ES2

(ES)2
(EV )2 =

∫

R+

EV 2(τ)dB(τ) −

∫

R+

( τ

ES
EV

)2
dB(τ)

=

∫

R+

(EV 2(τ) − (EV (τ))2)dB(τ) =

∫

R+

var(V (τ))dB(τ)

=

∫

R+

var(W (τ))dB(τ) = EW 2 −
ES2

(ES)2
(EW )2. (4.4)

In view of ES2 = 2(ES)2, from (4.4) and (2.20) for the variances it follows

0 ≤ var(V ) − (EV )2 = var(W ) − (EW )2 ≤ 2(ES)2var(χ(N+1)).

(4.5)

Remark 4.1 (i) Note that in (4.5) the sojourn and waiting time occur sym-
metrically. This symmetry reflects the fact that statements for the sojourn
times hold, which are analogous to the results for the waiting times given in
the preceding sections and which can be derived analogously, too.
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(ii) Note that (4.5) implies

var(V ) = var(W ) + 2EWES + var(S). (4.6)

The quantity 2EWES is a measure for the dependence of waiting and service
times under generalized processor sharing. Note that they are independent
in FCFS systems, which yields var(V ) = var(W ) + var(S) there.

4.1 Numerical results for the sojourn times in M/M/m− PS

Table 4.1 and Figure 4.1 have been drawn up using the derived algorithms.
The variance var(W (τ)) has been computed by solving an appropriate finite
version of the system of differential equations (2.26)–(2.28) for ℓ = 1 numer-
ically via Euler integration and using a convergence acceleration procedure.
The algorithm for var(W (τ)) is numerically stable up to ̺/m ≈ 0.99 if µτ
is not too large, the algorithm for var(W ) given in Section 3 is numerically
stable up to ̺/m ≈ 0.999 and very fast.

Having in mind a possible time scaling, the mean service time is set to
ES = 1 without loss of generality. In Table 4.1 there are given the mean EV
and variance var(V ) of the sojourn time V as well as the variance var(V (τ))
of the conditional sojourn time V (τ) of a request with required service time
τ = 0.5, 1, 2, 4, 8 in the M/M/m − PS system. Remember that for the
mean EV (τ) of the conditional sojourn time V (τ) it holds (1.6). For fixed
̺/m < 1, the mean EV and variance var(V ) of the sojourn time V as well
as the mean EV (τ) and the variance var(V (τ)) of the conditional sojourn
time V (τ) for fixed τ seem to be decreasing with respect to the number
m of processors (economy of scale). The squared coefficient of variation
c2
V := var(V )/(EV )2 of the sojourn time V seems to be increasing with

respect to the offered load ̺, but c2
V seems to be decreasing with respect to

the number m of processors for fixed ̺/m < 1.
In Figure 4.1 there is given the variance var(V (τ)) of the conditional

sojourn time V (τ) in the M/M/m−PS system as a function of the required
service time τ . It can be seen that var(V (τ)) is well approximated by an
affine function for large values of τ . However, due to (4.3) and Corollary 2.1,
var(V (τ)) is well approximated by τ2var(χ(N + 1)) for small values of τ
and always bounded by τ2var(χ(N + 1)).
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Table 4.1: The mean EV and variance var(V ) of the sojourn time V and the
variance var(V (τ)) of the conditional sojourn time V (τ) in M/M/m − PS
in case of ES = 1. Remember that EV (τ) = (τ/ES)EV .

var(V (τ))
̺/m m EV var(V )

τ = 0.5 τ = 1.0 τ = 2.0 τ = 4.0 τ = 8.0

0.30 4 1.0132 1.0315 0.0012 0.0038 0.0110 0.0279 0.0628
0.35 4 1.0232 1.0571 0.0023 0.0077 0.0231 0.0598 0.1370
0.40 4 1.0378 1.0967 0.0043 0.0145 0.0445 0.1184 0.2763
0.45 4 1.0584 1.1562 0.0074 0.0258 0.0811 0.2217 0.5279
0.50 4 1.0870 1.2446 0.0125 0.0441 0.1419 0.3994 0.9727
0.55 4 1.1260 1.3761 0.0205 0.0735 0.2421 0.7020 1.7550
0.60 4 1.1794 1.5742 0.0332 0.1208 0.4072 1.2188 3.1419
0.65 4 1.2532 1.8808 0.0537 0.1983 0.6843 2.1169 5.6552
0.70 4 1.3572 2.3754 0.0881 0.3297 1.1645 3.7299 10.3852
0.75 4 1.5094 3.2253 0.1493 0.5660 2.0444 6.7894 19.8237
0.80 4 1.7455 4.8327 0.2686 1.0306 3.8065 13.1226 40.4322
0.85 4 2.1489 8.3749 0.5388 2.0918 7.8948 28.2732 92.4788
0.90 4 2.9694 18.6358 1.3429 5.2704 20.3086 75.5606 263.7134
0.95 4 5.4571 74.5394 5.8448 23.1705 91.0474 351.6349 1313.7818

0.30 8 1.0006 1.0013 0.0000 0.0001 0.0002 0.0004 0.0009
0.35 8 1.0017 1.0037 0.0001 0.0002 0.0006 0.0015 0.0032
0.40 8 1.0039 1.0085 0.0002 0.0006 0.0018 0.0044 0.0097
0.45 8 1.0079 1.0178 0.0005 0.0016 0.0046 0.0116 0.0260
0.50 8 1.0148 1.0345 0.0011 0.0036 0.0107 0.0278 0.0638
0.55 8 1.0260 1.0629 0.0022 0.0075 0.0232 0.0625 0.1469
0.60 8 1.0436 1.1104 0.0043 0.0150 0.0480 0.1340 0.3245
0.65 8 1.0708 1.1896 0.0081 0.0291 0.0960 0.2793 0.7006
0.70 8 1.1128 1.3238 0.0152 0.0557 0.1896 0.5756 1.5079
0.75 8 1.1785 1.5612 0.0288 0.1074 0.3771 1.1985 3.3089
0.80 8 1.2860 2.0150 0.0567 0.2151 0.7785 2.5954 7.6272
0.85 8 1.4771 3.0096 0.1222 0.4709 1.7541 6.1412 19.3919
0.90 8 1.8769 5.8330 0.3209 1.2549 4.8031 17.6519 60.3355
0.95 8 3.1104 20.6793 1.4440 5.7183 22.4245 86.2739 320.0697

0.30 16 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.35 16 1.0000 1.0001 0.0000 0.0000 0.0000 0.0000 0.0000
0.40 16 1.0001 1.0002 0.0000 0.0000 0.0000 0.0000 0.0001
0.45 16 1.0004 1.0008 0.0000 0.0000 0.0001 0.0002 0.0004
0.50 16 1.0011 1.0024 0.0000 0.0001 0.0003 0.0007 0.0016
0.55 16 1.0029 1.0062 0.0001 0.0004 0.0010 0.0025 0.0055
0.60 16 1.0065 1.0145 0.0003 0.0010 0.0030 0.0078 0.0176
0.65 16 1.0137 1.0313 0.0008 0.0027 0.0083 0.0223 0.0521
0.70 16 1.0270 1.0643 0.0019 0.0067 0.0215 0.0604 0.1471
0.75 16 1.0511 1.1290 0.0044 0.0160 0.0536 0.1593 0.4084
0.80 16 1.0953 1.2605 0.0103 0.0382 0.1334 0.4214 1.1563
0.85 16 1.1805 1.5564 0.0253 0.0961 0.3497 1.1782 3.5181
0.90 16 1.3696 2.3888 0.0733 0.2847 1.0761 3.8680 12.7512
0.95 16 1.9752 6.5602 0.3522 1.3917 5.4360 20.7575 75.9753
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Figure 4.1: The variance var(V (τ)) of the conditional sojourn time V (τ) of
a request with required service time τ in the M/M/m − PS system in case
of ̺/m = 0.95 and ES = 1.
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