
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

MARÍA LÓPEZ-FERNÁNDEZ∗ CHRISTIAN LUBICH¶

ACHIM SCHÄDLE

Adaptive, Fast and Oblivious Convolution
in Evolution Equations with Memory

∗Departamento de Matemática Aplicada, Universidad de Valladolid.
¶Mathematisches Institut, Universität Tübingen.

ZIB-Report 06-45 (November 2006)

ADAPTIVE, FAST AND OBLIVIOUS CONVOLUTION

IN EVOLUTION EQUATIONS WITH MEMORY

MARÍA LÓPEZ-FERNÁNDEZ∗, CHRISTIAN LUBICH¶, AND ACHIM SCHÄDLE∗∗

Abstract. To approximate convolutions which occur in evolution equations with memory terms,
a variable-stepsize algorithm is presented for which advancing N steps requires only O(N log N) op-
erations and O(log N) active memory, in place of O(N2) operations and O(N) memory for a direct
implementation. A basic feature of the fast algorithm is the reduction, via contour integral repre-
sentations, to differential equations which are solved numerically with adaptive step sizes. Rather
than the kernel itself, its Laplace transform is used in the algorithm. The algorithm is illustrated
on three examples: a blow-up example originating from a Schrödinger equation with concentrated
nonlinearity, chemical reactions with inhibited diffusion, and viscoelasticity with a fractional order
constitutive law.

Key words. convolution quadrature, adaptivity, Volterra integral equations, numerical inverse
Laplace transform, anomalous diffusion, fractional order viscoelasticity,

AMS subject classifications. 65R20, 65M99.

1. Introduction. We consider the problems of computing the convolution

∫ t

0

f(t− τ) g(τ) dτ , 0 ≤ t ≤ T, (1.1)

possibly with matrix-valued kernel f and vector-valued function g, and of solving
evolution equations with memory containing such convolution integrals where g is
not a function known in advance, but g(τ) depends on the solution at time τ of the
integral equation or integro-differential equation. In previous papers [16, 21] we have
developed convolution algorithms that are fast and oblivious: to approximate (1.1) on
a grid t = nh (n = 0, 1, . . . , N) with constant step size h and Nh = T , the algorithm
requires

• O(N logN) operations,
• O(logN) evaluations of the Laplace transform F = Lf , none of f , and
• O(logN) active memory.

In the nth time step, g is evaluated at tn = nh, but the history g(tj) for j < n is
forgotten in this algorithm, and only logarithmically few linear combinations of the
values of g are kept in memory. This is to be contrasted with the O(N 2) operations,
O(N) evaluations of the kernel f , and O(N) memory for a naive implementation of
a quadrature formula for (1.1). Moreover, we note that in many applications the
Laplace transform F (the transfer function), rather than the kernel f (the impulse
response), is known a priori. A basic feature of the fast algorithm is the reduction, via
contour integral representations, to differential equations of the form y′ = λy + g for
suitable complex values of λ, which are solved numerically. It is not necessary to solve
these differential equations with constant time step h, as was done in [16, 21], but the
step size may instead be adapted to the behavior of g. This observation opens the

∗Departamento de Matemática Aplicada, Universidad de Valladolid, Valladolid, Spain. E-mail:
marial@mac.cie.uva.es. Supported by DGI-MCYT under project MTM 2004-07194 cofinanced by
FEDER funds.

¶Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D–72076 Tübingen,
Germany. E-mail: lubich@na.uni-tuebingen.de. Supported by DFG, SFB 382.

∗∗ZIB Berlin, Takustr. 7, D-14195 Berlin, Germany. E-mail: schaedle@zib.de. Supported by
the DFG Research Center Matheon “Mathematics for key technologies”, Berlin.

1

way to an adaptive fast and oblivious convolution algorithm. Turning this simple idea
into an efficient algorithm is, however, not as simple and the development of such an
algorithm is precisely the topic of the present paper. The need to use adaptive time
steps in solving evolutionary integro-differential equations in applications has been
addressed at various places in the literature, e.g., by Adolfsson, Enelund & Larsson
[4], Cao, Burrage & Abdullah [6], and Diethelm & Freed [8]. None of the adaptive
algorithms proposed there, however, can make use of the convolution structure to
reduce the O(N2) operation count and O(N) memory requirements for N steps. The
convolution algorithm proposed here works in the situation of a sectorial Laplace
transform F :

F is analytic in a sector | arg(s− σ)| < π − ϕ with ϕ < 1
2π,

and in this sector, |F (s)| ≤M |s|−ν for some real M and ν > 0.
(1.2)

An equivalent condition is that f is analytic in a complex sector containing the posi-
tive real half-axis t > 0, and is bounded by |f(t)| ≤ C tν−1eσt in this sector. A typical
example is the fractional-power kernel f(t) = tν−1/Γ(ν), which has the Laplace trans-
form F (s) = s−ν . An essential ingredient of the algorithm is the discretization of the
inversion formula for the Laplace transform, given by

f(t) =
1

2πi

∫

Γ

etλ F (λ) dλ, t > 0, (1.3)

with Γ a contour in the sector of analyticity oriented with increasing imaginary part
and going to infinity with an acute angle to the negative real half-axis, so that etλ

decays fast for growing |λ| along Γ. We will choose the contour as a hyperbola. Since
we cannot obtain a uniformly good approximation for all t ∈ (0, T] with a single
contour Γ, we use different hyperbolas Γ` corresponding to geometrically growing
intervals of uniform approximation, t ∈ [B`−1h∗, B

`+1h∗] with an integer B ≥ 1, e.g.,
B = 5, and with a minimum step size h∗. The required number of contours is thus
bounded by logB(T/h∗). This logarithm shows up in the complexity estimates in place
of logB(N) for the fixed-stepsize algorithm. As in that case, it appears multiplied with
the number of quadrature points on each hyperbola, which is O(log 1

ε) for an accuracy
ε in the approximation of (1.3). In §2 we briefly review recent results from [14, 15] on
the approximation of inverse Laplace transforms by discretized contour integrals. In §3
we describe the fast and oblivious algorithm for computing convolutions with variable
time steps. The algorithm is then illustrated on various problems where adaptive
time steps are important: a blow-up problem for a nonlinear Abel integral equation
resulting from a nonlinear Schrödinger equation with concentrated nonlinearity (§4),
a fractional diffusion-reaction system from chemical reaction kinetics (§5), and visco-
elasticity with a weakly singular memory kernel in the constitutive equations, under
applied forces that are switched on and off (§6).

2. Preparation: Numerical inversion of the Laplace transform. In the
inversion formula (1.3) we choose Γ as the left branch of a hyperbola parameterized
by

R→ Γ : x 7→ γ(x) = µ(1− sin(a+ ix)) + σ, (2.1)

where µ > 0 is a scale parameter, σ is the shift in (1.2), and 0 < a < π/2− ϕ. Thus,
Γ is the left branch of the hyperbola with center at (µ, 0), foci at (0, 0), (2µ, 0), and
with asymptotes forming angles ±(π/2 + a) with the real axis, so that Γ remains

2

in the sector (1.2) of analyticity of F . After parameterizing (1.3), the function f
is approximated by applying the truncated trapezoidal rule to the resulting integral
along the real axis, i.e.,

f(t) =
1

2πi

∫

Γ

etλ F (λ) dλ ≈
K∑

k=−K

wk e
tλk F (λk), (2.2)

with weights wk and quadrature nodes λk given by

wk =
τ

2πi
γ′(kτ) , λk = γ(kτ)

and τ > 0 a suitable step length parameter. Different choices of contours Γ and
parameterizations have been studied for the numerical inversion of sectorial Laplace
transforms in the last years. The choice of a hyperbola has been studied in [14, 15,
17, 22, 9, 10, 28], and actually we follow here the approach in [14, 15]. The choice
of Γ as a parabola has also been considered recently in [9, 10, 28]. Finally we refer
to Talbot’s method [26, 19, 27], which could also be used with the present algorithm;
cf. [20, 16, 21, 13]. The good behavior of this quadrature formula to approximate
(1.3) is due to the good properties of the trapezoidal rule when the integrand can
be analytically extended to a horizontal strip around the real axis [24, 25]. We refer
to [14, 15] for details and only give here the following error bound, which decays
exponentially in the number of quadrature nodes.

Theorem 2.1. [15] Suppose that the Laplace transform F satisfies the sectorial
condition (1.2). For fixed T > 0, Λ ≥ 1, 0 < a < π/2−ϕ, and K ≥ 1 there are positive
numbers C1, C2, C, c depending on a and Λ (C depends additionally on T unless σ < 0
in (1.2)) such that the choice of parameters τ = C1/K and µ = C2K/(Λt0) yields a
quadrature error in (2.2) bounded by

|EK(t)| ≤ C tν−1
(
ε+ e−cK

)
,

uniformly for t in intervals [t0,Λt0] with arbitrary 0 < t0 ≤ T/Λ, where ν is the
exponent of (1.2) and ε is the precision in the evaluations of the Laplace transform F
and the elementary operations in (2.2).
Hence, K = O(log 1

ε) quadrature points are sufficient to obtain an accuracy O(ε) in
the approximation of the contour integral. In practice, we choose a ≈ 1

2 (π
2 − ϕ) and

compute the values C1 and C2 following the optimization process described in [15].

3. The variable-step-size, fast and oblivious convolution algorithm.

3.1. Local reduction to differential equations. We want to approximate

u(t) =

∫ t

0

f(t− τ) g(τ) dτ (3.1)

on a sequence of times 0 < t1 < · · · < tN , spaced arbitrarily. For the moment we
assume that g is a known function, though we will see later how to use the algorithm
for solving integral and integro-differential equations. For a given tn, we can insert
the Laplace inversion formula in (3.1) and write

∫ tn

0

f(tn − τ) g(τ) dτ =

∫ tn

0

1

2πi

∫

Γ

e(tn−τ)λF (λ) dλ g(τ) dτ . (3.2)

3

The numerical inversion of the Laplace transform is performed very efficiently by the
quadrature rule (2.2). In Section 2 we have seen that the same contour Γ used in
this quadrature can be used to approximate f at different values of t, ranging over
intervals of the form [t0,Λt0], for a given ratio Λ ≥ 1. Since in (3.2) we need to
approximate f(tn − τ) for tn − τ ∈ [0, tn], we cannot use a unique contour Γ and we
need to split the integral in (3.1) into several pieces. For suitable intermediate times
0 < t− < t+ < tn, with (tn − t−)/(tn − t+) ≤ Λ, we select a suitable contour Γ for
the time interval [tn − t−, tn − t+] and approximate

∫ t+

t−
f(tn − τ)g(τ) dτ =

∫ t+

t−

1

2πi

∫

Γ

e(tn−τ)λF (λ) dλ g(τ) dτ

≈
∫ t+

t−

K∑

k=−K

wk e
(tn−τ)λk F (λk) g(τ) dτ

=

K∑

k=−K

wk F (λk) e(tn−t+)λk

∫ t+

t−
e(t

+−τ)λkg(τ) dτ

=

K∑

k=−K

wk F (λk) e(tn−t+)λk y(t+, t−, λk), (3.3)

where y(t+, t−, λk) is the solution at t+ to the linear inhomogeneous ODE

y′ = λky + g, y(t−) = 0, −K ≤ k ≤ K. (3.4)

We now approximate y(t+, t−, λk) by interpolating g linearly on each interval [tj , tj+1]
for j = 0, . . . , N − 1, and integrating exactly. (More elaborate integration methods
could be used instead, cf. [7, 21], but for simplicity of presentation we will just consider
this particular integration scheme.) We denote by ḡ the interpolant of g and by
ȳ(t+, t−, λk) the resulting approximation to y(t+, t−, λk), i.e., ȳ(t+, t−, λk) is the exact
solution at t+ to

y′ = λky + ḡ, y(t−) = 0, −K ≤ k ≤ K. (3.5)

Thus, we approximate

∫ t+

t−
f(tn − τ) g(τ) dτ ≈

K∑

k=−K

wk F (λk) e(tn−t+)λk ȳ(t+, t−, λk) . (3.6)

3.2. Filling the mosaic. The key to the algorithm is the way the splitting
times t± for the integral in (3.1) are selected for every tn with 1 ≤ n ≤ N . This is
done following the mosaic in the triangle {(t, τ) : 0 ≤ τ ≤ t ≤ T} shown in Fig. 3.1,
where patches grow geometrically with increasing distance from the diagonal. For the
moment, we fix a minimum size of the patches closest to the diagonal, corresponding
to a minimum step size h∗. If along the vertical line at tn joining 0 with the diagonal
value tn we have L different patches of the tessellation, then we obtain the values t−`
and t+` for 1 ≤ ` ≤ L as the smallest and largest grid points, resp., within the `th
patch along the vertical line at tn. All those `s are collected in an index set J . In
case a patch does not contain any grid points its value ` is not contained in J . The
times t±` = t±n,` depend on n, though for simplicity we omit this dependence in the
notation. Each class of patches of the same size in the mosaic represents a distance

4

0 1 2 3 4
0

1

2

3

4

t
15

t
3
+=t

11

t
1
−=t

12
t
1
+=t

13

t

τ

Fig. 3.1. Mosaic in the triangle τ ≤ t for B = 3 with times tj indicated by points. Each

monochromatic rectangle fully enclosed by black lines corresponds to a solution value y(t+
`

, t−
`

, λ) of
a linear differential equation (3.4).

class to the diagonal in the mosaic, and thus corresponds to a different approximation
interval and a different contour to perform the inversion of the Laplace transform and
to a different set of 2K + 1 scalar differential equations. The approximation intervals
for the values tn − t±` are of the form I` = [B`−1h∗, B

`+1h∗], 2 ≤ ` ≤ L, so that
the ratio Λ is B2. Since we consider a non-equidistant sequence of times tj , in this
splitting there likely appear “gaps” in between the t+`+m and t−` , which in Figure 3.1
correspond to pairs of horizontal lines with any boundary of m patches in between
them. For example, at the time point t15 = 3.45 we have L = 3, J = {1, 3}, t−3 = 0,
t+3 = t11 = 2.11, t−1 = t12 = 3.14 and t+1 = t13 = 3.24.

We split (3.1) into 2|J |+ 1 parts

u(tn) = ũ(0)(tn) +
∑

`∈J

u(`)(tn) +
∑

`∈J

ũ(`)(tn) (3.7)

where

u(`)(tn) =

∫ t+
`

t−
`

f(tn − τ)g(τ) dτ (3.8)

is computed using (3.3) and

ũ(0)(tn) =

∫ tn

tn−1

f(tn − τ)g(τ) dτ and ũ(`)(tn) =

∫ t−
`

t+
`+m

f(tn − τ)g(τ) dτ (3.9)

5

correspond respectively to the step from tn−1 to tn near the diagonal and to the
gaps between t+`+m and t−` ; see Fig. 3.1. These parts are computed by “direct steps”
explained in the next subsection. Thus, for t15 = 3.45, u(t15) is calculated using:

• one “ode step”, u(3), from t−3 = t0 = 0 to t+3 = t11.
• one “direct step”, ũ(3), from t+3 = t11 to t−1 = t12.
• one “ode step”, u(1), from t−1 = t12 to t+1 = t13.
• one “direct step”, ũ(1), from t+1 = t13 to t14.
• one “direct step”, ũ(0), from t14 to t15.

Translating the above splitting from the picture into a formal procedure, we thus
proceed as follows: given a minimum step size h∗ and a basis B, for each tn we take
L as small as possible so that we can represent dtn/h∗e = 2 +

∑L
`=1 b`B

`−1 with
b` ∈ {1, 2, . . . , B}, where dxe denotes the smallest integer greater than x. t+` is the
largest and t−` is the smallest value in {tj : j = 0, . . . , n}, such that

h∗

L∑

k=`+1

bkB
k−1 ≤ t−` ≤ t+` ≤ h∗

L∑

k=`

bkB
k−1.

We remark that with this definition, there always exists some j ∈ {0, . . . , n− 1} and
some integer m > 0 such that t+`+m = tj and t−` = tj+1. The t±` are such that

the integration limits of u(`)(tn) fit into the approximation interval: tn − t±` ∈ I`.
In Figure 3.1 we show how the solutions to the linear ODEs ȳ(t−` , t

+
` , λ

`
k) fill the

mosaic. In this example we have B = 3 and the tj are given by the non-equidistant
sequence of time points indicated both along the horizontal axis and the diagonal of
the triangle. We can see here that, for instance, when times greater than t = 3.2 are

reached, all the “past” from 0 to 2.11 is stored in the solution values y(2.1, 0, λ
(`)
k),

represented in Figure 3.1 by the tall dark rectangle with basis [3.2, 4.1] for ` = 3, and
in the adjacent incomplete white rectangle to the right for ` = 4. In our example

the values y(2.1, 0, λ
(3)
k) are used 8 times to evaluate u(t) for t ∈ [3.2, 4.1]. The

filling of the mosaic is done bottom up in the algorithm, advancing all the differential
equations in every time step, so that the algorithm can forget all the past values of
the function g, with the exception of those at t±` , which are needed for the direct

steps described below. In addition to the current solution values y(t, t−` , λ
(`)
k) of the

differential equations at time t = tn, also their values at a splitting point t+` need to
be stored until t+` is increased at a later step. Actually the algorithms stores three

copies of y(t+` , t
−
` , λ

(`)
k). Pseudocodes for the organization of the decomposition are

given in the appendix.

3.3. Direct steps. The gaps [t+`+m, t
−
`] between the enclosed blocks in Figure 3.1

are bridged using the values ũ(`)(tn) whose computation we describe next. These
direct steps compute

ũ(`)(tn) =

∫ t−
`

t+
`+m

f(tn − τ)g(τ) dτ =

∫ tj+1

tj

f(tn − τ)g(τ) dτ (3.10)

for some j ∈ {0, 1, . . . , N − 1}. On the interval [tj , tj+1] we approximate g(t) by a
linear function:

g(t) ≈ ḡ(t) = gj +
gj+1 − gj

hj+1
(t− tj), hj+1 = tj+1 − tj ,

6

with gj = g(tj), j = 0, 1, . . . , N . (Here again, the approach would extend to polyno-
mials of higher degree.) Extending ḡ(t) to [0, tn] we split (3.10) in two terms

∫ tj+1

tj

f(tn − τ) ḡ(τ) dτ =

∫ tn

tj

f(tn − τ) ḡ(τ) dτ −
∫ tn

tj+1

f(tn − τ) ḡ(τ) dτ

= L−1[F · Lg(·+ tj)](tn − tj)−L−1[F · Lg(·+ tj+1)](tn − tj+1)

= L−1

[
F1gj + F2

gj+1 − gj

hj+1

]
(tn − tj)−L−1

[
F1 gj+1 + F2

gj+1 − gj

hj+1

]
(tn − tj+1),

where F1(s) = F (s)/s and F2(s) = F (s)/s2. We approximate the inverse Laplace
transforms

f1(t) =
(
L−1F1

)
(t), f2(t) =

(
L−1F2

)
(t)

at t = tn−tj and t = tn−tj+1 using the numerical integration of the Laplace inversion
formula along the integration contours corresponding to the approximation intervals
I`1 and I`2 such that tn − tj+1 ∈ I`2 and tn − tj ∈ I`1 . The result of the direct step
is then calculated forming linear combinations

∫ tj+1

tj

f(tn − τ) ḡ(τ) dτ = f1(tn − tj) gj + f2(tn − tj)
gj+1 − gj

hj+1

− f1(tn − tj+1) gj+1 − f2(tn − tj+1)
gj+1 − gj

hj+1
.

(3.11)

This is also used for the terms closest to the diagonal, tj+1 = tn, where we note in
addition that f1(0) = f2(0) = 0.

3.4. Complexity. Given an arbitrary sequence of time points 0 < t1 < . . . <
tN = T with the minimum step size h∗ = minj(tj+1 − tj), the above algorithm
computes

∫ t

0

f(t− τ) ḡ(τ) dτ, for t = t1, . . . , tN , (3.12)

(with ḡ the piecewise linear interpolant of g) up to an error ε using
• L = O(log T

h∗

) hyperbolas with

• 2K + 1 = O(log 1
ε) quadrature points on each hyperbola.

The algorithm thus requires (2K + 1)L evaluations of the Laplace transform F (s)

at the quadrature points and solves (2K + 1)L differential equations y′ = λ
(`)
k y + ḡ.

As the algorithm proceeds, only three solution values need to be stored for each of
these differential equations. In addition, at most 2L values of g need to be kept in
memory for the direct steps. In total, the active memory requirements are O(LK) =
O(log T

h∗

log 1
ε) vectors of the dimension of g. The total operation count is O(NLK) =

O(N log T
h∗

log 1
ε). For the variable-step-size algorithm we thus obtain the complexity

characteristics as stated in the introduction for the fast and oblivious fixed-step-size
algorithm, with logN now replaced by log T

h∗

.

3.5. Adaptivity based on controlling the interpolation error. There are
two sources of error in the algorithm. The first one is the discretization of the contour
integral, which is well controlled. The second one is the piecewise linear interpolation

7

of g by ḡ. Ignoring the error from discretizing the contour integrals, the algorithm
thus computes (3.12) instead of (1.1). We control the error in g, which is bounded by

‖ḡ(t)− g(t)‖ ≤ 1
8 h

2
n max

tn−1≤τ≤tn

‖g′′(τ)‖ for tn−1 ≤ t ≤ tn.

Given a tolerance Tol, we propose the new step-size hn+1 according to the criterion

Ch2
n+1γ

′′
n = 0.8 · Tol , (3.13)

where γ′′n = ‖g̃′′(tn)‖ with the quadratic interpolant g̃ to g at tn−2, tn−1, tn. The

constant C is chosen as C ≈ 1
8

∫ T

0
|f(t)| dt. Additionally the step-size is restricted to

fulfill 1/2hn < hn+1 < 2hn. The proposed step size hn+1 is tested by

Ch2
n+1γ

′′
n+1 ≤ Tol , (3.14)

where the new value g(tn +hn+1) is used in the computation of γ ′′n+1. If this condition
is satisfied, then hn+1 is accepted and we set tn+1 = tn + hn+1, else we repeat the
test with a reduced step hn+1 determined from (3.13) with γ ′′n+1 in place of γ′′n. If
necessary, this procedure is repeated until (3.14) is satisfied.

In the following sections we give three examples to show the performance of
the algorithm, using also other strategies for controlling the step size in the time
integration of integro-differential equations. However, we point out that the above
fast algorithm is independent of the particular step size selection strategy. The step
size control is just the way we generate the sequence of time points. The minimum step
size need not be specified a priori, and at time tn the future time points tn+1, tn+2, . . .
need not yet be known in the algorithm.

For the three examples provided, we ran the algorithm with basis B = 5, which
gives approximation intervals of the type [t0, 25t0].

4. A blow-up example originating from a Schrödinger equation with

concentrated nonlinearity. Adami & Teta [1, 2] consider a nonlinear Schrödinger
equation with nonlinearity concentrated at x = 0,

i
∂ψ

∂t
= −∆ψ + γ|ψ|2σψ · δx=0 , x ∈ R, t > 0, (4.1)

with initial data ψ(x, 0) = ψ0(x) for x ∈ R. The equation can be given a rigorous
formulation as an integral equation. With Duhamel’s principle the wave function
ψ(x, t) can be expressed as the sum of

(
U(t)ψ0

)
(x), that is, the solution at position x

and time t of the free Schrödinger equation with initial data ψ0, and of a convolution
with |z|2σz, where z(τ) := ψ(0, τ) for 0 ≤ τ ≤ t. The function z is the solution of a
nonlinear, complex Abel-type integral equation

z(t) + γ

√
i

2

∫ t

0

1√
π(t− τ)

|z(τ)|2σz(τ) dτ = a(t) , t ≥ 0, (4.2)

where a(t) =
(
U(t)ψ0

)
(0) is the solution at x = 0 of the free Schrödinger equation.

We present the results of numerical experiments in a situation where the solution is
known to have finite-time blow-up. We choose σ = 1, and

a(t) =
1

π1/4

1√
1 + i2t

,

8

0 5 10 15
−1

−0.5

0

0.5

1

1.5

t

so
lu

tio
n

0 2 4 6
−1.5

−1

−0.5

0

0.5

1

1.5

t

so
lu

tio
n

0 1 2 3 4
−3

−2

−1

0

1

2

3

t

so
lu

tio
n

0 0.2 0.4 0.6

−4

−2

0

2

4

6

8

t

so
lu

tio
n

Fig. 4.1. Real and imaginary part (light and dark gray) and modulus (black) of the solution z

for γ = −2,−2.05,−2.06 − 2.5 and for different tolerances.

which corresponds to a Gaussian wave-packet ψ0(x) = π−1/4e−x2/2 as initial data.

For four different values of γ, γ = −2,−2.05,−2.06,−2.5 the evolution of the
solution is shown in Fig 4.1 for different tolerances. The thick lines correspond to
solutions obtained with a tolerance of 10−7. The other two lines correspond to tol-
erances of 10−3 and 2 · 10−4. Whereas for γ = −2, −2.5 one cannot distinguish the
different tolerances in the plot, for γ = −2.05, −2.06 it is clearly visible, that choosing
a too low tolerance will produce a wrong result.

In Fig. 4.2 the step size is plotted over t. Clearly the adaptivity pays off to resolve
the blow-up. In case γ = −2.5 we observe for a tolerance of 10−7 step-sizes ranging
from 10−8 to 10−4.

Fig. 4.3 displays the absolute error at the final time, obtained with tolerances
1 · 10−3, 5 · 10−4, 2 · 10−4, 1 · 10−4, 5 · 10−5, 2 · 10−5, 1 · 10−5, 5 · 10−6, 2 · 10−6, 1 · 10−6

versus the total number of steps. The error is measured against a reference solution
obtained with tolerance 10−7. The numerical inversion of the Laplace transform is
performed as explained in Section 2, with a = 0.8, d = 0.7, and K = 50, which gives
C1 = 6.567 and C2 = 0.066 (see Theorem 2.1). For larger tolerances, good results
can be obtained with a smaller K, say K = 25. Taking K = 40, we only get small
oscillations in the stepsize for the smallest tolerance, tol = 10−7, in Figure 4.2, and
no visible changes for less stringent tolerances.

9

0 5 10 15

10
−4

10
−3

10
−2

10
−1

10
0

tol = 1⋅10−7

tol = 1⋅10−3

tol = 1⋅10−4

tol = 1⋅10−5

tol = 1⋅10−6

t

st
ep

si
ze

0 2 4 6

10
−5

10
−4

10
−3

10
−2

10
−1

tol = 1⋅10−7

tol = 1⋅10−3

tol = 1⋅10−4

tol = 1⋅10−5

tol = 1⋅10−6

t

st
ep

si
ze

0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

tol = 1⋅10−7

tol = 1⋅10−3

tol = 1⋅10−4

tol = 1⋅10−5

tol = 1⋅10−6

t

st
ep

si
ze

0 0.2 0.4 0.6

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

tol = 1⋅10−7

tol = 1⋅10−3

tol = 1⋅10−4

tol = 1⋅10−5

tol = 1⋅10−6

t

st
ep

si
ze

Fig. 4.2. Evolution of the step-size for γ = −2,−2.05,−2.06,−2.5 and different tolerances

10
2

10
3

10
410

−5

10
−4

10
−3

10
−2

number of steps

ab
so

lu
te

 e
rr

or

10
2

10
3

10
4

10
510

−3

10
−2

10
−1

10
0

10
1

number of steps

ab
so

lu
te

 e
rr

or

10
2

10
3

10
4

10
510

−2

10
−1

10
0

10
1

number of steps

ab
so

lu
te

 e
rr

or

10
2

10
3

10
4

10
510

−2

10
−1

10
0

10
1

number of steps

ab
so

lu
te

 e
rr

or

Fig. 4.3. Error versus the number of steps, at t = 10 for γ = −2, at t = 5 for γ = −2.05, at
t = 3.15 for γ = −2.06, and at t = 0.47 for γ = −2.5

10

5. Chemical reaction kinetics with inhibited diffusion. We consider three
molecular species A, B and C, reacting as

A+B
k1−→ C

C
k2−→ A+B

C
k3−→ A+ P , (5.1)

P being the resulting product. The diffusion of each of the species is anomalous. So
we obtain a reaction diffusion equation with a memory term. A model like this, with
three species and three reactions was considered in [6]. However we have chosen to
follow [29] and to associate a memory with the reaction term. Thus to model this
process the following system of integro-differential equations is considered:

u̇1 =∂t∂
−α
t

(
K∆u1 − k1u1u2 + (k2 + k3)u3

)

u̇2 =∂t∂
−α
t

(
K∆u2 − k1u1u2 + k2u3

)

u̇3 =∂t∂
−α
t

(
K∆u3 + k1u1u2 − (k2 + k3)u3

)
,

(5.2)

where ∆ = ∂xx is the 1D Laplacian with periodic boundary condition on [−5, 5] and
∂−α

t denotes the fractional integral of order 0 < α < 1, given by the Riemann Liouville
operator

∂−α
t g(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1g(τ) dτ, (5.3)

for 0 < α < 1. Integrating in time system (5.2), we get the integro-differential
equation

u1(t)− u1(0) =∂−α
t

[
K∆u1(t)− k1u1(t)u2(t) + (k2 + k3)u3(t)

]

u2(t)− u2(0) =∂−α
t

[
K∆u2(t)− k1u1(t)u2(t) + k2u3(t)

]

u3(t)− u3(0) =∂−α
t

[
K∆u3(t) + k1u1(t)u2(t)− (k2 + k3)u3(t)

]
.

(5.4)

In this situation we have in the convolution terms the weakly singular kernel
f(t) = tα−1/Γ(α), with Laplace transform F (s) = s−α. We approximate the solution
to (5.4) by using an adaptive strategy similar to the one explained in Section 3.5 but
replacing criterion (3.13) by

Ch2
n+1γ

′
n = 0.8 · Tol,

and the test (3.14) by

Ch2
n+1γ

′
n+1 ≤ Tol ,

where γ′n = ‖g̃′(tn)‖, with g̃ the linear interpolant of g at tn−1 and tn. Our choice for
the different parameters is K = 0.5, k1 = 1, k2 = 2 and k3 = 3, and we integrate up
to T = 30. We fix α = 0.5 and consider smoothed step-like functions as the initial
data.

Setting u = [u1, u2, u3]
T , I3 the 3× 3 identity matrix, and following the notation

introduced in Section 3.3 for the direct steps of the algorithm, the discrete equation

11

approximating (5.4) is

(
I3 ⊗ I −

f2(hn)

hn
(K I3 ⊗ S +R)

)
un

=
(
f1(hn)− f2(hn)

hn

)(
K I3 ⊗ S +R

)
un−1 + k1f1(hn) e⊗ un−1

1 un−1
2

+
1

Γ(α)

∫ tn−1

0

g(ū(τ))

(t− τ)1−α
dτ + u0,

(5.5)

where ū denotes the piecewise linear interpolant of u at times t0, t1, . . . , tn and, for
M nodes in the spatial discretization and v a column vector of length 3M , we define

g(v) =
(
K I3 ⊗ S +R

)
v + k1

(
e⊗ v1v2

)
, e = [−1,−1, 1]T ,

with S the second order finite difference approximation to ∂xx with periodic boundary
conditions and R the 3M × 3M matrix

R =

0 0 (k2 + k3)IM
0 0 k2IM
0 0 −(k2 + k3)IM

 ,

where IM is the M ×M identity matrix.
Fig. 5.1 shows numerical results and performance characteristics of the algorithm.

Here we inverted the Laplace transform taking a = 1, d = 0.5, and K = 40 quadrature
nodes on the hyperbolas, giving C1 = 6.036 and C2 = 0.0739. Again, less stringent
accuracy requirements demand fewer quadrature nodes.

6. Dynamic fractional order viscoelasticity.

6.1. Model. The fractional order linear viscoelastic constitutive equation for
the stress σ considered in [4, 3] reads

σ = σ0(t)− γ
∫ t

0

f(t− τ)σ0(τ) dτ, (6.1)

with stress tensor σ0 and strain tensor ε given by

σ0(t) = 2µε(t) + λtr(ε(t))I ; ε(t) =
1

2

(
∇u+ (∇u)T

)
, (6.2)

where µ and λ are the Lamé constants and 0 < γ < 1 is a given parameter. We refer
to [4] for more details about the model.

The basic equations for the displacement field u are

ρü(x, t)−∇ · σ0(u;x, t)

+ γ

∫ t

0

f(t− τ)∇ · σ0(u;x, τ) dτ = 0 for x ∈ Ω; t ≥ 0

u(x, 0) = u0(x) for x ∈ Ω

u̇(x, 0) = v0(x) for x ∈ Ω

u(x, t) = 0 for x ∈ ΓD; t ≥ 0

σ0(u;x, t) · n(x) = b(x, t) for x ∈ ΓN ; t ≥ 0].

(6.3)

12

−5 0 5

0

0.2

0.4

0.6

0.8

1

t 0

t 1

t 4

t 8

t 16 t 27

x

A

0 10 20 30 40
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

tol = 1⋅10−6

tol = 1⋅10−2

tol = 1⋅10−3

tol = 1⋅10−4

tol = 1⋅10−5

t

st
ep

si
ze

−5 0 5

0

0.2

0.4

0.6

0.8

1

t 0 t 1 t 4
t 8

t 16

t 27

x

B

10
−5

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

tol

ab
so

lu
te

 e
rr

or

−5 0 5
0

2

4

6

8

x 10
−3

t 0 t 1

t 4

t 8 t 16

t 27

x

C

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

number of steps

ab
so

lu
te

 e
rr

or

Fig. 5.1. Left: Solutions for the three species A, B, C, at different times (lighter lines for
larger times). Right: Step size versus time t, error versus tolerance, and error versus number of
steps. All for T = 30, K = 0.5, k1 = 1, k2 = 2, and k3 = 3.

ΓD denotes the Dirichlet boundary of the Ω and ΓN the Neumann boundary, where
the boundary force b is applied.

On the Sobolev space V := {v ∈ H1(Ω)2 : v = 0 on ΓD} the variational formu-
lation reads as follows: Find u(t) ∈ V such that

∫

Ω

ρü(x, t) · ψ(x)dx+

∫

Ω

ε(u;x, t) : Cε(ψ(x))dx−
∫

ΓN

b(x, t) ·ψ(x)dσ(x)

− γ
∫ t

0

f(t− τ)
(∫

Ω

ε(u;x, τ) : Cε(ψ(x))dx−
∫

ΓN

b(x, τ) ·ψ(x)dσ(x)

)
dτ

= 0 , ∀ψ ∈ V
u(0) = u0 ; u̇(0) = v0(x),

(6.4)

13

where the tensor product is given by

ε(u) : Cε(ψ) =

2∑

i,j=1

2µ0εij(u)εij(ψ) + λ0εjj(u)εii(ψ) .

Equation (6.4) is discretized in space using linear finite elements. The mesh is gener-
ated using Triangle [23] and the assembly of the mass and stiffness matrices M and A
and the boundary force vector b is done following [5]. In contrast to [5] we have chosen
not to use Lagrange multipliers to enforce the Dirichlet data, but to incorporate the
Dirichlet data directly. Thus (6.4) results in the abstract integro-differential equation

Mü(t) +Au(t)− b(t) = γ

∫ t

0

f(t− τ)(Au(τ) − b(τ))

u(0) = u0 ; u̇(0) = v0.

The kernel f in (6.1) is given by

f(t) = − d

dt
Eα (−tα) , 0 < α < 1, (6.5)

where Eα denotes the Mittag-Leffler function of order α, defined by

Eα(x) =

∞∑

j=0

xj

Γ(1 + αj)
.

The Laplace transform F of f is given by

F (s) =
1

1 + sα
.

6.2. Adaptive step size control. The discretization of the fractional order
viscoelastic problem yields a Volterra integro-differential equation of second order of
convolution type,

Mü(t) +Au(t) = γ

∫ t

0

f(t− τ)(Au(τ − b(τ)) dτ + b(t) =: c(t).

This is equivalent to

(
u̇
v̇

)
=

(
0 M−1

−A 0

) (
v
u

)
+

(
0
c

)
. (6.6)

Applying the transformations u → û = M 1/2u, v → v̂ = M−1/2v, A → Â =
M−1/2AM−1/2 and c→ ĉ = M−1/2c, we get

(
˙̂u
˙̂v

)
=

(
v̂

−Aû+ ĉ

)
.

In what follows we drop the ŝ. The time discretization is done using the Störmer–
Verlet scheme, which is explicit and symmetric and has good properties for the part

14

ü(t) = −Au(t) + b(t) (without the memory term). The Verlet scheme for the above
equation reads

vn+1/2 = vn +
h

2
(−Aun + cn)

un+1 = un + hvn+1/2

vn+1 = vn+1/2 +
h

2
(−Aun+1 + cn+1),

(6.7)

where cn ≈ c(tn) is computed using the adaptive convolution algorithm explained in
Section 3. Note that un is already known before we evaluate the cn and thus scheme
is explicit. In order not to lose the good properties of the Störmer-Verlet scheme a
special step-size control is used, following [11, 12] . For the integrating controller we
fix an accuracy parameter ε (which can roughly be viewed as the square root of a local
error tolerance). Our step-size density function should control v̈ and ü, therefore we
take

σ(u, v, t) = σ̃(u, v, t)−1/4 =
(
‖v̈‖2 + ‖ü‖2A

)−1/4
(6.8)

=
(
(−Av + ċ)T (−Av + ċ) + (−Au+ c)TA(−Au+ c)

)−1/4
.

Assuming that A is symmetric, the partial derivatives of σ̃ are

σ̃u(u, v, t) = 2(Au− c)TAA

σ̃v(u, v, t) = 2(Av − ċ)TA

σ̃t(u, v, t) = −2(Av − ċ)T c̈− 2(Au− c)TAċ.

With this choice the step-size becomes approximately proportional to 1/
√
‖ü‖+ c‖v̈‖.

We have to take the A norm of u so that ‖v̈‖2 and ‖ü‖2A are in the same units. We
use the integrating controller of [12],[11, (VIII.3.2)] and set

G(u, v, t) = − 1

σ(u, v, t)
∇σ(u, v, t)T

v
−Au+ c(t)

1

 = − 1

4σ̃
(2(Av − ċ)T c̈), (6.9)

where for an evaluation, ċ and c̈ at tn are approximated by divided differences using
cn, cn−1, cn−2 (set to zero for negative subscripts).

Transforming back to “non-hat” quantities and again assuming that M and A
are symmetric one obtains

σ̃(u, v, t) = (AM−1v− ċ)TM−1(AM−1v− ċ) + (Au− c)TM−1AM−1(Au− c) (6.10)

and

G = − 1

4σ̃
(2(AM−1v − ċ)TM−1c̈). (6.11)

With an accuracy parameter ε, and starting with c−1 = c−2 = c0 = b0, z−1/2 =

15

1/σ(u0, v0, t0)− εG(u0, v0, t0)/2, we compute for n = 0, . . .

zn+1/2 = zn−1/2 + εG(un, vn, tn)

hn+1/2 =
ε

zn+1/2

tn+1 = tn + hn+1/2

vn+1/2 = vn +
hn+1/2

2
(−Aun + cn)

un+1 = un + hn+1/2M
−1vn+1/2

cn+1 = γ

(
f2(hn+1/2)

hn+1/2
(Aun+1 − bn+1) +

(
f1(hn+1/2)−

f2(hn+1/2)

hn+1/2

)
(Aun − bn)

+

∫ tn

0

f(tn+1 − τ)(Au(τ) + b(τ))dτ

)
+ bn+1

vn+1 = vn+1/2 +
hn+1/2

2
(−Aun+1 + cn+1),

(6.12)

where hn+1/2 is the new step-size proposed by the integrating controller.

6.3. Numerical example. In the example the domain Ω has the form of a
cantilever as shown in Fig 6.1. The Dirichlet boundary ΓD – the left vertical boundary
of Ω – is indicated by squares. The time-dependent boundary force b is applied to the
right vertical boundary ΓN1

of Ω – indicated by circles in Fig. 6.1. On ΓN2
(the upper

and lower part of the boundary of Ω) homogenous Neumann boundary condition is
assumed.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Fig. 6.1. Cantilever with finite element mesh. ΓD is indicated by small squares and ΓN1
by

circles.

As the initial data u(x, 0), v(x, 0) we take the lowest mode of the static semi-
discrete problem corresponding to the first order equation (6.6), i.e., the eigenvector
of the matrix there corresponding to the smallest eigenvalue. The boundary force is

16

0 2 4 6 8
−0.02

−0.01

0

0.01

0.02

0.03

u

t
0 2 4 6 8

−5

0

5x 10
−4

v

t

0 2 4 6 8
−3

−2

−1

0

1

2

3x 10
−3

a
cc

e
le

ra
tio

n

t
0 2 4 6 8

10
−6

10
−5

10
−4

10
−3

 ε:1e−05

 ε:4e−05

 ε:1e−04
 ε:2e−04

 ε:5e−04

st
e

p
 s

iz
e

t

Fig. 6.2. t = 6. Displacement, velocity, and acceleration recorded for one fixed spatial node.
Also step size versus time for different ε.

given by

b(x, t) =

{
20e1/((2t−5)8−1)(1, 1)T for 2 < t < 3;x ∈ ΓN1

0 else.

In the numerical example the order of the Mittag-Leffler function is α = 1/2. We
set the density ρ = 1 and γ = 0.3. Youngs modulus and Poisson ratio are E = 200,
ν = 0.3. Equivalently the Lamé constants are µ = 76.9, λ = 115.4. For the numerical
inversion of the Laplace transform we took here a = 0.8, d = 0.7 and K = 35
quadrature nodes, giving C1 = 6.225 and C2 = 0.097.

The evolution from t = 0 to t = 6 of the horizontal component (x coordinate) of
the displacement field u, the velocity u̇, and the acceleration ü recorded at the upper
left corner of the cantilever is shown in Fig. 6.2. At t = 2 when the boundary force is
applied, an abrupt change in the velocity and strong oscillations in the acceleration
is observed. Furthermore Fig. 6.2 shows the evolution of the step-size hn+1/2 for five
different precision parameters ε = 1 · 10−5, 4 · 10−5, 1 · 10−4, 2 · 10−4, 5 · 10−4. The
integrating controller reduces the step-size by roughly a factor of ten at t = 2.

The relative error at t = 6 in energy norm ‖u‖A +‖v‖M is calculated with respect
to a reference solution obtained with ε = 1 · 10−5. The left plot in Fig 6.3 shows the
relative error versus the number of steps. The different solutions were obtained for
ε = 4 · 10−5, 5 · 10−5, 7 · 10−5, 1 · 10−4, 1.5 · 10−4, 2 · 10−4, 3 · 10−4, 4 · 10−4, 5 · 10−4.

17

10
4

10
5

10
−5

10
−4

number of steps

re
la

tiv
e

er
ro

r
in

 e
ne

rg
y

no
rm

10
4

10
510

2

10
3

10
4

number of steps

cp
u

tim
e

(s
)

Fig. 6.3. Error versus number of steps and error versus cpu time, for t = 6.

The right plot in Fig 6.3 shows the cpu time in seconds versus the number of steps,
illustrating the essentially linear growth.

Acknowledgment. We thank Roland Klose for kindly providing his elasticity
finite-element code.

REFERENCES

[1] R. Adami, A. Teta, A simple model of concentrated nonlinearity. in Mathematical results
in quantum mechanics, Prague, Czech Republic, 1998, Oper. Theory Adv. Appl., 108,
Birkhäuser, Basel, (1999), pp. 183–189.

[2] R. Adami, A. Teta, A class of nonlinear Schrödinger equations with concentrated nonlinearity,
J. Funct. Anal., 180 (2001), pp. 148–175.

[3] K. Adolfsson, M. Enelund, S. Larsson, and M. Racheva, Discretization of integro-
differential equations modeling dynamic fractional order viscoelasticity in Proc. Large-
Scale Scientific Computations, Sozopol, Bulgaria, 2005 LNCS vol. 3743, Springer, (2006),
pp. 76-83.

[4] K. Adolfsson, M. Enelund, and S. Larsson, Adaptive discretization of fractional order
viscoelasticity using sparse time history, Computer Meth. Appl. Mech. Eng., 193 (2004),
pp. 4567–4590.

[5] J. Alberty, C. Carstensen, S. A. Funken, and R. Klose, Matlab Implementation of the
Finite Element Method in Elasticity, Computing, 69 (2002), pp. 239–263.

[6] X. Cao, K. Burrage, and F. Abdullah, A variable stepsize implementation for fractional
differential equations, Report, 2006.

[7] D. Conte and I. Del Prete, Fast collocation methods for Volterra integral equation of con-
volution type, J. Comput. Appl. Math., 196 (2006), pp. 652–663.

[8] K. Diethelm and A. D. Freed, The FracPECE Subroutine for the Numerical Solution of
Differential Equations of Fractional Order, in Forschung und wissenschaftliches Rechnen:
Beiträge zum Heinz-Billing-Preis 1998, Gesellschaft f̈r wissenschaftliche Datenverarbeitung,
Göttingen (1999), pp. 57–71

[9] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Data-sparse approximation to the
operator-valued functions of elliptic operators, Math. Comp., 73 (2004), pp. 1297–1324.

[10] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, Data-sparse approximation to a
class of operator-valued functions, Math. Comp., 74 (2005), pp. 681–708.

[11] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration. Structure-
Preserving Algorithms for Ordinary Differential Equations. 2nd ed., Springer, Berlin, 2006.

[12] E. Hairer and G. Söderlind, Explicit, time reversible, adaptive step size control, SIAM J.
Sci. Comput., 6 (2005), pp. 1838–1851.

[13] R. Hiptmair and A. Schädle, Non-reflecting boundary conditions for Maxwell’s equations,
Computing, 71 (2003), pp. 265–292.

[14] M. López-Fernández and C. Palencia, On the numerical inversion of the Laplace transform
of certain holomorphic mappings, Appl. Numer. Math., 51 (2004), pp. 289–303.

18

[15] M. López-Fernández, C. Palencia, and A. Schädle, A spectral order method for inverting
sectorial Laplace transforms, SIAM J. Numer. Anal., 44 (2006), pp. 1332–1350.

[16] C. Lubich and A. Schädle, Fast convolution for nonreflecting boundary conditions, SIAM J.
Sci. Comput., 24 (2002), pp. 161–182.

[17] W. McLean and V. Thomée, Time discretization of an evolution equation via Laplace trans-
forms, IMA J. Numer. Anal., 24 (2004), pp. 439–463.

[18] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional
dynamics approach, Physics Reports, 339 (2000), pp. 1–77.

[19] M. Rizzardi, A modification of Talbot’s method for the simultaneous approximation of several
values of the inverse Laplace transform, ACM Trans. Math. Software, 21 (1995), pp. 347–
371 .

[20] A. Schädle, Ein schneller Faltungsalgorithmus für nichtreflektierende Randbedingungen. Doc-
toral Thesis, Universität Tübingen, Germany, 2002.

[21] A. Schädle, M. López-Fernández, and C. Lubich, Fast and oblivious convolution quadra-
ture, SIAM J. Sci. Comput. 28 (2006), pp. 421–438.

[22] D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic
equations based on Laplace transformation and quadrature, Math. Comp., 69 (2000),
pp. 177–195.

[23] J. R. Shewchuk, Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangu-
lator in Applied Computational Geometry: Towards Geometric Engineering, LNCS, Vol.
1148, Springer, (1996) pp. 203–222.

[24] F. Stenger, Approximations via Whittaker’s Cardinal Function, J. Approx. Theory, 17 (1976),
pp. 222–240.

[25] F. Stenger, Numerical methods based on Whittaker Cardinal, or sinc Functions, SIAM Rev.,
23 (1981), pp. 165–224.

[26] A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl., 23
(1979), pp. 97–120.

[27] J.A.C. Weideman, Optimizing Talbot’s contours for the inversion of the Laplace transform,
Preprint, 2005.

[28] J.A.C. Weideman, L.N. Trefethen, Parabolic and hyperbolic contours for computing the
Bromwich integral, Preprint, 2005.

[29] S. B. Yuste, L. Acedo, K. Lindenberg, Reaction front in an A+B → C reaction-subdiffusion
process, Phys. Rev. E 69, (2004), pp. 036126.

Appendix A. Pseudocodes for the algorithm. We describe one step of the
algorithm from tn−1 to a given new time t = tn.

For all ` = 1, . . . , L and k = −K, . . . ,K the ODEs (3.5) corresponding to the

λ
(`)
k with initial time t−` are advanced to the new time t or restarted, depending on

whether the horizontal line at height t fits the current patch or enters a new patch

(see Section 3.2 and Figure 3.1), i.e., we compute y(`)(t−` , t, λ
(`)
k), or we set t−` = t and

y(`)(t−` , t, λ
(`)
k) = 0, using the pseudocode 1.

In the following pseudocodes Y(l) denotes a structure storing:
• Y(l).data← y, the solution of the ODE corresponding to the `-patch,
• Y(l).tini← t−` , the initial time of the ODE in the `-patch,
• Y(l).tcur← tn, the new time (new final time of the ODE),
• Y(l).b ← b`, the number of the current step in the corresponding `-patch

of the mosaic, along the vertical line from (tn, 0) to (tn, tn) (see Figure 3.1).
This value ranges between 1 and B. In the example of Section 3.2 we have
for tn = t15, b3 = 3, b2 = 1 and b1 = 3.

• Y(l).tmin ← t
(`)
min = hmin

∑L
k=`+1 bkB

k−1 , the baseline of the `-patch of
the mosaic, along the vertical line from (tn, 0) to (tn, tn).

• Y(l).tmax ← t
(`)
max = hmin

∑L
k=` bkB

k−1 , the top line of the `-patch of the

mosaic, along the vertical line from (tn, 0) to (tn, tn) (t
(`+1)
max = t

(`)
min),

• Y(l).ub← hmin

(
1 +

∑`
k=0B

k
)

upper bound of the approximation interval,

• Y(l).lb← hmin

(
1 +

∑`−2
k=0B

k
)

lower bound of the approximation interval,

19

• Y(l).gini← g(t−`) and Y(l).gcur← g(tn), the values of the inhomogeneity
at the initial time in the `-patch and at the current time.

In the rare case that tn is exactly on one of the horizontal lines of the mosaic, the
structure Y(l) is copied to YA(l) before restarting for bookkeeping purposes.

Algorithm 1 Advance and restart the scalar ODEs. odesol

for l = 1 to L do

if tn ≥ Y (l).tmin+ Y (l).b ∗B(l−1) ∗ hmin then

if tn ≥ Y (l).tmax then

if tn = Y.tmax then

Y (l) = odesadvance(Y (l), tn, gn−1, gn) ;

Y (l).b = B ;

Y A(l) = Y (l) ;

end if

restart the ODE Y (l) c.f. Algorithm 2 ;

else

Y (l) = odesadvance(Y (l), tn, gn−1, gn) ;

while t > Y (l).tmin+ Y (l).b ∗B(l−1) ∗ hmin do

Y (l).b = Y (l).b+ 1 ;

end while

end if

else

Y (l) = odesadvance(Y (l), tn, gn−1, gn) ;

end if

end for

Algorithm 2 restart the ODE

Y (l).data = 0 ∗ Y (l).data ; Y (l).b = 1 ;

while tn > Y (l).tmin+ Y (l).b ∗B(l−1) ∗ hmin do

Y (l).b = Y (l).b+ 1 ;

end while

Y (l).tini = t; Y (l).tcur = t; Y (l).gini = gn; Y (l).gcur = gn ;

while tn ≥ Y (l).tmax do

Y (l).tmin = Y (l).tmax ;

Y (l).tmax = Y (l).tmin+Bl ∗ hmin ;

end while

Algorithm 3 Advancing the ODE (exponential Euler method) odesadvance

for k = −K, . . . ,K do

Y (`).datak = Y (`).datak + (exp(dt ∗ λ(`)
k)− 1)/λ

(`)
k

∗(λ(`)
k ∗ Y (`).datak + gn−1 + (gn − gn−1)/dt/λ

(`)
k) + (gn−1 − gn)/λ

(`)
k ;

end for

Y (`).gcur = gn ; Y (`).tcur = t ;

To fill the mosaic botton-up, Algorithm 4 is used. There copying the structure
Y(l) to YM(l) and YA(l) is done by checking if the distances to the diagonal tn −

20

Y(l).tmin and tn − Y(l).tmax fit the approximation interval I`.

Algorithm 4 update routine update

for ` from L downto 1 do

if tn−YM(`).tmin−hmin∗YM(`).b∗B(`−1) ≥ Y (`).lb& tn−YM.tini ≤ Y (`).ub
then

Y T (`) = YM(`) ;

end if

if tn ≥ Y (`).tmax then

Y A(`) = Y (`) ;

YM(`) = Y (`) ;

else if tn ≥ Y (`).tmin+ hmin ∗ YM.b ∗B(`−1) then

YM(`) = Y (`) ;

end if

if tn−YM(`).tmin−hmin∗YM(`).b∗B(`−1) ≥ Y (`).lb& tn−YM.tini ≤ Y (`).ub
then

Y T (`) = YM(`) ;

end if

if tn−Y A(`).tmin−hmin∗YA(`).b∗B(`−1) ≥ Y (`).lb & tn−Y A.tini ≤ Y (`).ub
& Y A(`).tini > Y T (`).tini then

Y T (`) = Y A(`) ;

end if

end for

YT(l) is updated by checking if either of the distances to the diagonal correspond-
ing to YM(l) or YA(l) fit the approximation intervals.

Algorithm 5 update routine part 2 update

idv = [] ; ito = 1 ;

if tn − Y T (L).tcur ≥ Y (L).lb & tn − Y T (L).tini ≤ Y (L).ub then

idv = [L, idv] ;

else

Y T (L).tini = −inf ; Y T (L).tcur = −inf ;

end if

for ` from L− 1 downto 1 do

if tn − Y T (`).tcur ≥ Y (`).lb & tn − Y T (`).tini ≤ Y (`).ub & Y T (`).tini >
Y T (`+ 1).tini & Y T (`).tcur > Y T (`+ 1).tcur then

idv = [`, idv] ;

else

Y T (`).tini = −inf ; Y T (`).tcur = −inf ;

end if

if tn − tn−1 ≥ Y (`).lb & tn − tn−1 ≤ Y (`).ub then

ito = ` ;

end if

end for

idv = [ito idv] ;

Algorithm 6 puts together the necesary “direct” and “odes” steps. It uses the
ode solutions YT and the vector idv from Algorithm 5. idv stores the orders ` of the

21

YT required at t = tn.

Algorithm 6 Fast convolution evaluation, cf. (3.7)

out = 0 ;

if idv is not empty then

if length(idv) ≥ 2 then

if tn−1 > Y T (idv(2)).tcur then

out = out+
directstep(t, Y T (idv(2)).tcur, tn−1, Y T (idv(2)).gcur, gn−1) ; (3.11)

end if

for ll = 2 : length(idv)− 1 do

if Y T (idv(ll)).tcur > Y T (idv(ll)).tini then

` = idv(ll) ;

out = out+
∑K

k=−K w
(`)
k F (λ

(`)
k) exp(t− Y T (`).tcur) ∗ Y T (`).datak ; (3.6)

end if

if Y T (idv(ll)).tini > Y T (idv(ll+ 1)).tcur then

out = out+ directstep(t, Y T (idv(ll+ 1)).tcur, Y T (idv(ll)).tini,
Y T (idv(ll+ 1)).gcur, Y T (idv(ll)).gini) ; (3.11)

end if

end for

if Y T (idv(end)).tcur > Y T.(idv(end))tini then

` = idv(end) ;

out = out+
∑K

k=−K w
(`)
k F (λ

(`)
k) exp(t− Y T (`).tcur) ∗ Y T (`).datak ; (3.6)

end if

end if

end if

22

