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Abstract. In this paper, we study the efficiency of Nash equilibria for
a sequence of nonatomic routing games. We assume that the games are
played consecutively in time in an online fashion: by the time of playing
game i, future games i+1, . . . , n are not known, and, once players of game
i are in equilibrium, their corresponding strategies and costs remain fixed.
Given a sequence of games, the cost for the sequence of Nash equilibria
is defined as the sum of the cost of each game. We analyze the efficiency
of a sequence of Nash equilibria in terms of competitive analysis arising
in the online optimization field. Our main result states that the online
algorithm SeqNash consisting of the sequence of Nash equilibria is 4n

2+n
-

competitive for affine linear latency functions. For n = 1, this result
contains the bound on the price of anarchy of 4

3
for affine linear latency

functions of Roughgarden and Tardos [1] as a special case. Furthermore,
we analyze a problem variant with a modified cost function that reflects
the total congestion cost, when all games have been played. In this case,
we prove an upper bound of 4n

2+n
on the competitive ratio of SeqNash.

We further prove a lower bound of 3n−2

n
of SeqNash showing that for

n = 2 our upper bound is tight.

1 Introduction

Future telecommunication networks are expected to support applications with
various Quality of Service requirements. The timely delivery of digital audio-
visual information for example becomes a major challenge in designing future
networks. One of the key issues to accommodate these QoS requirements in the
Internet is QoS routing, see Chen and Nahrstedt [2] and references therein for
a survey on this rich topic. The challenge in QoS routing is to route the data
along paths that meet the QoS requirements of the corresponding application.
Most of the work in this field assumes a source routing model, where routing
decisions are made at the source of a communication request. The links in the
network only advertise their current status (price) that is based on the current
congestion situation. Knowing these prices, sources calculate the optimal paths

⋆ Supported by the German research funding agency ’DFG’ under the graduate pro-
gram ’Graduiertenkolleg 621 (MAGSI/Berlin)’
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to route their demand. If the link prices correspond to the expected delay on
that link, minimum cost routing is a natural goal for time critical real-time
applications.

Minimum cost routing also arises in an inter domain QoS market, where
multiple service providers offer network resources (capacity) to enable Internet
traffic with specific QoS constraints, cf. Yahaya and Suda [3, 4] and Yahaya,
Harks, and Suda [5]. Presently, any Internet service provider can offer QoS traffic
such as Internet Telephony (VoIP) or video on demand within the domains that
the provider controls. Since no single service provider controls all domains in
the Internet, deploying end-to-end inter domain QoS traffic requires trading and
negotiating for resources between different service providers. In such a market,
each service provider advertises prices for resources that he wants to sell. Buying
providers choose the cheapest available paths to route demand (coming from own
customers) from source to destination.

Recently, several works drew connections between the source routing model
and selfish routing models coming from non-cooperative game theory, see among
others Roughgarden [6] and Altman, Basar, Jimenez, and Shimkin [7], and refer-
ences therein. The main focus of this line of research is to quantify the efficiency
loss of Nash equilibria compared to the system optimum. Here, two assumptions
are crucial: if the traffic matrix changes, (i) all sources may possibly change their
routes and form a new equilibrium (ii) the cost of routing demand in the new
equilibrium may change. These two assumptions, however, do not hold in the
afore mentioned scenarios.

In the source routing model, the routing decision is usually made at the
beginning of connection setup. A rerouting attempt during transmission would
result in a transient transmission stop and would possibly lower the data rate
due to the restart of the transmission control protocol (TCP)[8]. This makes
assumption (i) unrealistic for the source routing model even if the traffic matrix
changes.

In the inter-provider QoS model both assumptions do not hold. First, buy-
ing providers reserve QoS capacity along routes for their communication re-
quest. This involves a binding contract between selling providers and the buy-
ing provider. Since the risk of congestion externalities is covered by the selling
providers, rerouting is dispensable for the buying provider. Secondly, once such
a reservation request has been established, the cost for this reservation remains
unchanged.

The purpose of this paper is to introduce a new model that does not rely on
the afore mentioned two assumptions. It turns out, that a combination of the
online optimization field with algorithmic game theory provides a fruitful way
to analyze the efficiency of routing strategies in this new model.

1.1 Contribution

In this paper, we introduce the concept of sequential routing games. In this
concept, we assume a sequence of (nonatomic) routing games σ = (1 . . . , n) that
are played consecutively in time in an online fashion. By the time of playing game
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i, future games i + 1, . . . , n are not known. We further assume that once players
of game i are in equilibrium, their corresponding strategies remain fixed, that
is, the strategies are irrevocable. We analyze the efficiency of a sequence of Nash
equilibria in terms of competitive analysis coming from the online optimization
field. An online algorithm Alg is called c-competitive if the cost of Alg is never
larger than c times the cost of an optimal offline solution. The optimal offline
solution in our model is derived by minimizing the total routing cost for all
games. Note that for deriving the optimal offline solution, the sequence σ is
known a priori.

Our main result states that the online algorithm SeqNash consisting of the
sequence of Nash equilibria is 4n

2+n
-competitive for affine linear latency functions.

This result contains the bound on the price of anarchy of 4
3 for affine linear

latency functions of Roughgarden and Tardos [1] as a special case of our model,
where n = 1. Furthermore, we investigate a problem variant with a different cost
function that captures the total congestion cost provided all games are played.
We prove an upper bound of 4n

2+n
on the competitive ratio of SeqNash and

prove a lower bound of 3n−2
n

of SeqNash showing that for n = 2, the upper
bound is tight.

1.2 Related Work

In the last years there has been an exciting development in algorithmic game
theory trying to quantify the efficiency loss of Nash equilibria (user equilibria)
in non-cooperative games. The fact that there exists an efficiency loss of the user
equilibrium compared to a system optimum is well known in the transportation
literature, see Braess [9] and Dubey [10]. A first attempt to exactly quantify the
so called “price of anarchy” is given by Papadimitriou and Koutsoupias [11] in
the context of a load balancing game in communication networks. Subsequently,
Roughgarden and Tardos [1] applied this approach to quantify the price of an-
archy in nonatomic selfish routing games. In nonatomic games, a large number
of players is assumed, each consuming an infinitesimal part of the resources. In
particular, Roughgarden and Tardos [1] proved for a set of separable affine cost
functions a bound of 4

3 on the price of anarchy. A series of several other papers
analyzed the price of anarchy for more general cost functions and model features;
see for example Correa Schulz, and Stier-Moses [12], Jahn, Möhring, Schulz and
Stier-Mose [13], Perakis [14], and Roughgarden [6].

In the online routing field, mainly call admission control problems have been
considered. An overview article about these problems is given by Leonardi in [15].
In the paper by Awerbuch, Azar, and Plotkin [16], online routing algorithms are
presented to maximize throughput under the assumption that routings are irre-
vocable. They, however, restrict the analysis to single path routing and present
competitive bounds that depend on the number of nodes in the network. Our
work is motivated by the paper by Harks, Heinz, and Pfetsch [17], where online
multicommodity routing problems are considered. They present a greedy online
algorithm for a different convex cost function that is 4K

2+K
competitive, where
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K is the number of commodities. In their framework, only single demands are
released consecutively.

2 Problem Description

An instance of the Online Sequential Routing Game (OnlineSRG) consists of
a directed network D = (V, A) and nondecreasing continuous price or latency
functions pa : R+ → R+ for each link a ∈ A. Furthermore, a sequence σ =
1, . . . , n of routing games are given. We denote for each game i the set of different
types of players by [Ki] = {(i, 1), . . . , (i, ni)}. For each (i, j) ∈ [Ki], a flow of
rate d(i,j) > 0 must be routed from the origin s(i,j) to the destination t(i,j).
We assume infinitely many agents carrying the flow, where each agent controls
only an infinitesimal fraction of the flow. For ease of notation, we express in the
following the strategy of player (i, j) in terms of a routing assignment. A routing

assignment, or flow, for player (i, j) ∈ [Ki] is a nonnegative vector f (i,j) ∈ RA
+.

This flow is feasible if for all v ∈ V

∑

a∈δ+(v)

f (i,j)
a −

∑

a∈δ−(v)

f (i,j)
a = γ(v), (1)

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; fur-
thermore, γ(v) = d(i,j) if v = s(i,j), γ(v) = −d(i,j) if v = t(i,j), and γ(v) = 0
otherwise.

Alternatively, one can consider a path flow for a player (i, j) ∈ [Ki]. Let P(i,j)

be the set of all paths from s(i,j) to t(i,j) in D. A path flow is a nonnegative vector

(f
(i,j)
P )P∈P(i,j)

. The corresponding flow on link a ∈ A for player (i, j) ∈ [Ki] is
then

f (i,j)
a :=

∑

P∋a

f
(i,j)
P .

We define Fi with 0 ≤ i ≤ n to be the set of vectors (f1, . . . , f i) such that f j

is a feasible flow for games j, j = 1, . . . , i. The entire flow for a sequence of games
σ = (1, . . . , n) is denoted by f = (f1, . . . , fn). We denote by f i

a the aggregate
flow of game i on link a. The cost of a flow on link a ∈ A of game i is defined by

Ci
a(f i

a; f1
a, . . . , f i−1

a ) = pa

(

i
∑

j=1

f j
a

)

f i
a (2)

This expression can be obtained as the routing cost on arc a for a feasible flow
for game i, given the flows (f1, . . . , f i−1) of previous games 1, . . . , i − 1. In the
sequel of this paper we assume that pa(x)x is a convex function. Hence Ci

a(·) is
also a convex function. The cost for game i is given by the sum of arc costs

Ci(f i; f1, . . . , f i−1) =
∑

a∈A

Ci
a(f i

a; f1
a, . . . , f i−1

a ).
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Fig. 1. Illustration of the cost function C(f ) for n = 3.

If we assume that the flows of games i + 1, . . . , n do not affect the cost of the
flows of the first 1, . . . , i games, then the total cost of all sequentially played
games is given by:

C(f ) =

n
∑

i=1

Ci(f i; f1, . . . , f i−1). (3)

Figure 1 illustrates the cost function for a feasible flow. The cost on an arc a is
actually a right-hand Riemann sum of the price function pa(x) on the interval
[0,
∑n

i=1 f
i
a].

For a sequence of games σ = (1, . . . , n), we investigate in this paper the
online algorithm SeqNash, that consists of the sequence of Nash equilibria for
the corresponding games (1, . . . , n). We focus on the efficiency of SeqNash

compared to the offline optimum Opt.

2.1 Characterizing Sequential Nash Equilibria

A strategy distribution or flow for game i is at Nash equilibrium when no player
has an incentive to unilaterally change his strategy.

It is easy to check that a Nash flow f i is the optimum of the following convex
optimization problem, see for example Roughgarden and Tardos [1].

min
∑

a∈A

fi
a
∫

0

pa(
i−1
∑

j=1

f j
a + z) dz

s.t.
∑

a∈δ+(v)

f (i,j)
a −

∑

a∈δ−(v)

f (i,j)
a = γ(v) ∀ v ∈ V, (i, j) ∈ [Ki] (4)

f (i,j)
a ≥ 0 ∀ a ∈ A, (i, j) ∈ [Ki],
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where γ(v) is defined as in (1). The following conditions are necessary and suf-
ficient to characterize a Nash equilibrium for game i.

Lemma 1. A feasible flow f
i for the game i is a Nash equilibrium if and only

if it satisfies:

∑

a∈A

pa

(

i
∑

j=1

f j
a

)

(f i
a − xi

a) ≤ 0 for all feasible flows xi for game i. (5)

The proof is based on the first order optimality conditions and the convexity
of Ci(·), see Dafermos and Sparrow [18]. For a given sequence σ of games, we
denote in the following the deterministic online algorithm that consists of the
sequence of Nash equilibria by SeqNash.

2.2 Total Offline Optimum

Finally, the total offline optimum is characterized by:

min C(f )

s.t.
∑

a∈δ+(v)

f (i,j)
a −

∑

a∈δ−(v)

f (i,j)
a = γ(v) ∀ v ∈ V, (i, j) ∈ [Ki], i ∈ [n] (6)

f (i,j)
a ≥ 0 ∀ a ∈ A, (i, j) ∈ [Ki], i ∈ [n]

where γ(v) is defined as in (1).

Lemma 2. A feasible flow f for the parallel game σ = (1, . . . , n) is total system

optimal if and only if it satisfies:

∑

a∈A

∂C

∂fa

(fa) (fa − xa) ≤ 0 for all feasible flows x for game σ. (7)

The optimal offline algorithm that generates for a given game sequence σ an
optimal flow f for the above problem is called Opt. We denote its value for σ
by Opt(σ) = C(f ).

3 Bounding the Inefficiency for SeqNash

For a given sequence of games σ = 1, . . . , n we denote the corresponding se-
quences set of players by ([K1], . . . , [Kn]). A solution f produced by an online
algorithm Alg for σ we denote by Alg(σ) = C(f ) its cost. The online al-
gorithm Alg is called c-competitive if the cost of Alg is never larger than c
times the cost of an optimal offline solution. The competitive ratio of Alg is
the infimum over all c ≥ 1 such that Alg is c-competitive, see Borodin and
El-Yaniv [19].

We can classify the presented algorithms SeqNash and Opt as follows: Se-

qNash is a deterministic online algorithms for OnlineSRG; Opt is an offline

solution for OnlineSRG since here, the entire game sequence is known in ad-
vance.
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0
0

pa(·)

pa(0)

pa(x1
a + x2

a)

pa(f 1

a
+ f 2

a
)

x1
a + x2

a

f 1

a
f 1

a
+ f 2

a

Fig. 2. Illustration of the value φn(C) in Theorem 1 with n = 2.

3.1 Competitive Analysis of SeqNash

Before we state the main result, we need some useful prerequisites. We define
for every a ∈ A, for any nonnegative vectors va, wa ∈ Rn the following values
(we assume by convention 0/0 = 0):

α(pa, n) := max
va≥0

pa(
n
∑

k=1

vk
a)

(

n
∑

k=1

vk
a

)

n
∑

k=1

pa(
k
∑

i=1

vi
a)vk

a

(8)

φ(pa, va, n) := max
wa≥0

(

pa(
n
∑

k=1

vk
a) − pa(

n
∑

k=1

wk
a)
)

(

n
∑

k=1

wk
a

)

n
∑

k=1

pa(
k
∑

i=1

vi
a) vk

a

. (9)

Figure 2 illustrates the value φ(pa, va, n) as the ratio of the area of the shaded
rectangle and the white area within the entire rectangle.

For a given class C of nondecreasing price functions, we further define

αn(C) := sup
pa∈C,va≥0

α(pa, n)

φn(C) := sup
pa∈C,va≥0

φ(pa, va, n)

Theorem 1. If the values αn(C), and φn(C) are finite and 1−φn(C) > 0 holds,

then SeqNash is
αn(C)

1−φn(C) -competitive.
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Proof. Let f be the flow generated by SeqNash, and x be any feasible flow for
a given sequence of games σ = (1, . . . , n).

C(f ) =
∑

a∈A

n
∑

k=1

pa(

k
∑

i=1

f i
a)fk

a

≤
∑

a∈A

n
∑

k=1

pa(
k
∑

i=1

f i
a)xk

a (10)

≤
∑

a∈A

pa(

n
∑

i=1

f
i
a)
(

n
∑

k=1

xk
a

)

(11)

=
∑

a∈A

pa(

n
∑

i=1

xi
a)
(

n
∑

k=1

xk
a

)

+
(

pa(

n
∑

i=1

f i
a) − pa(

n
∑

i=1

xi
a)
)(

n
∑

k=1

xk
a

)

≤ αn(C)C(x) + φn(C)C(f ), (12)

where (10) follows from the variational inequality (4), (11) is valid since price
functions are nondecreasing, and (12) follows by the definition of αn(C) and
φn(C), respectively. ⊓⊔

In the following, we explicitly determine bounds on the values αn(C) and φn(C)
for affine linear price functions.

Lemma 3. For x1, . . . , xn ∈ R we have:

n
∑

i=1

x2
i ≥

1

n

(

n
∑

i=1

xi

)2

. (13)

Proof. Consider the vector x = (x1, . . . , xn)T and 1, the vector of all ones. By
the inequality of Cauchy-Schwarz, we obtain:

(

n
∑

i=1

xi

)2

=
(1Tx

)2
≤
∥

∥1∥∥2

2

∥

∥x
∥

∥

2

2
= n

n
∑

i=1

x2
i ,

which yields the result. ⊓⊔

Remark 1. The following equation is useful:

n
∑

i=1

n
∑

j=1

f j
a f i

a = 2
n
∑

i=1

i
∑

j=1

f j
a f i

a −
n
∑

i=1

f i
a f i

a. (14)

Lemma 4. For affine linear price functions pa(z) = qaz + ra, qa ≥ 0, ra ≥ 0,
the value αn(C) is less than or equal to 2n

n+1 .

Proof. If qa = 0, then we have αn(C) = 1. For qa > 0, we define:

ν :=
ra

qa

n
∑

i=1

vi
a

.



On the Efficiency of Equilibria in Sequential Nonatomic Routing Games 9

Then,

qa

n
∑

k=1

n
∑

i=1

vi
a vk

a + ra

n
∑

i=1

vi
a

qa

n
∑

k=1

k
∑

i=1

vi
a vk

a + ra

n
∑

i=1

vi
a

=

2
n
∑

k=1

n
∑

i=1

vi
a vk

a + 2ν
n
∑

k=1

n
∑

i=1

vi
avk

a

2
n
∑

k=1

k
∑

i=1

vi
avk

a + 2ν
n
∑

k=1

n
∑

i=1

vi
avk

a

≤

2
n
∑

k=1

n
∑

i=1

vi
a vk

a + 2ν
n
∑

k=1

n
∑

i=1

vi
avk

a

n
∑

k=1

n
∑

i=1

vi
a vk

a + 1
n

n
∑

k=1

n
∑

i=1

vi
avk

a + 2ν
n
∑

k=1

n
∑

i=1

vi
avk

a

(15)

=
2 + 2ν

1 + 1
n

+ 2ν
,

where (15) follows from Lemma 3. Hence,

αn(pa, va) ≤
2 + 2ν

1 + 1
n

+ 2ν
.

Maximizing F (ν) := 2+2ν
1+ 1

n
+2ν

with respect to ν yields:

max
ν≥0

F (ν) = F (0) =
2n

n + 1
.

⊓⊔

Lemma 5. For parameters a, b > 0 and any numbers x, y ≥ 0 the following

inequality is valid:

xy ≤
a

2b
x2 +

b

2a
y2. (16)

Lemma 6. For affine linear price functions pa(z) = qaz + ra, qa ≥ 0, ra ≥ 0,
the value φn(C) is less than or equal to n

2(n+1) .

Proof.

qa

(

n
∑

k=1

vi
a −

n
∑

k=1

wk
a

)

n
∑

k=1

wk
a

qa

n
∑

k=1

k
∑

i=1

vi
a vk

a + ra

n
∑

i=1

vi
a

≤

(

n
∑

k=1

vi
a −

n
∑

k=1

wk
a

)

n
∑

k=1

wk
a

n
∑

k=1

k
∑

i=1

vi
a vk

a

(17)

=

(

n
∑

k=1

vi
a −

n
∑

k=1

wk
a

)

n
∑

k=1

wk
a

1
2

(

n
∑

k=1

n
∑

i=1

vi
a vk

a +
n
∑

k=1

vk
a vk

a

)

≤

1
4

(

n
∑

k=1

vi
a

)2

1
2

( n
∑

k=1

vk
a

)2

+ 1
2n

(

n
∑

k=1

vk
a

)2
(18)

=
n

2(n + 1)
,
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s1

t1
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Fig. 3. Graph construction for the proof of Theorem 2.

where (17) is valid since ra ≥ 0. Inequality (18) follows from Lemma 5, where

we set x =
n
∑

k=1

vk
a , y =

n
∑

k=1

wk
a , a = 1, and b = 2. Hence, φn(C) ≤ n

2(n+1) . ⊓⊔

Now, we state our main result.

Corollary 1. If the price functions of the OnlineSRG are affine, the online

algorithm SeqNash is 4n
n+2 -competitive, where n is the number of games.

Proof. Replacing αn(C), φn(C) with 2n
n+1 , n

2(n+1) , respectively, and applying The-

orem 1 yields the desired result. ⊓⊔

Note 1. For n = 1, that is, only a single game is considered, the competitive
ratio is equal to the price of anarchy of 4

3 for nonatomic routing games with
affine linear price functions.

We do not know, whether the above result is tight for n ≥ 2. In the following,
we present lower bounds on the competitive ratio for SeqNash.

3.2 Lower Bounds for SeqNash

Theorem 2. In case of affinely linear cost functions, the online algorithm Se-

qNash for OnlineSRG has a competitive ratio greater than or equal to 5n−3
3n−1 ,

where n is the number of games.

Proof. Consider the network presented in Figure 3 with the following price func-
tions: p(si,s)(z) = 0, p(t,ti)(z) = 0, p(si,ti)(z) = i, i = 1, . . . , k, and p(s,t)(z) = z.
We consecutively release a sequence of games (1, . . . , k), where in each game i,
there is a single player type (i, 1). The demand of player type (i, 1) is of size 1
that has to be routed from si to ti, for i = 1, . . . , k. Due to the choice of the
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affine terms i, SeqNash routes for every game the corresponding demand over
the arc from s to t. The cost for these k demands is:

k
∑

i=1

i =
k(k + 1)

2
.

Then we release the (k+1)-th game with demand d from s to t, which generates
the following cost:

(k + d)d = kd + d2.

Thus, the total cost for the sequence σ = (1, . . . , k + 1) for SeqNash is given
by:

SeqNash(σ) =
k(k + 1)

2
+ kd + d2.

The optimal offline algorithm Opt routes the demands of the first k games along
the direct arcs from si to ti incurring cost of:

k
∑

i=1

i =
k(k + 1)

2
.

The last demand in game k +1 is routed from s to t with cost d2. The total cost
for the sequence σ = (1, . . . , k + 1) for Opt is given by:

Opt(σ) =
k(k + 1)

2
+ d2.

Setting d = k and replacing k = n − 1 yields

SeqNash(σ)

Opt(σ)
=

k(k + 1) + 2kd + 2d2

k(k + 1) + 2d2
=

5n − 4

3n − 2
, (19)

which proves the theorem. ⊓⊔

The asymptotic bound for n tending to infinity is 5
3 . However, for large k we can

numerically optimize (19) over the parameter d.

Corollary 2. In case of affinely linear cost functions, the online algorithm Se-

qNash for OnlineSRG has a competitive ratio greater than or equal to 1.7.

Proof. We set k = 100. Optimizing over d yields d = 71. Evaluating (19) with
these values proves the corollary.

4 Total Congestion Cost

In the previous sections we assumed that the cost of a given sequence of games
σ is the sum of the cost of the individual games. In this section, we define the
total cost as:

C(f ) =
∑

a∈A

pa

(

n
∑

i=1

f i
a

)

n
∑

i=1

f i
a. (20)
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This cost function reflects the congestion cost provided the entire sequence of
games has been played. To this end, we assume the same basic setting as in the
previous sections except that our performance measure for an online algorithm
is given by (20). We define for every a ∈ A, for any nonnegative vectors va, wa ∈Rn the following value (we assume by convention 0/0 = 0):

γ(pa, va) := max
wa≥0

(

pa(
n
∑

k=1

vk
a) − pa(

n
∑

k=1

wk
a)
)

(

n
∑

k=1

wk
a

)

pa(
n
∑

k=1

vk
a)

n
∑

k=1

vk
a

. (21)

We further define for a given class of price functions C:

γ(C) := sup
pa∈C,va≥0

γ(pa, va) (22)

ωn(C) := sup
pa∈C,va≥0

α(pa; n) · γ(pa, va). (23)

Note that the value γ(C) was first defined in Correa, Schulz, and Stier-Moses [12]
in the context of selfish routing in nonatomic routing games.

Theorem 3. If the values αn(C), and ωn(C) are finite and 1−ωn(C) > 0 holds,

then SeqNash is
αn(C)

1−ωn(C) -competitive for OnlineSRG.

Proof. Let f be the flow generated by SeqNash, and x be any feasible flow for
a given sequence of games σ = (1, . . . , n).

C(f ) =
∑

a∈A

pa(

n
∑

i=1

f i
a)

n
∑

k=1

fk
a

≤ αn(C)
∑

a∈A

n
∑

k=1

pa(

k
∑

i=1

f i
a)fk

a (24)

≤ αn(C)
∑

a∈A

n
∑

k=1

pa(

k
∑

i=1

f i
a)xk

a (25)

≤ αn(C)
∑

a∈A

pa(

n
∑

i=1

f i
a)
(

n
∑

k=1

xk
a

)

(26)

=
∑

a∈A

αn(C)pa(

n
∑

i=1

xi
a)
(

n
∑

k=1

xk
a

)

+ αn(C)
(

pa(

n
∑

i=1

f i
a) − pa(

n
∑

i=1

xi
a)
)(

n
∑

k=1

xk
a

)

≤ αn(C)C(x) + ωn(C)C(f ), (27)

where (24) follows by the definition of αn(C), (25) follows from the variational
inequality (4), (26) is valid since price functions are nondecreasing, and (27)
follows by the definition of ωn(C). ⊓⊔

Corollary 3. If the price functions of the OnlineSRG are affine, the online

algorithm SeqNash is 4n
n+2 -competitive, where n is the number of games.
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n
.

Proof. Replacing αn(C), ωn(C) with 2n
n+1 , n

2(n+1) , respectively, and applying The-

orem 3 yields the desired result. ⊓⊔

Lower Bounds for SeqNash.

Theorem 4. In case of affinely linear cost functions, the online algorithm Se-

qNash for OnlineSRG has a competitive ratio greater than or equal to 3n−2
n

,

where n is the number of games.

Proof. We consider the network presented in Figure 3 with the price functions:
p(si,s)(z) = 0, p(t,ti)(z) = 0, p(si,ti)(z) = i, i = 1, . . . , k, and p(s,t)(z) = z. We
consecutively release a sequence of games (1, . . . , k), where in each game i, there
is a single player type (i, 1). The demand of player type (i, 1) is 1 that has to
be routed from si to ti, for i = 1, . . . , k. Due to the choice of the affine terms i,
SeqNash routes for every game the corresponding demand over the arc from s
to t. Then we release the (k + 1)-th game with demand d from s to t. Thus, the
total cost for the sequence σ = (1, . . . , k + 1) for SeqNash with the new cost
function is given by:

SeqNash(σ) = (k + d)2.

The optimal offline algorithm Opt routes the demands of the first k games along
the direct arcs from si to ti incurring cost of:

k
∑

i=1

i =
k(k + 1)

2
.

The last demand in game k +1 is routed from s to t with cost d2. The total cost
for the sequence σ = (1, . . . , k + 1) for Opt is given by:

Opt(σ) =
k(k + 1)

2
+ d2.
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Replacing k = n − 1 and setting d = n
2 yields

SeqNash(σ)

Opt(σ)
=

2(k + d)2

k(k + 1) + 2d2
=

3n − 2

n
, (28)

which proves the theorem. ⊓⊔

Remark 2. For n = 2, the upper bound given in Corollary 3 is tight.

5 Concluding Remarks

This paper constitutes a first attempt to combine recent advances in the algo-
rithmic game theory field with the online optimization field. Our initial results
show that despite the fact that a Nash equilibrium is usually inefficient com-
pared to the system optimum, the online algorithms SeqNash consisting of a
sequence of Nash equilibria is asymptotically 4-competitive.
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