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NASH EQUILIBRIA IN ONLINE SEQUENTIAL ROUTING GAMES

TOBIAS HARKS∗

Abstract. In this paper, we study the efficiency of Nash equilibria for a sequence of rout-
ing games. In a routing game players route demand from source to destination in a network.
Their strategy is to select routes in order to minimize their individual travel time. We assume
that the games are played consecutively in time in an online fashion: by the time of playing
game i, future games i + 1, . . . , n are not known, and, once players of game i are in equi-
librium, their corresponding strategies remain fixed. The cost function is given by the total
routing cost, when all games have been played. We analyze the efficiency of a sequence of Nash
equilibria in terms of competitive analysis arising in the online optimization field. Our main
results are summarized in the following: (i) for nonatomic players the online algorithm Seq-
Nash that produces a sequence of Nash equilibria is 4n

2+n
-competitive for affine linear latency

functions and 4n2

(1+n)2
-competitive for linear latency functions; (ii) for atomic players SeqNash

is min{ 2(3K+1)n
nK+3n+3K+1

, 5K+1
K+5

}-competitive for affine linear latency functions; (iii) a lower bound
of 3n−2

n
in both cases (iv) for general polynomial latency functions, we prove lower and upper

bounds on the competitive ratio of SeqNash that grow exponentially in the degree of the
considered polynomials for the nonatomic and atomic case. For n = 1, these results include the
first known bounds on the price of anarchy for games with atomic players for general polynomial
latency functions.

1. Introduction

In this paper, we introduce the concept of sequential routing games. In this concept, we
assume a sequence of routing games σ = 1, . . . , n that are played consecutively in time in an
online fashion. By the time of playing game i, future games i + 1, . . . , n are not known. We
further assume that once players of game i are in equilibrium, their corresponding strategies
remain fixed, that is, the strategies are irrevocable. We analyze the efficiency of an online
algorithm, called SeqNash that produces a flow consisting of the sequence of Nash equilibria.
Our measure of efficiency is defined in terms of competitive analysis coming from the online
optimization field. An online algorithm Alg is called c-competitive if its cost of Alg is never
larger than c times the cost of an optimal offline solution. The optimal offline solution in our
model is derived by minimizing the total routing cost when all games have been played. Note
that for deriving the optimal offline solution, the sequence σ is known a priori.

Our work is motivated by the application of selfish routing to the source routing concept in
telecommunication networks, see Qiu, Yang, Zhang, and Shenker [1] and Friedman [2] for an
engineering perspective and Roughgarden [3] and Altman, Basar, Jimenez, and Shimkin [4] for
a theoretical perspective on this topic. In the source routing model, sources are responsible
for selecting paths to route data to the corresponding sink. The links in the network advertise
their current status (price) that is based on the current congestion situation. If the link prices
correspond to the expected delay on that link, minimum cost routing is a natural goal for
time critical real-time applications. The main focus of this line of research is to quantify the
efficiency loss of a Nash equilibrium compared to the system optimum. Here, one assumption
is crucial: if the traffic matrix changes, all sources may possibly change their routes and form a
new equilibrium.

From a practical point of view, the main drawback of source routing in the Internet is the
communication overhead in continuously maintaining the state of all available routes. Further-
more, frequent rerouting attempts during data transmission may interfere with the widely used
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congestion control protocol TCP that controls the data rate, as reported by La, Walrand, and
Anantharam in [5]. Thus, rerouting may result in severe performance degradation for time
critical applications, such as Internet Telephony or video.

The purpose of this paper is to introduce a new model where sources starting at the same time
select their routes only during connection setup phase. Once these flows are at equilibrium their
routing decisions remain fixed. Thus, continuously gathering information about the network
state is dispensable after this initial routing game.

We study in this paper the sequence σ = 1, . . . , n of games, where players of game i choose
strategies without taking future games j = i + 1, . . . , n into account. It turns out, that a
combination of the online optimization field with algorithmic game theory provides a fruitful way
to analyze the efficiency of routing strategies in this new model. Surprisingly, the inefficiency
of the sequence of Nash equilibria, where nonatomic and atomic players are allowed, can be
bounded by a constant factor for a wide class of latency functions.

1.1. Related Work

In the last years there has been an exciting development in algorithmic game theory trying
to quantify the efficiency loss of Nash equilibria (user equilibria) in non-cooperative games. The
fact that there exists an efficiency loss of the user equilibrium compared to a system optimum
is well known in the transportation literature, see Braess [6] and Dubey [7]. A first attempt to
exactly quantify this so called “price of anarchy” is given by Papadimitriou and Koutsoupias [8] in
the context of a load balancing game in communication networks. Roughgarden and Tardos [9]
applied this approach to quantify the price of anarchy in nonatomic selfish routing games. In
nonatomic games, a large number of players is assumed, each consuming an infinitesimal part
of the resources. In particular, Roughgarden and Tardos [9] proved for a set of separable affine
cost functions a bound of 4

3 on the price of anarchy. A series of several other papers analyzed
the price of anarchy for more general cost functions and model features; see for example Czumaj
and Vöcking [10], Correa Schulz, and Stier-Moses [11, 12], Perakis [13], and Roughgarden [3].

For atomic routing games, that is, some players may control a significant part of the entire
demand, Roughgarden and Tardos examined the price of anarchy in for an unsplittable vari-
ant [9]. Subsequently, Awerbuch, Azar, and Epstein [14] and Christodoulou and Koutsoupias
[15] studied the price of anarchy for linear latency functions. Cominetti, Correa and Stier-Moses
[16] provided new bounds on the price of anarchy for general atomic routing games that revised
previous work of Roughgarden [17] and Correa, Schulz, and Stier-Moses [12]. Subsequently,
Hayrapetyan, Tardos and, Wexler [18] improved these bounds for special network topologies.

In the online routing field, mainly call admission control problems have been considered. An
overview article about these problems is given by Leonardi in [19]. In the paper by Awerbuch,
Azar, and Plotkin [20], online routing algorithms are presented to maximize throughput under
the assumption that routings are irrevocable. They, however, restrict the analysis to single path
routing and present competitive bounds that depend on the number of nodes in the network.
Our work is motivated by the paper by Harks, Heinz, and Pfetsch [21], where online multicom-
modity routing problems are considered. They present a greedy online algorithm for a different
convex cost function that is 4K

2+K competitive, where K is the number of commodities. In their
framework, only single demands are released consecutively.

1.2. Our Results

Our main result states that the online algorithm SeqNash that produces a flow consisting of a
sequence of Nash equilibria is 4n

2+n -competitive for affine linear latency functions and nonatomic
routing. This result contains the bound on the price of anarchy of 4

3 for affine linear latency
functions of Roughgarden and Tardos [9] as a special case of our model, where n = 1. We present
lower bounds for affine latency functions of 4

3 and 3n−2
n for any deterministic online algorithm

and SeqNash, respectively.
For games with atomic atomic players we show that SeqNash is min{ 2(3K+1)n

nK+3n+3K+1 , 5K+1
K+5 }-

competitive for affine linear latency functions. This result contains the bound on the price of
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anarchy of 3K+1
2K+2 for atomic routing games with affine linear latency functions that has previously

been established by Cominetti, Correa and Stier-Moses [16] as a special case of our model,
where n = 1. For purely linear latency functions we present an improved upper bound of
1
8 (2 +

√
2) (1 +

√
2)
√

2 on the price of anarchy.
Finally, for polynomial latency functions, we present upper and lower bounds on the compet-

itive ratio of SeqNash that grow exponentially in the maximum degree of the allowed polyno-
mials. These results include improvements of known bounds of the price of anarchy for gemes
with atomic players involving polynomial latency functions with degree 2 ≤ d ≤ 4 and presents
the first bounds for arbitrary degree d.

Among many works in the algorithmic game theory field, this is the first paper that combines
techniques arising in the online optimization field with techniques coming from algorithmic game
theory.

2. Online Sequential Routing Games

An instance of the Online Sequential Routing Game (OnlineSRG) consists of a directed
network D = (V,A) and nondecreasing continuous price or latency functions `a : R+ → R+

for each link a ∈ A. Furthermore, a sequence σ = 1, . . . , n of routing games are given. We
denote for each game i the set of different types of players by [Ki] = {(i, 1), . . . , (i, ni)} with

|[Ki]| = Ki denoting the number of players of game i. Let [K] =
n⋃

i=1
[Ki] denote the union of the

sets [K1], . . . , [Kn]. The total number of players is given by K =
∑n

i=1Ki. For each ij ∈ [Ki],
a flow of rate dij > 0 must be routed from the origin sij to the destination tij . We allow for
nonatomic and atomic players. In contrast to nonatomic routing games where infinitely many
agents are carrying the flow, in the atomic variant, each player controls the entire flow for his
demand.

For ease of notation, we express in the following the strategy of player ij in terms of a routing
assignment. A routing assignment, or flow, for player ij ∈ [Ki] is a nonnegative vector f ij ∈ RA

+.
This flow is feasible if for all v ∈ V∑

a∈δ+(v)

f ij
a −

∑
a∈δ−(v)

f ij
a = γ(v), (1)

where δ+(v) and δ−(v) are the arcs leaving and entering v, respectively; furthermore, γ(v) = dij

if v = sij , γ(v) = −dij if v = tij , and γ(v) = 0 otherwise.
Alternatively, one can consider a path flow for a player ij ∈ [Ki]. Let Pij be the set of all

paths from sij to tij in D. A path flow is a nonnegative vector (f ij
P )P∈Pij . The corresponding

flow on link a ∈ A for player ij ∈ [Ki] is then

f ij
a :=

∑
P3a

f ij
P .

We define Fi with 0 ≤ i ≤ n to be the set of vectors (f1, . . . ,f i) such that f j is a feasible
flow for games j, j = 1, . . . , i. The entire flow for a sequence of games σ = (1, . . . , n) is denoted
by f = (f1, . . . ,fn). We define fa = (f ij

a )ij∈[K] as the vector of flow values of the players ij on
arc a.

We denote by f i
a the aggregate flow of game i on link a, i.e.,

f i
a :=

∑
ij∈[Ki]

f ij
a ,

and define by

fa :=
n∑

i=1

f i
a
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the total flow on link a. The current cost of a feasible flow f on link a ∈ A of game i is defined
by

Ci
a(f

i
a; f

1
a , . . . , f i−1

a ) = `a

( i∑
j=1

f j
a

)
f i

a (2)

This expression can be obtained as the routing cost on arc a for a feasible flow for game i, given
the flows (f1, . . . ,f i−1) of previous games 1, . . . , i− 1. The current cost for game i is given by
the sum of arc costs

Ci(f i;f1, . . . ,f i−1) =
∑
a∈A

Ci
a(f

i
a; f

1
a , . . . , f i−1

a ).

In the sequel of this paper we assume that `a(x) x is a convex function. Hence Ci
a(·) is also a

convex function.
The individual current cost for player ij ∈ [Ki] on arc a is given by:

Cij
a (f i

a; f
1
a , . . . , f i−1

a ) = `a

( i∑
j=1

f j
a

)
f ij

a (3)

The total individual current cost for player ij ∈ [Ki] is given by:

Cij(f i;f1, . . . ,f i−1) =
∑
a∈A

Cij
a (f i

a; f
1
a , . . . , f i−1

a ).

The aggregate cost of a flow on link a ∈ A is defined by

Ca(fa) = `a(fa) fa. (4)

The total cost of all sequentially played games is given by:

C(f) =
∑
a∈A

Ca(fa) =
∑
a∈A

`a(fa) fa =
∑
a∈A

`a

(
n∑

i=1

f i
a

)(
n∑

i=1

f i
a

)
. (5)

This cost function reflects the congestion cost provided the entire sequence of games has been
played. Note that players of game i are only aware of their current cost. If players of later games
select overlapping strategies compared to previous players, the previous players may experience
higher costs compared to their initial costs. For a sequence of games σ = 1, . . . , n, we investigate
in this paper the online algorithm SeqNash, that consists of the sequence of Nash equilibria
for the corresponding games 1, . . . , n. We focus on the efficiency of SeqNash compared to the
offline optimum Opt. For n = 1 our model reduces to the standard setting of a routing game
with nonatomic or atomic players.

2.1. Characterizing Nash Equilibria for Nonatomic Players.

A strategy distribution or flow for game i is at Nash equilibrium when no player has an
incentive to unilaterally change his strategy. We assume that players of game i decide on their
strategies without taking future games j = i + 1, . . . , n into account. It is straight-forward
to check that a Nash flow f i for nonatomic players is the optimum of the following convex
optimization problem, see for example Roughgarden and Tardos [9].

min
∑
a∈A

f i
a∫

0

`a(
i−1∑
k=1

fk
a + z) dz (6)

s.t.
∑

a∈δ+(v)

f ij
a −

∑
a∈δ−(v)

f ij
a = γij(v) ∀ v ∈ V, ij ∈ [Ki]

f ij
a ≥ 0 ∀ a ∈ A, ij ∈ [Ki],

where γij(v) is defined as in (1). The following conditions are necessary and sufficient to char-
acterize a Nash equilibrium for game i.
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Lemma 2.1. A feasible flow f i for the nonatomic game i is at Nash equilibrium if and only if
it satisfies:

∑
a∈A

`a

( i∑
k=1

fk
a

)
(f i

a − xi
a) ≤ 0 for all feasible flows xi for game i. (7)

The proof is based on the first order optimality conditions and the convexity of Ci(·), see
Dafermos and Sparrow [22].

Definition 2.2. For a given sequence of games σ and a flow f that is produced by SeqNash,
we define

V i(f1, . . . ,f i,xi) :=
∑
a∈A

`a

( i∑
k=1

fk
a

)
(xi

a − f i
a) (8)

V (f ,x, n) :=
n∑

i=1

Vi(f1, . . . ,f i,xi) (9)

where x1, . . . ,xn ∈ Fn is any feasible flow.

Lemma 2.3. A feasible flow f for a sequence of games σ that is produced by SeqNash satisfies:

V (f ,x, n) ≥ 0, for all feasible flows x for σ.

Furthermore,

V (f ,x, n) =
∑
a∈A

Va(fa,xa, n),

where Va(fa,xa, n) is defined as

Va(fa,xa, n) :=
n∑

i=1

`a

( i∑
k=1

fk
a

)
(xi

a − f i
a).

Proof. From Lemma 2.1 we know that V i(f1, . . . ,f i,xi) is nonnegative for all i = 1, . . . , n.
Summing over i proves the first claim. The second claim follows by changing the summation
order. �

2.2. Characterizing Sequential Nash Equilibria for Atomic Players

In routing games with atomic players, some players may control a significant part of the entire
demand. In the follwoing, we characterize the strategy of an atomic player. A strategy distri-
bution or flow for game i is at Nash equilibrium when no player has an incentive to unilaterally
change his strategy. It is straightforward to see that a best reply strategy for player ij of game
i is to solve the following convex optimization problem.

min
∑
a∈A

`a(
i∑

j=1

f j
a)f ij

a

s.t.
∑

a∈δ+(v)

f ij
a −

∑
a∈δ−(v)

f ij
a = γ(v) ∀ v ∈ V, ij ∈ [Ki] (10)

f ij
a ≥ 0 ∀ a ∈ A, ij ∈ [Ki],

where γ(v) is defined as in (1). The following conditions are necessary and sufficient to charac-
terize a Nash equilibrium for game i.
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Lemma 2.4. A feasible flow f ij for player ij ∈ [Ki] of the game i is at Nash equilibrium if and
only if it satisfies:

∑
a∈A

(
`a

( i∑
k=1

fk
a

)
+ `′a

( i∑
k=1

fk
a

)
f ij

a

)
(f ij

a − xij
a ) ≤ 0 (11)

for all feasible flows xij for game i.

Definition 2.5. For a given sequence of games σ and a flow f that is produced by SeqNash,
we define

V ij(f1, . . . ,f i,xi) :=
∑
a∈A

(
`a

( i∑
k=1

fk
a

)
+ `′a

( i∑
k=1

fk
a

)
f ij

a

)
(xij

a − f ij
a )

V i(f1, . . . ,f i,xi,Ki) :=
∑

ij∈[Ki]

V ij(f1, . . . ,f i,xi)

V (f ,x,K, n) :=
n∑

i=1

V i(f1, . . . ,f i,xi,Ki) (12)

where x1, . . . ,xn ∈ Fn is any feasible flow.

Lemma 2.6. A feasible flow f for a sequence of games σ that is produced by SeqNash satisfies:

V (f ,x,K, n) ≥ 0, for all feasible flows x for σ. (13)

Furthermore,

V (f ,x,K, n) =
∑
a∈A

Va(fa,xa,K, n),

where Va(fa,xa,K, n) is defined as

Va(fa,xa,K, n) :=
n∑

i=1

∑
ij∈[Ki]

(
`a

( i∑
k=1

fk
a

)
+ `′a

( i∑
k=1

fk
a

)
f ij

a

)
(xij

a − f ij
a ).

Proof. From Lemma 2.4 we know that V ij(f1, . . . ,f i,xi) is nonnegative for all ij ∈ [Ki] and
i = 1, . . . , n.. Summing over ij ∈ [Ki] and i = 1, . . . , n proves the first claim. The second claim
follows by changing the summation order. �

For a given sequence σ of games, we denote in the following the deterministic online algorithm
that consists of the sequence of Nash equilibria by SeqNash.

2.3. Total Offline Optimum

Finally, the total offline optimum is characterized by:

min C(f)

s.t.
∑

a∈δ+(v)

f ij
a −

∑
a∈δ−(v)

f ij
a = γ(v) ∀ v ∈ V, ij ∈ [Ki], i ∈ [n] (14)

f ij
a ≥ 0 ∀ a ∈ A, ij ∈ [Ki], i ∈ [n]

where γ(v) is defined as in (1). The optimal offline solution for a given sequence σ for the above
problem is called Opt. We denote its value for σ by Opt(σ) = C(f).
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3. Competitive Analysis for Nonatomic Routing

We can classify the presented algorithms SeqNash and Opt as follows: SeqNash is a
deterministic online algorithms for OnlineSRG; Opt is an offline solution for OnlineSRG
since here, the entire game sequence is known in advance.

For a solution f produced by an online algorithm Alg for σ, we denote by Alg(σ) = C(f)
its cost. The online algorithm Alg is called c-competitive if the cost of Alg is never larger
than c times the cost of an optimal offline solution. The competitive ratio of Alg is the infimum
over all c ≥ 1 such that Alg is c-competitive, see Borodin and El-Yaniv [23].

In the following, we use a simple technique to derive upper bounds on the competitive ratio
for SeqNash. The idea is to add the variational inequality given in Lemma 2.1 to the cost
of the flow f produced by SeqNash. We define for every a ∈ A, for any nonnegative vectors
fa,xa ∈ RK+ the following values (we assume by convention 0/0 = 0):

ω(`a;n, λ) := sup
fa,xa≥0

Ca(fa)− λ Ca(xa) + Va(fa,xa, n)
Ca(fa)

. (15)

Throughout the paper, we define the constraint fa ≥ 0 as

f ij
a ≥ 0, for all ij ∈ [K] with

∑
ij∈K

f ij
a = fa.

For a given class C of nondecreasing latency functions and a nonnegative real number λ ≥ 0,
we further define

ωn(C;λ) := sup
`a∈C

ω(`a;n, λ).

Theorem 3.1. Consider a sequence of n games and separable latency functions drawn from C.
If 1− ωn(C;λ) > 0 holds, then SeqNash is

inf
λ≥0

[
λ (1− ωn(C;λ)−1)

]
− competitive

for the nonatomic OnlineSRG.

Proof. Let f be the flow generated by SeqNash, and x be any feasible flow for a given sequence
of games σ = 1, . . . , n.

C(f) ≤
∑
a∈A

[
Ca(fa) + Va(fa,xa, n)

]
(16)

=
∑
a∈A

[
Ca(fa) + λ Ca(xa)− λ Ca(xa) + Va(fa,xa, n)

]
≤ λ C(x) + ωn(C;λ) C(f). (17)

Here, (16) follows from the variational inequality stated in Lemma 2.1. The last inequality
(17) follows from the definition of ωn(C). Taking x as the optimal offline solution yields the
claim. �

Using the notation:

ϑn
a(`a,fa) := `a(fa)fa −

n∑
i=1

`a(
i∑

k=1

fk
a ) f i

a.

we can simplify the value ωn(C;λ)

Lemma 3.2. The value ω(`a;n, λ) is at most

sup
xa,fa≥0

(
`a(fa)− λ `a(xa)

)
xa + ϑn

a(`a,fa)
`a(fa)fa

. (18)
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Proof. First note that

Ca(fa) + Va(fa,xa) = ϑn
a(`a,fa) +

n∑
i=1

`a

( i∑
k=1

fk
a

)
xi

a

]
≤ ϑn

a(`a,fa) + `a(fa) xa,

where the last inequality is valid since latency functions are nondecreasing. Then, using

`a(fa) xa − λ Ca(xa) =
(
`a(fa)− λ `a(xa)

)
xa,

yields the claim. �

Note that a similar value γ(C) without the term `a(fa)fa −
n∑

i=1
`a(

i∑
k=1

fk
a ) f i

a

and the parameter λ ≥ 0 was first defined in Correa, Schulz, and Stier-Moses [11] and also,
similarly, by Roughgarden in [9] with the relation α(C) =

(
1− γ(C))−1.

3.1. Affine Linear Latency Functions

In the following, we bound the value ωn(C, 1) for affine linear latency functions. We start with
some useful prerequisites.

Lemma 3.3. For parameters κ1, κ2 > 0 and any numbers x, y ≥ 0 the following inequality is
valid:

xy ≤ κ1

2 κ2
x2 +

κ2

2 κ1
y2. (19)

The following equation is useful for proving the next Lemma.
n∑

i=1

i∑
j=1

f j
a f i

a = 1
2

n∑
i=1

n∑
j=1

f j
a f i

a + 1
2

n∑
i=1

(f i
a)

2. (20)

Lemma 3.4. For affine functions `a(z) = qaz + ra, qa ≥ 0, ra ≥ 0, we have ωn(C; 1) ≤ 3n−2
4n .

Proof.

ω(`a;n, 1) = sup
xa,fa≥0

qa (fa − xa) xa + qa
1
2f2

a − qa
1
2

n∑
k=1

(fk
a )2

qa f2
a + ra fa

(21)

≤ sup
xa,fa≥0

(fa − xa) xa + 1
2f2

a − 1
2

n∑
k=1

(fk
a )2

f2
a

(22)

≤ sup
xa,fa≥0

(fa − xa) xa + n−1
2n f2

a

f2
a

(23)

≤ 3n−2
4n , (24)

where (21) follows from (20) and (22) is valid since ra ≥ 0. Inequality (24) follows from
Lemma 3.3, where we set x = fa, y = xa, κ1 = 1, and κ2 = 2, and (23) follows from Cauchy-
Schwarz inequality. �

Corollary 3.5. If the latency functions of the nonatomic OnlineSRG are affine, the online
algorithm SeqNash is 4n

n+2 -competitive, where n is the number of games.

Proof. Replacing ωn(C; 1) with 3n−2
4n and applying Theorem 3.1 yields the desired result. �

For n = 1, we obtain the bound of 4
3 for nonatomic routing games involving affine linear

latency functions that originates in Roughgarden and Tardos [9].
Now, we analyze the case of purely linear latency functions `a(z) = qa z, qa ≥ 0.
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1

2

3

4

5

Figure 1. Graph construction for the proofs of Proposition 1
.

Lemma 3.6. For linear functions `a(z) = qaz, qa ≥ 0, we have

ωn(C;λ) ≤ n + 2 λ n− 2 λ

4 λ n
.

Proof. The proof proceeds along the line of the proof of the preceeding lemma.

ω(`a;n, λ) ≤ sup
xa,fa≥0

(fa − λ xa) xa + 1
2f2

a − 1
2

n∑
k=1

(fk
a )2

f2
a

≤ sup
xa,fa≥0

(fa − λ xa) xa + n−1
2n f2

a

f2
a

≤ 1
4 λ

+
n− 1
2n

.

The last inequality follows from Lemma 3.3, where we set x = xa, y = fa, κ1 = λ, and κ2 = 1
2 . �

Corollary 3.7. If the latency functions of the nonatomic OnlineSRG are linear, the online
algorithm SeqNash is 4n2

(n+1)2
-competitive, where n is the number of games.

Proof. Replacing ωn(C;λ) with n+2 λ n−2 λ
4 λ n and applying Theorem 3.1 yields

C(f) ≤ 4 λ2 n

2 λ n− n + 2 λ
C(x).

Setting λ := n
n+1 yields

C(f) ≤ 4 n2

(n + 1)2
C(x).

�

Note 1. The value λ = n
n+1 solves the following minimization problem with respect to λ:

min
λ≥0

4 λ2 n

2 λ n− n + 2 λ
.

3.1.1. Lower Bounds. We start with a result that holds for any deterministic online algorithm.

Proposition 1. In case of linear latency functions no deterministic online algorithm for On-
lineSRG is c-competitive for any c < 4

3 .

Proof. Consider the network displayed in Figure 1. Each arc a leaving from node 1 has the
same latency function `a(z) = 3 z. All the other (those leading into node 5) have the latency
function `a(z) = 0. Let Alg be an arbitrary deterministic online algorithm. We first present
Alg commodity 1 with demand 1 that has to be routed from s1 = 1 to t1 = 5.

Assume the algorithm behaves like the nonatomic SeqNash. This means that the demand
gets evenly divided into three pieces: one third is routed over path P1 = (1, 2, 5), another over
path P2 = (1, 3, 5), and the later over path P3 = (1, 4, 5). In this case we reveal commodity 2
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s1

t1

s2

t2

. . .

. . .

sk

tk

s

t

1 2 kz

0 0 0

0 0 0

Figure 2. Graph construction for the proof of Theorem 3.8.

with demand 1 between 1 and 2. For this commodity there exists a unique path. Therefore,
Alg yields for this sequence σ the cost:

Alg(σ) = SeqNash(σ) = 2 · 3 · 1
3 ·

1
3 + 3 ·

(
1
3 + 1

)2 = 6.

An optimal offline solution is to route half of commodity 1 over path P2 and the other half over
path P3 and commodity 2 along its unique path. Therefore,

Opt(σ) = 2 · 3 · 1
2 ·

1
2 + 3 · 1 · 1 = 9

2 .

This leads to
Alg(σ)
Opt(σ)

=
4
3
.

If Alg does not behave like SeqNash for the first commodity, Alg has to route more than
one third of the demand over path P1, path P2, or path P3. If it is path P1, then we present
commodity 2 as above. If its path P2, then we reveal a commodity 2 with demand 1 between 1
and 3. Otherwise, we present a commodity 2 with demand 1 between 1 and 4. Let α be the
demand greater than one third. In all three cases the cost of Alg for the sequence σ is

Alg(σ) ≥ 2 · 3 ·
( (1−α)

2

)2 + 3 ·
(
α + 1

)2
> 6.

since α > 1
3 . The optimal cost stays the same as above. Hence,

Alg(σ)
Opt(σ)

>
4
3
.

�

For SeqNash we can further lift the lower bound.

Theorem 3.8. In case of affinely linear latency functions, the online algorithm SeqNash for
OnlineSRG has a competitive ratio greater than or equal to 3n−2

n , where n is the number of
games.

Proof. We consider the network presented in Figure 2 with the latency functions: `(si,s)(z) = 0,
`(t,ti)(z) = 0, `(si,ti)(z) = i, i = 1, . . . , k, and `(s,t)(z) = z. We consecutively release a sequence
of games (1, . . . , k), where in each game j, there is a single player type j1. The demand of player
type j1 is 1 that has to be routed from si to ti, for i = 1, . . . , k. Due to the choice of the affine
terms i, SeqNash routes for every game the corresponding demand over the arc from s to t.
Then we release the (k + 1)-th game with demand d from s to t. Thus, the total cost for the
sequence σ = (1, . . . , k + 1) for SeqNash with the new cost function is given by:

SeqNash(σ) = (k + d)2.
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The optimal offline algorithm Opt routes the demands of the first k games along the direct arcs
from si to ti incurring cost of:

k∑
i=1

i =
k(k + 1)

2
.

The last demand in game k+1 is routed from s to t with cost d2. The total cost for the sequence
σ = (1, . . . , k + 1) for Opt is given by:

Opt(σ) =
k(k + 1)

2
+ d2.

Replacing k = n− 1 and setting d = n
2 yields

SeqNash(σ)
Opt(σ)

=
2(k + d)2

k(k + 1) + 2d2
=

3n− 2
n

, (25)

which proves the theorem. �

Note 2. For n = 2, the upper bound given in Corollary 3.5 is tight.

Corollary 3.9. For linear latency functions, the online algorithm SeqNash for OnlineSRG
has a competitive ratio greater than or equal to 33+5

√
33

33+
√

33
.

Proof. We consider the network presented in Figure 2 with modified latency functions: `(si,s)(z) =
0, `(t,ti)(z) = 0, `(si,ti)(z) = i z, i = 1, . . . , k, and `(s,t)(z) = z. We consecutively release a se-
quence of games (1, . . . , k), where in each game j, there is a single player type j1. The demand
of player type j1 is 2 that has to be routed from si to ti, for i = 1, . . . , k. Due to the choice
of the linear terms i z, SeqNash routes for every game the one unit of the demand over the
arc from s to t and the other onit along the direct arc from si to ti. To see this, consider the
j-th game. Let the flow of player j1 along the middle arc be denoted by x. Then, using the
characterization of a Nash flow given in (10), the nonatomic player j1 sends flow x∗ along the
middle arc according to the solution of the following problem

min
0≤x≤2

1
2

j x2 + (j − 1) x +
1
2

j (2− x)2.

The solution to this concave program is given by x∗ = 1, independently of j.
Then, we release the (k + 1)-th game with demand d from s to t. Thus, the total cost for the

sequence σ = (1, . . . , k + 1) for SeqNash is given by:

SeqNash(σ) =
k∑

i=1

i + (k + d)2 =
k (k + 1)

2
+ (k + d)2.

The optimal offline algorithm Opt routes the demands of the first k games along the direct arcs
from si to ti incurring cost of:

k∑
i=1

(i · 2) · 2 = 2 k (k + 1).

The last demand in game k+1 is routed from s to t with cost d2. The total cost for the sequence
σ = (1, . . . , k + 1) for Opt is given by:

Opt(σ) = 2 k (k + 1) + d2.

Replacing k = n− 1 and setting d = 1
4 n + 1

2 + 1
4

√
33 n2 − 28 n + 4 yields

SeqNash(σ)
Opt(σ)

≥ lim
n→∞

Z(n) =
33 + 5

√
33

33 +
√

33
≈ 1.59,

where we define

Z(n) :=
33 n2 − 28 n + 5 n

√
33 n2 − 28 n + 4 + 4− 2

√
33 n2 − 28 n + 4

33 n2 − 28 n + n
√

33 n2 − 28 n + 4 + 4 + 2
√

33 n2 − 28 n + 4
.

This proves the claim. �
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Note 3. The parameter d in the previous proof is the optimal solution to the following maxi-
mization problem with optimal value Z(k + 1):

max
d≥1

k (k + 1) + 2 (k + d)2

4 k (k + 1) + 2 d2
= Z(k + 1).

The table below summarizes the main results for (affine) linear latency functions.

Table 1. Competitive Ratio for the online algorithm SeqNash for affine linear
latency functions `a(x) = qa x + ra, qa ≥ 0, ra ≥ 0. The first row shows known
results for nonatomic routing games. The 4

3 result is due to Roughgarden and
Tardos [9].

# games `a(0) = 0 `a(0) arbitrary, λ = 1
λ UB LB UB LB

1 1 1 1 4
3

4
3

2 2
3 1 7

9
5+2

√
5

5+
√

5
2 2

3 3
4 2 1

4
217+13

√
217

217+5
√

217
2 2

5 2 1
3

. . . .

. . .
n n

n+1
4 n2

(n+1)2
Z(n) 4 n

n+2
3n

n−2

∞ 1 4 33+5
√

33
33+

√
33

4 3

3.2. Polynomial Latency Functions

In this section, we investigate the case, where we allow for general polynomial latency functions

`a(z) =
d∑

i=0
ai z

i with nonnegative coefficients ai. We start with a useful observation.

Lemma 3.10. For polynomial latency functions `a(z) =
d∑

i=0
ai z

i with nonegative coefficients

ai ≥ 0, i = 0, . . . , d we can bound sup
fa≥0

ϑn
a(`a, fa) as follows:

sup
fa≥0

ϑn
a(`a, fa) ≤ sup

fa≥0
ϑ∞a (`a, fa) ≤

d

d + 1
`a(fa) fa,

where ϑ∞a (`a, fa) := lim
n→∞

ϑn
a(`a, fa).

Proof. Recall the definition of ϑn
a(`a, fa):

ϑn
a(`a, fa) := `a(fa) fa −

n∑
i=1

`a(
i∑

k=1

fk
a ) f i

a.

Since polynomials are increasing functions, the following inequalities hold

inf
fa≥0

[ n∑
i=1

`a(
i∑

k=1

fk
a ) f i

a

]
≥ inf

fa≥0

[ ∞∑
i=1

`a(
i∑

k=1

fk
a ) f i

a

]
≥

fa∫
0

l(z) dz.

Hence, we have

sup
fa≥0

ϑn
a(`a, fa) ≤ sup

fa≥0
ϑ∞a (`a, fa) ≤ `a(fa) fa −

fa∫
0

l(z) dz.
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Let `a(z) =
d∑

i=0
ai z

i be a polynomial of degree d ≥ 1. Then, it follows that

`a(fa) fa −
fa∫
0

l(z) dz =
d∑

i=0

ai (fa)i+1 −
d∑

i=0

( 1
i + 1

)
ai (fa)i+1

=
d∑

i=0

( i

i + 1
)
ai (fa)i+1 ≤ d

d + 1

d∑
i=0

ai (fa)i+1

=
d

d + 1
`a(fa) fa.

�

Using the above lemma, we bound in the following the competitive ratio for SeqNash for
quadratic, cubic, and degree 4 polynomials.

Proposition 2. If the latency functions of the nonatomic OnlineSRG are polynomials of degree
at most d ≥ 1, then, the online algorithm SeqNash is

inf
λ≥1

(
λ

(
1− max

0≤µ≤1

[
µ− λ µd+1

]
− d

d + 1

)−1
)
− competitive.

Proof. By Lemma 18, we have

ω(`a, n;λ) ≤ sup
fa,xa≥0

(
`a(fa)− λ `a(xa)

)
xa + ϑn

a(`a,fa,xa)
`a(fa) fa

≤ sup
fa,xa≥0

(
`a(fa)− λ `a(xa)

)
xa + d

d+1 `a(fa) fa

`a(fa) fa
(26)

= sup
fa,xa≥0

(
`a(fa)− λ `a(xa)

)
xa

`a(fa) fa
+

d

d + 1
,

where (26) follows from Lemma 3.10.
We assume λ ≥ 1, which implies that xa ≤ fa. Defining µ := xa

fa
(we assume 0/0 = 0) we

have to solve

max
0≤µ≤1

(
`a(fa)− λ `a(µ fa)

)
µ fa

`a(fa) fa

to bound ω(`a, n;λ) from above. Without loss of generality, we can reduce the analysis to
monomial latency functions `a(x) = ad xd of degree at most d. Otherwise, we can subdivide
each arc in several arcs with monomial latency functions for every arc. From now on, we only
consider the highest degree monomial `a(x) = ad xd, since the value ω(`a, n;λ) is smaller for
lower degree polynomials. Thus, we have to solve:

max
0≤µ≤1

(
ad fd

a − λ ad µd fd
a )
)
µ fa

ad fd+1
a

= max
0≤µ≤1

µ− λ µd+1. (27)

Applying Theorem 3.1 with

ωn(C;λ) ≤ max
0≤µ≤1

[
µ− λ µd+1

]
+

d

d + 1
proves the proposition. �

By optimizing over λ ≥ 1 we get the following bound for polynomial latency functions up to
degree two.

Corollary 3.11. If the latency functions of the nonatomic OnlineSRG are polynomials of
degree at most d ≤ 2, then, the online algorithm SeqNash is 19.6-competitive.
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For general polynomials of degree d, we can prove an exponential bound in the maximum
degree on the competitive ratio of SeqNash.

Proposition 3. For polynnomial latency functions `a(z) =
d∑

i=0
ai z

i with ai ≥ 0 and λ :=

(d + 1)(d−1) ≥ 1 the value ωn(C;λ) is at most d2+2 d
(d+1)2

.

Proof. We start with equation (27) given in the proof from Proposition 2.

ωn(C;λ) ≤ max
0≤µ≤1

µ− λ µd+1 = max
0≤µ≤1

µ− (d + 1)(d−1) µd+1.

The unique solution is given by µ∗ = 1
d+1 . Evaluating the objective proves the claim:

ω(`a, n;λ) ≤ 1
d + 1

− (d + 1)(d−1) (
1

d + 1
)d+1 +

d

d + 1
=

d2 + 2 d

(d + 1)2
.

�

With this lemma we can prove a constant factor bound on the competitive ratio that depends
on the degree d of the considered polynomials.

Theorem 3.12. If the latency functions of the nonatomic OnlineSRG are polynomials with
maximum degree d, the online algorithm SeqNash is (d + 1)d+1 -competitive.

Proof. Let the flow f be produced by the online algorithm SeqNash and let x be an arbitrary
feasible flow for OnlineSRG. Then, applying Theorem 3.1 yields

C(f) ≤ (d + 1)d−1(
1− d2+2 d

(d+1)2

) C(x) = (d + 1)d+1 C(x).

Taking x as the optimal offline solution proves the claim. �

3.2.1. Lower Bounds for Polynomial Latency Functions. We consider general polynomial latency
functions of the form `a(z) =

∑d
j=1 ajz

j , where all coefficients aj are nonegative.
We start with a classical result.

Lemma 3.13. The n− th power of the sum of numbers from 1 to k is a polynomial in k given
by:

k∑
i=1

in =
1

n + 1

n+1∑
j=0

(
n + 1

j

)
Bjk

n+1−j ,

where Bj are the Bernoulli numbers.

Consider the network presented in Figure 2 with the following latency functions: `(si,s)(z) = 0,
`(t,ti)(z) = 0, `(si,ti)(z) = id, i = 1, . . . , k, and `(s,t)(z) = zd, d ∈ N. We consecutively release
games with a single player type i1, where a demand of size 1 has to be routed from si to ti, for
i = 1, . . . , k. Due to the choice of the affine terms id, SeqNash routes every demand over the
arc from s to t.

Then we release the (k + 1)-th game with demand x from s to t. The total cost for the flow
generated by SeqNash is given by:

SeqNash(σ) =
(
k + x

)d+1
.

The optimal offline algorithm Opt routes the demands of the first k games along the direct
arcs from si to ti. The last demand is routed from s to t. The total cost for Opt is then given
by:

Opt(σ) =
k∑

i=1

id + xd+1.
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From Lemma 3.13, we know that the d − th power of the sum of numbers from 1 to k is a
polynomial in k given by:

k∑
i=1

id =
1

d + 1

d+1∑
j=0

(
d + 1

j

)
Bjk

d+1−j ,

where Bj are the Bernoulli numbers.

Theorem 3.14. In case of polynomial latency functions, the online algorithm SeqNash for
OnlineSRG has a competitive ratio greater than or equal to d+1

d+2 2d+1, where d is the highest
degree of the used polynomials.

Proof. We have to show that the competitive ratio fulfills:

SeqNashd(σ)
Optd(σ)

≥ d + 1
d + 2

2d+1.

We follow the construction of the above discussion,

SeqNashd(σ)
Optd(σ)

≥ lim
k→∞

(
k + x

)d+1

k∑
i=1

id + xd+1

·

We set x = k which yields:

SeqNashd(σ)
Optd(σ)

≥ lim
k→∞

(
2k
)d+1

k∑
i=1

id + kd+1

= lim
k→∞

(
2k
)d+1

1
d+1 kd+1 + kd+1 +

d+1∑
j=1

(
d+1

j

)
Bjkd+1−j

=
d + 1
d + 2

2d+1,

where the equality follows from Lemma 3.13 and the fact that B0 = 1.
�

Table 2. Competitive ratio for different polynomial latency functions. Coeffi-
cients ai are assumed to be nonnegative.

Set C of latency

functions Example ω∞(C, λ) λ UB LB

linear functions a1x + a0
3
4 1 4 3

quadratic
∑2

i=0 aix
i 0.93 2.18 19.6 7.5

cubic
∑3

i=0 aix
i 15

16 64 256 17.32

. . . . . .

degree d
d∑

i=0
ai x

i d2+2 d
(d+1)2

(d + 1)(d−1) (d + 1)d+1 d+1
d+2 2d+1
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4. Competitive Analysis for Atomic Players

Before we state the main result, we need some useful prerequisites. We define for every
a ∈ A, for any nonnegative vectors fa,xa ∈ RK+ the following values (we assume by convention
0/0 = 0):

ω(`a, n,K;λ) := sup
fa,xa≥0

Ca(fa)− λ Ca(xa) + Va(fa,xa)
Ca(fa)

. (28)

For a given class C of nondecreasing latency functions and a nonnegative real number λ ≥ 0,
we further define

ωKn (C;λ) := sup
`a∈C

ω(`a, n,K;λ).

Theorem 4.1. Consider a sequence of n games involving K players and separable latency func-
tions drawn from C. If 1− ωKn (C;λ) > 0 holds, then SeqNash is

inf
λ≥0

[
λ
(
1− ωKn (C;λ)

)−1
]
− competitive

for the atomic OnlineSRG.

Proof. Let f be the flow generated by SeqNash, and x be any feasible flow for a given sequence
of games σ = (1, . . . , n).

C(f) ≤
∑
a∈A

[
Ca(fa) + Va(fa,xa,K, n)

]
(29)

=
∑
a∈A

[
Ca(fa) + λ Ca(xa)− λ Ca(xa) + Va(fa,xa,K, n)

]
≤ λ C(x) + ωKn (C;λ) C(f). (30)

Here, (29) follows from the variational inequality stated in Lemma 2.6. The last inequality
(30) follows from the definition of ωKn (C;λ). �

Using the notation:

θi
a(fa,xa,Ki) :=

∑
ij∈[Ki]

(f ij
a xij

a − f ij
a f ij

a ),

we can simplify the value ωKn (C;λ)

Lemma 4.2. The value ω(`a, n,K;λ) is at most

sup
xa,fa≥0

(
`a(fa)− λ `a(xa)

)
xa + ϑn

a(`a,fa) +
n∑

i=1
`′a(

i∑
k=1

fk
a )θi

a(fa,xa,Ki)

`a(fa)fa
. (31)

Proof. First note that

Ca(fa) + Va(fa,xa) = ϑn
a(`a,fa) +

n∑
i=1

[
`′a(

i∑
k=1

fk
a )θi

a(fa,xa,Ki) + `a

( i∑
k=1

fk
a

)
xi

a

]
≤ ϑn

a(`a,fa) +
n∑

i=1

`′a(
i∑

k=1

fk
a )θi

a(fa,xa,Ki) + `a(fa) xa,

where the last inequality is valid since latency functions are nondecreasing. Then, using

`a(fa) xa − λ Ca(xa) =
(
`a(fa)− λ `a(xa)

)
xa,

yields the claim. �
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Note that for λ = 1 and n = 1 the value ω(`a, 1,K; 1) is equal to the value βK(`a) defined by
Cominetti, Correa, and Stier-Moses in [16]. For n > 1, that is, the sequence σ of games contains
more than one game, the main difference between βK(`a) and ω(`a, n,K;λ) are the values λ ≥ 0
and ϑn

a(`a, f). The value ϑn
a(`a, f) penalizes the efficiency of SeqNash for multiple games. The

value λ admits a further degree of freedom to strengthen the analysis.

4.1. Affine Linear Latency Functions

We analyze in the following the value ωKn (C; 1) for affine linear latency functions.

Lemma 4.3. For affine linear latency functions `a(z) = qaz + ra, qa ≥ 0, ra ≥ 0, and λ ≥ 1 the
value ωKn (C;λ) is less than or equal to 4(K−1)

5K+1 .

Proof. We start with the bound on ω(`a, n,K;λ) in equation (31) for affine linear latency func-
tions.

ω(`a, n,K;λ) ≤ sup
xa,fa≥0

qa

(
fa − λ xa

)
xa + qa (fa)2 − qa

n∑
i=1

(
i∑

k=1

fk
a ) f i

a + qa

n∑
i=1

θi
a(fa,xa,Ki)

qa(fa)2 + ra fa

≤ sup
xa,fa≥0

(
fa − λ xa

)
xa + 1

2 (fa)2 − 1
2

n∑
i=1

(f i
a)

2 +
n∑

i=1
θi
a(fa,xa,Ki)

(fa)2
(32)

≤ sup
xa,fa≥0

(
fa − λ xa

)
xa + 1

2 (fa)2 − 1
2

∑
ij∈K

(f ij
a )2 +

n∑
i=1

θi
a(fa,xa,Ki)

(fa)2
(33)

= sup
xa,fa≥0

(
fa − λ xa

)
xa + 1

2 (fa)2 +
∑

ij∈K

(
f ij

a xij
a − 3

2 (f ij
a )2

)
(fa)2

,

where (32) follows from (20) and ra ≥ 0. Note that to obtain the first inequality we have used
that ra − λ ra ≤ 0 since λ ≥ 1. Inequality (33) is valid since the sum of powers is less than the
power of the sum. Without loss of generality, we can assume that f1

a := max
ij∈[K]

f ij
a . Since the

individual components xij
a appear linearly in the expression f ij

a xij
a , we can set x = (x1

a, 0, . . . , 0)
to bound the above expression from above. Thus, we have to solve:

ω(`a, n,K;λ) ≤ sup
0≤f1

a≤fa,x1
a≥0

fa x1
a − λ (x1

a)
2 + 1

2 (fa)2 + f1
a x1

a −
∑

ij∈K

3
2 (f ij

a )2

(fa)2
.

Because of symmetry in the last sum of the numerator, we can set f ij
a = fa

K−1 .

ω(`a, n,K) ≤ sup
fa

K ≤f1
a≤fa,x1

a≥0

fax
1
a − λ (x1

a)
2 + 1

2 (fa)2 + f1
a x1

a − 3
2(f1

a )2 − 3(fa−f1
a )2

2(K−1)

(fa)2
.

For any choice of fa, f
1
a , the optimal value for x1

a is exactly x1
a = fa+f1

a
2 λ . Inserting the value

yields:

ω(`a, n,K;λ) ≤ sup
fa

K ≤f1
a≤fa

(1
2 + 1

4 λ)(fa)2 + ( 1
4 λ −

3
2) (f1

a )2 + 1
2f1

a fa − 3(fa−f1
a )2

2(K−1)

(fa)2
.

We replace f1
a = µ fa with µ ∈ [ 1

K , 1] and solve:

ω(`a, n,K;λ) ≤ max
µ∈[

1
K ,1]

(1
2 + 1

4 λ) + ( 1
4 λ −

3
2) µ2 + 1

2 µ− 3(1−µ)2

2(K−1) . (34)
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Now we set λ := 1. Then, the optimal choice is µ = (K+5)
5K+1 . This leads to:

ωKn (C; 1) ≤ 4(K−1)
5K+1 .

�

Applying Theorem 4.1 with the above value for ωKn (C) leads to the following result.

Corollary 4.4. If the latency functions of the atomic OnlineSRG are affine, the online algo-
rithm SeqNash is 5K+1

K+5 -competitive, where K is the total number of players.

Corollary 4.4 gives abound that only depends on the total number of players in the sequence
σ of games. This bound states that SeqNash is asymptotically 5-competitive for sequential
atomic routing games.

If we optimize over the parameter λ we can derive even better bounds. For ease of presentation
we focus on the asymptotic bound, that is, we consider the case where K →∞.

Corollary 4.5. If the latency functions of the atomic OnlineSRG are affine, the online algo-
rithm SeqNash is 4.92-competitive.

Proof. We start with bounding ω∞∞(C;λ) using (34):

ω(`a,∞,∞;λ) ≤ max
µ∈[0,1]

(1
2 + 1

4 λ) + ( 1
4 λ −

3
2) µ2 + 1

2 µ.

Then, it follows that

µ∗ =
1

6 λ− 1
,

and

ω∞∞(C; 1) ≤ 4 λ + 13 λ2 − 1
4 λ(6 λ− 1)

.

Note, that we still have ω∞∞(C; 1) ≤ 1
5 for λ = 1. Applying Theorem 4.1 with λ = 1.1 yields the

claim. �

In the following, we derive a bound that depends on the number of games.

Corollary 4.6. If the latency functions of the atomic OnlineSRG are affine, the online algo-
rithm SeqNash is 2(3K+1)n

nK+3n+3K+1 -competitive, where n is the number of games and K is the total
number of players.

Proof. We start with equation (32) in Lemma 4.3 to derive another bound on ωKn (C;λ).

ω(`a, n,K;λ) ≤ sup
wa,va≥0

(
fa − λ xa

)
xa + 1

2 (fa)2 − 1
2

n∑
i=1

(f i
a)

2 +
n∑

i=1
θi
a(fa,xa,Ki)

(fa)2

≤ n−1
2n + sup

wa,va≥0

(
fa − λ xa

)
xa +

n∑
i=1

θi
a(fa,xa,Ki)

(fa)2
, (35)

where (35) follows from Cauchy-Schwarz inequality. Then, the proof proceeds along the lines of
the proof of Lemma 4.3 except that we replace the factor 3

2 by 1.

ω(`a, n,K;λ) ≤ n−1
2n + max

µ∈[
1
K ,1]

( 1
4 λ) + ( 1

4 λ − 1) µ2 + 1
2 µ− (1−µ)2

(K−1) . (36)

Setting again λ := 1 yields

ω(`a, n,K; 1) ≤ n−1
2n + max

µ∈[
1
K ,1]

1
4 −

3
4µ2 + 1

2 λµ− (1−µ)2

(K−1) .

It is easy to see that µ = K+3
3K+1 is optimal. Evaluating 1

1−ωKn (C) yields the desired bound. �
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This bound is asymptotically 6-competitive. It provides, however, an explicit dependency on
the number of games involved. For n = 1, we obtain a bound of 3K+1

2K+2 for atomic routing games
with affine linear latency functions; this bound has previously been established by Cominetti,
Correa and Stier-Moses [16]. For K →∞ we establish a bound that only depends on the number
of games.

Corollary 4.7. If the latency functions of the atomic OnlineSRG are affine and if we allow
for infinitely many atomic players, the online algorithm SeqNash is 6 n

n+3 -competitive.

Corollary 4.8. If the latency functions of the atomic OnlineSRG are affine and we have one
atomic player per game, the online algorithm SeqNash is 6 n2+2 n

n2+6 n+1
-competitive, where n is the

total number of games.

Now, we further strengthen the upper bounds by varying λ.

Proposition 4. If the latency functions of the atomic OnlineSRG are affine, the online algo-
rithm SeqNash is(

2 n +
√

2
√

n
(
3 n + 1

))
n
(
1 + 3 n +

√
2
√

n (3 n + 1)
)√

2

4
√

n (3 n + 1) (n + 1)2
− competitive.

Proof. For K →∞ we have limK→∞
(1−µ)2

(K−1) = 0. Hence, (36) reduces to

ω(`a, n,∞;λ) ≤ n−1
2n + max

µ∈[
1
K ,1]

1
4 λ − ( 1

4 λ − 1) µ2 + 1
2 λµ.

The maximization problem can be solved, leading to

max
µ∈[

1
K ,1]

1
4 λ − ( 1

4 λ − 1) µ2 + 1
2 λµ ≤ 1

4 λ− 1
.

Applying Theorem 4.1 yields

C(f) ≤ 2 λ n (−1 + 4 λ)
4 n λ− 3 n + 4 λ− 1

C(x).

Solving the problem

min
λ≥0

2 λ n (−1 + 4 λ)
4 n λ− 3 n + 4 λ− 1

,

leads to

λ∗ =
1 + 3 n +

√
2 n + 6 n2

4 (n + 1)
.

Inserting this value into the objective, prove the claim. �

Corollary 4.9. Consider linear latency functions. Then, the price of anarchy is at most 1
8 (2 +√

2) (1 +
√

2)
√

2 ≈ 1.46.

Proof. We set λ = 1
2 + 1

4

√
2, n = 1 and, apply Proposition 4. �

This result, however, only holds for purely linear latency functions. The reason why this
approach fails for affine linear functions is due to the choice λ < 1. The value ω(`a, n,∞;λ) is
unbounded for large affine terms ra if λ < 1.

Still, this result improves the best known upper bound of 3
2 on the price of anarchy for atomic

games involving linear latency functions.
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Figure 3. Graph construction for the proof of Proposition 6.

4.1.1. Lower Bounds. In this section, we provide lower bounds on the competitive ratio for any
deterministic online algorithm and SeqNash. Note that all lower bounds of the nonatomic
version of SeqNash for OnlineSRG carry over to the atomic player case when we allow for
infinitely many players in each game i.

We use the network in Fig. 2 to derive a lower bound when we have a single atomic player in
each game i.

Proposition 5. In case of affinely linear latency functions, the online algorithm SeqNash for
the atomic OnlineSRG, where in each game there is a single atomic player has a competitive
ratio greater than or equal to 2n−1

n , where n is the number of games.

Proof. The proof proceeds along the lines of Theorem 3.8 except that we replace the constant
costs `(si,ti)(z) = 2 i, i = 1, . . . , k. This forces the first k atomic players to router their demand
along the middle arc (s, t). The reminder of the proof consists of technical calculations that are
omitted. �

In the following, we establish a lower bound on the price of anarchy for purely linear latency
functions. These bounds demonstrate that in contrast to the nonatomic counterpart the price
of anarchy may be larger than 1 for linear latency functions. In the article by Cominetti, Correa
and Stier-Moses [16], the authors claim that the price of anarchy can be bounded by 1.17.

Proposition 6. In case of linear latency functions, the price of anarchy for the atomic network
routing game is bounded from below by 1 1

25 .

Proof. Consider the network given in Fig 3. Note that all latency functions have `a(0) = 0.
We assume that a nonatomic player (N) wants to route one unit from node s1 to node t1. On
the other hand, one atomic player (A) wants to route one unit from s2 to node t2. For both
players there exist two choices of paths: the direct path (s1, t1) and (s2, t2) or the path along
the shared arc (s, t). If x and y denote the amount of flow for player N, and player A, that is
routed along the direct arc (s1, t1), and (s2, t2), respectively. The response strategies are given
by the following two optimizationn problems. For player N we have:

min
0≤x≤1

1
2

x2 +
1
2

(1− x)2 + (1− x) (1− y). (37)

Note that is assumed that player A sends 1 − y) units flow along the middle arc. Hence,
`(s,t)(z + (1− y)) = z + (1− y). The optimal solution to problem (37) is given by

x∗ = min
{

max
{

2− y

2
, 0
}

, 1
}

.

For player A we have:
min

0≤y≤1
a y2 + ((1− x) + (1− y))(1− y). (38)
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The solution is given by

y∗ = min
{

max
{

3− x

2 a + 2
, 0
}

, 1
}

.

Plugging both solutions together and assuming 1
2 ≤ a yields:

x∗ =
4

4 a + 3
, and y∗ =

4 a + 1
4 a + 3

.

If we denote the entire flow by f , then the cost in equilibrium is given by

C(f) =
32 a2 + 32 a + 2

(4 a + 3)2
.

Now the optimal flow x∗ solves:

min
0≤x≤1
0≤y≤1

x2 +
(
(1− x) + (1− y)

)2 + a y2. (39)

Here, the optimal solutions are given by

y∗ =
2

2 a + 1
, and x∗ =

2 a

2 a + 1
.

C(x∗) =
4 a

2 a + 1
.

Setting a := 1
2 yields

C(f) =
26
25

, and C(x∗) = 1,

proving the claim. �

The table below summarizes the main results presented in this chapter.

Table 3. Competitive Ratio for the online algorithm SeqNash for affine linear
latency functions qa x + ra, qa, ra ≥ 0. The first row shows known results for
atomic routing games that are due to Cominetti, Correa, and Stier-Moses [16].
UB and LB denote Upper and Lower Bound, respectively.

arbitrary # of Players 1 player per game
# games UB LB UB LB

3
2 1 1.343 1 1
2 22

5 2 1.64 3
2

3 3 21
3 2.14 1 2

3

. . . . .

. . . . .
n min{ 6 n

n+3 , 4.92} 3n
n−2 min{ 6 n2+2 n

n2+6 n+1
, 4.92} 2 n−1

n

∞ 4.92 3 4.92 2
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4.2. Polynomial Latency Functions

In this section, we investigate the case, where we allow for general convex latency functions.

Proposition 7. If λ ≥ 0 and `a is a convex latency function, then, the following inequality is
valid:

ω(`a;n,K;λ) ≤ sup
fa,xa≥0

(
`a(fa)− λ `a(xa)

)
xa + `′a(fa)

x2
a
4

`a(fa) fa
(40)

+ sup
fa≥0

ϑn
a(`a,fa)
`a(fa) fa

.

Proof. We start with inequality (31) in Lemma 4.2. Using the triangle inequality, we can separate
ϑn

a(`a,fa) from the rest since the supremum over the sum of two functions is less than or equal
to the sum of the suprema.

Then, we only have to consider the first supremum that we denote with ω1(`a;n,K;λ):

ω1(`a;n,K;λ) ≤ sup
xa,fa≥0

(
`a(fa)− λ `a(xa)

)
xa +

n∑
i=1

`′a(
i∑

k=1

fk
a )
( ∑

ij∈[Ki]

(f ij
a xij

a − f ij
a f ij

a )
)

`a(fa)fa
.

First, we bound the last difference in the nominator:

f ij
a xij

a − f ij
a f ij

a ≤ 1
4

(xij
a )2.

This yields:

ω1(`a;n,K;λ) ≤ sup
xa,fa≥0

(
`a(fa)− λ `a(xa)

)
xa +

n∑
i=1

`′a(
i∑

k=1

fk
a )
( ∑

ij∈[Ki]

(xij
a )2

4

)
`a(fa)fa

≤ sup
xa,fa≥0

(
`a(fa)− λ `a(xa)

)
xa +

n∑
i=1

`′a(fa)
( ∑

ij∈[Ki]

(xij
a )2

4

)
`a(fa)fa

,

where the last inequality follows from the convexity of `a, which implies that `′a is nondecreasing.
Finally, using

1
4

n∑
i=1

∑
ij∈[Ki]

(xij
a )2 ≤ 1

4

n∑
i=1

(xi
a)

2 ≤ 1
4

x2
a

proves the proposition.
�

Corollary 4.10. If λ ≥ 0 and `a is a convex latency function, then, the following inequality is
valid:

ω(`a; 1,∞;λ) ≤ sup
fa,xa≥0

(
`a(fa)− λ `a(xa)

)
xa + `′a(fa)

(
x2

a
4

)
`a(fa) fa

.

Proof. The inequality is derived by using ϑ1
a(`a,fa) = 0. �

Proposition 8. If λ ≥ 1 and `a(fa) is a convex function, then the value ω(`a;n,K;λ) is at
most:

ω(`a;n,K;λ) ≤ sup
0≤xa≤fa

(
`a(fa)− λ `a(xa)

)
xa + `′a(f) (xa)2

4

`a(fa) fa
+ sup

fa≥0

ϑn
a(`a,fa)
`a(fa) fa

. (41)
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Proof. We start with the characterization of ω(`a;∞,∞;λ) given in Proposition 7: consider
the function h(xa) defined as the numerator of the first supremum in equation (40). To prove
that the solution satisfies xa ≤ fa, we show that h′(xa) ≤ 0 if xa ≥ fa. Using that h′(xa) =
`a(fa)− λ `a(xa)− λ xa `′a(xa) + xa

2 `′a(fa), the derivative is negative if and only if

`a(fa) +
xa

2
`′a(fa) ≤ λ

(
`a(xa) + xa `′a(xa)

)
.

By assumption `a(fa) fa is convex, hence,

`a(fa) + `′a(fa) ≤ `a(xa) + `′a(xa)

for xa ≥ fa. Since furthermore λ ≥ 1, the proof is complete. �

Proposition 9. Let C be a family of continuous, nondecreasing and convex latency functions `a.
Furthermore, assume that λ ≥ 1 and `a(κ fa) ≥ s(κ) `a(fa) for all κ ∈ [0, 1], where s : [0, 1] →
[0, 1] is a differentiable function with s(1) = 1. Then,

ω(`a;∞,∞;λ) ≤ max
0≤u≤1

u
(
1− λ s(u) + s′(1)

u

4
)

+
d

d + 1
(42)

ω(`a; 1,∞;λ) ≤ max
0≤u≤1

u
(
1− λ s(u) + s′(1)

u

4
)
. (43)

Proof. We start with the characterization of ω(`a;∞,∞;λ) given in Proposition 7:

ω(`a;∞,∞;λ) ≤ sup
fa,xa≥0

(
`a(fa)− λ `a(xa)

)
xa + `′a(fa)

(
x2

a
4

)
`a(fa) fa

+ sup
fa≥0

ϑ∞a (`a,fa)
`a(fa) fa

.

Recall from Lemma 3.10 that

sup
fa≥0

ϑ∞a (`a, fa)
`a(fa) fa

≤ d

d + 1
, and ϑ1

a(`a, fa) = 0.

Hence, from now on we only consider ω(`a; 1,∞;λ).
The reminder of the proof is based on a result obtained by Cominetti, Correa, and Stier-

Moses [16].
For z ≥ z′, we can bound `′a(z):

`a(z′) = `a( z′

z z) ≥ s( z′

z ) `a(z) z. (44)

Furthermore,

`′a(f) = lim
ε→0

`a(fa + ε)− `a(fa)
ε

≤ `a(fa) lim
ε→0

1− s
( fa

fa+ε

)
ε

= `a(fa)
s′(fa)

fa
.

Thus, we conclude

ω(`a; 1,∞;λ) ≤ sup
0≤xa≤fa

xa `a(fa)
(
1− λ `a(xa)

`a(fa) + s′(1) xa

4 fa

)
`a(fa) fa

≤ sup
0≤xa≤fa

xa

(
1− λ s(xa

fa
) + s′(1) xa

4 fa

)
fa

,

where we used (44) for the second inequality.
Defining 0 ≤ u := xa

fa
≤ 1 yields

ω(`a; 1,∞;λ) ≤ max
0≤u≤1

u
(
1− λ s(u) + s′(1)

u

4
)

ω(`a;∞,∞;λ) ≤ max
0≤u≤1

u
(
1− λ s(u) + s′(1)

u

4
)

+
d

d + 1
.

�
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Corollary 4.11. If C only contains polynomials of degree d ≥ 1, the competitive ratio of Seq-
Nash is at most

inf
λ≥1

[
λ

(
1− max

0≤u≤1
u
(
1− λ ud + d

u

4
)

+
d

d + 1

)−1
]

. (45)

Proof. All assumptions of Proposition 9 are satisfied with s(f) = fd. Therefore, s′(1) = d and

ω(`a;∞,∞;λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u

4
)

+
d

d + 1
. (46)

Applying Theorem 4.1 yields the claim. �

Using Corollary 4.11, we can determine bounds on the competitive ratio for SeqNash for
general polynomials.

Corollary 4.12. If C only contains polynomials of degree d ≥ 1, the price of anarchy is at most

inf
λ≥1

[
λ

(
1− max

0≤u≤1
u
(
1− λ ud + d

u

4
))−1

]
. (47)

Proof. All assumptions of Proposition 9 are satisfied with s(f) = fd. Therefore, s′(1) = d and

ω(`a; 1,∞;λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u

4
)
. (48)

Applying Theorem 4.1 yields the claim. �

In the following we present price of anarchy results for network games with atomic players,
that is, we assume n = 1. We present results for squared, cubic, and degree four, and five
polynomials. Note that all results up to degree two improve known bounds or establish the
first known bounds for polynomials of degree d ≥ 4. The results itself have been obtained by
optimizing the expression in (47) over the parameter λ ≥ 1.

Table 4. Price of Anarchy for different polynomial latency functions. Coeffi-
cients ai are assumed to be nonnegative.

Set C of allowable Example Price of Anarchy α∞(C)

latency functions ω∞1 (C, λ) λ arbitrary # of players

linear functions a1x + a0
1
3 1 1.5

quadratic functions
∑2

i=0 aix
i 0.58 1.08 2.55

cubic functions
∑3

i=0 aix
i 2

3 1.69 5.06

polynomials d ≤ 4
∑4

i=0 aix
i 2

3 3.8 11.3

polynomials d ≤ 5
∑5

i=0 aix
i 2

3 9.69 29.07

Theorem 4.13. If C only contains polynomials with degree d ≥ 1, the price of anarchy is at
most

(
1 + d

4

)d+1.

Proof. We start the proof by bounding the value ω(`a; 1,∞;λ) from above. Recall from Equa-
tion (48) that

ω(`a; 1,∞;λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u

4
)
.

Setting u = 1 in the last term yields

ω(`a; 1,∞;λ) ≤ max
0≤u≤1

u
(
1− λ ud +

d

4
)
.
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This problem is a standard concave program on a compact interval. Hence, it admits a solution.
For d ≥ 1 the objective is strictly concave implying that there exists a unique optimal solution.
The necessary and sufficient optimality condition for a global optimum that satisfies u ∈ (0, 1)
is given by

1 +
d

4
− (d + 1) λ ud = 0.

Hence, the optimal solution is given by

u∗ = min

{
max

{(
4 + d

4 λ (d + 1)

) 1
d

, 0

}
, 1

}
.

We assume 1 ≤ λ < ∞ which implies 0 < u∗ = 4+d
4 λ (d+1)

1
d < 1. Inserting this solution into the

objective leads to

ω(`a; 1,∞;λ) ≤
(

4 + d

4 λ (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
.

We construct a function 1 ≤ λ(d) < ∞ such that for all d ≥ 1 the following equation holds(
4 + d

4 λ(d) (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
=

d

d + 1
.

Solving the above equation with respect to λ(d) yields

λ∗(d) =
(4 + d)d+1

(d + 1) 4d+1
.

Thus, by construction we have

ω(`a; 1,∞;λ∗(d)) ≤ d

d + 1
.

Applying Theorem 4.1 with λ := λ∗(d) and ω(`a; 1,∞;λ∗(d)) ≤ d
d+1 leads to

C(f) ≤ λ∗(d)
1− d

d+1

C(x) = (d + 1) λ∗(d) C(x) =
(
1 +

d

4
)d+1

C(x).

�

Note that a similar technique as in the preceeding proof can be applied to strengthen the
bounds on the price of anarchy. The idea is to construct a function λ(d) such that

max
0≤u≤1

u
(
1− λ(d) ud + d

u

4
)

=
2
3

holds for all d ≥ 1. Then, the price of anarchy can be bounded by 3 λ(d). The function λ(d)
behaves asymptotically like Θ

(
exp(2

5 log(d))
)
.

The techniques used in Theorem 4.13 carry over to the general case of n ≥ 1, that is, we
consider an arbitrary number of games.

Theorem 4.14. If the latency functions of the atomic OnlineSRG are polynomials with max-
imum degree d ≥ 1, the online algorithm SeqNash is(

1 +
5
4

d +
1
4

d2
)d+1 − competitive.

Proof. Let the flow f be produced by the online algorithm SeqNash and let x be an arbitrary
feasible flow for the atomic OnlineSRG.

From Equation (46) in Proposition 4.11 we have the relation

ω(`a;∞,∞;λ) ≤ max
0≤u≤1

u
(
1− λ ud + d

u

4
)

+
d

d + 1
.
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Now, we follow along the lines of the proof of the preceeding theorem.

max
0≤u≤1

u
(
1− λ ud + d

u

4
)
≤
(

4 + d

4 λ (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
.

We construct a function λ(d) such that(
4 + d

4 λ(d) (d + 1)

) 1
d
(

4 d + d2

4 (d + 1)

)
=

d

(d + 1)2

holds for all d ≥ 1. Solving the above equation with respect to λ(d) yields

λ∗(d) =
(4 + d)d+1 (d + 1)d−1

4d+1
.

Hence, by construction, we have

ω(`a;∞,∞;λ∗(d)) ≤ d

(d + 1)2
+

d

d + 1
=

d2 + 2 d

(d + 1)2
.

Applying Theorem 4.1 with λ := λ∗(d) and ω(`a;∞,∞;λ∗(d)) ≤ d2+2 d
(d+1)2

leads to

C(f) ≤ λ∗(d)
1− d2+2 d

(d+1)2

C(x) = (d + 1)2 λ∗(d) C(x)

=
(
1 +

d

4
)d+1 (d + 1)d+1 C(x) =

(
1 +

5
4

d +
1
4

d2
)d+1

C(x).

�
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