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Abstract. We present a heuristic solution approach for the rolling stock
rotation problem with predictive maintenance (RSRP-PdM). The task
of this problem is to assign a sequence of trips to each of the vehicles
and to schedule their maintenance such that all trips can be operated.
Here, the health states of the vehicles are considered to be random vari-
ables distributed by a family of probability distribution functions, and
the maintenance services should be scheduled based on the failure prob-
ability of the vehicles. The proposed algorithm first generates a solution
by solving an integer linear program and then heuristically improves this
solution by applying a local search procedure. For this purpose, the trips
assigned to the vehicles are split up and recombined, whereby additional
deadhead trips can be inserted between the partial assignments. Subse-
quently, the maintenance is scheduled by solving a shortest path problem
in a state-expanded version of a space-time graph restricted to the trips
of the individual vehicles. The solution approach is tested and evaluated
on a set of test instances based on real-world timetables.

Keywords: Rolling stock rotation planning · Predictive maintenance ·
Heuristic · State-expanded graph model · Integer linear program

1 Introduction

Planning rolling stock rotations is essential for the operation of rail transporta-
tion and has been studied in the literature for quite some time. However, against
the backdrop of climate change and the associated decarbonization of the trans-
port sector, rail transportation represents a possible solution. It can therefore be
assumed that the volume of freight and passengers transported by rail will con-
tinue to increase, which will also increase the complexity of the train scheduling.
In addition, the availability of sensors and the analysis of the data they pro-
vide by the application of machine learning or traditional data mining methods
enables a predictive scheduling of the vehicle maintenance. There is therefore a
need to develop solution approaches for the automated dispatching of vehicles
that are capable of integrating predictive maintenance strategies.

1.1 Related Work

The rolling stock rotation problem (RSRP) has already been investigated by a
great variety of authors. For an introduction we refer to [15]. On the one hand,
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the contributions can be distinguished by the applied maintenance regime: Ei-
ther preventive time- or distance-based maintenance regulation are employed, see
for example [15], a predictive maintenance strategy is used, e.g., [10,11,16,4,19],
or no maintenance is considered at all. For an overview on the literature con-
cerning RSRP we refer to [18]. On the other hand, the presented approaches
can be categorized by the employed solution methods. The commonly utilized
approaches are the direct application of integer linear programs (ILP), column
generation, or the usage of heuristics, see [17]. In the following, we restrict our-
selves to scenarios where maintenance is considered and focus on articles that
apply heuristics to RSRP.

There exists a variety of heuristics that already have been applied to RSRP,
but the most common ones are local search algorithms. Here, already determined
solutions are modified to make them feasible or to improve their objective value.
In [5], the RSRP is modeled by a sequence graph in which the trips correspond
to nodes and the arcs indicate if two trips can be performed consecutively. They
try to obtain a feasible solution by solving an ILP and employ a local search
algorithm to include unassigned trips into the vehicle schedules if only a partial
solution could be obtained. This is done by shifting trips between vehicles. This
approach was further developed by [6], where an initial solution is derived from a
stable set of trip nodes. Another local neighborhood search for the rescheduling
variant of the RSRP was presented by [12]. Their approach is based on a space-
time graph in which the nodes correspond to departure or arrival events of the
trips, while the trips, waiting periods and deadhead trips are represented by
the arcs. They apply a 2-opt heuristic to vehicles that meet at a station and
interchange their subsequent trips.

Local search approaches are also applied to hypergraph formulations of the
RSRP for maintenance scheduling. In [3], the authors state that the non-mainte-
nance relaxation of their model is not that hard to solve. Therefore, a local neigh-
borhood search is used to construct feasible solutions out of rotations that violate
the maintenance constraints. This hypergraph model was subsequently used by
other authors. In [1], a backtrack heuristic is given for the insertion of long-term
maintenance services into predetermined rotations, while [8] present a heuristic
relying on the observation that in real-life instances maintenance services can
usually be performed during over-night stops. This yields a local neighborhood
search for generating feasible solutions from maintenance-infeasible ones.

But also other types of heuristics have been applied to RSRP. In [18], the
problem is formulated as a resource-constrained shortest path instance with side
constraints in a space-time graph. The authors consider a scenario with short-
term maintenance and solve the problem by applying a resource-constrained
shortest path algorithm within a hill climbing heuristic. Finally, [4] present a
variety of heuristics for RSRP with predictive maintenance. These include a
genetic algorithm and three greedy algorithms that take the remaining useful
life (RUL) of the considered vehicles into account.
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1.2 Predictive Maintenance

The underlying idea of predictive maintenance in this article is the assumption
that maintenance decisions should rely on the predicted health states of the
considered vehicles, which cannot be measured directly. If we consider for ex-
ample the doors of the vehicles, then their conditions must be approximated
by either observing the number of occurring opening-closing cycles or by deriv-
ing them from sensor measurements like the voltage applied to the actuators or
the vibration of the bearings. Since measurement errors occur here and further
uncertainties arise when determining the health states from these values, e.g.,
by applying machine learning methods, the health states must be regarded as
uncertain. In addition, the future load and operating conditions of the doors
have to be predicted, which further increases the arising uncertainty. We there-
fore assume that the health states must be treated as random variables. The
maintenance decisions are thus based on the probability that these random vari-
ables exceed some predefined threshold indicating a failure. We will denote this
probability as the failure probability.

1.3 Contribution

In this article, we introduce the rolling stock rotation problem with predic-
tive maintenance (RSRP-PdM), describe a graph model that approximates this
problem, and present a local search heuristic to solve it. The proposed solution
approach is able to handle predictive maintenance scenarios, where the health
states of the vehicles are considered to be random variables and the mainte-
nance is scheduled based on the failure probability of the vehicles. However, it
can easily be adapted to handle distance- or time-based maintenance strategies.
It also allows non-linear functions for modeling the degradation of the health
states. Finally, the algorithm is tested and evaluated on a set of instances based
on real-world timetables.

2 Problem Formulation

In RSRP-PdM, we are given a set of vehicles V, where each vehicle v ∈ V
possesses a health state Hv. These health states are random variables to reflect
their uncertainty and are distributed by a family of probability distribution
functions Π with parameter space Θ. This means that we have Hv ∼ Πθ ∈ Π
for some θ ∈ Θ, and that each Πθ ∈ Π can be characterized by its parameters
θ ∈ Θ. Furthermore, each v ∈ V has an initial stateH0

v ∼ Πθ0 , which is described
by some θ0 ∈ Θ. During the operation of trips and other services, e.g., deadhead
trips, the conditions of the vehicles deteriorate, which is expressed by updating
the parameters of their health states.

Next, L is the set of all considered locations with M ⊆ L being the mainte-
nance facilities, and K is a finite time horizon.

Furthermore, we are given a timetable T consisting of individual trips that
need to be operated. To each trip t ∈ T we associate a departure location ldt ∈ L
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and a departure time kdt ∈ K, as well as an arrival location lat ∈ L and an
arrival time kat ∈ K. Additionally, each trip possesses a degradation function
∆t : Θ → Θ altering the parameters of the health state of the vehicle operating
t. We assume ∆t to be continuous and monotonic increasing, but we do not
require it to be linear. Note that we associate similar degradation functions with
the other activities of the vehicles, i.e., with waiting at stations, deadhead trips,
and maintenance services. Finally, nt ∈ N determines how many vehicles are
required to operate t.

We associate costs with each of the possible operations, i.e., trips, waiting,
deadhead trips, and maintenance services, and assume that breakdown costs
arise when a vehicle failure occurs.

Next, we call a vehicle rotation balanced if the number of vehicles at each
location l ∈ L is equal at the beginning and at the end of the considered time
horizon. This balancedness is important as it gives rise to schedules that can be
repeated on a weekly basis.

The task of RSRP-PdM is then to assign a sequence of trips, deadhead trips,
and maintenance operations to each vehicle such that all given trips are operated
and the resulting rotations are balanced. Here, the objective is to find a solution
with minimum total costs, taking into account the operating costs, maintenance
costs, and the expected costs of vehicle failures.

3 Utilized Graph Models

The proposed algorithm relies on two different graph models, that are presented
in this section. The first is the space-time graph, which is widely used in the
literature to model the RSRP. We present it briefly in the following and refer to
[7] for a more detailed description. Afterwards, we introduce the state-expanded
event-graph, which is a parameter-expanded version of the space-time graph and
has been utilized in [14].

3.1 The Space-Time Graph

Given a RSRP-PdM instance as described in Section 2, the nodes of the space-
time graph represent the departure and arrival events of the trips contained in
T . Each trip t ∈ T therefore induces two nodes vdt = (ldt , k

d
t ) and vat = (lat , k

a
t ),

and corresponds to the arc at = (vdt , v
a
t ). By iterating over all trips and collecting

the resulting nodes and arcs, we obtain the set of departure nodes V+, the set of
arrival nodes V−, and the set of trip arcs AT . Afterwards, we add artificial start
and end nodes for each location, i.e., v0l = (l, 0) and v∞l = (l, kmax) for each
l ∈ L, where kmax = max{K}. These nodes form the sets of the start nodes V0

and the end nodes V∞. Thus, we define the node set to be V := V0∪V+∪V−∪V∞.
Next, we construct the arcs of the graph. First, we consider arcs representing

that a vehicle waits at its current location. For this purpose, the nodes of each
location l ∈ L are sorted in time-ascending order and an arc is added between
each pair of time-consecutive nodes. This yields AW . Finally, we construct the
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deadhead arcs AD. Therefore, we iterate over all nodes v1 = (l1, k1) ∈ V0 ∪ V−
and add an arc to each v2 = (l2, k2) ∈ V+ ∪ V∞ with l1 ̸= l2, which has the
smallest k2 among the nodes at l2 such that k1 + k(l1, l2) ≤ k2, where k(l1, l2)
is the time required to travel from l1 to l2.

Combining these arc sets yields A := AT ∪ AW ∪ AD and GST = (V,A) is
the resulting space-time graph. Note that we assign each arc the costs associated
with its corresponding operation.

3.2 The State-Expanded Event-Graph

The space-time graph just described in Section 3.1 is well suited to determine
assignments of trips to vehicles, however it is not trivial to incorporate mainte-
nance constraints into it. Usually, these constraints are modeled by considering
the vehicle rotations as resource-constrained paths, where a maintenance service
is required when a certain resource threshold is exceeded and a resource con-
sumption is associated with each of the arcs. The arising problem becomes even
more complicated if we consider non-linear degradation functions, i.e., non-linear
resource consumption. However, this should not be excluded, as mechanical com-
ponents generally exhibit non-linear deterioration behavior. Therefore, we utilize
the state-expanded event graph GSE , which provides a linear approximation to
this non-linear problem.

Given a discretization D of the parameter space Θ, i.e., a finite set D ⊆ Θ,
we construct the nodes of GSE by creating multiple copies of the nodes in GST

for each θ ∈ D. This yields the node set V ′ := {(l, k, θ) | (l, k) ∈ V (GST ), θ ∈ D}
of GSE .

Next, we generate the arcs. As in the construction of GST , each arc corre-
sponds to a particular operation and the idea is that the arcs implicitly model the
degradation, i.e., the resource consumption, of this operation. A vehicle travers-
ing arc a = (v1, v2) from v1 = (l1, k1, θ1) to v2 = (l2, k2, θ2) has a health state
distributed by Πθ1 before performing the task corresponding to a and a health
state distributed by Πθ2 afterwards. Here, the update of the health state param-
eters is given by the degradation function ∆a of the arc, which is the degradation
function of the associated operation.

But we do not necessarily have ∆a(θ1) ∈ D, so there does not have to exist a
head for a in V ′. To resolve this problem, we define the following function that
rounds to the nearest element of D:

⌊·⌉D : Θ → D, ⌊θ⌉D := argminφ∈D {∥θ − φ∥2}

Using this function, we construct the arcs of GSE by iterating over its nodes and
copying the outgoing arcs of their counterparts in GST . Let therefore
v1 = (l1, k1, θ1) be a node in GSE , and let u1 = (l1, k1) be the correspond-
ing node in GST . Furthermore, consider any arc a = (u1, u2) ∈ δ+(u1), for some
u2 = (l2, k2). Then, we determine θ2 := ⌊∆a(θ1)⌉D and add an arc from v1 to
v2 = (l2, k2, θ2). We repeat this procedure for all arcs originating from u1 and
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subsequently for all nodes of GSE . This results in the arc set A′ of GSE con-
sisting of trip arcs, waiting arcs, and deadhead arcs. Note that this construction
leads to multiple arcs corresponding to each of the trips.

Next, we introduce maintenance arcs. Their construction is similar to the
construction of the deadhead arcs for the space-time graph and they are gen-
erated for every arrival node in GSE . The difference in the construction is that
instead of the time required to travel from location l1 to l2, the sum of the times
necessary to travel from l1 to the workshop, carry out the maintenance service
there and then travel to l2 is now considered. Moreover, as in the generation of
the other arcs of GSE , we apply ⌊∆M (·)⌉D to the parameters of the tail node
of each maintenance arc, where ∆M is the degradation function associated with
the maintenance activities. This resets the parameters to values that are as good
as new.

Finally, the costs of the arcs in the state-expanded event-graph are equal to
the costs of their corresponding arcs in the space-time graph, but we add the
expected failure costs to the trip arcs. Therefore, we need to determine the failure
probability of the vehicles during the operation of the trips. Consider any arc
a = (v1, v2) ∈ A′ corresponding to some trip t ∈ T . Let θ1, θ2 be the parameters
of v1, v2 respectively, then traversing a depicts that a vehicle v with health state
Hv ∼ Πθ1 is operating t and its health state gets updated to Hv ∼ Πθ2 due to
the occurring degradation. Thus, the failure probability of the vehicle is given
by the probability that Hv exceeds the given failure threshold. Assume w.l.o.g.
that a breakdown occurs when Hv falls below zero, then we need to determine
P[Hv ≤ 0] = P[Πθ2 ≤ 0]. The expected failure costs are then calculated by
multiplying this value with the breakdown costs.

An example of a state-expanded event-graph is given in Figure 1, where
the layers of nodes having the same parameter values are shaded in gray. The
waiting and deadhead arcs are depicted in black, while the trip arcs are colored
red. Traversing these arcs decreases the parameter by 0.5, while the maintenance
arcs (blue) reset it to one. Note that a projection onto the space-time plane, i.e.,
ignoring the parameters, yields the underlying space-time graph.

4 Algorithm

Now, we present our solution approach for RSRP-PdM. This is based on the same
observation as made in [3], where the authors state that the non-maintenance
relaxation of RSRP is not that hard to solve. Thus, we first solve the RSRP
ignoring the maintenance constraints and postpone the service scheduling to a
subsequent step.

4.1 Generating Initial Solutions

To solve the non-maintenance relaxation of RSRP-PdM, we need to assign the
trips to the vehicles in a cost-minimal way such that each trip is operated by the
required number of vehicles and the vehicle balance of each location is even. Such
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Fig. 1. Example of a state-expanded event-graph adapted from [14].

an assignment corresponds to a flow in the space-time graph, which sufficiently
covers the trip arcs and can be determined by solving ILP formulation (NMF).

In this formulation, ca ∈ R≥0 are the costs associated with the arcs of the
underlying space-time graph, and the objective function (1) aims at minimizing
the total costs of all contained operations. Constraints (2) ensure the flow con-
servation and constraints (3) guarantee the balancedness of the resulting vehicle
rotations. Constraints (4) depict the initial positioning of the vehicles in the
beginning of the scenario, where nl ∈ N0 is the number of vehicles located at
l ∈ L. Trip coverage is enforced by constraints (5), since the required number of
vehicles is assigned to each trip. Finally, the domains of the variables are defined
in (6).

(NMF) min
∑
a∈A

caxa (1)

s.t.
∑

a∈δ+(v)

xa =
∑

a∈δ−(v)

xa ∀v ∈ V \ {V0 ∪ V∞} (2)

∑
a∈δ+(v0

l )

xa =
∑

a∈δ−(v∞
l )

xa ∀l ∈ L (3)

∑
a∈δ+(v0

l )

xa ≤ nl ∀l ∈ L (4)

xat = nt ∀t ∈ T (5)

xa ∈ N0 ∀a ∈ A (6)
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The solution of (NMF) represents a flow in the space-time graph given by a
set of paths. Each path corresponds to the tasks assigned to one of the vehicles
and consists of a sequence of trips connected by waiting or deadhead arcs. Since
maintenance is not considered here, the path of each vehicle is determined by
the assigned trips together with its origin and destination, as these have to be
connected by the most cost-effective paths consisting of waiting and deadhead
arcs.

Note that, the value of an optimal solution to (NMF) is a lower bound to the
objective value of RSRP-PdM, since the costs can only increase if the deteriora-
tion of the vehicles, the associated expected failure costs and their maintenance
are taken into account.

4.2 Scheduling Maintenance

After solving the non-maintenance relaxation of RSRP-PdM, we need to incor-
porate the maintenance services into the schedules of the individual vehicles.
Therefore, we present a method that approximates the parameters of the health
states of the vehicles and schedules the maintenance accordingly.

Recall that given a subset of trips S ⊆ T together with an origin l0 ∈ L
and a destination l∞ ∈ L, we can reconstruct the corresponding path in GST by
sorting the trips in time-ascending order and connect the respective trip arcs by
paths consisting of waiting and deadhead arcs. These paths will be termed idle
paths in the following. We now transfer this idea to the state-expanded event-
graph. Due to the construction of GSE , based on a discretization D, we may
have multiple arcs corresponding to each of the trips. Consider a trip t ∈ T that
starts at (ldt , k

d
t ), then we added an outgoing arc corresponding to t to each node

in {(ldt , kdt , θ) ∈ V (GSE) | θ ∈ D}. In the following, we will denote the set of
arcs corresponding to a trip t ∈ T by A(t). Thus, given a subset of trips S ⊆ T
and l0, l∞ ∈ L, we can determine a feasible schedule by selecting one arc from
each A(t), for all t ∈ S, and connecting them by idle paths. Note that the idle
paths in GSE can also contain maintenance arcs. In addition, the desired path
must take into account the parameters of the initial health state of the assigned
vehicle, i.e., θ0 ∈ Θ, therefore it has to start at v0 = (l0, 0, ⌊θ0⌉D) ∈ V (GSE).

To find such a path, we first restrict GSE to the arcs that are necessary for a
vehicle that starts with parameters θ0 at l0, operates the trips in S and arrives at
l∞. We then determine a shortest path in this restricted graph. This graph will
be referred to as GSE

∣∣
r
, for r = (S, l0, l∞, θ0), and can be obtained from GSE

as follows: First, we delete all trip arcs that belong to any A(t), for t /∈ S. Then,
we remove all arcs that are not contained in an idle path that connects two of
the remaining trip arcs. Next, all arcs that have a time overlap with one of the
trip arcs are deleted. Finally, we add a sink node vs to GSE

∣∣
r
and add artificial

arcs with costs equal to zero from all nodes in {v = (l∞, kmax, θ) | θ ∈ D} to vs.
Due to the construction of GSE

∣∣
r
, a shortest v0-vs-path thus corresponds to

a minimum-cost schedule for r = (S, l0, l∞, θ0) w.r.t. the applied discretization
D. Note that the approximation quality depends on the granularity of D. In the
following, we assume that a solution x to the RSRP without maintenance is given



A Multi-Swap Heuristic for RSRP-PdM 9

by a set of schedules, where the schedule of each vehicle vi can be represented
as si = (Si, l0,i, l∞,i), for i ∈ {1, . . . , |V|}. Then, we can derive an approximate
solution to RSRP-PdM from x by scheduling the maintenance of each vehicle,
i.e., by determining a shortest path in each GSE

∣∣
ri
, for ri = (si, θ0,i). We will

refer to this procedure by scheduleMaintenance(x,GSE).

4.3 Improving Schedules by Swapping Trips

After presenting an approach to determine a solution for the non-maintenance
relaxation of RSRP-PdM and a procedure for incorporating maintenance into
the resulting vehicle schedules, we describe a local search algorithm that aims
to improve a given solution by swapping parts of the vehicles’ schedules.

Suppose we are given a non-maintenance solution x consisting of vehicle
schedules si = (Si, l0,i, l∞,i), for i ∈ {1, . . . , |V|}. Then, we randomly select two
vehicles v1, v2 ∈ V and consider their corresponding trip sets S1, S2 ⊆ T . First,
we sort S1 and S2 in ascending order of their departure times. Afterwards, we
iterate over time-consecutive pairs (t1,i, t1,i+1) of S1 and (t2,j , t2,j+1) of S2 and
check if it is possible to operate t2,j+1 after t1,i and t1,i+1 after t2,j . If this is the
case, (i, j) is a possible swap position. To find all swap positions, we next examine
whether a swap is possible at the beginning or after the end of the schedules.
Therefore, we check whether there are trips of S1 that can be operated before
the first trip of S2 and if it is possible to reach them from l0,2, i.e., the origin
of v2. The same is then repeated for S2. Analogously, we check whether it is
possible to swap trips after the last trip of S1 or S2, respectively.

Once all possible swap positions have been determined, they can be used to
group the trips into sets that can be exchanged without violating the feasibility
of the resulting schedules. We call this procedure getSwappingParts(S1, S2) and
an example of a possible result is illustrated in Figure 2. Here, the trips contained
in blocks standing underneath each other, can be exchanged. For example, it
would be possible to swap {t9, t11} and {t10, t12}, and both resulting schedules
would be feasible. Furthermore, t8 could be shifted to S2 and it would still be a
valid schedule.

S1: t1 t3, t4, t6 t8 t9, t11 t15, t17
S2: t2, t5, t7 t10, t12 t13, t14 t16

Fig. 2. Example of the exchangeable parts of two schedules.

Since a swap can occur before the first trip of a schedule, it is possible that
the initial departure location of a schedule is changed. It could therefore be
advisable to assign this trip sequence to another vehicle at another origin, which
can reach the new departure location with a less expensive deadhead trip. We
thus define matchVehiclePositions(x), which determines a matching between
the vehicles and the schedules of x. For this purpose, we calculate the minimum
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costs of the idle paths that connect the origins of the vehicles with the initial
departure location of the trip sequences, provided they can be reached in time.
Then, we assign the vehicles to the sequences according to the solution of the
minimum-cost matching. This yields the updated origins l0,i of the schedules. To
ensure the balancedness, we then solve another minimum-cost matching, which
assigns the sequences to the destinations of the vehicles such that each location
occurs as a destination exactly as often as it was employed as an origin. This
results in the updated destinations l∞,i.

Thus, given a non-maintenance solution x, we define the procedure
multiSwap(x) as follows: First, we randomly select two schedules S1 and S2

contained in x and apply getSwappingParts(S1, S2) to determine the subsets
of trips that can potentially be swapped between them. We then decide at
random for each of the corresponding parts which part is assigned to S1 and
S2, respectively. This results in a modified solution y. Subsequently, we re-
assign the vehicle origins and destinations to the trip sequences by applying
matchVehiclePositions(y) and obtain the solution z, which is the result of the
multi-swap procedure.

Note that multiSwap(x) is a generalization of 2-opt, since it is obtained by
selecting a certain swap position and interchanging all subsequent trip parts,
while leaving the parts before unchanged.

4.4 The Resulting Algorithm

Combining the procedures presented throughout this section, yields the multi-
swap heuristic for RSRP-PdM, see Algorithm 1. First, formulation (NMF) is
solved to generate an initial solution. If this formulation is infeasible, there can-
not be a solution to RSRP-PdM since the ILP solves the non-maintenance relax-
ation of the problem. Subsequently, multiSwap(x) is utilized to modify the cur-
rent best solution and thus to explore the solution space, while
scheduleMaintenance(x,GSE) is employed to schedule the maintenance based
on the approximated health states of the vehicles. The algorithm is stopped when
the given time limit is reached.

5 Computational Results

In this section, we present the results of the proposed solution approach to
RSRP-PdM and compare them to the LP-based lower bound given in [14]. The
algorithm was tested on the data set provided in [13], which originates from
genuine timetables. The characteristics of the individual instances are shown in
Table 1, where the number of trips that need to be operated, the number of
locations that are the origin or destination of a trip and the number of available
vehicles are specified. For a detailed description of the instances, we refer to [13].
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Algorithm 1: Multi-swap heuristic for RSRP-PdM

Data: RSRP-PdM instance I, discretization D
Result: Solution to I or infeasible

1 x← solution to (NMF)
2 if x is infeasible then
3 return infeasible
4 end
5 GSE ← state-expanded event-graph based on D
6 sol← scheduleMaintenance(x,GSE)
7 repeat
8 y ← multiSwap(x)
9 z ← scheduleMaintenance(y,GSE)

10 if v(z) < v(sol) then
11 x← y
12 sol← z

13 end

14 until time limit is reached
15 return sol

5.1 Computational Setup

We performed all computations on a machine with Intel(R) Xeon(R) Gold 6342 @
2.80GHz CPUs, eight cores and 64GB of RAM. The algorithm was implemented
in Julia v1.9.1 [2] and Gurobi v10.0.2 [9] was used to solve (NMF) and the LPs
for the lower bounds. All computations had a time limit of one hour.

Table 1. Characteristics and results for the test instances.

Instance Trips Locations Vehicles Solution Value Lower Bound Gap in % Gap after 180 s in % Running time in s

T1 566 8 6 269,728.67 261,432.23 3.08 3.08 3,517
T2 608 10 7 436,955.86 428,348.63 1.97 2.73 2,988
T3 636 15 16 1,427,088.22 1,380,028.25 3.30 4.28 3,597
T4 679 9 8 196,410.58 189,576.54 3.48 3.48 3,387
T5 813 16 14 327,804.96 327,770.13 0.01 0.01 14
T6 919 17 29 2,355,022.71 2,290,595.54 2.74 3.45 3,545

5.2 Results

The results of the conducted computational experiments are listed in the last
five columns of Table 1. These contain the value of the best solution and the best
lower bound for each instance, the resulting gap between these values, the gap
after 180 seconds, and the time when the best solution was found. The obtained
gaps show the effectiveness of the proposed algorithm, as they vary between 0
and 3.5% and are less than 4.3% after just 180 seconds.
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The progression of the gap between the best heuristic result and the lower
bound over time is quite similar across all instances and depicted in Figure 3. The
majority and most significant improvements were achieved during the first 400
seconds. Afterwards, the solution value could still be enhanced, but the gained
improvements decreased, and after 30 minutes almost no further progress could
be recorded. An exception to this behavior is instance T5, where the best solution
was found after just 14 seconds with a gap of 0.01%. These outcomes emphasize
that the presented heuristic not only generates high-quality solutions, but is also
capable of finding good results in a short time.

Fig. 3. Gaps of all instances over time.

6 Conclusion

In this article we presented a heuristic solution approach to RSRP-PdM. We first
defined the problem and then introduced two graph models: The first is used to
model the non-maintenance relaxation of RSRP-PdM, while the other provides
an approximation to the problem itself. Then, we discussed the individual steps of
the proposed algorithm. These consist of an ILP to find an initial solution to the
non-maintenance relaxation, a method for approximate maintenance scheduling
and finally a local search procedure based on the multiple random swapping
of trips. The effectiveness of the proposed algorithm is then demonstrated by
conducting computational experiments on a set of test instances.
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Possible next steps for future research are a combination of the presented
approach with simulated annealing as well as the investigation of other meta-
heuristics. Furthermore, it would be interesting to examine whether it is more
effective to employ these heuristics on the non-maintenance relaxation and post-
pone the maintenance scheduling to a later step, or whether it is advantageous
to apply these approaches directly to the state-expanded event-graph.
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